{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "k7xBVPzoXxOg" }, "source": [ "# Unit 3: Deep Q-Learning with Atari Games ๐Ÿ‘พ using RL Baselines3 Zoo\n", "\n", "\"Unit\n", "\n", "In this notebook, **you'll train a Deep Q-Learning agent** playing Space Invaders using [RL Baselines3 Zoo](https://github.com/DLR-RM/rl-baselines3-zoo), a training framework based on [Stable-Baselines3](https://stable-baselines3.readthedocs.io/en/master/) that provides scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.\n", "\n", "We're using the [RL-Baselines-3 Zoo integration, a vanilla version of Deep Q-Learning](https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html) with no extensions such as Double-DQN, Dueling-DQN, and Prioritized Experience Replay.\n", "\n", "โฌ‡๏ธ Here is an example of what **you will achieve** โฌ‡๏ธ" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "J9S713biXntc" }, "outputs": [], "source": [ "%%html\n", "" ] }, { "cell_type": "markdown", "metadata": { "id": "ykJiGevCMVc5" }, "source": [ "### ๐ŸŽฎ Environments:\n", "\n", "- [SpacesInvadersNoFrameskip-v4](https://gymnasium.farama.org/environments/atari/space_invaders/)\n", "\n", "You can see the difference between Space Invaders versions here ๐Ÿ‘‰ https://gymnasium.farama.org/environments/atari/space_invaders/#variants\n", "\n", "### ๐Ÿ“š RL-Library:\n", "\n", "- [RL-Baselines3-Zoo](https://github.com/DLR-RM/rl-baselines3-zoo)" ] }, { "cell_type": "markdown", "metadata": { "id": "wciHGjrFYz9m" }, "source": [ "## Objectives of this notebook ๐Ÿ†\n", "At the end of the notebook, you will:\n", "- Be able to understand deeper **how RL Baselines3 Zoo works**.\n", "- Be able to **push your trained agent and the code to the Hub** with a nice video replay and an evaluation score ๐Ÿ”ฅ.\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "TsnP0rjxMn1e" }, "source": [ "## This notebook is from Deep Reinforcement Learning Course\n", "\"Deep" ] }, { "cell_type": "markdown", "metadata": { "id": "nw6fJHIAZd-J" }, "source": [ "In this free course, you will:\n", "\n", "- ๐Ÿ“– Study Deep Reinforcement Learning in **theory and practice**.\n", "- ๐Ÿง‘โ€๐Ÿ’ป Learn to **use famous Deep RL libraries** such as Stable Baselines3, RL Baselines3 Zoo, CleanRL and Sample Factory 2.0.\n", "- ๐Ÿค– Train **agents in unique environments**\n", "\n", "And more check ๐Ÿ“š the syllabus ๐Ÿ‘‰ https://simoninithomas.github.io/deep-rl-course\n", "\n", "Donโ€™t forget to **sign up to the course** (we are collecting your email to be able toย **send you the links when each Unit is published and give you information about the challenges and updates).**\n", "\n", "\n", "The best way to keep in touch is to join our discord server to exchange with the community and with us ๐Ÿ‘‰๐Ÿป https://discord.gg/ydHrjt3WP5" ] }, { "cell_type": "markdown", "metadata": { "id": "0vgANIBBZg1p" }, "source": [ "## Prerequisites ๐Ÿ—๏ธ\n", "Before diving into the notebook, you need to:\n", "\n", "๐Ÿ”ฒ ๐Ÿ“š **[Study Deep Q-Learning by reading Unit 3](https://huggingface.co/deep-rl-course/unit3/introduction)** ๐Ÿค—" ] }, { "cell_type": "markdown", "metadata": { "id": "7kszpGFaRVhq" }, "source": [ "We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the Github Repo](https://github.com/huggingface/deep-rl-class/issues)." ] }, { "cell_type": "markdown", "metadata": { "id": "QR0jZtYreSI5" }, "source": [ "# Let's train a Deep Q-Learning agent playing Atari' Space Invaders ๐Ÿ‘พ and upload it to the Hub.\n", "\n", "We strongly recommend students **to use Google Colab for the hands-on exercises instead of running them on their personal computers**.\n", "\n", "By using Google Colab, **you can focus on learning and experimenting without worrying about the technical aspects of setting up your environments**.\n", "\n", "To validate this hands-on for the certification process, you need to push your trained model to the Hub and **get a result of >= 200**.\n", "\n", "To find your result, go to the leaderboard and find your model, **the result = mean_reward - std of reward**\n", "\n", "For more information about the certification process, check this section ๐Ÿ‘‰ https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process" ] }, { "cell_type": "markdown", "metadata": { "id": "Nc8BnyVEc3Ys" }, "source": [ "## An advice ๐Ÿ’ก\n", "It's better to run this colab in a copy on your Google Drive, so that **if it timeouts** you still have the saved notebook on your Google Drive and do not need to fill everything from scratch.\n", "\n", "To do that you can either do `Ctrl + S` or `File > Save a copy in Google Drive.`\n", "\n", "Also, we're going to **train it for 90 minutes with 1M timesteps**. By typing `!nvidia-smi` will tell you what GPU you're using.\n", "\n", "And if you want to train more such 10 million steps, this will take about 9 hours, potentially resulting in Colab timing out. In that case, I recommend running this on your local computer (or somewhere else). Just click on: `File>Download`." ] }, { "cell_type": "markdown", "metadata": { "id": "PU4FVzaoM6fC" }, "source": [ "## Set the GPU ๐Ÿ’ช\n", "- To **accelerate the agent's training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type`\n", "\n", "\"GPU" ] }, { "cell_type": "markdown", "metadata": { "id": "KV0NyFdQM9ZG" }, "source": [ "- `Hardware Accelerator > GPU`\n", "\n", "\"GPU" ] }, { "cell_type": "markdown", "metadata": { "id": "wS_cVefO-aYg" }, "source": [ "# Install RL-Baselines3 Zoo and its dependencies ๐Ÿ“š\n", "\n", "If you see `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.` **this is normal and it's not a critical error** there's a conflict of version. But the packages we need are installed." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "hLTwHqIWdnPb" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", "Collecting git+https://github.com/DLR-RM/rl-baselines3-zoo@update/hf\n", " Cloning https://github.com/DLR-RM/rl-baselines3-zoo (to revision update/hf) to /tmp/pip-req-build-pa0fi3k1\n", " Running command git clone --filter=blob:none --quiet https://github.com/DLR-RM/rl-baselines3-zoo /tmp/pip-req-build-pa0fi3k1\n", " Running command git checkout -b update/hf --track origin/update/hf\n", " Switched to a new branch 'update/hf'\n", " branch 'update/hf' set up to track 'origin/update/hf'.\n", " Resolved https://github.com/DLR-RM/rl-baselines3-zoo to commit 7dcbff7e74e7a12c052452181ff353a4dbed313a\n", " Running command git submodule update --init --recursive -q\n", " Installing build dependencies ... \u001b[?25ldone\n", "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25hCollecting sb3-contrib>=2.0.0a9 (from rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for sb3-contrib>=2.0.0a9 from https://files.pythonhosted.org/packages/01/d1/5dcefd81d358d74798ba2cde7718f2f9955f7ff80854ed4392ab7f569067/sb3_contrib-2.1.0-py3-none-any.whl.metadata\n", " Downloading sb3_contrib-2.1.0-py3-none-any.whl.metadata (3.6 kB)\n", "Collecting gym==0.26.2 (from rl-zoo3==2.0.0a9)\n", " Downloading gym-0.26.2.tar.gz (721 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m721.7/721.7 kB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n", "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25hCollecting huggingface-sb3>=2.2.1 (from rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for huggingface-sb3>=2.2.1 from https://files.pythonhosted.org/packages/ca/71/ed75cf1113a80a1a79628c7a27aa185e64e8010295bc7cc399b5d2305801/huggingface_sb3-2.3-py3-none-any.whl.metadata\n", " Downloading huggingface_sb3-2.3-py3-none-any.whl.metadata (6.2 kB)\n", "Collecting tqdm (from rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for tqdm from https://files.pythonhosted.org/packages/00/e5/f12a80907d0884e6dff9c16d0c0114d81b8cd07dc3ae54c5e962cc83037e/tqdm-4.66.1-py3-none-any.whl.metadata\n", " Downloading tqdm-4.66.1-py3-none-any.whl.metadata (57 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m57.6/57.6 kB\u001b[0m \u001b[31m336.