Update modeling_llama.py
Browse files- modeling_llama.py +406 -461
modeling_llama.py
CHANGED
@@ -17,108 +17,123 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
-
"""PyTorch LLaMA model."""
|
21 |
-
|
22 |
import math
|
23 |
-
import warnings
|
24 |
from typing import List, Optional, Tuple, Union
|
25 |
|
26 |
import torch
|
27 |
import torch.nn.functional as F
|
28 |
import torch.utils.checkpoint
|
29 |
from torch import nn
|
30 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
|
|
|
32 |
from transformers.activations import ACT2FN
|
33 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
|
34 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
35 |
from transformers.modeling_outputs import (
|
36 |
BaseModelOutputWithPast,
|
37 |
CausalLMOutputWithPast,
|
38 |
QuestionAnsweringModelOutput,
|
39 |
SequenceClassifierOutputWithPast,
|
|
|
40 |
)
|
|
|
41 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
42 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
43 |
from transformers.utils import (
|
|
|
|
|
44 |
add_start_docstrings,
|
45 |
add_start_docstrings_to_model_forward,
|
46 |
-
is_flash_attn_2_available,
|
47 |
is_flash_attn_greater_or_equal_2_10,
|
48 |
logging,
|
49 |
replace_return_docstrings,
|
50 |
)
|
51 |
from .configuration_llama import LlamaConfig
|
52 |
-
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
53 |
-
|
54 |
-
|
55 |
-
if is_flash_attn_2_available():
|
56 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
58 |
-
|
59 |
|
60 |
|
61 |
logger = logging.get_logger(__name__)
|
62 |
|
|
|
63 |
_CONFIG_FOR_DOC = "LlamaConfig"
|
64 |
|
65 |
-
|
66 |
-
def _get_unpad_data(attention_mask):
|
67 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
68 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
69 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
70 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
71 |
-
return (
|
72 |
-
indices,
|
73 |
-
cu_seqlens,
|
74 |
-
max_seqlen_in_batch,
|
75 |
-
)
|
76 |
-
|
77 |
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
78 |
|
79 |
|
80 |
class LlamaRotaryEmbedding(nn.Module):
|
81 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
super().__init__()
|
83 |
-
|
84 |
-
self.
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
89 |
-
|
90 |
-
self.max_seq_len_cached = max_position_embeddings
|
91 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
92 |
-
t = t / self.scaling_factor
|
93 |
-
freqs = torch.outer(t, self.inv_freq)
|
94 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
95 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
96 |
-
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
97 |
-
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
98 |
-
|
99 |
-
@property
|
100 |
-
def sin_cached(self):
|
101 |
-
logger.warning_once(
|
102 |
-
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
103 |
-
"the forward method of RoPE from now on instead. It is not used in the `LlamaAttention` class"
|
104 |
-
)
|
105 |
-
return self._sin_cached
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
@torch.no_grad()
|
116 |
def forward(self, x, position_ids):
|
117 |
-
|
|
|
|
|
|
|
118 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
119 |
position_ids_expanded = position_ids[:, None, :].float()
|
120 |
-
# Force float32
|
121 |
-
# See https://github.com/huggingface/transformers/pull/29285
|
122 |
device_type = x.device.type
|
123 |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
124 |
with torch.autocast(device_type=device_type, enabled=False):
|
@@ -126,36 +141,37 @@ class LlamaRotaryEmbedding(nn.Module):
|
|
126 |
emb = torch.cat((freqs, freqs), dim=-1)
|
127 |
cos = emb.cos()
|
128 |
sin = emb.sin()
|
|
|
|
|
|
|
|
|
|
|
129 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
130 |
|
131 |
|
132 |
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
133 |
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
134 |
|
135 |
-
def
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
|
141 |
|
142 |
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
143 |
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
144 |
|
145 |
-
def
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
154 |
-
)
|
155 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
156 |
-
|
157 |
-
cos, sin = super().forward(x, position_ids)
|
158 |
-
return cos, sin
|
159 |
|
160 |
|
161 |
def rotate_half(x):
|
@@ -198,9 +214,9 @@ class LlamaMLP(nn.Module):
|
|
198 |
self.config = config
|
199 |
self.hidden_size = config.hidden_size
|
200 |
self.intermediate_size = config.intermediate_size
|
201 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=
|
202 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=
|
203 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=
|
204 |
self.act_fn = ACT2FN[config.hidden_act]
|
205 |
|
206 |
def forward(self, x):
|
@@ -255,51 +271,20 @@ class LlamaAttention(nn.Module):
|
|
255 |
self.attention_dropout = config.attention_dropout
|
256 |
self.hidden_size = config.hidden_size
|
257 |
self.num_heads = config.num_attention_heads
|
258 |
-
self.head_dim = self.hidden_size // self.num_heads
|
259 |
self.num_key_value_heads = config.num_key_value_heads
|
260 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
261 |
self.max_position_embeddings = config.max_position_embeddings
|
262 |
self.rope_theta = config.rope_theta
|
263 |
self.is_causal = True
|
264 |
|
265 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
266 |
-
raise ValueError(
|
267 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
268 |
-
f" and `num_heads`: {self.num_heads})."
|
269 |
-
)
|
270 |
-
|
271 |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
272 |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
273 |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
274 |
-
self.o_proj = nn.Linear(self.
