{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "k7xBVPzoXxOg"
},
"source": [
"# Unit 3: Deep Q-Learning with Atari Games ๐พ using RL Baselines3 Zoo\n",
"\n",
"\n",
"\n",
"In this notebook, **you'll train a Deep Q-Learning agent** playing Space Invaders using [RL Baselines3 Zoo](https://github.com/DLR-RM/rl-baselines3-zoo), a training framework based on [Stable-Baselines3](https://stable-baselines3.readthedocs.io/en/master/) that provides scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.\n",
"\n",
"We're using the [RL-Baselines-3 Zoo integration, a vanilla version of Deep Q-Learning](https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html) with no extensions such as Double-DQN, Dueling-DQN, and Prioritized Experience Replay.\n",
"\n",
"โฌ๏ธ Here is an example of what **you will achieve** โฌ๏ธ"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "J9S713biXntc"
},
"outputs": [],
"source": [
"%%html\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ykJiGevCMVc5"
},
"source": [
"### ๐ฎ Environments:\n",
"\n",
"- [SpacesInvadersNoFrameskip-v4](https://gymnasium.farama.org/environments/atari/space_invaders/)\n",
"\n",
"You can see the difference between Space Invaders versions here ๐ https://gymnasium.farama.org/environments/atari/space_invaders/#variants\n",
"\n",
"### ๐ RL-Library:\n",
"\n",
"- [RL-Baselines3-Zoo](https://github.com/DLR-RM/rl-baselines3-zoo)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wciHGjrFYz9m"
},
"source": [
"## Objectives of this notebook ๐\n",
"At the end of the notebook, you will:\n",
"- Be able to understand deeper **how RL Baselines3 Zoo works**.\n",
"- Be able to **push your trained agent and the code to the Hub** with a nice video replay and an evaluation score ๐ฅ.\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TsnP0rjxMn1e"
},
"source": [
"## This notebook is from Deep Reinforcement Learning Course\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nw6fJHIAZd-J"
},
"source": [
"In this free course, you will:\n",
"\n",
"- ๐ Study Deep Reinforcement Learning in **theory and practice**.\n",
"- ๐งโ๐ป Learn to **use famous Deep RL libraries** such as Stable Baselines3, RL Baselines3 Zoo, CleanRL and Sample Factory 2.0.\n",
"- ๐ค Train **agents in unique environments**\n",
"\n",
"And more check ๐ the syllabus ๐ https://simoninithomas.github.io/deep-rl-course\n",
"\n",
"Donโt forget to **sign up to the course** (we are collecting your email to be able toย **send you the links when each Unit is published and give you information about the challenges and updates).**\n",
"\n",
"\n",
"The best way to keep in touch is to join our discord server to exchange with the community and with us ๐๐ป https://discord.gg/ydHrjt3WP5"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0vgANIBBZg1p"
},
"source": [
"## Prerequisites ๐๏ธ\n",
"Before diving into the notebook, you need to:\n",
"\n",
"๐ฒ ๐ **[Study Deep Q-Learning by reading Unit 3](https://huggingface.co/deep-rl-course/unit3/introduction)** ๐ค"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7kszpGFaRVhq"
},
"source": [
"We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the Github Repo](https://github.com/huggingface/deep-rl-class/issues)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "QR0jZtYreSI5"
},
"source": [
"# Let's train a Deep Q-Learning agent playing Atari' Space Invaders ๐พ and upload it to the Hub.\n",
"\n",
"We strongly recommend students **to use Google Colab for the hands-on exercises instead of running them on their personal computers**.\n",
"\n",
"By using Google Colab, **you can focus on learning and experimenting without worrying about the technical aspects of setting up your environments**.\n",
"\n",
"To validate this hands-on for the certification process, you need to push your trained model to the Hub and **get a result of >= 200**.\n",
"\n",
"To find your result, go to the leaderboard and find your model, **the result = mean_reward - std of reward**\n",
"\n",
"For more information about the certification process, check this section ๐ https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Nc8BnyVEc3Ys"
},
"source": [
"## An advice ๐ก\n",
"It's better to run this colab in a copy on your Google Drive, so that **if it timeouts** you still have the saved notebook on your Google Drive and do not need to fill everything from scratch.\n",
"\n",
"To do that you can either do `Ctrl + S` or `File > Save a copy in Google Drive.`\n",
"\n",
"Also, we're going to **train it for 90 minutes with 1M timesteps**. By typing `!nvidia-smi` will tell you what GPU you're using.\n",
"\n",
"And if you want to train more such 10 million steps, this will take about 9 hours, potentially resulting in Colab timing out. In that case, I recommend running this on your local computer (or somewhere else). Just click on: `File>Download`."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PU4FVzaoM6fC"
},
"source": [
"## Set the GPU ๐ช\n",
"- To **accelerate the agent's training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type`\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KV0NyFdQM9ZG"
},
"source": [
"- `Hardware Accelerator > GPU`\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wS_cVefO-aYg"
},
"source": [
"# Install RL-Baselines3 Zoo and its dependencies ๐\n",
"\n",
"If you see `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.` **this is normal and it's not a critical error** there's a conflict of version. But the packages we need are installed."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "hLTwHqIWdnPb"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Collecting git+https://github.com/DLR-RM/rl-baselines3-zoo@update/hf\n",
" Cloning https://github.com/DLR-RM/rl-baselines3-zoo (to revision update/hf) to /tmp/pip-req-build-pa0fi3k1\n",
" Running command git clone --filter=blob:none --quiet https://github.com/DLR-RM/rl-baselines3-zoo /tmp/pip-req-build-pa0fi3k1\n",
" Running command git checkout -b update/hf --track origin/update/hf\n",
" Switched to a new branch 'update/hf'\n",
" branch 'update/hf' set up to track 'origin/update/hf'.\n",
" Resolved https://github.com/DLR-RM/rl-baselines3-zoo to commit 7dcbff7e74e7a12c052452181ff353a4dbed313a\n",
" Running command git submodule update --init --recursive -q\n",
" Installing build dependencies ... \u001b[?25ldone\n",
"\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
"\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25hCollecting sb3-contrib>=2.0.0a9 (from rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for sb3-contrib>=2.0.0a9 from https://files.pythonhosted.org/packages/01/d1/5dcefd81d358d74798ba2cde7718f2f9955f7ff80854ed4392ab7f569067/sb3_contrib-2.1.0-py3-none-any.whl.metadata\n",
" Downloading sb3_contrib-2.1.0-py3-none-any.whl.metadata (3.6 kB)\n",
"Collecting gym==0.26.2 (from rl-zoo3==2.0.0a9)\n",
" Downloading gym-0.26.2.tar.gz (721 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m721.7/721.7 kB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n",
"\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