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting rich (from rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for rich from https://files.pythonhosted.org/packages/8d/5f/21a93b2ec205f4b79853ff6e838e3c99064d5dbe85ec6b05967506f14af0/rich-13.5.2-py3-none-any.whl.metadata\n", " Downloading rich-13.5.2-py3-none-any.whl.metadata (18 kB)\n", "Collecting optuna (from rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for optuna from https://files.pythonhosted.org/packages/69/60/87a06ef66b34cbe2f2eb0ab66f003664404a7f40c21403a69fad7e28a82b/optuna-3.3.0-py3-none-any.whl.metadata\n", " Downloading optuna-3.3.0-py3-none-any.whl.metadata (17 kB)\n", "Collecting pyyaml>=5.1 (from rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for pyyaml>=5.1 from https://files.pythonhosted.org/packages/7d/39/472f2554a0f1e825bd7c5afc11c817cd7a2f3657460f7159f691fbb37c51/PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB)\n", "Collecting pytablewriter~=0.64 (from rl-zoo3==2.0.0a9)\n", " Downloading pytablewriter-0.64.2-py3-none-any.whl (106 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m106.6/106.6 kB\u001b[0m \u001b[31m385.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting numpy>=1.18.0 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for numpy>=1.18.0 from https://files.pythonhosted.org/packages/69/1f/c95b1108a9972a52d7b1b63ed8ca70466b59b8c1811bd121f1e667cc45d8/numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB)\n", "Collecting cloudpickle>=1.2.0 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n", " Downloading cloudpickle-2.2.1-py3-none-any.whl (25 kB)\n", "Collecting gym-notices>=0.0.4 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n", " Downloading gym_notices-0.0.8-py3-none-any.whl (3.0 kB)\n", "Collecting importlib-metadata>=4.8.0 (from gym==0.26.2->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for importlib-metadata>=4.8.0 from https://files.pythonhosted.org/packages/cc/37/db7ba97e676af155f5fcb1a35466f446eadc9104e25b83366e8088c9c926/importlib_metadata-6.8.0-py3-none-any.whl.metadata\n", " Downloading importlib_metadata-6.8.0-py3-none-any.whl.metadata (5.1 kB)\n", "Collecting huggingface-hub~=0.8 (from huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for huggingface-hub~=0.8 from https://files.pythonhosted.org/packages/7f/c4/adcbe9a696c135578cabcbdd7331332daad4d49b7c43688bc2d36b3a47d2/huggingface_hub-0.16.4-py3-none-any.whl.metadata\n", " Downloading huggingface_hub-0.16.4-py3-none-any.whl.metadata (12 kB)\n", "Collecting wasabi (from huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for wasabi from https://files.pythonhosted.org/packages/8f/69/26cbf0bad11703241cb84d5324d868097f7a8faf2f1888354dac8883f3fc/wasabi-1.1.2-py3-none-any.whl.metadata\n", " Downloading wasabi-1.1.2-py3-none-any.whl.metadata (28 kB)\n", "Requirement already satisfied: setuptools>=38.3.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from pytablewriter~=0.64->rl-zoo3==2.0.0a9) (68.0.0)\n", "Collecting DataProperty<2,>=0.55.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for DataProperty<2,>=0.55.0 from https://files.pythonhosted.org/packages/b1/3b/90ebd66ad57c588d6087e86e327436343e9cc60776a9445b79c6e80a022d/DataProperty-1.0.1-py3-none-any.whl.metadata\n", " Downloading DataProperty-1.0.1-py3-none-any.whl.metadata (11 kB)\n", "Collecting mbstrdecoder<2,>=1.0.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for mbstrdecoder<2,>=1.0.0 from https://files.pythonhosted.org/packages/c2/0f/726229136022b154895138bb10ba35e8435c4143f614cb5ad4d4e3fc21ec/mbstrdecoder-1.1.3-py3-none-any.whl.metadata\n", " Downloading mbstrdecoder-1.1.3-py3-none-any.whl.metadata (4.0 kB)\n", "Collecting pathvalidate<3,>=2.3.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Downloading pathvalidate-2.5.2-py3-none-any.whl (20 kB)\n", "Collecting tabledata<2,>=1.3.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Downloading tabledata-1.3.1-py3-none-any.whl (11 kB)\n", "Collecting tcolorpy<1,>=0.0.5 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Downloading tcolorpy-0.1.3-py3-none-any.whl (7.9 kB)\n", "Collecting typepy[datetime]<2,>=1.2.0 (from pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for typepy[datetime]<2,>=1.2.0 from https://files.pythonhosted.org/packages/7f/31/0c7a66aa315cc8b2d1915fdd163283ba704307d7c0cf15b31e08c51aedba/typepy-1.3.1-py3-none-any.whl.metadata\n", " Downloading typepy-1.3.1-py3-none-any.whl.metadata (9.3 kB)\n", "Collecting stable-baselines3>=2.1.0 (from sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for stable-baselines3>=2.1.0 from https://files.pythonhosted.org/packages/5e/81/7a0fbfc45240ec36cc3fcfe8f135996ef03277e2305d941a6d9186eb14e8/stable_baselines3-2.1.0-py3-none-any.whl.metadata\n", " Downloading stable_baselines3-2.1.0-py3-none-any.whl.metadata (5.2 kB)\n", "Collecting alembic>=1.5.0 (from optuna->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for alembic>=1.5.0 from https://files.pythonhosted.org/packages/ab/7d/b572fc6a51bc430b1fa0ef59591db32b14105093324d472eed8ea296d2df/alembic-1.11.3-py3-none-any.whl.metadata\n", " Downloading alembic-1.11.3-py3-none-any.whl.metadata (7.2 kB)\n", "Collecting cmaes>=0.10.0 (from optuna->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for cmaes>=0.10.0 from https://files.pythonhosted.org/packages/f7/46/7d9544d453346f6c0c405916c95fdb653491ea2e9976cabb810ba2fe8cd4/cmaes-0.10.0-py3-none-any.whl.metadata\n", " Downloading cmaes-0.10.0-py3-none-any.whl.metadata (19 kB)\n", "Collecting colorlog (from optuna->rl-zoo3==2.0.0a9)\n", " Downloading colorlog-6.7.0-py2.py3-none-any.whl (11 kB)\n", "Requirement already satisfied: packaging>=20.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from optuna->rl-zoo3==2.0.0a9) (23.1)\n", "Collecting sqlalchemy>=1.3.0 (from optuna->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for sqlalchemy>=1.3.0 from https://files.pythonhosted.org/packages/91/2b/92aadcea86b9ebd681de0b6b2cbfa75193227e607893cfb5feea0cefc461/SQLAlchemy-2.0.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading SQLAlchemy-2.0.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (9.4 kB)\n", "Collecting markdown-it-py>=2.2.0 (from rich->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for markdown-it-py>=2.2.0 from https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl.metadata\n", " Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from rich->rl-zoo3==2.0.0a9) (2.16.1)\n", "Collecting Mako (from alembic>=1.5.0->optuna->rl-zoo3==2.0.0a9)\n", " Downloading Mako-1.2.4-py3-none-any.whl (78 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m78.7/78.7 kB\u001b[0m \u001b[31m360.