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
if self.config.rope_scaling is None:
|
279 |
-
self.rotary_emb = LlamaRotaryEmbedding(
|
280 |
-
self.head_dim,
|
281 |
-
max_position_embeddings=self.max_position_embeddings,
|
282 |
-
base=self.rope_theta,
|
283 |
-
)
|
284 |
-
else:
|
285 |
-
scaling_type = self.config.rope_scaling["type"]
|
286 |
-
scaling_factor = self.config.rope_scaling["factor"]
|
287 |
-
if scaling_type == "linear":
|
288 |
-
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
289 |
-
self.head_dim,
|
290 |
-
max_position_embeddings=self.max_position_embeddings,
|
291 |
-
scaling_factor=scaling_factor,
|
292 |
-
base=self.rope_theta,
|
293 |
-
)
|
294 |
-
elif scaling_type == "dynamic":
|
295 |
-
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
296 |
-
self.head_dim,
|
297 |
-
max_position_embeddings=self.max_position_embeddings,
|
298 |
-
scaling_factor=scaling_factor,
|
299 |
-
base=self.rope_theta,
|
300 |
-
)
|
301 |
-
else:
|
302 |
-
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
303 |
|
304 |
def forward(
|
305 |
self,
|
@@ -310,6 +295,7 @@ class LlamaAttention(nn.Module):
|
|
310 |
output_attentions: bool = False,
|
311 |
use_cache: bool = False,
|
312 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
313 |
**kwargs,
|
314 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
315 |
bsz, q_len, _ = hidden_states.size()
|
@@ -340,8 +326,16 @@ class LlamaAttention(nn.Module):
|
|
340 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
341 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
342 |
|
343 |
-
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
346 |
|
347 |
if past_key_value is not None:
|
@@ -351,7 +345,6 @@ class LlamaAttention(nn.Module):
|
|
351 |
|
352 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
353 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
354 |
-
|
355 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
356 |
|
357 |
if attention_mask is not None: # no matter the length, we just slice it
|
@@ -371,7 +364,7 @@ class LlamaAttention(nn.Module):
|
|
371 |
|
372 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
373 |
|
374 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
375 |
|
376 |
if self.config.pretraining_tp > 1:
|
377 |
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
@@ -410,8 +403,15 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
410 |
output_attentions: bool = False,
|
411 |
use_cache: bool = False,
|
412 |
cache_position: Optional[torch.LongTensor] = None,
|
413 |
-
|
|
|
414 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
output_attentions = False
|
416 |
|
417 |
bsz, q_len, _ = hidden_states.size()
|
@@ -427,11 +427,18 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
427 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
428 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
429 |
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
432 |
|
433 |
-
past_key_value = getattr(self, "past_key_value", past_key_value)
|
434 |
-
|
435 |
if past_key_value is not None:
|
436 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
437 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
@@ -471,11 +478,21 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
471 |
key_states = key_states.to(target_dtype)
|
472 |
value_states = value_states.to(target_dtype)
|
473 |
|
474 |
-
attn_output =
|
475 |
-
query_states,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
)
|
477 |
|
478 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
479 |
attn_output = self.o_proj(attn_output)
|
480 |
|
481 |
if not output_attentions:
|
@@ -483,103 +500,6 @@ class LlamaFlashAttention2(LlamaAttention):
|
|
483 |
|
484 |
return attn_output, attn_weights, past_key_value
|
485 |
|
486 |
-
def _flash_attention_forward(
|
487 |
-
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
488 |
-
):
|
489 |
-
"""
|
490 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
491 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
492 |
-
|
493 |
-
Args:
|
494 |
-
query_states (`torch.Tensor`):
|
495 |
-
Input query states to be passed to Flash Attention API
|
496 |
-
key_states (`torch.Tensor`):
|
497 |
-
Input key states to be passed to Flash Attention API
|
498 |
-
value_states (`torch.Tensor`):
|
499 |
-
Input value states to be passed to Flash Attention API
|
500 |
-
attention_mask (`torch.Tensor`):
|
501 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
502 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
503 |
-
dropout (`float`):
|
504 |
-
Attention dropout
|
505 |
-
softmax_scale (`float`, *optional*):
|
506 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
507 |
-
"""
|
508 |
-
if not self._flash_attn_uses_top_left_mask:
|
509 |
-
causal = self.is_causal
|
510 |
-
else:
|
511 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
512 |
-
causal = self.is_causal and query_length != 1
|
513 |
-
|
514 |
-
# Contains at least one padding token in the sequence
|
515 |
-
if attention_mask is not None:
|
516 |
-
batch_size = query_states.shape[0]
|
517 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
518 |
-
query_states, key_states, value_states, attention_mask, query_length
|
519 |
-
)
|
520 |
-
|
521 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
522 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
523 |
-
|
524 |
-
attn_output_unpad = flash_attn_varlen_func(
|
525 |
-
query_states,
|
526 |
-
key_states,
|
527 |
-
value_states,
|
528 |
-
cu_seqlens_q=cu_seqlens_q,
|
529 |
-
cu_seqlens_k=cu_seqlens_k,
|
530 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
531 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
532 |
-
dropout_p=dropout,
|
533 |
-
softmax_scale=softmax_scale,
|
534 |
-
causal=causal,
|
535 |
-
)
|
536 |
-
|
537 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
538 |
-
else:
|
539 |
-
attn_output = flash_attn_func(
|
540 |
-
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
541 |
-
)
|
542 |
-
|
543 |
-
return attn_output
|
544 |
-
|
545 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
546 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
547 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
548 |
-
|
549 |
-
key_layer = index_first_axis(
|
550 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
551 |
-
)
|
552 |
-
value_layer = index_first_axis(
|
553 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
554 |
-
)
|
555 |
-
if query_length == kv_seq_len:
|
556 |
-
query_layer = index_first_axis(
|
557 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
558 |
-
)
|
559 |
-
cu_seqlens_q = cu_seqlens_k
|
560 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
561 |
-
indices_q = indices_k
|
562 |
-
elif query_length == 1:
|
563 |
-
max_seqlen_in_batch_q = 1
|
564 |
-
cu_seqlens_q = torch.arange(
|
565 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
566 |
-
) # There is a memcpy here, that is very bad.