"\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25hCollecting huggingface-sb3>=2.2.1 (from rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for huggingface-sb3>=2.2.1 from https://files.pythonhosted.org/packages/ca/71/ed75cf1113a80a1a79628c7a27aa185e64e8010295bc7cc399b5d2305801/huggingface_sb3-2.3-py3-none-any.whl.metadata\n",
" Downloading huggingface_sb3-2.3-py3-none-any.whl.metadata (6.2 kB)\n",
"Collecting tqdm (from rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for tqdm from https://files.pythonhosted.org/packages/00/e5/f12a80907d0884e6dff9c16d0c0114d81b8cd07dc3ae54c5e962cc83037e/tqdm-4.66.1-py3-none-any.whl.metadata\n",
" Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m57.6/57.6 kB\u001b[0m \u001b[31m336.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting rich (from rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for rich from https://files.pythonhosted.org/packages/8d/5f/21a93b2ec205f4b79853ff6e838e3c99064d5dbe85ec6b05967506f14af0/rich-13.5.2-py3-none-any.whl.metadata\n",
" Downloading rich-13.5.2-py3-none-any.whl.metadata (18 kB)\n",
"Collecting optuna (from rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for optuna from https://files.pythonhosted.org/packages/69/60/87a06ef66b34cbe2f2eb0ab66f003664404a7f40c21403a69fad7e28a82b/optuna-3.3.0-py3-none-any.whl.metadata\n",
" Downloading optuna-3.3.0-py3-none-any.whl.metadata (17 kB)\n",
"Collecting pyyaml>=5.1 (from rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for pyyaml>=5.1 from https://files.pythonhosted.org/packages/7d/39/472f2554a0f1e825bd7c5afc11c817cd7a2f3657460f7159f691fbb37c51/PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB)\n",
"Collecting pytablewriter~=0.64 (from rl-zoo3==2.0.0a9)\n",
" Downloading pytablewriter-0.64.2-py3-none-any.whl (106 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m106.6/106.6 kB\u001b[0m \u001b[31m385.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting numpy>=1.18.0 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for numpy>=1.18.0 from https://files.pythonhosted.org/packages/69/1f/c95b1108a9972a52d7b1b63ed8ca70466b59b8c1811bd121f1e667cc45d8/numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB)\n",
"Collecting cloudpickle>=1.2.0 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n",
" Downloading cloudpickle-2.2.1-py3-none-any.whl (25 kB)\n",
"Collecting gym-notices>=0.0.4 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n",
" Downloading gym_notices-0.0.8-py3-none-any.whl (3.0 kB)\n",
"Collecting importlib-metadata>=4.8.0 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for importlib-metadata>=4.8.0 from https://files.pythonhosted.org/packages/cc/37/db7ba97e676af155f5fcb1a35466f446eadc9104e25b83366e8088c9c926/importlib_metadata-6.8.0-py3-none-any.whl.metadata\n",
" Downloading importlib_metadata-6.8.0-py3-none-any.whl.metadata (5.1 kB)\n",
"Collecting huggingface-hub~=0.8 (from huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for huggingface-hub~=0.8 from https://files.pythonhosted.org/packages/7f/c4/adcbe9a696c135578cabcbdd7331332daad4d49b7c43688bc2d36b3a47d2/huggingface_hub-0.16.4-py3-none-any.whl.metadata\n",
" Downloading huggingface_hub-0.16.4-py3-none-any.whl.metadata (12 kB)\n",
"Collecting wasabi (from huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for wasabi from https://files.pythonhosted.org/packages/8f/69/26cbf0bad11703241cb84d5324d868097f7a8faf2f1888354dac8883f3fc/wasabi-1.1.2-py3-none-any.whl.metadata\n",
" Downloading wasabi-1.1.2-py3-none-any.whl.metadata (28 kB)\n",
"Requirement already satisfied: setuptools>=38.3.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from pytablewriter~=0.64->rl-zoo3==2.0.0a9) (68.0.0)\n",
"Collecting DataProperty<2,>=0.55.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for DataProperty<2,>=0.55.0 from https://files.pythonhosted.org/packages/b1/3b/90ebd66ad57c588d6087e86e327436343e9cc60776a9445b79c6e80a022d/DataProperty-1.0.1-py3-none-any.whl.metadata\n",
" Downloading DataProperty-1.0.1-py3-none-any.whl.metadata (11 kB)\n",
"Collecting mbstrdecoder<2,>=1.0.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for mbstrdecoder<2,>=1.0.0 from https://files.pythonhosted.org/packages/c2/0f/726229136022b154895138bb10ba35e8435c4143f614cb5ad4d4e3fc21ec/mbstrdecoder-1.1.3-py3-none-any.whl.metadata\n",
" Downloading mbstrdecoder-1.1.3-py3-none-any.whl.metadata (4.0 kB)\n",
"Collecting pathvalidate<3,>=2.3.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Downloading pathvalidate-2.5.2-py3-none-any.whl (20 kB)\n",
"Collecting tabledata<2,>=1.3.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Downloading tabledata-1.3.1-py3-none-any.whl (11 kB)\n",
"Collecting tcolorpy<1,>=0.0.5 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Downloading tcolorpy-0.1.3-py3-none-any.whl (7.9 kB)\n",
"Collecting typepy[datetime]<2,>=1.2.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for typepy[datetime]<2,>=1.2.0 from https://files.pythonhosted.org/packages/7f/31/0c7a66aa315cc8b2d1915fdd163283ba704307d7c0cf15b31e08c51aedba/typepy-1.3.1-py3-none-any.whl.metadata\n",
" Downloading typepy-1.3.1-py3-none-any.whl.metadata (9.3 kB)\n",
"Collecting stable-baselines3>=2.1.0 (from sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for stable-baselines3>=2.1.0 from https://files.pythonhosted.org/packages/5e/81/7a0fbfc45240ec36cc3fcfe8f135996ef03277e2305d941a6d9186eb14e8/stable_baselines3-2.1.0-py3-none-any.whl.metadata\n",
" Downloading stable_baselines3-2.1.0-py3-none-any.whl.metadata (5.2 kB)\n",
"Collecting alembic>=1.5.0 (from optuna->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for alembic>=1.5.0 from https://files.pythonhosted.org/packages/ab/7d/b572fc6a51bc430b1fa0ef59591db32b14105093324d472eed8ea296d2df/alembic-1.11.3-py3-none-any.whl.metadata\n",
" Downloading alembic-1.11.3-py3-none-any.whl.metadata (7.2 kB)\n",
"Collecting cmaes>=0.10.0 (from optuna->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for cmaes>=0.10.0 from https://files.pythonhosted.org/packages/f7/46/7d9544d453346f6c0c405916c95fdb653491ea2e9976cabb810ba2fe8cd4/cmaes-0.10.0-py3-none-any.whl.metadata\n",
" Downloading cmaes-0.10.0-py3-none-any.whl.metadata (19 kB)\n",
"Collecting colorlog (from optuna->rl-zoo3==2.0.0a9)\n",
" Downloading colorlog-6.7.0-py2.py3-none-any.whl (11 kB)\n",
"Requirement already satisfied: packaging>=20.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from optuna->rl-zoo3==2.0.0a9) (23.1)\n",
"Collecting sqlalchemy>=1.3.0 (from optuna->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for sqlalchemy>=1.3.0 from https://files.pythonhosted.org/packages/91/2b/92aadcea86b9ebd681de0b6b2cbfa75193227e607893cfb5feea0cefc461/SQLAlchemy-2.0.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading SQLAlchemy-2.0.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.4 kB)\n",
"Collecting markdown-it-py>=2.2.0 (from rich->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for markdown-it-py>=2.2.0 from https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl.metadata\n",
" Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from rich->rl-zoo3==2.0.0a9) (2.16.1)\n",
"Collecting Mako (from alembic>=1.5.0->optuna->rl-zoo3==2.0.0a9)\n",
" Downloading Mako-1.2.4-py3-none-any.whl (78 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m78.7/78.7 kB\u001b[0m \u001b[31m360.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: typing-extensions>=4 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from alembic>=1.5.0->optuna->rl-zoo3==2.0.0a9) (4.7.1)\n",