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: typing-extensions>=4 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from alembic>=1.5.0->optuna->rl-zoo3==2.0.0a9) (4.7.1)\n", "Collecting filelock (from huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for filelock from https://files.pythonhosted.org/packages/52/90/45223db4e1df30ff14e8aebf9a1bf0222da2e7b49e53692c968f36817812/filelock-3.12.3-py3-none-any.whl.metadata\n", " Downloading filelock-3.12.3-py3-none-any.whl.metadata (2.7 kB)\n", "Collecting fsspec (from huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for fsspec from https://files.pythonhosted.org/packages/e3/bd/4c0a4619494188a9db5d77e2100ab7d544a42e76b2447869d8e124e981d8/fsspec-2023.6.0-py3-none-any.whl.metadata\n", " Downloading fsspec-2023.6.0-py3-none-any.whl.metadata (6.7 kB)\n", "Collecting requests (from huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for requests from https://files.pythonhosted.org/packages/70/8e/0e2d847013cb52cd35b38c009bb167a1a26b2ce6cd6965bf26b47bc0bf44/requests-2.31.0-py3-none-any.whl.metadata\n", " Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)\n", "Collecting zipp>=0.5 (from importlib-metadata>=4.8.0->gym==0.26.2->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for zipp>=0.5 from https://files.pythonhosted.org/packages/8c/08/d3006317aefe25ea79d3b76c9650afabaf6d63d1c8443b236e7405447503/zipp-3.16.2-py3-none-any.whl.metadata\n", " Downloading zipp-3.16.2-py3-none-any.whl.metadata (3.7 kB)\n", "Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich->rl-zoo3==2.0.0a9)\n", " Downloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n", "Collecting chardet<6,>=3.0.4 (from mbstrdecoder<2,>=1.0.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for chardet<6,>=3.0.4 from https://files.pythonhosted.org/packages/38/6f/f5fbc992a329ee4e0f288c1fe0e2ad9485ed064cac731ed2fe47dcc38cbf/chardet-5.2.0-py3-none-any.whl.metadata\n", " Downloading chardet-5.2.0-py3-none-any.whl.metadata (3.4 kB)\n", "Collecting greenlet!=0.4.17 (from sqlalchemy>=1.3.0->optuna->rl-zoo3==2.0.0a9)\n", " Downloading greenlet-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (610 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m610.9/610.9 kB\u001b[0m \u001b[31m83.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting gymnasium<0.30,>=0.28.1 (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for gymnasium<0.30,>=0.28.1 from https://files.pythonhosted.org/packages/a8/4d/3cbfd81ed84db450dbe73a89afcd8bc405273918415649ac6683356afe92/gymnasium-0.29.1-py3-none-any.whl.metadata\n", " Downloading gymnasium-0.29.1-py3-none-any.whl.metadata (10 kB)\n", "Collecting torch>=1.13 (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading torch-2.0.1-cp39-cp39-manylinux1_x86_64.whl (619.9 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m619.9/619.9 MB\u001b[0m \u001b[31m47.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting pandas (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for pandas from https://files.pythonhosted.org/packages/83/f0/2765daac3c58165460b127df5c0ef7b3a039f3bfe7ea7a51f3d20b01371b/pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)\n", "Collecting matplotlib (from stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for matplotlib from https://files.pythonhosted.org/packages/47/b9/6c0daa9b953a80b4e6933bf6a11a2d0633f257e84ee5995c5fd35de564c9/matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB)\n", "Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from typepy[datetime]<2,>=1.2.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9) (2.8.2)\n", "Collecting pytz>=2018.9 (from typepy[datetime]<2,>=1.2.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9)\n", " Downloading pytz-2023.3-py2.py3-none-any.whl (502 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m502.3/502.3 kB\u001b[0m \u001b[31m72.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting farama-notifications>=0.0.1 (from gymnasium<0.30,>=0.28.1->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading Farama_Notifications-0.0.4-py3-none-any.whl (2.5 kB)\n", "Requirement already satisfied: six>=1.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.8.0->typepy[datetime]<2,>=1.2.0->pytablewriter~=0.64->rl-zoo3==2.0.0a9) (1.16.0)\n", "Collecting sympy (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting networkx (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading networkx-3.1-py3-none-any.whl (2.1 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m57.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting jinja2 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m133.1/133.1 kB\u001b[0m \u001b[31m377.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-nvrtc-cu11==11.7.99 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl (21.0 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m50.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-runtime-cu11==11.7.99 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl (849 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m849.3/849.3 kB\u001b[0m \u001b[31m61.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-cupti-cu11==11.7.101 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl (11.8 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m11.8/11.8 MB\u001b[0m \u001b[31m46.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cudnn-cu11==8.5.0.96 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl (557.1 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m21.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cublas-cu11==11.10.3.66 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl (317.1 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m43.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cufft-cu11==10.9.0.58 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl (168.4 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m168.4/168.4 MB\u001b[0m \u001b[31m52.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-curand-cu11==10.2.10.91 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl (54.6 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m54.6/54.6 MB\u001b[0m \u001b[31m57.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cusolver-cu11==11.4.0.1 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl (102.6 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m102.6/102.6 MB\u001b[0m \u001b[31m66.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cusparse-cu11==11.7.4.91 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl (173.2 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m173.2/173.2 MB\u001b[0m \u001b[31m31.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-nccl-cu11==2.14.3 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl (177.1 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m177.1/177.1 MB\u001b[0m \u001b[31m36.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-nvtx-cu11==11.7.91 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl (98 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m98.6/98.6 kB\u001b[0m \u001b[31m393.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting triton==2.0.0 (from torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading triton-2.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (63.3 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m63.3/63.3 MB\u001b[0m \u001b[31m38.