|
567 |
-
indices_q = cu_seqlens_q[:-1]
|
568 |
-
query_layer = query_layer.squeeze(1)
|
569 |
-
else:
|
570 |
-
# The -q_len: slice assumes left padding.
|
571 |
-
attention_mask = attention_mask[:, -query_length:]
|
572 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
573 |
-
|
574 |
-
return (
|
575 |
-
query_layer,
|
576 |
-
key_layer,
|
577 |
-
value_layer,
|
578 |
-
indices_q,
|
579 |
-
(cu_seqlens_q, cu_seqlens_k),
|
580 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
581 |
-
)
|
582 |
-
|
583 |
|
584 |
class LlamaSdpaAttention(LlamaAttention):
|
585 |
"""
|
@@ -598,6 +518,8 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
598 |
output_attentions: bool = False,
|
599 |
use_cache: bool = False,
|
600 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
|
601 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
602 |
if output_attentions:
|
603 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
@@ -613,6 +535,7 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
613 |
output_attentions=output_attentions,
|
614 |
use_cache=use_cache,
|
615 |
cache_position=cache_position,
|
|
|
616 |
)
|
617 |
|
618 |
bsz, q_len, _ = hidden_states.size()
|
@@ -625,12 +548,18 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
625 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
626 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
627 |
|
628 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
630 |
|
631 |
-
# In case static cache is used, it is an instance attribute.
|
632 |
-
past_key_value = getattr(self, "past_key_value", past_key_value)
|
633 |
-
|
634 |
if past_key_value is not None:
|
635 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
636 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
@@ -650,19 +579,21 @@ class LlamaSdpaAttention(LlamaAttention):
|
|
650 |
key_states = key_states.contiguous()
|
651 |
value_states = value_states.contiguous()
|
652 |
|
653 |
-
#
|
654 |
-
#
|
|
|
|
|
655 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
656 |
query_states,
|
657 |
key_states,
|
658 |
value_states,
|
659 |
attn_mask=causal_mask,
|
660 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
661 |
-
is_causal=
|
662 |
)
|
663 |
|
664 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
665 |
-
attn_output = attn_output.view(bsz, q_len,
|
666 |
|
667 |
attn_output = self.o_proj(attn_output)
|
668 |
|
@@ -692,10 +623,11 @@ class LlamaDecoderLayer(nn.Module):
|
|
692 |
hidden_states: torch.Tensor,
|
693 |
attention_mask: Optional[torch.Tensor] = None,
|
694 |
position_ids: Optional[torch.LongTensor] = None,
|
695 |
-
past_key_value: Optional[
|
696 |
output_attentions: Optional[bool] = False,
|
697 |
use_cache: Optional[bool] = False,
|
698 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
699 |
**kwargs,
|
700 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
701 |
"""
|
@@ -711,12 +643,15 @@ class LlamaDecoderLayer(nn.Module):
|
|
711 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
712 |
(see `past_key_values`).