"Collecting filelock (from huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for filelock from https://files.pythonhosted.org/packages/52/90/45223db4e1df30ff14e8aebf9a1bf0222da2e7b49e53692c968f36817812/filelock-3.12.3-py3-none-any.whl.metadata\n",
" Downloading filelock-3.12.3-py3-none-any.whl.metadata (2.7 kB)\n",
"Collecting fsspec (from huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for fsspec from https://files.pythonhosted.org/packages/e3/bd/4c0a4619494188a9db5d77e2100ab7d544a42e76b2447869d8e124e981d8/fsspec-2023.6.0-py3-none-any.whl.metadata\n",
" Downloading fsspec-2023.6.0-py3-none-any.whl.metadata (6.7 kB)\n",
"Collecting requests (from huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for requests from https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl.metadata\n",
" Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)\n",
"Collecting zipp>=0.5 (from importlib-metadata>=4.8.0->gym==0.26.2->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for zipp>=0.5 from https://files.pythonhosted.org/packages/8c/08/d3006317aefe25ea79d3b76c9650afabaf6d63d1c8443b236e7405447503/zipp-3.16.2-py3-none-any.whl.metadata\n",
" Downloading zipp-3.16.2-py3-none-any.whl.metadata (3.7 kB)\n",
"Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich->rl-zoo3==2.0.0a9)\n",
" Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n",
"Collecting chardet<6,>=3.0.4 (from mbstrdecoder<2,>=1.0.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for chardet<6,>=3.0.4 from https://files.pythonhosted.org/packages/38/6f/f5fbc992a329ee4e0f288c1fe0e2ad9485ed064cac731ed2fe47dcc38cbf/chardet-5.2.0-py3-none-any.whl.metadata\n",
" Downloading chardet-5.2.0-py3-none-any.whl.metadata (3.4 kB)\n",
"Collecting greenlet!=0.4.17 (from sqlalchemy>=1.3.0->optuna->rl-zoo3==2.0.0a9)\n",
" Downloading greenlet-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (610 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m610.9/610.9 kB\u001b[0m \u001b[31m83.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting gymnasium<0.30,>=0.28.1 (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for gymnasium<0.30,>=0.28.1 from https://files.pythonhosted.org/packages/a8/4d/3cbfd81ed84db450dbe73a89afcd8bc405273918415649ac6683356afe92/gymnasium-0.29.1-py3-none-any.whl.metadata\n",
" Downloading gymnasium-0.29.1-py3-none-any.whl.metadata (10 kB)\n",
"Collecting torch>=1.13 (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading torch-2.0.1-cp39-cp39-manylinux1_x86_64.whl (619.9 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m619.9/619.9 MB\u001b[0m \u001b[31m47.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting pandas (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for pandas from https://files.pythonhosted.org/packages/83/f0/2765daac3c58165460b127df5c0ef7b3a039f3bfe7ea7a51f3d20b01371b/pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)\n",
"Collecting matplotlib (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for matplotlib from https://files.pythonhosted.org/packages/47/b9/6c0daa9b953a80b4e6933bf6a11a2d0633f257e84ee5995c5fd35de564c9/matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB)\n",
"Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from typepy[datetime]<2,>=1.2.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9) (2.8.2)\n",
"Collecting pytz>=2018.9 (from typepy[datetime]<2,>=1.2.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n",
" Downloading pytz-2023.3-py2.py3-none-any.whl (502 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m502.3/502.3 kB\u001b[0m \u001b[31m72.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting farama-notifications>=0.0.1 (from gymnasium<0.30,>=0.28.1->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading Farama_Notifications-0.0.4-py3-none-any.whl (2.5 kB)\n",
"Requirement already satisfied: six>=1.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.8.0->typepy[datetime]<2,>=1.2.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9) (1.16.0)\n",
"Collecting sympy (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hCollecting networkx (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading networkx-3.1-py3-none-any.whl (2.1 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m57.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hCollecting jinja2 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m133.1/133.1 kB\u001b[0m \u001b[31m377.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cuda-nvrtc-cu11==11.7.99 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl (21.0 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m50.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cuda-runtime-cu11==11.7.99 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl (849 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m849.3/849.3 kB\u001b[0m \u001b[31m61.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cuda-cupti-cu11==11.7.101 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl (11.8 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m11.8/11.8 MB\u001b[0m \u001b[31m46.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cudnn-cu11==8.5.0.96 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl (557.1 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m21.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cublas-cu11==11.10.3.66 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl (317.1 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m43.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cufft-cu11==10.9.0.58 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl (168.4 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m168.4/168.4 MB\u001b[0m \u001b[31m52.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-curand-cu11==10.2.10.91 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl (54.6 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m54.6/54.6 MB\u001b[0m \u001b[31m57.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cusolver-cu11==11.4.0.1 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl (102.6 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m102.6/102.6 MB\u001b[0m \u001b[31m66.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-cusparse-cu11==11.7.4.91 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl (173.2 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m173.2/173.2 MB\u001b[0m \u001b[31m31.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-nccl-cu11==2.14.3 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl (177.1 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m177.1/177.1 MB\u001b[0m \u001b[31m36.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hCollecting nvidia-nvtx-cu11==11.7.91 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl (98 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m98.6/98.6 kB\u001b[0m \u001b[31m393.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting triton==2.0.0 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading triton-2.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (63.3 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m63.3/63.3 MB\u001b[0m \u001b[31m38.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: wheel in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9) (0.38.4)\n",