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hRequirement already satisfied: wheel in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9) (0.38.4)\n", "Collecting cmake (from triton==2.0.0->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for cmake from https://files.pythonhosted.org/packages/2e/51/3a4672a819b4532a378bfefad8f886cfe71057556e0d4eefb64523fd370a/cmake-3.27.2-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata\n", " Downloading cmake-3.27.2-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (6.7 kB)\n", "Collecting lit (from triton==2.0.0->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading lit-16.0.6.tar.gz (153 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m153.7/153.7 kB\u001b[0m \u001b[31m348.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n", "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25hCollecting MarkupSafe>=0.9.2 (from Mako->alembic>=1.5.0->optuna->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for MarkupSafe>=0.9.2 from https://files.pythonhosted.org/packages/de/63/cb7e71984e9159ec5f45b5e81e896c8bdd0e45fe3fc6ce02ab497f0d790e/MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB)\n", "Collecting contourpy>=1.0.1 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for contourpy>=1.0.1 from https://files.pythonhosted.org/packages/38/6f/5382bdff9dda60cb17cef6dfa2bad3e6edacffd5c2243e282e851c63f721/contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.7 kB)\n", "Collecting cycler>=0.10 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n", "Collecting fonttools>=4.22.0 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for fonttools>=4.22.0 from https://files.pythonhosted.org/packages/49/50/2e31753c088d364756daa5bed0dab6a5928ebfd6e6d26f975c8b6d6f754a/fonttools-4.42.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading fonttools-4.42.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (150 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m151.0/151.0 kB\u001b[0m \u001b[31m431.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting kiwisolver>=1.0.1 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for kiwisolver>=1.0.1 from https://files.pythonhosted.org/packages/c0/a8/841594f11d0b88d8aeb26991bc4dac38baa909dc58d0c4262a4f7893bcbf/kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata\n", " Downloading kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (6.4 kB)\n", "Collecting pillow>=6.2.0 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for pillow>=6.2.0 from https://files.pythonhosted.org/packages/50/e5/0d484d1ac71b934638f91b7156203ba5bf3eb12f596b616a68a85c123808/Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.metadata\n", " Downloading Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl.metadata (9.5 kB)\n", "Collecting pyparsing<3.1,>=2.3.1 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading pyparsing-3.0.9-py3-none-any.whl (98 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m98.3/98.3 kB\u001b[0m \u001b[31m387.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting importlib-resources>=3.2.0 (from matplotlib->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for importlib-resources>=3.2.0 from https://files.pythonhosted.org/packages/25/d4/592f53ce2f8dde8be5720851bd0ab71cc2e76c55978e4163ef1ab7e389bb/importlib_resources-6.0.1-py3-none-any.whl.metadata\n", " Downloading importlib_resources-6.0.1-py3-none-any.whl.metadata (4.0 kB)\n", "Collecting tzdata>=2022.1 (from pandas->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading tzdata-2023.3-py2.py3-none-any.whl (341 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m341.8/341.8 kB\u001b[0m \u001b[31m91.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting charset-normalizer<4,>=2 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for charset-normalizer<4,>=2 from https://files.pythonhosted.org/packages/f9/0d/514be8597d7a96243e5467a37d337b9399cec117a513fcf9328405d911c0/charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", " Downloading charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB)\n", "Collecting idna<4,>=2.5 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Downloading idna-3.4-py3-none-any.whl (61 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m61.5/61.5 kB\u001b[0m \u001b[31m344.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting urllib3<3,>=1.21.1 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for urllib3<3,>=1.21.1 from https://files.pythonhosted.org/packages/9b/81/62fd61001fa4b9d0df6e31d47ff49cfa9de4af03adecf339c7bc30656b37/urllib3-2.0.4-py3-none-any.whl.metadata\n", " Downloading urllib3-2.0.4-py3-none-any.whl.metadata (6.6 kB)\n", "Collecting certifi>=2017.4.17 (from requests->huggingface-hub~=0.8->huggingface-sb3>=2.2.1->rl-zoo3==2.0.0a9)\n", " Obtaining dependency information for certifi>=2017.4.17 from https://files.pythonhosted.org/packages/4c/dd/2234eab22353ffc7d94e8d13177aaa050113286e93e7b40eae01fbf7c3d9/certifi-2023.7.22-py3-none-any.whl.metadata\n", " Downloading certifi-2023.7.22-py3-none-any.whl.metadata (2.2 kB)\n", "Collecting mpmath>=0.19 (from sympy->torch>=1.13->stable-baselines3>=2.1.0->sb3-contrib>=2.0.0a9->rl-zoo3==2.0.0a9)\n", " Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m62.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading huggingface_sb3-2.3-py3-none-any.whl (9.6 kB)\n", "Downloading PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m738.9/738.9 kB\u001b[0m \u001b[31m42.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading sb3_contrib-2.1.0-py3-none-any.whl (80 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m80.3/80.3 kB\u001b[0m \u001b[31m269.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading optuna-3.3.0-py3-none-any.whl (404 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m404.2/404.2 kB\u001b[0m \u001b[31m110.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading rich-13.5.2-py3-none-any.whl (239 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m239.7/239.7 kB\u001b[0m \u001b[31m170.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading tqdm-4.66.1-py3-none-any.whl (78 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m78.3/78.3 kB\u001b[0m \u001b[31m407.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading alembic-1.11.3-py3-none-any.whl (225 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m225.4/225.4 kB\u001b[0m \u001b[31m106.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading cmaes-0.10.0-py3-none-any.whl (29 kB)\n", "Downloading DataProperty-1.0.1-py3-none-any.whl (27 kB)\n", "Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m83.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading importlib_metadata-6.8.0-py3-none-any.whl (22 kB)\n", "Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m335.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading mbstrdecoder-1.1.3-py3-none-any.whl (7.8 kB)\n", "Downloading numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m18.3/18.3 MB\u001b[0m \u001b[31m39.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hDownloading SQLAlchemy-2.0.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m42.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hDownloading stable_baselines3-2.1.0-py3-none-any.whl (178 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m178.7/178.7 kB\u001b[0m \u001b[31m289.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading wasabi-1.1.2-py3-none-any.whl (27 kB)\n", "Downloading chardet-5.2.0-py3-none-any.whl (199 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m199.4/199.4 kB\u001b[0m \u001b[31m179.