|
713 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
714 |
"""
|
715 |
-
if "padding_mask" in kwargs:
|
716 |
-
warnings.warn(
|
717 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
718 |
-
)
|
719 |
-
|
720 |
residual = hidden_states
|
721 |
|
722 |
hidden_states = self.input_layernorm(hidden_states)
|
@@ -730,6 +665,7 @@ class LlamaDecoderLayer(nn.Module):
|
|
730 |
output_attentions=output_attentions,
|
731 |
use_cache=use_cache,
|
732 |
cache_position=cache_position,
|
|
|
733 |
**kwargs,
|
734 |
)
|
735 |
hidden_states = residual + hidden_states
|
@@ -781,6 +717,8 @@ class LlamaPreTrainedModel(PreTrainedModel):
|
|
781 |
_supports_flash_attn_2 = True
|
782 |
_supports_sdpa = True
|
783 |
_supports_cache_class = True
|
|
|
|
|
784 |
|
785 |
def _init_weights(self, module):
|
786 |
std = self.config.initializer_range
|
@@ -793,27 +731,6 @@ class LlamaPreTrainedModel(PreTrainedModel):
|
|
793 |
if module.padding_idx is not None:
|
794 |
module.weight.data[module.padding_idx].zero_()
|
795 |
|
796 |
-
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
797 |
-
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
798 |
-
raise ValueError(
|
799 |
-
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
800 |
-
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
801 |
-
)
|
802 |
-
|
803 |
-
for layer in self.model.layers:
|
804 |
-
device = layer.input_layernorm.weight.device
|
805 |
-
if hasattr(self.config, "_pre_quantization_dtype"):
|
806 |
-
dtype = self.config._pre_quantization_dtype
|
807 |
-
else:
|
808 |
-
dtype = layer.self_attn.o_proj.weight.dtype
|
809 |
-
layer.self_attn.past_key_value = cache_cls(
|
810 |
-
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
811 |
-
)
|
812 |
-
|
813 |
-
def _reset_cache(self):
|
814 |
-
for layer in self.model.layers:
|
815 |
-
layer.self_attn.past_key_value = None
|
816 |
-
|
817 |
|
818 |
LLAMA_INPUTS_DOCSTRING = r"""
|
819 |
Args:
|
@@ -856,7 +773,8 @@ LLAMA_INPUTS_DOCSTRING = r"""
|
|
856 |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
857 |
|
858 |
Two formats are allowed:
|
859 |
-
- a [`~cache_utils.Cache`] instance
|
|
|
860 |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
861 |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
862 |
cache format.
|
@@ -911,6 +829,7 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
911 |
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
912 |
)
|
913 |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
914 |
self.gradient_checkpointing = False
|
915 |
|
916 |
# Initialize weights and apply final processing
|
@@ -928,13 +847,14 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
928 |
input_ids: torch.LongTensor = None,
|
929 |
attention_mask: Optional[torch.Tensor] = None,
|
930 |
position_ids: Optional[torch.LongTensor] = None,
|
931 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
932 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
933 |
use_cache: Optional[bool] = None,
|
934 |
output_attentions: Optional[bool] = None,
|
935 |
output_hidden_states: Optional[bool] = None,
|
936 |
return_dict: Optional[bool] = None,
|
937 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
938 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
939 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
940 |
output_hidden_states = (
|
@@ -944,9 +864,7 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
944 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
945 |
|
946 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
947 |
-
raise ValueError(
|
948 |
-
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
949 |
-
)
|
950 |
|
951 |
if self.gradient_checkpointing and self.training and use_cache:
|
952 |
logger.warning_once(
|
@@ -957,27 +875,36 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
957 |
if inputs_embeds is None:
|
958 |
inputs_embeds = self.embed_tokens(input_ids)
|
959 |
|
960 |
-
|
961 |
-
|
962 |
-
|
|
|
|
|
|
|
|
|
963 |
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
964 |
-
|
|
|
|
|
|
|
|
|
965 |
|
966 |
if cache_position is None:
|
967 |
-
if
|
968 |
-
raise ValueError("cache_position is a required argument when using StaticCache.")
|
969 |
cache_position = torch.arange(
|
970 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
971 |
)
|
972 |
-
|
973 |
if position_ids is None:
|
974 |
position_ids = cache_position.unsqueeze(0)
|
975 |
|
976 |
-
causal_mask = self._update_causal_mask(
|
977 |
-
|
978 |
-
|
979 |
hidden_states = inputs_embeds
|
980 |
|
|
|
|
|
|
|
981 |
# decoder layers
|
982 |
all_hidden_states = () if output_hidden_states else None
|
983 |
all_self_attns = () if output_attentions else None
|
@@ -997,6 +924,7 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
997 |
output_attentions,
|
998 |
use_cache,
|
999 |
cache_position,
|
|
|
1000 |
)
|
1001 |
else:
|
1002 |
layer_outputs = decoder_layer(
|
@@ -1007,6 +935,8 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
1007 |
output_attentions=output_attentions,
|
1008 |
use_cache=use_cache,
|
1009 |
cache_position=cache_position,
|
|
|
|
|
1010 |
)
|
1011 |
|
1012 |
hidden_states = layer_outputs[0]
|
@@ -1023,11 +953,10 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
1023 |
if output_hidden_states:
|
1024 |
all_hidden_states += (hidden_states,)
|
1025 |
|
1026 |
-
next_cache = None
|
1027 |
-
if
|
1028 |
-
next_cache = (
|
1029 |
-
|
1030 |
-
)
|
1031 |
if not return_dict:
|
1032 |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1033 |
return BaseModelOutputWithPast(
|
@@ -1042,76 +971,127 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
1042 |
attention_mask: torch.Tensor,
|
1043 |
input_tensor: torch.Tensor,
|
1044 |
cache_position: torch.Tensor,
|
1045 |
-
|
|
|
1046 |
):
|
1047 |
-
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1048 |
-
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1049 |
-
