File size: 2,168 Bytes
cac871c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: google-t5/t5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-large-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-large-finetuned
This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6085
- Rouge1: 25.8315
- Rouge2: 11.4547
- Rougel: 22.5227
- Rougelsum: 22.7341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.7803 | 1.0 | 5351 | 1.6070 | 25.1375 | 10.9135 | 21.8817 | 22.0576 |
| 1.4798 | 2.0 | 10702 | 1.4737 | 25.4328 | 11.0728 | 21.8859 | 22.0964 |
| 1.2923 | 3.0 | 16053 | 1.4838 | 25.6553 | 11.3169 | 22.1861 | 22.3694 |
| 1.1509 | 4.0 | 21404 | 1.4842 | 25.7181 | 11.4215 | 22.271 | 22.4394 |
| 1.0404 | 5.0 | 26755 | 1.5121 | 26.0812 | 11.8877 | 22.7516 | 22.941 |
| 0.9533 | 6.0 | 32106 | 1.5602 | 25.5218 | 11.486 | 22.2236 | 22.4401 |
| 0.888 | 7.0 | 37457 | 1.5832 | 25.8289 | 11.5647 | 22.5507 | 22.7091 |
| 0.8424 | 8.0 | 42808 | 1.6085 | 25.8315 | 11.4547 | 22.5227 | 22.7341 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|