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading gymnasium-0.29.1-py3-none-any.whl (953 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m953.9/953.9 kB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading typepy-1.3.1-py3-none-any.whl (31 kB)\n", "Downloading zipp-3.16.2-py3-none-any.whl (7.2 kB)\n", "Downloading filelock-3.12.3-py3-none-any.whl (11 kB)\n", "Downloading fsspec-2023.6.0-py3-none-any.whl (163 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m163.8/163.8 kB\u001b[0m \u001b[31m78.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading matplotlib-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m11.6/11.6 MB\u001b[0m \u001b[31m30.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hDownloading pandas-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.7 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m12.7/12.7 MB\u001b[0m \u001b[31m24.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hDownloading requests-2.31.0-py3-none-any.whl (62 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m62.6/62.6 kB\u001b[0m \u001b[31m333.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading certifi-2023.7.22-py3-none-any.whl (158 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m158.3/158.3 kB\u001b[0m \u001b[31m56.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading charset_normalizer-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (202 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m202.1/202.1 kB\u001b[0m \u001b[31m56.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (300 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m300.4/300.4 kB\u001b[0m \u001b[31m49.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading fonttools-4.42.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hDownloading importlib_resources-6.0.1-py3-none-any.whl (34 kB)\n", "Downloading kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m24.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hDownloading MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)\n", "Downloading Pillow-10.0.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m24.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hDownloading urllib3-2.0.4-py3-none-any.whl (123 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m123.9/123.9 kB\u001b[0m \u001b[31m77.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading cmake-3.27.2-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (26.1 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m26.1/26.1 MB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hBuilding wheels for collected packages: rl-zoo3, gym, lit\n", " Building wheel for rl-zoo3 (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25h Created wheel for rl-zoo3: filename=rl_zoo3-2.0.0a9-py3-none-any.whl size=76401 sha256=353bea9860f77205fe25632e85dae5e55adf610df4c5bfda0669069404ebc74c\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-l6mgejm0/wheels/2e/72/ca/842315ce52754f44dbc51302f9a394003c573ce992b71bce0e\n", " Building wheel for gym (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25h Created wheel for gym: filename=gym-0.26.2-py3-none-any.whl size=827620 sha256=a2aa9bf3431831fab18c0fa3b10d66ea971df439509be25a2e55c49d07fed39d\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-l6mgejm0/wheels/af/2b/30/5e78b8b9599f2a2286a582b8da80594f654bf0e18d825a4405\n", " Building wheel for lit (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25h Created wheel for lit: filename=lit-16.0.6-py3-none-any.whl size=93584 sha256=2f714142002d212723435f09c3ed2f28fadaf9c94f2df889dadf3771af353229\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-l6mgejm0/wheels/a5/36/d6/cac2e6fb891889b33a548f2fddb8b4b7726399aaa2ed32b188\n", "Successfully built rl-zoo3 gym lit\n", "Installing collected packages: pytz, mpmath, lit, gym-notices, farama-notifications, cmake, zipp, wasabi, urllib3, tzdata, tqdm, tcolorpy, sympy, pyyaml, pyparsing, pillow, pathvalidate, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, mdurl, MarkupSafe, kiwisolver, idna, greenlet, fsspec, fonttools, filelock, cycler, colorlog, cloudpickle, charset-normalizer, chardet, certifi, sqlalchemy, requests, pandas, nvidia-cusolver-cu11, nvidia-cudnn-cu11, mbstrdecoder, markdown-it-py, Mako, jinja2, importlib-resources, importlib-metadata, contourpy, cmaes, typepy, rich, matplotlib, huggingface-hub, gymnasium, gym, alembic, optuna, huggingface-sb3, DataProperty, tabledata, pytablewriter, triton, torch, stable-baselines3, sb3-contrib, rl-zoo3\n", "Successfully installed DataProperty-1.0.1 Mako-1.2.4 MarkupSafe-2.1.3 alembic-1.11.3 certifi-2023.7.22 chardet-5.2.0 charset-normalizer-3.2.0 cloudpickle-2.2.1 cmaes-0.10.0 cmake-3.27.2 colorlog-6.7.0 contourpy-1.1.0 cycler-0.11.0 farama-notifications-0.0.4 filelock-3.12.3 fonttools-4.42.1 fsspec-2023.6.0 greenlet-2.0.2 gym-0.26.2 gym-notices-0.0.8 gymnasium-0.29.1 huggingface-hub-0.16.4 huggingface-sb3-2.3 idna-3.4 importlib-metadata-6.8.0 importlib-resources-6.0.1 jinja2-3.1.2 kiwisolver-1.4.5 lit-16.0.6 markdown-it-py-3.0.0 matplotlib-3.7.2 mbstrdecoder-1.1.3 mdurl-0.1.2 mpmath-1.3.0 networkx-3.1 numpy-1.25.2 nvidia-cublas-cu11-11.10.3.66 nvidia-cuda-cupti-cu11-11.7.101 nvidia-cuda-nvrtc-cu11-11.7.99 nvidia-cuda-runtime-cu11-11.7.99 nvidia-cudnn-cu11-8.5.0.96 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.2.10.91 nvidia-cusolver-cu11-11.4.0.1 nvidia-cusparse-cu11-11.7.4.91 nvidia-nccl-cu11-2.14.3 nvidia-nvtx-cu11-11.7.91 optuna-3.3.0 pandas-2.1.0 pathvalidate-2.5.2 pillow-10.0.0 pyparsing-3.0.9 pytablewriter-0.64.2 pytz-2023.3 pyyaml-6.0.1 requests-2.31.0 rich-13.5.2 rl-zoo3-2.0.0a9 sb3-contrib-2.1.0 sqlalchemy-2.0.20 stable-baselines3-2.1.0 sympy-1.12 tabledata-1.3.1 tcolorpy-0.1.3 torch-2.0.1 tqdm-4.66.1 triton-2.0.0 typepy-1.3.1 tzdata-2023.3 urllib3-2.0.4 wasabi-1.1.2 zipp-3.16.2\n" ] } ], "source": [ "# For now we install this update of RL-Baselines3 Zoo\n", "!pip install git+https://github.com/DLR-RM/rl-baselines3-zoo@update/hf" ] }, { "cell_type": "markdown", "metadata": { "id": "p0xe2sJHdtHy" }, "source": [ "IF AND ONLY IF THE VERSION ABOVE DOES NOT EXIST ANYMORE. UNCOMMENT AND INSTALL THE ONE BELOW" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "N0d6wy-F-f39" }, "outputs": [], "source": [ "#!pip install rl_zoo3==2.0.0a9" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "8_MllY6Om1eI" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[sudo] password for zhu: \n" ] } ], "source": [ "!apt-get install swig cmake ffmpeg" ] }, { "cell_type": "markdown", "metadata": { "id": "4S9mJiKg6SqC" }, "source": [ "To be able to use Atari games in Gymnasium we need to install atari package. And accept-rom-license to download the rom files (games files)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "NsRP-lX1_2fC" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", "Requirement already satisfied: gymnasium[atari] in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (0.29.1)\n", "Requirement already satisfied: numpy>=1.21.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (1.25.2)\n", "Requirement already satisfied: cloudpickle>=1.2.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (2.2.1)\n", "Requirement already satisfied: typing-extensions>=4.3.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (4.7.1)\n", "Requirement already satisfied: farama-notifications>=0.0.1 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (0.0.4)\n", "Requirement already satisfied: importlib-metadata>=4.8.