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1050 |
-
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1051 |
-
|
1052 |
if self.config._attn_implementation == "flash_attention_2":
|
1053 |
if attention_mask is not None and 0.0 in attention_mask:
|
1054 |
return attention_mask
|
1055 |
return None
|
1056 |
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
|
|
|
|
|
|
|
|
|
|
1060 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1061 |
-
attention_mask,
|
|
|
|
|
|
|
1062 |
):
|
1063 |
return None
|
1064 |
|
1065 |
dtype, device = input_tensor.dtype, input_tensor.device
|
1066 |
-
min_dtype = torch.finfo(dtype).min
|
1067 |
sequence_length = input_tensor.shape[1]
|
1068 |
-
if
|
1069 |
-
target_length =
|
1070 |
-
else:
|
1071 |
target_length = (
|
1072 |
attention_mask.shape[-1]
|
1073 |
if isinstance(attention_mask, torch.Tensor)
|
1074 |
else past_seen_tokens + sequence_length + 1
|
1075 |
)
|
1076 |
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1088 |
-
elif attention_mask.dim() == 4:
|
1089 |
-
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1090 |
-
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1091 |
-
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1092 |
-
offset = cache_position[0]
|
1093 |
-
else:
|
1094 |
-
offset = 0
|
1095 |
-
mask_shape = attention_mask.shape
|
1096 |
-
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1097 |
-
causal_mask[
|
1098 |
-
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1099 |
-
] = mask_slice
|
1100 |
|
1101 |
if (
|
1102 |
self.config._attn_implementation == "sdpa"
|
1103 |
and attention_mask is not None
|
1104 |
and attention_mask.device.type == "cuda"
|
|
|
1105 |
):
|
1106 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1107 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1108 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
|
1109 |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1110 |
|
1111 |
return causal_mask
|
1112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1113 |
|
1114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1115 |
_tied_weights_keys = ["lm_head.weight"]
|
1116 |
|
1117 |
def __init__(self, config):
|
@@ -1148,7 +1128,7 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1148 |
input_ids: torch.LongTensor = None,
|
1149 |
attention_mask: Optional[torch.Tensor] = None,
|
1150 |
position_ids: Optional[torch.LongTensor] = None,
|
1151 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1152 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1153 |
labels: Optional[torch.LongTensor] = None,
|
1154 |
use_cache: Optional[bool] = None,
|
@@ -1156,6 +1136,8 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1156 |
output_hidden_states: Optional[bool] = None,
|
1157 |
return_dict: Optional[bool] = None,
|
1158 |
cache_position: Optional[torch.LongTensor] = None,
|
|
|
|
|
1159 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1160 |
r"""
|
1161 |
Args:
|
@@ -1164,6 +1146,11 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1164 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1165 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1166 |
|
|
|
|
|
|
|
|
|
|
|
1167 |
Returns:
|
1168 |
|
1169 |
Example:
|
@@ -1200,6 +1187,7 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1200 |
output_hidden_states=output_hidden_states,
|
1201 |
return_dict=return_dict,
|
1202 |
cache_position=cache_position,
|
|
|
1203 |
)
|
1204 |
|
1205 |
hidden_states = outputs[0]
|
@@ -1208,21 +1196,12 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1208 |
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1209 |
logits = torch.cat(logits, dim=-1)
|
1210 |
else:
|
1211 |
-
logits
|
1212 |
-
|
1213 |
|
1214 |
loss = None
|
1215 |
if labels is not None:
|
1216 |
-
|
1217 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
1218 |
-
shift_labels = labels[..., 1:].contiguous()
|
1219 |
-
# Flatten the tokens
|
1220 |
-
loss_fct = CrossEntropyLoss()
|
1221 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1222 |
-
shift_labels = shift_labels.view(-1)
|
1223 |
-
# Enable model parallelism
|
1224 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
1225 |
-
loss = loss_fct(shift_logits, shift_labels)
|
1226 |
|
1227 |
if not return_dict:
|
1228 |
output = (logits,) + outputs[1:]
|
@@ -1236,97 +1215,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1236 |
attentions=outputs.attentions,
|
1237 |
)
|
1238 |
|
1239 |
-
def prepare_inputs_for_generation(
|
1240 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
1241 |
-
):
|
1242 |
-
# With static cache, the `past_key_values` is None
|
1243 |
-
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
1244 |
-
has_static_cache = False
|
1245 |
-
if past_key_values is None:
|
1246 |
-
past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None)
|
1247 |
-
has_static_cache = past_key_values is not None
|
1248 |
-
|
1249 |
-
past_length = 0
|
1250 |
-
if past_key_values is not None:
|
1251 |
-
if isinstance(past_key_values, Cache):
|
1252 |
-
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1253 |
-
max_cache_length = (
|
1254 |
-
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1255 |
-
if past_key_values.get_max_length() is not None
|
1256 |
-
else None
|
1257 |
-
)
|
1258 |
-
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1259 |
-
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
1260 |
-
else:
|
1261 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
1262 |
-
max_cache_length = None
|
1263 |
-
|
1264 |
-
# Keep only the unprocessed tokens:
|
1265 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1266 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1267 |
-
# input)
|
1268 |
-
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1269 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1270 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1271 |