"Collecting cmake (from triton==2.0.0->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for cmake from https://files.pythonhosted.org/packages/2e/51/3a4672a819b4532a378bfefad8f886cfe71057556e0d4eefb64523fd370a/cmake-3.27.2-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata\n",
" Downloading cmake-3.27.2-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (6.7 kB)\n",
"Collecting lit (from triton==2.0.0->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading lit-16.0.6.tar.gz (153 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m153.7/153.7 kB\u001b[0m \u001b[31m348.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n",
"\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
"\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n",
"\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25hCollecting MarkupSafe>=0.9.2 (from Mako->alembic>=1.5.0->optuna->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for MarkupSafe>=0.9.2 from https://files.pythonhosted.org/packages/de/63/cb7e71984e9159ec5f45b5e81e896c8bdd0e45fe3fc6ce02ab497f0d790e/MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB)\n",
"Collecting contourpy>=1.0.1 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for contourpy>=1.0.1 from https://files.pythonhosted.org/packages/38/6f/5382bdff9dda60cb17cef6dfa2bad3e6edacffd5c2243e282e851c63f721/contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.7 kB)\n",
"Collecting cycler>=0.10 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n",
"Collecting fonttools>=4.22.0 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for fonttools>=4.22.0 from https://files.pythonhosted.org/packages/49/50/2e31753c088d364756daa5bed0dab6a5928ebfd6e6d26f975c8b6d6f754a/fonttools-4.42.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading fonttools-4.42.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (150 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m151.0/151.0 kB\u001b[0m \u001b[31m431.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting kiwisolver>=1.0.1 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for kiwisolver>=1.0.1 from https://files.pythonhosted.org/packages/c0/a8/841594f11d0b88d8aeb26991bc4dac38baa909dc58d0c4262a4f7893bcbf/kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata\n",
" Downloading kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (6.4 kB)\n",
"Collecting pillow>=6.2.0 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for pillow>=6.2.0 from https://files.pythonhosted.org/packages/50/e5/0d484d1ac71b934638f91b7156203ba5bf3eb12f596b616a68a85c123808/Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.metadata\n",
" Downloading Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.metadata (9.5 kB)\n",
"Collecting pyparsing<3.1,>=2.3.1 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading pyparsing-3.0.9-py3-none-any.whl (98 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m98.3/98.3 kB\u001b[0m \u001b[31m387.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting importlib-resources>=3.2.0 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for importlib-resources>=3.2.0 from https://files.pythonhosted.org/packages/25/d4/592f53ce2f8dde8be5720851bd0ab71cc2e76c55978e4163ef1ab7e389bb/importlib_resources-6.0.1-py3-none-any.whl.metadata\n",
" Downloading importlib_resources-6.0.1-py3-none-any.whl.metadata (4.0 kB)\n",
"Collecting tzdata>=2022.1 (from pandas->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m341.8/341.8 kB\u001b[0m \u001b[31m91.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting charset-normalizer<4,>=2 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for charset-normalizer<4,>=2 from https://files.pythonhosted.org/packages/f9/0d/514be8597d7a96243e5467a37d337b9399cec117a513fcf9328405d911c0/charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
" Downloading charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB)\n",
"Collecting idna<4,>=2.5 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Downloading idna-3.4-py3-none-any.whl (61 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m61.5/61.5 kB\u001b[0m \u001b[31m344.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hCollecting urllib3<3,>=1.21.1 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for urllib3<3,>=1.21.1 from https://files.pythonhosted.org/packages/9b/81/62fd61001fa4b9d0df6e31d47ff49cfa9de4af03adecf339c7bc30656b37/urllib3-2.0.4-py3-none-any.whl.metadata\n",
" Downloading urllib3-2.0.4-py3-none-any.whl.metadata (6.6 kB)\n",
"Collecting certifi>=2017.4.17 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n",
" Obtaining dependency information for certifi>=2017.4.17 from https://files.pythonhosted.org/packages/4c/dd/2234eab22353ffc7d94e8d13177aaa050113286e93e7b40eae01fbf7c3d9/certifi-2023.7.22-py3-none-any.whl.metadata\n",
" Downloading certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB)\n",
"Collecting mpmath>=0.19 (from sympy->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n",
" Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m62.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading huggingface_sb3-2.3-py3-none-any.whl (9.6 kB)\n",
"Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m738.9/738.9 kB\u001b[0m \u001b[31m42.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading sb3_contrib-2.1.0-py3-none-any.whl (80 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m80.3/80.3 kB\u001b[0m \u001b[31m269.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading optuna-3.3.0-py3-none-any.whl (404 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m404.2/404.2 kB\u001b[0m \u001b[31m110.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading rich-13.5.2-py3-none-any.whl (239 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m239.7/239.7 kB\u001b[0m \u001b[31m170.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading tqdm-4.66.1-py3-none-any.whl (78 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m78.3/78.3 kB\u001b[0m \u001b[31m407.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading alembic-1.11.3-py3-none-any.whl (225 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m225.4/225.4 kB\u001b[0m \u001b[31m106.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading cmaes-0.10.0-py3-none-any.whl (29 kB)\n",
"Downloading DataProperty-1.0.1-py3-none-any.whl (27 kB)\n",
"Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m83.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading importlib_metadata-6.8.0-py3-none-any.whl (22 kB)\n",
"Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m335.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading mbstrdecoder-1.1.3-py3-none-any.whl (7.8 kB)\n",
"Downloading numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m18.3/18.3 MB\u001b[0m \u001b[31m39.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading SQLAlchemy-2.0.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m42.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading stable_baselines3-2.1.0-py3-none-any.whl (178 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m178.7/178.7 kB\u001b[0m \u001b[31m289.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading wasabi-1.1.2-py3-none-any.whl (27 kB)\n",