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[atari]) (6.8.0)\n", "Collecting shimmy[atari]<1.0,>=0.1.0 (from gymnasium[atari])\n", " Downloading Shimmy-0.2.1-py3-none-any.whl (25 kB)\n", "Requirement already satisfied: zipp>=0.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from importlib-metadata>=4.8.0->gymnasium[atari]) (3.16.2)\n", "Collecting ale-py~=0.8.1 (from shimmy[atari]<1.0,>=0.1.0->gymnasium[atari])\n", " Downloading ale_py-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m24.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hRequirement already satisfied: importlib-resources in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from ale-py~=0.8.1->shimmy[atari]<1.0,>=0.1.0->gymnasium[atari]) (6.0.1)\n", "Installing collected packages: ale-py, shimmy\n", "Successfully installed ale-py-0.8.1 shimmy-0.2.1\n", "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", "Requirement already satisfied: gymnasium[accept-rom-license] in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (0.29.1)\n", "Requirement already satisfied: numpy>=1.21.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (1.25.2)\n", "Requirement already satisfied: cloudpickle>=1.2.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (2.2.1)\n", "Requirement already satisfied: typing-extensions>=4.3.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (4.7.1)\n", "Requirement already satisfied: farama-notifications>=0.0.1 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (0.0.4)\n", "Requirement already satisfied: importlib-metadata>=4.8.0 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from gymnasium[accept-rom-license]) (6.8.0)\n", "Collecting autorom[accept-rom-license]~=0.4.2 (from gymnasium[accept-rom-license])\n", " Downloading AutoROM-0.4.2-py3-none-any.whl (16 kB)\n", "Collecting click (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license])\n", " Obtaining dependency information for click from https://files.pythonhosted.org/packages/00/2e/d53fa4befbf2cfa713304affc7ca780ce4fc1fd8710527771b58311a3229/click-8.1.7-py3-none-any.whl.metadata\n", " Downloading click-8.1.7-py3-none-any.whl.metadata (3.0 kB)\n", "Requirement already satisfied: requests in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (2.31.0)\n", "Requirement already satisfied: tqdm in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (4.66.1)\n", "Collecting AutoROM.accept-rom-license (from autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license])\n", " Downloading AutoROM.accept-rom-license-0.6.1.tar.gz (434 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m434.7/434.7 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25h Installing build dependencies ... \u001b[?25ldone\n", "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25hRequirement already satisfied: zipp>=0.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from importlib-metadata>=4.8.0->gymnasium[accept-rom-license]) (3.16.2)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (3.2.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (3.4)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (2.0.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in /home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages (from requests->autorom[accept-rom-license]~=0.4.2->gymnasium[accept-rom-license]) (2023.7.22)\n", "Downloading click-8.1.7-py3-none-any.whl (97 kB)\n", "\u001b[2K \u001b[90mโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”\u001b[0m \u001b[32m97.9/97.9 kB\u001b[0m \u001b[31m305.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hBuilding wheels for collected packages: AutoROM.accept-rom-license\n", " Building wheel for AutoROM.accept-rom-license (pyproject.toml) ... \u001b[?25ldone\n", "\u001b[?25h Created wheel for AutoROM.accept-rom-license: filename=AutoROM.accept_rom_license-0.6.1-py3-none-any.whl size=446660 sha256=a3d153bcb7e9a8b04468055c46336a6ca39b5ad80b31d57f3dd49f540c3bd889\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-dqje2tuh/wheels/b1/1f/f7/2da07cf4f81ea264bdaf043028749d88fe0c2227134a22cf80\n", "Successfully built AutoROM.accept-rom-license\n", "Installing collected packages: click, AutoROM.accept-rom-license, autorom\n", "Successfully installed AutoROM.accept-rom-license-0.6.1 autorom-0.4.2 click-8.1.7\n" ] } ], "source": [ "!pip install gymnasium[atari]\n", "!pip install gymnasium[accept-rom-license]" ] }, { "cell_type": "markdown", "metadata": { "id": "bTpYcVZVMzUI" }, "source": [ "## Create a virtual display ๐Ÿ”ฝ\n", "\n", "During the notebook, we'll need to generate a replay video. To do so, with colab, **we need to have a virtual screen to be able to render the environment** (and thus record the frames).\n", "\n", "Hence the following cell will install the librairies and create and run a virtual screen ๐Ÿ–ฅ" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jV6wjQ7Be7p5" }, "outputs": [], "source": [ "%%capture\n", "!apt install python-opengl\n", "!apt install ffmpeg\n", "!apt install xvfb" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", "Collecting pyvirtualdisplay\n", " Downloading PyVirtualDisplay-3.0-py3-none-any.whl (15 kB)\n", "Installing collected packages: pyvirtualdisplay\n", "Successfully installed pyvirtualdisplay-3.0\n" ] } ], "source": [ "!pip3 install pyvirtualdisplay" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "BE5JWP5rQIKf" }, "outputs": [], "source": [ "# Virtual display\n", "from pyvirtualdisplay import Display\n", "\n", "virtual_display = Display(visible=0, size=(1400, 900))\n", "virtual_display.start()" ] }, { "cell_type": "markdown", "metadata": { "id": "XHGrMu07oOW0" }, "source": [ "## Train our Deep Q-Learning Agent to Play Space Invaders ๐Ÿ‘พ\n", "\n", "To train an agent with RL-Baselines3-Zoo, we just need to do two things:\n", "\n", "1. Create a hyperparameter config file that will contain our training hyperparameters called `dqn.yml`.\n", "\n", "This is a template example:\n", "\n", "```\n", "SpaceInvadersNoFrameskip-v4:\n", " env_wrapper:\n", " - stable_baselines3.common.atari_wrappers.AtariWrapper\n", " frame_stack: 4\n", " policy: 'CnnPolicy'\n", " n_timesteps: !!float 1e7\n", " buffer_size: 100000\n", " learning_rate: !!float 1e-4\n", " batch_size: 32\n", " learning_starts: 100000\n", " target_update_interval: 1000\n", " train_freq: 4\n", " gradient_steps: 1\n", " exploration_fraction: 0.1\n", " exploration_final_eps: 0.01\n", " # If True, you need to deactivate handle_timeout_termination\n", " # in the replay_buffer_kwargs\n", " optimize_memory_usage: False\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "_VjblFSVDQOj" }, "source": [ "Here we see that:\n", "- We use the `Atari Wrapper` that preprocess the input (Frame reduction ,grayscale, stack 4 frames)\n", "- We use `CnnPolicy`, since we use Convolutional layers to process the frames\n", "- We train it for 10 million `n_timesteps`\n", "- Memory (Experience Replay) size is 100000, aka the amount of experience steps you saved to train again your agent with.