-
# input_ids based on the past_length.
|
1272 |
-
elif past_length < input_ids.shape[1]:
|
1273 |
-
input_ids = input_ids[:, past_length:]
|
1274 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1275 |
-
|
1276 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1277 |
-
if (
|
1278 |
-
max_cache_length is not None
|
1279 |
-
and attention_mask is not None
|
1280 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
1281 |
-
):
|
1282 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
1283 |
-
|
1284 |
-
position_ids = kwargs.get("position_ids", None)
|
1285 |
-
if attention_mask is not None and position_ids is None:
|
1286 |
-
# create position_ids on the fly for batch generation
|
1287 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1288 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1289 |
-
if past_key_values:
|
1290 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1291 |
-
|
1292 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1293 |
-
if inputs_embeds is not None and past_key_values is None:
|
1294 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
1295 |
-
else:
|
1296 |
-
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1297 |
-
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1298 |
-
# TODO: use `next_tokens` directly instead.
|
1299 |
-
model_inputs = {"input_ids": input_ids.contiguous()}
|
1300 |
-
|
1301 |
-
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1302 |
-
if cache_position is None:
|
1303 |
-
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1304 |
-
else:
|
1305 |
-
cache_position = cache_position[-input_length:]
|
1306 |
-
|
1307 |
-
if has_static_cache:
|
1308 |
-
past_key_values = None
|
1309 |
-
|
1310 |
-
model_inputs.update(
|
1311 |
-
{
|
1312 |
-
"position_ids": position_ids,
|
1313 |
-
"cache_position": cache_position,
|
1314 |
-
"past_key_values": past_key_values,
|
1315 |
-
"use_cache": kwargs.get("use_cache"),
|
1316 |
-
"attention_mask": attention_mask,
|
1317 |
-
}
|
1318 |
-
)
|
1319 |
-
return model_inputs
|
1320 |
-
|
1321 |
-
@staticmethod
|
1322 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1323 |
-
reordered_past = ()
|
1324 |
-
for layer_past in past_key_values:
|
1325 |
-
reordered_past += (
|
1326 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1327 |
-
)
|
1328 |
-
return reordered_past
|
1329 |
-
|
1330 |
|
1331 |
@add_start_docstrings(
|
1332 |
"""
|
@@ -1362,10 +1250,10 @@ class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
|
1362 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1363 |
def forward(
|
1364 |
self,
|
1365 |
-
input_ids: torch.LongTensor = None,
|
1366 |
attention_mask: Optional[torch.Tensor] = None,
|
1367 |
position_ids: Optional[torch.LongTensor] = None,
|
1368 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1369 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1370 |
labels: Optional[torch.LongTensor] = None,
|
1371 |
use_cache: Optional[bool] = None,
|
@@ -1417,27 +1305,8 @@ class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
|
1417 |
|
1418 |
loss = None
|
1419 |
if labels is not None:
|
1420 |
-
|
1421 |
-
|
1422 |
-
if self.num_labels == 1:
|
1423 |
-
self.config.problem_type = "regression"
|
1424 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1425 |
-
self.config.problem_type = "single_label_classification"
|
1426 |
-
else:
|
1427 |
-
self.config.problem_type = "multi_label_classification"
|
1428 |
-
|
1429 |
-
if self.config.problem_type == "regression":
|
1430 |
-
loss_fct = MSELoss()
|
1431 |
-
if self.num_labels == 1:
|
1432 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1433 |
-
else:
|
1434 |
-
loss = loss_fct(pooled_logits, labels)
|
1435 |
-
elif self.config.problem_type == "single_label_classification":
|
1436 |
-
loss_fct = CrossEntropyLoss()
|
1437 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1438 |
-
elif self.config.problem_type == "multi_label_classification":
|
1439 |
-
loss_fct = BCEWithLogitsLoss()
|
1440 |
-
loss = loss_fct(pooled_logits, labels)
|
1441 |
if not return_dict:
|
1442 |
output = (pooled_logits,) + transformer_outputs[1:]
|
1443 |
return ((loss,) + output) if loss is not None else output
|
@@ -1482,13 +1351,14 @@ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
|
1482 |
input_ids: Optional[torch.LongTensor] = None,
|
1483 |
attention_mask: Optional[torch.FloatTensor] = None,
|
1484 |
position_ids: Optional[torch.LongTensor] = None,
|
1485 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1486 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1487 |
start_positions: Optional[torch.LongTensor] = None,
|
1488 |
end_positions: Optional[torch.LongTensor] = None,
|
1489 |
output_attentions: Optional[bool] = None,
|
1490 |
output_hidden_states: Optional[bool] = None,
|
1491 |
return_dict: Optional[bool] = None,
|
|
|
1492 |
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1493 |
r"""
|
1494 |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
@@ -1520,31 +1390,106 @@ class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
|
1520 |
start_logits = start_logits.squeeze(-1).contiguous()
|
1521 |
end_logits = end_logits.squeeze(-1).contiguous()
|
1522 |
|
1523 |
-
|
1524 |
if start_positions is not None and end_positions is not None:
|
1525 |
-
|
1526 |
-
if len(start_positions.size()) > 1:
|
1527 |
-
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1528 |
-
if len(end_positions.size()) > 1:
|
1529 |
-
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1530 |
-
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1531 |