"Downloading chardet-5.2.0-py3-none-any.whl (199 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m199.4/199.4 kB\u001b[0m \u001b[31m179.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading gymnasium-0.29.1-py3-none-any.whl (953 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m953.9/953.9 kB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading typepy-1.3.1-py3-none-any.whl (31 kB)\n",
"Downloading zipp-3.16.2-py3-none-any.whl (7.2 kB)\n",
"Downloading filelock-3.12.3-py3-none-any.whl (11 kB)\n",
"Downloading fsspec-2023.6.0-py3-none-any.whl (163 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m163.8/163.8 kB\u001b[0m \u001b[31m78.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m11.6/11.6 MB\u001b[0m \u001b[31m30.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m12.7/12.7 MB\u001b[0m \u001b[31m24.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading requests-2.31.0-py3-none-any.whl (62 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m62.6/62.6 kB\u001b[0m \u001b[31m333.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading certifi-2023.7.22-py3-none-any.whl (158 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m158.3/158.3 kB\u001b[0m \u001b[31m56.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (202 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m202.1/202.1 kB\u001b[0m \u001b[31m56.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (300 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m300.4/300.4 kB\u001b[0m \u001b[31m49.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading fonttools-4.42.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading importlib_resources-6.0.1-py3-none-any.whl (34 kB)\n",
"Downloading kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m24.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hDownloading MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)\n",
"Downloading Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m24.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hDownloading urllib3-2.0.4-py3-none-any.whl (123 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m123.9/123.9 kB\u001b[0m \u001b[31m77.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading cmake-3.27.2-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (26.1 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m26.1/26.1 MB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n",
"\u001b[?25hBuilding wheels for collected packages: rl-zoo3, gym, lit\n",
" Building wheel for rl-zoo3 (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for rl-zoo3: filename=rl_zoo3-2.0.0a9-py3-none-any.whl size=76401 sha256=353bea9860f77205fe25632e85dae5e55adf610df4c5bfda0669069404ebc74c\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-l6mgejm0/wheels/2e/72/ca/842315ce52754f44dbc51302f9a394003c573ce992b71bce0e\n",
" Building wheel for gym (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for gym: filename=gym-0.26.2-py3-none-any.whl size=827620 sha256=a2aa9bf3431831fab18c0fa3b10d66ea971df439509be25a2e55c49d07fed39d\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-l6mgejm0/wheels/af/2b/30/5e78b8b9599f2a2286a582b8da80594f654bf0e18d825a4405\n",
" Building wheel for lit (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for lit: filename=lit-16.0.6-py3-none-any.whl size=93584 sha256=2f714142002d212723435f09c3ed2f28fadaf9c94f2df889dadf3771af353229\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-l6mgejm0/wheels/a5/36/d6/cac2e6fb891889b33a548f2fddb8b4b7726399aaa2ed32b188\n",
"Successfully built rl-zoo3 gym lit\n",
"Installing collected packages: pytz, mpmath, lit, gym-notices, farama-notifications, cmake, zipp, wasabi, urllib3, tzdata, tqdm, tcolorpy, sympy, pyyaml, pyparsing, pillow, pathvalidate, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, mdurl, MarkupSafe, kiwisolver, idna, greenlet, fsspec, fonttools, filelock, cycler, colorlog, cloudpickle, charset-normalizer, chardet, certifi, sqlalchemy, requests, pandas, nvidia-cusolver-cu11, nvidia-cudnn-cu11, mbstrdecoder, markdown-it-py, Mako, jinja2, importlib-resources, importlib-metadata, contourpy, cmaes, typepy, rich, matplotlib, huggingface-hub, gymnasium, gym, alembic, optuna, huggingface-sb3, DataProperty, tabledata, pytablewriter, triton, torch, stable-baselines3, sb3-contrib, rl-zoo3\n",
"Successfully installed DataProperty-1.0.1 Mako-1.2.4 MarkupSafe-2.1.3 alembic-1.11.3 certifi-2023.7.22 chardet-5.2.0 charset-normalizer-3.2.0 cloudpickle-2.2.1 cmaes-0.10.0 cmake-3.27.2 colorlog-6.7.0 contourpy-1.1.0 cycler-0.11.0 farama-notifications-0.0.4 filelock-3.12.3 fonttools-4.42.1 fsspec-2023.6.0 greenlet-2.0.2 gym-0.26.2 gym-notices-0.0.8 gymnasium-0.29.1 huggingface-hub-0.16.4 huggingface-sb3-2.3 idna-3.4 importlib-metadata-6.8.0 importlib-resources-6.0.1 jinja2-3.1.2 kiwisolver-1.4.5 lit-16.0.6 markdown-it-py-3.0.0 matplotlib-3.7.2 mbstrdecoder-1.1.3 mdurl-0.1.2 mpmath-1.3.0 networkx-3.1 numpy-1.25.2 nvidia-cublas-cu11-11.10.3.66 nvidia-cuda-cupti-cu11-11.7.101 nvidia-cuda-nvrtc-cu11-11.7.99 nvidia-cuda-runtime-cu11-11.7.99 nvidia-cudnn-cu11-8.5.0.96 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.2.10.91 nvidia-cusolver-cu11-11.4.0.1 nvidia-cusparse-cu11-11.7.4.91 nvidia-nccl-cu11-2.14.3 nvidia-nvtx-cu11-11.7.91 optuna-3.3.0 pandas-2.1.0 pathvalidate-2.5.2 pillow-10.0.0 pyparsing-3.0.9 pytablewriter-0.64.2 pytz-2023.3 pyyaml-6.0.1 requests-2.31.0 rich-13.5.2 rl-zoo3-2.0.0a9 sb3-contrib-2.1.0 sqlalchemy-2.0.20 stable-baselines3-2.1.0 sympy-1.12 tabledata-1.3.1 tcolorpy-0.1.3 torch-2.0.1 tqdm-4.66.1 triton-2.0.0 typepy-1.3.1 tzdata-2023.3 urllib3-2.0.4 wasabi-1.1.2 zipp-3.16.2\n"
]
}
],
"source": [
"# For now we install this update of RL-Baselines3 Zoo\n",
"!pip install git+https://github.com/DLR-RM/rl-baselines3-zoo@update/hf"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p0xe2sJHdtHy"
},
"source": [
"IF AND ONLY IF THE VERSION ABOVE DOES NOT EXIST ANYMORE. UNCOMMENT AND INSTALL THE ONE BELOW"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "N0d6wy-F-f39"
},
"outputs": [],
"source": [
"#!pip install rl_zoo3==2.0.0a9"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "8_MllY6Om1eI"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[sudo] password for zhu: \n"
]
}
],
"source": [
"!apt-get install swig cmake ffmpeg"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4S9mJiKg6SqC"
},
"source": [
"To be able to use Atari games in Gymnasium we need to install atari package. And accept-rom-license to download the rom files (games files)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "NsRP-lX1_2fC"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Requirement already satisfied: gymnasium[atari] in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (0.29.1)\n",
"Requirement already satisfied: numpy>=1.21.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (1.25.2)\n",
"Requirement already satisfied: cloudpickle>=1.2.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (2.2.1)\n",
"Requirement already satisfied: typing-extensions>=4.3.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (4.7.1)\n",
