czl commited on
Commit
edffcbd
1 Parent(s): 4f433b6

Upload model

Browse files
dqn-SpaceInvadersNoFrameskip-v4.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88799f5204b7cda98e37feab9a160fe7ce86b5084cf6f3e9e588da980cd39d99
3
  size 27218718
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3364e1c645fd211be297c6a4c943856cd78e69f65859b5c9f0f50deb3613f2c9
3
  size 27218718
dqn-SpaceInvadersNoFrameskip-v4/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function CnnPolicy.__init__ at 0x7f1e6172c8b0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f1e6172ad00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
@@ -83,13 +83,13 @@
83
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
84
  "__module__": "stable_baselines3.common.buffers",
85
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
- "__init__": "<function ReplayBuffer.__init__ at 0x7f1e6170b1f0>",
87
- "add": "<function ReplayBuffer.add at 0x7f1e6170b280>",
88
- "sample": "<function ReplayBuffer.sample at 0x7f1e6170b310>",
89
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7f1e6170b3a0>",
90
- "_maybe_cast_dtype": "<staticmethod object at 0x7f1e6178b310>",
91
  "__abstractmethods__": "frozenset()",
92
- "_abc_impl": "<_abc._abc_data object at 0x7f1e61705b00>"
93
  },
94
  "replay_buffer_kwargs": {},
95
  "train_freq": {
 
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function CnnPolicy.__init__ at 0x7f93c10aa8b0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f93c10ac840>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
 
83
  ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
84
  "__module__": "stable_baselines3.common.buffers",
85
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
86
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f93c10891f0>",
87
+ "add": "<function ReplayBuffer.add at 0x7f93c1089280>",
88
+ "sample": "<function ReplayBuffer.sample at 0x7f93c1089310>",
89
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f93c10893a0>",
90
+ "_maybe_cast_dtype": "<staticmethod object at 0x7f93c110d040>",
91
  "__abstractmethods__": "frozenset()",
92
+ "_abc_impl": "<_abc._abc_data object at 0x7f93c11036c0>"
93
  },
94
  "replay_buffer_kwargs": {},
95
  "train_freq": {