-
ignored_index = start_logits.size(1)
|
1532 |
-
start_positions = start_positions.clamp(0, ignored_index)
|
1533 |
-
end_positions = end_positions.clamp(0, ignored_index)
|
1534 |
-
|
1535 |
-
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1536 |
-
start_loss = loss_fct(start_logits, start_positions)
|
1537 |
-
end_loss = loss_fct(end_logits, end_positions)
|
1538 |
-
total_loss = (start_loss + end_loss) / 2
|
1539 |
|
1540 |
if not return_dict:
|
1541 |
output = (start_logits, end_logits) + outputs[2:]
|
1542 |
-
return ((
|
1543 |
|
1544 |
return QuestionAnsweringModelOutput(
|
1545 |
-
loss=
|
1546 |
start_logits=start_logits,
|
1547 |
end_logits=end_logits,
|
1548 |
hidden_states=outputs.hidden_states,
|
1549 |
attentions=outputs.attentions,
|
1550 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
|
|
|
|
20 |
import math
|
|
|
21 |
from typing import List, Optional, Tuple, Union
|
22 |
|
23 |
import torch
|
24 |
import torch.nn.functional as F
|
25 |
import torch.utils.checkpoint
|
26 |
from torch import nn
|
|
|
27 |
|
28 |
+
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
29 |
from transformers.activations import ACT2FN
|
30 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
31 |
+
from transformers.generation import GenerationMixin
|
32 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
33 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
|
34 |
from transformers.modeling_outputs import (
|
35 |
BaseModelOutputWithPast,
|
36 |
CausalLMOutputWithPast,
|
37 |
QuestionAnsweringModelOutput,
|
38 |
SequenceClassifierOutputWithPast,
|
39 |
+
TokenClassifierOutput,
|
40 |
)
|
41 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
42 |
from transformers.modeling_utils import PreTrainedModel
|
43 |
+
from transformers.processing_utils import Unpack
|
44 |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
45 |
from transformers.utils import (
|
46 |
+
LossKwargs,
|
47 |
+
add_code_sample_docstrings,
|
48 |
add_start_docstrings,
|
49 |
add_start_docstrings_to_model_forward,
|
|
|
50 |
is_flash_attn_greater_or_equal_2_10,
|
51 |
logging,
|
52 |
replace_return_docstrings,
|
53 |
)
|
54 |
from .configuration_llama import LlamaConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
logger = logging.get_logger(__name__)
|
58 |
|
59 |
+
_CHECKPOINT_FOR_DOC = "meta-llama/Llama-2-7b-hf"
|
60 |
_CONFIG_FOR_DOC = "LlamaConfig"
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
63 |
|
64 |
|
65 |
class LlamaRotaryEmbedding(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
dim=None,
|
69 |
+
max_position_embeddings=2048,
|
70 |
+
base=10000,
|
71 |
+
device=None,
|
72 |
+
scaling_factor=1.0,
|
73 |
+
rope_type="default",
|
74 |
+
config: Optional[LlamaConfig] = None,
|
75 |
+
):
|
76 |
super().__init__()
|
77 |
+
# TODO (joao): remove the `if` below, only used for BC
|
78 |
+
self.rope_kwargs = {}
|
79 |
+
if config is None:
|
80 |
+
logger.warning_once(
|
81 |
+
"`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
82 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
83 |
+
)
|
84 |
+
self.rope_kwargs = {
|
85 |
+
"rope_type": rope_type,
|
86 |
+
"factor": scaling_factor,
|
87 |
+
"dim": dim,
|
88 |
+
"base": base,
|
89 |
+
"max_position_embeddings": max_position_embeddings,
|
90 |
+
}
|
91 |
+
self.rope_type = rope_type
|
92 |
+
self.max_seq_len_cached = max_position_embeddings
|
93 |
+
self.original_max_seq_len = max_position_embeddings
|
94 |
+
else:
|
95 |
+
# BC: "rope_type" was originally "type"
|
96 |
+
if config.rope_scaling is not None:
|
97 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
98 |
+
else:
|
99 |
+
self.rope_type = "default"
|
100 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
101 |
+
self.original_max_seq_len = config.max_position_embeddings
|
102 |
+
|
103 |
+
self.config = config
|
104 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
105 |
+
|
106 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
107 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
108 |
+
self.original_inv_freq = self.inv_freq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
111 |
+
"""
|
112 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
113 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
114 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
115 |
+
"""
|
116 |
+
seq_len = torch.max(position_ids) + 1
|
117 |
+
if seq_len > self.max_seq_len_cached: # growth
|
118 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
119 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
120 |
+
)
|
121 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
122 |
+
self.max_seq_len_cached = seq_len
|
123 |
+
|
124 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
125 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
126 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
127 |
|
128 |
@torch.no_grad()
|
129 |
def forward(self, x, position_ids):
|
130 |
+
if "dynamic" in self.rope_type:
|
131 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
132 |
+
|
133 |
+
# Core RoPE block
|
134 |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
135 |
position_ids_expanded = position_ids[:, None, :].float()
|
136 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
|
|
137 |
device_type = x.device.type
|
138 |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
139 |
with torch.autocast(device_type=device_type, enabled=False):
|
|
|
141 |
emb = torch.cat((freqs, freqs), dim=-1)
|
142 |
cos = emb.cos()
|
143 |
sin = emb.sin()
|
144 |
+
|
145 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