"Requirement already satisfied: farama-notifications>=0.0.1 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (0.0.4)\n",
"Requirement already satisfied: importlib-metadata>=4.8.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (6.8.0)\n",
"Collecting shimmy[atari]<1.0,>=0.1.0 (from gymnasium[atari])\n",
" Downloading Shimmy-0.2.1-py3-none-any.whl (25 kB)\n",
"Requirement already satisfied: zipp>=0.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from importlib-metadata>=4.8.0->gymnasium[atari]) (3.16.2)\n",
"Collecting ale-py~=0.8.1 (from shimmy[atari]<1.0,>=0.1.0->gymnasium[atari])\n",
" Downloading ale_py-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: importlib-resources in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from ale-py~=0.8.1->shimmy[atari]<1.0,>=0.1.0->gymnasium[atari]) (6.0.1)\n",
"Installing collected packages: ale-py, shimmy\n",
"Successfully installed ale-py-0.8.1 shimmy-0.2.1\n",
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Requirement already satisfied: gymnasium[accept-rom-license] in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (0.29.1)\n",
"Requirement already satisfied: numpy>=1.21.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (1.25.2)\n",
"Requirement already satisfied: cloudpickle>=1.2.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (2.2.1)\n",
"Requirement already satisfied: typing-extensions>=4.3.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (4.7.1)\n",
"Requirement already satisfied: farama-notifications>=0.0.1 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (0.0.4)\n",
"Requirement already satisfied: importlib-metadata>=4.8.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (6.8.0)\n",
"Collecting autorom[accept-rom-license]~=0.4.2 (from gymnasium[accept-rom-license])\n",
" Downloading AutoROM-0.4.2-py3-none-any.whl (16 kB)\n",
"Collecting click (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license])\n",
" Obtaining dependency information for click from https://files.pythonhosted.org/packages/00/2e/d53fa4befbf2cfa713304affc7ca780ce4fc1fd8710527771b58311a3229/click-8.1.7-py3-none-any.whl.metadata\n",
" Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB)\n",
"Requirement already satisfied: requests in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (2.31.0)\n",
"Requirement already satisfied: tqdm in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (4.66.1)\n",
"Collecting AutoROM.accept-rom-license (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license])\n",
" Downloading AutoROM.accept-rom-license-0.6.1.tar.gz (434 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m434.7/434.7 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n",
"\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
"\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25hRequirement already satisfied: zipp>=0.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from importlib-metadata>=4.8.0->gymnasium[accept-rom-license]) (3.16.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (3.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (2.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (2023.7.22)\n",
"Downloading click-8.1.7-py3-none-any.whl (97 kB)\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m97.9/97.9 kB\u001b[0m \u001b[31m305.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hBuilding wheels for collected packages: AutoROM.accept-rom-license\n",
" Building wheel for AutoROM.accept-rom-license (pyproject.toml) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for AutoROM.accept-rom-license: filename=AutoROM.accept_rom_license-0.6.1-py3-none-any.whl size=446660 sha256=a3d153bcb7e9a8b04468055c46336a6ca39b5ad80b31d57f3dd49f540c3bd889\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-dqje2tuh/wheels/b1/1f/f7/2da07cf4f81ea264bdaf043028749d88fe0c2227134a22cf80\n",
"Successfully built AutoROM.accept-rom-license\n",
"Installing collected packages: click, AutoROM.accept-rom-license, autorom\n",
"Successfully installed AutoROM.accept-rom-license-0.6.1 autorom-0.4.2 click-8.1.7\n"
]
}
],
"source": [
"!pip install gymnasium[atari]\n",
"!pip install gymnasium[accept-rom-license]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bTpYcVZVMzUI"
},
"source": [
"## Create a virtual display ๐ฝ\n",
"\n",
"During the notebook, we'll need to generate a replay video. To do so, with colab, **we need to have a virtual screen to be able to render the environment** (and thus record the frames).\n",
"\n",
"Hence the following cell will install the librairies and create and run a virtual screen ๐ฅ"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jV6wjQ7Be7p5"
},
"outputs": [],
"source": [
"%%capture\n",
"!apt install python-opengl\n",
"!apt install ffmpeg\n",
"!apt install xvfb"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Collecting pyvirtualdisplay\n",
" Downloading PyVirtualDisplay-3.0-py3-none-any.whl (15 kB)\n",
"Installing collected packages: pyvirtualdisplay\n",
"Successfully installed pyvirtualdisplay-3.0\n"
]
}
],
"source": [
"!pip3 install pyvirtualdisplay"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "BE5JWP5rQIKf"
},
"outputs": [],
"source": [
"# Virtual display\n",
"from pyvirtualdisplay import Display\n",
"\n",
"virtual_display = Display(visible=0, size=(1400, 900))\n",
"virtual_display.start()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XHGrMu07oOW0"
},
"source": [
"## Train our Deep Q-Learning Agent to Play Space Invaders ๐พ\n",
"\n",
"To train an agent with RL-Baselines3-Zoo, we just need to do two things:\n",
"\n",
"1. Create a hyperparameter config file that will contain our training hyperparameters called `dqn.yml`.\n",
"\n",
"This is a template example:\n",
"\n",
"```\n",
"SpaceInvadersNoFrameskip-v4:\n",
" env_wrapper:\n",
" - stable_baselines3.common.atari_wrappers.AtariWrapper\n",
" frame_stack: 4\n",
" policy: 'CnnPolicy'\n",
" n_timesteps: !!float 1e7\n",
" buffer_size: 100000\n",
" learning_rate: !!float 1e-4\n",
" batch_size: 32\n",
" learning_starts: 100000\n",
" target_update_interval: 1000\n",
" train_freq: 4\n",
" gradient_steps: 1\n",
" exploration_fraction: 0.1\n",
" exploration_final_eps: 0.01\n",
" # If True, you need to deactivate handle_timeout_termination\n",
" # in the replay_buffer_kwargs\n",
" optimize_memory_usage: False\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_VjblFSVDQOj"
},
"source": [
"Here we see that:\n",
"- We use the `Atari Wrapper` that preprocess the input (Frame reduction ,grayscale, stack 4 frames)\n",
"- We use `CnnPolicy`, since we use Convolutional layers to process the frames\n",
"- We train it for 10 million `n_timesteps`\n",
"- Memory (Experience Replay) size is 100000, aka the amount of experience steps you saved to train again your agent with.\n",
"\n",
"๐ก My advice is to **reduce the training timesteps to 1M,** which will take about 90 minutes on a P100. `!nvidia-smi` will tell you what GPU you're using. At 10 million steps, this will take about 9 hours, which could likely result in Colab timing out. I recommend running this on your local computer (or somewhere else). Just click on: `File>Download`."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5qTkbWrkECOJ"