\n", "\n", "๐Ÿ’ก My advice is to **reduce the training timesteps to 1M,** which will take about 90 minutes on a P100. `!nvidia-smi` will tell you what GPU you're using. At 10 million steps, this will take about 9 hours, which could likely result in Colab timing out. I recommend running this on your local computer (or somewhere else). Just click on: `File>Download`." ] }, { "cell_type": "markdown", "metadata": { "id": "5qTkbWrkECOJ" }, "source": [ "In terms of hyperparameters optimization, my advice is to focus on these 3 hyperparameters:\n", "- `learning_rate`\n", "- `buffer_size (Experience Memory size)`\n", "- `batch_size`\n", "\n", "As a good practice, you need to **check the documentation to understand what each hyperparameters does**: https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html#parameters\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Hn8bRTHvERRL" }, "source": [ "2. We start the training and save the models on `logs` folder ๐Ÿ“\n", "\n", "- Define the algorithm after `--algo`, where we save the model after `-f` and where the hyperparameter config is after `-c`." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "Xr1TVW4xfbz3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "========== SpaceInvadersNoFrameskip-v4 ==========\n", "Seed: 364634905\n", "Loading hyperparameters from: dqn.yml\n", "Default hyperparameters for environment (ones being tuned will be overridden):\n", "OrderedDict([('batch_size', 32),\n", " ('buffer_size', 100000),\n", " ('env_wrapper',\n", " ['stable_baselines3.common.atari_wrappers.AtariWrapper']),\n", " ('exploration_final_eps', 0.01),\n", " ('exploration_fraction', 0.1),\n", " ('frame_stack', 4),\n", " ('gradient_steps', 1),\n", " ('learning_rate', 0.0001),\n", " ('learning_starts', 100000),\n", " ('n_timesteps', 12000000.0),\n", " ('optimize_memory_usage', False),\n", " ('policy', 'CnnPolicy'),\n", " ('target_update_interval', 1000),\n", " ('train_freq', 4)])\n", "Using 1 environments\n", "Creating test environment\n", "A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)\n", "[Powered by Stella]\n", "Stacking 4 frames\n", "Wrapping the env in a VecTransposeImage.\n", "Stacking 4 frames\n", "Wrapping the env in a VecTransposeImage.\n", "Using cuda device\n", "Log path: logs//dqn/SpaceInvadersNoFrameskip-v4_1\n", "Traceback (most recent call last):\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/runpy.py\", line 197, in _run_module_as_main\n", " return _run_code(code, main_globals, None,\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/runpy.py\", line 87, in _run_code\n", " exec(code, run_globals)\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/rl_zoo3/train.py\", line 274, in \n", " train()\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/rl_zoo3/train.py\", line 267, in train\n", " exp_manager.learn(model)\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/rl_zoo3/exp_manager.py\", line 236, in learn\n", " model.learn(self.n_timesteps, **kwargs)\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/dqn/dqn.py\", line 267, in learn\n", " return super().learn(\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/off_policy_algorithm.py\", line 301, in learn\n", " total_timesteps, callback = self._setup_learn(\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/off_policy_algorithm.py\", line 284, in _setup_learn\n", " return super()._setup_learn(\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/base_class.py\", line 424, in _setup_learn\n", " self._last_obs = self.env.reset() # type: ignore[assignment]\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/vec_env/vec_transpose.py\", line 110, in reset\n", " return self.transpose_observations(self.venv.reset())\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/vec_env/vec_frame_stack.py\", line 41, in reset\n", " observation = self.venv.reset() # pytype:disable=annotation-type-mismatch\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/vec_env/dummy_vec_env.py\", line 76, in reset\n", " obs, self.reset_infos[env_idx] = self.envs[env_idx].reset(seed=self._seeds[env_idx])\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/gymnasium/core.py\", line 467, in reset\n", " return self.env.reset(seed=seed, options=options)\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/gymnasium/core.py\", line 467, in reset\n", " return self.env.reset(seed=seed, options=options)\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/gymnasium/core.py\", line 516, in reset\n", " return self.observation(obs), info\n", " File \"/home/zhu/miniconda3/envs/hf39/lib/python3.9/site-packages/stable_baselines3/common/atari_wrappers.py\", line 244, in observation\n", " assert cv2 is not None, \"OpenCV is not installed, you can do `pip install opencv-python`\"\n", "AssertionError: OpenCV is not installed, you can do `pip install opencv-python`\n" ] } ], "source": [ "!python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -c dqn.yml" ] }, { "cell_type": "markdown", "metadata": { "id": "SeChoX-3SZfP" }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "PuocgdokSab9" }, "outputs": [], "source": [ "!python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -c dqn.yml" ] }, { "cell_type": "markdown", "metadata": { "id": "_dLomIiMKQaf" }, "source": [ "## Let's evaluate our agent ๐Ÿ‘€\n", "- RL-Baselines3-Zoo provides `enjoy.py`, a python script to evaluate our agent. In most RL libraries, we call the evaluation script `enjoy.py`.\n", "- Let's evaluate it for 5000 timesteps ๐Ÿ”ฅ" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "co5um_KeKbBJ" }, "outputs": [], "source": [ "!python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 --no-render --n-timesteps 5000 --folder logs/" ] }, { "cell_type": "markdown", "metadata": { "id": "Q24K1tyWSj7t" }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "P_uSmwGRSk0z" }, "outputs": [], "source": [ "!python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 --no-render --n-timesteps 5000 --folder logs/" ] }, { "cell_type": "markdown", "metadata": { "id": "liBeTltiHJtr" }, "source": [ "## Publish our trained model on the Hub ๐Ÿš€\n", "Now that we saw we got good results after the training, we can publish our trained model on the hub ๐Ÿค— with one line of code.\n", "\n", "\"Space" ] }, { "cell_type": "markdown", "metadata": { "id": "ezbHS1q3HYVV" }, "source": [ "By using `rl_zoo3.push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the hub**.\n", "\n", "This way:\n", "- You can **showcase our work** ๐Ÿ”ฅ\n", "- You can **visualize your agent playing** ๐Ÿ‘€\n", "- You can **share with the community an agent that others can use** ๐Ÿ’พ\n", "- You can **access a leaderboard ๐Ÿ† to see how well your agent is performing compared to your classmates** ๐Ÿ‘‰ https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard" ] }, { "cell_type": "markdown", "metadata": { "id": "XMSeZRBiHk6X" }, "source": [ "To be able to share your model with the community there are three more steps to follow:\n", "\n", "1๏ธโƒฃ (If it's not already done) create an account to HF โžก https://huggingface.co/join\n", "\n", "2๏ธโƒฃ Sign in and then, you need to store your authentication token from the Hugging Face website.\n", "- Create a new token (https://huggingface.co/settings/tokens) **with write role**\n", "\n", "\"Create" ] }, { "cell_type": "markdown", "metadata": { "id": "9O6FI0F8HnzE" }, "source": [ "- Copy the token\n", "- Run the cell below and past the token" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "Ppu9yePwHrZX" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e31577a26311464dab1bca2583b252a6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='
" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "Ygk2sEktTDEw" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/bin/bash: /home/zhu/miniconda3/envs/hf39/lib/libtinfo.so.6: no version information available (required by /bin/bash)\n", "Loading latest experiment, id=2\n", "Loading logs/dqn/SpaceInvadersNoFrameskip-v4_2/SpaceInvadersNoFrameskip-v4.zip\n", "A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)\n", "[Powered by Stella]\n", "Stacking 4 frames\n", "Wrapping the env in a VecTransposeImage.\n", "Uploading to czl/SpaceInvadersNoFrameskip-v4, make sure to have the rights\n", "\u001b[38;5;4mโ„น This function will save, evaluate, generate a video of your agent,\n", "create a model card and push everything to the hub. It might take up to some\n", "minutes if video generation is activated. This is a work in progress: if you\n", "encounter a bug, please open an issue.\u001b[0m\n", "Cloning https://huggingface.co/czl/SpaceInvadersNoFrameskip-v4 into local empty directory.\n", "WARNING:huggingface_hub.repository:Cloning https://huggingface.co/czl/SpaceInvadersNoFrameskip-v4 into local empty directory.\n", "Saving model to: hub/SpaceInvadersNoFrameskip-v4/dqn-SpaceInvadersNoFrameskip-v4\n", "Could not load library libcudnn_cnn_infer.so.8. Error: libcuda.so: cannot open shared object file: No such file or directory\n" ] } ], "source": [ "!python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 --repo-name SpaceInvadersNoFrameskip-v4 -orga czl -f logs/" ] }, { "cell_type": "markdown", "metadata": { "id": "otgpa0rhS9wR" }, "source": [ "#### Solution" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "_HQNlAXuEhci" }, "outputs": [], "source": [ "!python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 --repo-name dqn-SpaceInvadersNoFrameskip-v4 -orga ThomasSimonini -f logs/" ] }, { "cell_type": "markdown", "metadata": { "id": "0D4F5zsTTJ-L" }, "source": [ "###." ] }, { "cell_type": "markdown", "metadata": { "id": "ff89kd2HL1_s" }, "source": [ "Congrats ๐Ÿฅณ you've just trained and uploaded your first Deep Q-Learning agent using RL-Baselines-3 Zoo. The script above should have displayed a link to a model repository such as https://huggingface.co/ThomasSimonini/dqn-SpaceInvadersNoFrameskip-v4. When you go to this link, you can:\n", "\n", "- See a **video preview of your agent** at the right.\n", "- Click \"Files and versions\" to see all the files in the repository.\n", "- Click \"Use in stable-baselines3\" to get a code snippet that shows how to load the model.\n", "- A model card (`README.md` file) which gives a description of the model and the hyperparameters you used.\n", "\n", "Under the hood, the Hub uses git-based repositories (don't worry if you don't know what git is), which means you can update the model with new versions as you experiment and improve your agent.\n", "\n", "**Compare the results of your agents with your classmates** using the [leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) ๐Ÿ†" ] }, { "cell_type": "markdown", "metadata": { "id": "fyRKcCYY-dIo" }, "source": [ "## Load a powerful trained model ๐Ÿ”ฅ\n", "- The Stable-Baselines3 team uploaded **more than 150 trained Deep Reinforcement Learning agents on the Hub**.\n", "\n", "You can find them here: ๐Ÿ‘‰ https://huggingface.co/sb3\n", "\n", "Some examples:\n", "- Asteroids: https://huggingface.co/sb3/dqn-AsteroidsNoFrameskip-v4\n", "- Beam Rider: https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4\n", "- Breakout: https://huggingface.co/sb3/dqn-BreakoutNoFrameskip-v4\n", "- Road Runner: https://huggingface.co/sb3/dqn-RoadRunnerNoFrameskip-v4\n", "\n", "Let's load an agent playing Beam Rider: https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "B-9QVFIROI5Y" }, "outputs": [], "source": [ "%%html\n", "" ] }, { "cell_type": "markdown", "metadata": { "id": "7ZQNY_r6NJtC" }, "source": [ "1. We download the model using `rl_zoo3.load_from_hub`, and place it in a new folder that we can call `rl_trained`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "OdBNZHy0NGTR" }, "outputs": [], "source": [ "# Download model and save it into the logs/ folder\n", "!python -m rl_zoo3.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga sb3 -f rl_trained/" ] }, { "cell_type": "markdown", "metadata": { "id": "LFt6hmWsNdBo" }, "source": [ "2. Let's evaluate if for 5000 timesteps" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "aOxs0rNuN0uS" }, "outputs": [], "source": [ "!python -m rl_zoo3.enjoy --algo dqn --env BeamRiderNoFrameskip-v4 -n 5000 -f rl_trained/ --no-render" ] }, { "cell_type": "markdown", "metadata": { "id": "kxMDuDfPON57" }, "source": [ "Why not trying to train your own **Deep Q-Learning Agent playing BeamRiderNoFrameskip-v4? ๐Ÿ†.**\n", "\n", "If you want to try, check https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4#hyperparameters **in the model card, you have the hyperparameters of the trained agent.**" ] }, { "cell_type": "markdown", "metadata": { "id": "xL_ZtUgpOuY6" }, "source": [ "But finding hyperparameters can be a daunting task. Fortunately, we'll see in the next Unit, how we can **use Optuna for optimizing the Hyperparameters ๐Ÿ”ฅ.**\n" ] }, { "cell_type": "markdown", "metadata": { "id": "-pqaco8W-huW" }, "source": [ "## Some additional challenges ๐Ÿ†\n", "The best way to learn **is to try things by your own**!\n", "\n", "In the [Leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) you will find your agents. Can you get to the top?\n", "\n", "Here's a list of environments you can try to train your agent with:\n", "- BeamRiderNoFrameskip-v4\n", "- BreakoutNoFrameskip-v4\n", "- EnduroNoFrameskip-v4\n", "- PongNoFrameskip-v4\n", "\n", "Also, **if you want to learn to implement Deep Q-Learning by yourself**, you definitely should look at CleanRL implementation: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py\n", "\n", "\"Environments\"/" ] }, { "cell_type": "markdown", "metadata": { "id": "paS-XKo4-kmu" }, "source": [ "________________________________________________________________________\n", "Congrats on finishing this chapter!\n", "\n", "If youโ€™re still feel confused with all these elements...it's totally normal! **This was the same for me and for all people who studied RL.**\n", "\n", "Take time to really **grasp the material before continuing and try the additional challenges**. Itโ€™s important to master these elements and having a solid foundations.\n", "\n", "In the next unit, **weโ€™re going to learn about [Optuna](https://optuna.org/)**. One of the most critical task in Deep Reinforcement Learning is to find a good set of training hyperparameters. And Optuna is a library that helps you to automate the search.\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "5WRx7tO7-mvC" }, "source": [ "\n", "\n", "### This is a course built with you ๐Ÿ‘ท๐Ÿฟโ€โ™€๏ธ\n", "\n", "Finally, we want to improve and update the course iteratively with your feedback. If you have some, please fill this form ๐Ÿ‘‰ https://forms.gle/3HgA7bEHwAmmLfwh9\n", "\n", "We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the Github Repo](https://github.com/huggingface/deep-rl-class/issues)." ] }, { "cell_type": "markdown", "metadata": { "id": "Kc3udPT-RcXc" }, "source": [ "See you on Bonus unit 2! ๐Ÿ”ฅ" ] }, { "cell_type": "markdown", "metadata": { "id": "fS3Xerx0fIMV" }, "source": [ "### Keep Learning, Stay Awesome ๐Ÿค—" ] } ], "metadata": { "accelerator": "GPU", "colab": { "private_outputs": true, "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.17" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 0 }