},
"source": [
"In terms of hyperparameters optimization, my advice is to focus on these 3 hyperparameters:\n",
"- `learning_rate`\n",
"- `buffer_size (Experience Memory size)`\n",
"- `batch_size`\n",
"\n",
"As a good practice, you need to **check the documentation to understand what each hyperparameters does**: https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html#parameters\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Hn8bRTHvERRL"
},
"source": [
"2. We start the training and save the models on `logs` folder ๐\n",
"\n",
"- Define the algorithm after `--algo`, where we save the model after `-f` and where the hyperparameter config is after `-c`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "Xr1TVW4xfbz3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"========== SpaceInvadersNoFrameskip-v4 ==========\n",
"Seed: 364634905\n",
"Loading hyperparameters from: dqn.yml\n",
"Default hyperparameters for environment (ones being tuned will be overridden):\n",
"OrderedDict([('batch_size', 32),\n",
" ('buffer_size', 100000),\n",
" ('env_wrapper',\n",
" ['stable_baselines3.common.atari_wrappers.AtariWrapper']),\n",
" ('exploration_final_eps', 0.01),\n",
" ('exploration_fraction', 0.1),\n",
" ('frame_stack', 4),\n",
" ('gradient_steps', 1),\n",
" ('learning_rate', 0.0001),\n",
" ('learning_starts', 100000),\n",
" ('n_timesteps', 12000000.0),\n",
" ('optimize_memory_usage', False),\n",
" ('policy', 'CnnPolicy'),\n",
" ('target_update_interval', 1000),\n",
" ('train_freq', 4)])\n",
"Using 1 environments\n",
"Creating test environment\n",
"A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)\n",
"[Powered by Stella]\n",
"Stacking 4 frames\n",
"Wrapping the env in a VecTransposeImage.\n",
"Stacking 4 frames\n",
"Wrapping the env in a VecTransposeImage.\n",
"Using cuda device\n",
"Log path: logs//dqn/SpaceInvadersNoFrameskip-v4_1\n",
"Traceback (most recent call last):\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/runpy.py\", line 197, in _run_module_as_main\n",
" return _run_code(code, main_globals, None,\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/runpy.py\", line 87, in _run_code\n",
" exec(code, run_globals)\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/rl_zoo3/train.py\", line 274, in \n",
" train()\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/rl_zoo3/train.py\", line 267, in train\n",
" exp_manager.learn(model)\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/rl_zoo3/exp_manager.py\", line 236, in learn\n",
" model.learn(self.n_timesteps, **kwargs)\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/dqn/dqn.py\", line 267, in learn\n",
" return super().learn(\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/off_policy_algorithm.py\", line 301, in learn\n",
" total_timesteps, callback = self._setup_learn(\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/off_policy_algorithm.py\", line 284, in _setup_learn\n",
" return super()._setup_learn(\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/base_class.py\", line 424, in _setup_learn\n",
" self._last_obs = self.env.reset() # type: ignore[assignment]\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/vec_env/vec_transpose.py\", line 110, in reset\n",
" return self.transpose_observations(self.venv.reset())\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/vec_env/vec_frame_stack.py\", line 41, in reset\n",
" observation = self.venv.reset() # pytype:disable=annotation-type-mismatch\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/vec_env/dummy_vec_env.py\", line 76, in reset\n",
" obs, self.reset_infos[env_idx] = self.envs[env_idx].reset(seed=self._seeds[env_idx])\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/gymnasium/core.py\", line 467, in reset\n",
" return self.env.reset(seed=seed, options=options)\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/gymnasium/core.py\", line 467, in reset\n",
" return self.env.reset(seed=seed, options=options)\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/gymnasium/core.py\", line 516, in reset\n",
" return self.observation(obs), info\n",
" File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/atari_wrappers.py\", line 244, in observation\n",
" assert cv2 is not None, \"OpenCV is not installed, you can do `pip install opencv-python`\"\n",
"AssertionError: OpenCV is not installed, you can do `pip install opencv-python`\n"
]
}
],
"source": [
"!python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -c dqn.yml"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SeChoX-3SZfP"
},
"source": [
"#### Solution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PuocgdokSab9"
},
"outputs": [],
"source": [
"!python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -c dqn.yml"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_dLomIiMKQaf"
},
"source": [
"## Let's evaluate our agent ๐\n",
"- RL-Baselines3-Zoo provides `enjoy.py`, a python script to evaluate our agent. In most RL libraries, we call the evaluation script `enjoy.py`.\n",
"- Let's evaluate it for 5000 timesteps ๐ฅ"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "co5um_KeKbBJ"
},
"outputs": [],
"source": [
"!python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 --no-render --n-timesteps 5000 --folder logs/"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Q24K1tyWSj7t"
},
"source": [
"#### Solution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "P_uSmwGRSk0z"
},
"outputs": [],
"source": [
"!python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 --no-render --n-timesteps 5000 --folder logs/"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "liBeTltiHJtr"
},
"source": [
"## Publish our trained model on the Hub ๐\n",
"Now that we saw we got good results after the training, we can publish our trained model on the hub ๐ค with one line of code.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ezbHS1q3HYVV"
},
"source": [
"By using `rl_zoo3.push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the hub**.\n",
"\n",
"This way:\n",
"- You can **showcase our work** ๐ฅ\n",
"- You can **visualize your agent playing** ๐\n",
"- You can **share with the community an agent that others can use** ๐พ\n",
"- You can **access a leaderboard ๐ to see how well your agent is performing compared to your classmates** ๐ https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XMSeZRBiHk6X"
},
"source": [
"To be able to share your model with the community there are three more steps to follow:\n",
"\n",
"1๏ธโฃ (If it's not already done) create an account to HF โก https://huggingface.co/join\n",
"\n",
"2๏ธโฃ Sign in and then, you need to store your authentication token from the Hugging Face website.\n",
"- Create a new token (https://huggingface.co/settings/tokens) **with write role**\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9O6FI0F8HnzE"
},
"source": [
"- Copy the token\n",
"- Run the cell below and past the token"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "Ppu9yePwHrZX"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e31577a26311464dab1bca2583b252a6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='
"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "Ygk2sEktTDEw"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/bin/bash: /home/zhu/miniconda3/envs/hf39/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n",
"Loading latest experiment, id=2\n",
"Loading logs/dqn/SpaceInvadersNoFrameskip-v4_2/SpaceInvadersNoFrameskip-v4.zip\n",
"A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)\n",
"[Powered by Stella]\n",
"Stacking 4 frames\n",
"Wrapping the env in a VecTransposeImage.\n",
"Uploading to czl/SpaceInvadersNoFrameskip-v4, make sure to have the rights\n",
"\u001b[38;5;4mโน This function will save, evaluate, generate a video of your agent,\n",
"create a model card and push everything to the hub. It might take up to some\n",
"minutes if video generation is activated. This is a work in progress: if you\n",
"encounter a bug, please open an issue.\u001b[0m\n",
"Cloning https://huggingface.co/czl/SpaceInvadersNoFrameskip-v4 into local empty directory.\n",
"WARNING:huggingface_hub.repository:Cloning https://huggingface.co/czl/SpaceInvadersNoFrameskip-v4 into local empty directory.\n",
"Saving model to: hub/SpaceInvadersNoFrameskip-v4/dqn-SpaceInvadersNoFrameskip-v4\n",
"Could not load library libcudnn_cnn_infer.so.8. Error: libcuda.so: cannot open shared object file: No such file or directory\n"
]
}
],
"source": [
"!python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 --repo-name SpaceInvadersNoFrameskip-v4 -orga czl -f logs/"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "otgpa0rhS9wR"
},
"source": [
"#### Solution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_HQNlAXuEhci"
},
"outputs": [],
"source": [
"!python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 --repo-name dqn-SpaceInvadersNoFrameskip-v4 -orga ThomasSimonini -f logs/"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0D4F5zsTTJ-L"
},
"source": [
"###."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ff89kd2HL1_s"
},
"source": [
"Congrats ๐ฅณ you've just trained and uploaded your first Deep Q-Learning agent using RL-Baselines-3 Zoo. The script above should have displayed a link to a model repository such as https://huggingface.co/ThomasSimonini/dqn-SpaceInvadersNoFrameskip-v4. When you go to this link, you can:\n",
"\n",
"- See a **video preview of your agent** at the right.\n",
"- Click \"Files and versions\" to see all the files in the repository.\n",
"- Click \"Use in stable-baselines3\" to get a code snippet that shows how to load the model.\n",
"- A model card (`README.md` file) which gives a description of the model and the hyperparameters you used.\n",
"\n",
"Under the hood, the Hub uses git-based repositories (don't worry if you don't know what git is), which means you can update the model with new versions as you experiment and improve your agent.\n",
"\n",
"**Compare the results of your agents with your classmates** using the [leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) ๐"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fyRKcCYY-dIo"
},
"source": [
"## Load a powerful trained model ๐ฅ\n",
"- The Stable-Baselines3 team uploaded **more than 150 trained Deep Reinforcement Learning agents on the Hub**.\n",
"\n",
"You can find them here: ๐ https://huggingface.co/sb3\n",
"\n",
"Some examples:\n",
"- Asteroids: https://huggingface.co/sb3/dqn-AsteroidsNoFrameskip-v4\n",
"- Beam Rider: https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4\n",
"- Breakout: https://huggingface.co/sb3/dqn-BreakoutNoFrameskip-v4\n",
"- Road Runner: https://huggingface.co/sb3/dqn-RoadRunnerNoFrameskip-v4\n",
"\n",
"Let's load an agent playing Beam Rider: https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B-9QVFIROI5Y"
},
"outputs": [],
"source": [
"%%html\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7ZQNY_r6NJtC"
},
"source": [
"1. We download the model using `rl_zoo3.load_from_hub`, and place it in a new folder that we can call `rl_trained`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OdBNZHy0NGTR"
},
"outputs": [],
"source": [
"# Download model and save it into the logs/ folder\n",
"!python -m rl_zoo3.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga sb3 -f rl_trained/"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LFt6hmWsNdBo"
},
"source": [
"2. Let's evaluate if for 5000 timesteps"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "aOxs0rNuN0uS"
},
"outputs": [],
"source": [
"!python -m rl_zoo3.enjoy --algo dqn --env BeamRiderNoFrameskip-v4 -n 5000 -f rl_trained/ --no-render"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kxMDuDfPON57"
},
"source": [
"Why not trying to train your own **Deep Q-Learning Agent playing BeamRiderNoFrameskip-v4? ๐.**\n",
"\n",
"If you want to try, check https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4#hyperparameters **in the model card, you have the hyperparameters of the trained agent.**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xL_ZtUgpOuY6"
},
"source": [
"But finding hyperparameters can be a daunting task. Fortunately, we'll see in the next Unit, how we can **use Optuna for optimizing the Hyperparameters ๐ฅ.**\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-pqaco8W-huW"
},
"source": [
"## Some additional challenges ๐\n",
"The best way to learn **is to try things by your own**!\n",
"\n",
"In the [Leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) you will find your agents. Can you get to the top?\n",
"\n",
"Here's a list of environments you can try to train your agent with:\n",
"- BeamRiderNoFrameskip-v4\n",
"- BreakoutNoFrameskip-v4\n",
"- EnduroNoFrameskip-v4\n",
"- PongNoFrameskip-v4\n",
"\n",
"Also, **if you want to learn to implement Deep Q-Learning by yourself**, you definitely should look at CleanRL implementation: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "paS-XKo4-kmu"
},
"source": [
"________________________________________________________________________\n",
"Congrats on finishing this chapter!\n",
"\n",
"If youโre still feel confused with all these elements...it's totally normal! **This was the same for me and for all people who studied RL.**\n",
"\n",
"Take time to really **grasp the material before continuing and try the additional challenges**. Itโs important to master these elements and having a solid foundations.\n",
"\n",
"In the next unit, **weโre going to learn about [Optuna](https://optuna.org/)**. One of the most critical task in Deep Reinforcement Learning is to find a good set of training hyperparameters. And Optuna is a library that helps you to automate the search.\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5WRx7tO7-mvC"
},
"source": [
"\n",
"\n",
"### This is a course built with you ๐ท๐ฟโโ๏ธ\n",
"\n",
"Finally, we want to improve and update the course iteratively with your feedback. If you have some, please fill this form ๐ https://forms.gle/3HgA7bEHwAmmLfwh9\n",
"\n",
"We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the Github Repo](https://github.com/huggingface/deep-rl-class/issues)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Kc3udPT-RcXc"
},
"source": [
"See you on Bonus unit 2! ๐ฅ"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fS3Xerx0fIMV"
},
"source": [
"### Keep Learning, Stay Awesome ๐ค"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"private_outputs": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}