146 |
+
cos = cos * self.attention_scaling
|
147 |
+
sin = sin * self.attention_scaling
|
148 |
+
|
149 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
150 |
|
151 |
|
152 |
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
153 |
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
154 |
|
155 |
+
def __init__(self, *args, **kwargs):
|
156 |
+
logger.warning_once(
|
157 |
+
"`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
158 |
+
"`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
159 |
+
)
|
160 |
+
kwargs["rope_type"] = "linear"
|
161 |
+
super().__init__(*args, **kwargs)
|
162 |
|
163 |
|
164 |
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
165 |
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
166 |
|
167 |
+
def __init__(self, *args, **kwargs):
|
168 |
+
logger.warning_once(
|
169 |
+
"`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
170 |
+
"`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
171 |
+
"__init__)."
|
172 |
+
)
|
173 |
+
kwargs["rope_type"] = "dynamic"
|
174 |
+
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
|
177 |
def rotate_half(x):
|
|
|
214 |
self.config = config
|
215 |
self.hidden_size = config.hidden_size
|
216 |
self.intermediate_size = config.intermediate_size
|
217 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
218 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
219 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
220 |
self.act_fn = ACT2FN[config.hidden_act]
|
221 |
|
222 |
def forward(self, x):
|
|
|
271 |
self.attention_dropout = config.attention_dropout
|
272 |
self.hidden_size = config.hidden_size
|
273 |
self.num_heads = config.num_attention_heads
|
274 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
275 |
self.num_key_value_heads = config.num_key_value_heads
|
276 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
277 |
self.max_position_embeddings = config.max_position_embeddings
|
278 |
self.rope_theta = config.rope_theta
|
279 |
self.is_causal = True
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
282 |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
283 |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
284 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
285 |
+
|
286 |
+
# TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
|
287 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
def forward(
|
290 |
self,
|
|
|
295 |
output_attentions: bool = False,
|
296 |
use_cache: bool = False,
|
297 |
cache_position: Optional[torch.LongTensor] = None,
|
298 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
299 |
**kwargs,
|
300 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
301 |
bsz, q_len, _ = hidden_states.size()
|
|
|
326 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
327 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
328 |
|
329 |
+
if position_embeddings is None:
|
330 |
+
logger.warning_once(
|
331 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
332 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
333 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
334 |
+
"removed and `position_embeddings` will be mandatory."
|
335 |
+
)
|
336 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
337 |
+
else:
|
338 |
+
cos, sin = position_embeddings
|
339 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
340 |
|
341 |
if past_key_value is not None:
|
|
|
345 |
|
346 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
347 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
348 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
349 |
|
350 |
if attention_mask is not None: # no matter the length, we just slice it
|
|
|
364 |
|
365 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
366 |
|
367 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
368 |
|
369 |
if self.config.pretraining_tp > 1:
|
370 |
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
|
|
403 |
output_attentions: bool = False,
|
404 |
use_cache: bool = False,
|
405 |
cache_position: Optional[torch.LongTensor] = None,
|
406 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
407 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
408 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
409 |
+
if isinstance(past_key_value, StaticCache):
|
410 |
+
raise ValueError(
|
411 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
412 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
413 |
+
)
|
414 |
+
|
415 |
output_attentions = False
|
416 |
|
417 |
bsz, q_len, _ = hidden_states.size()
|
|
|
427 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
428 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
429 |
|
430 |
+
if position_embeddings is None:
|
431 |
+
logger.warning_once(
|
432 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
433 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
434 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
435 |
+
"removed and `position_embeddings` will be mandatory."
|
436 |
+
)
|
437 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
438 |
+
else:
|
439 |
+
cos, sin = position_embeddings
|
440 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
441 |
|
|
|
|
|
442 |
if past_key_value is not None:
|
443 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
444 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
|
478 |
key_states = key_states.to(target_dtype)
|
479 |
value_states = value_states.to(target_dtype)
|
480 |
|
481 |
+
attn_output = _flash_attention_forward(
|
482 |
+
query_states,
|
483 |
+
key_states,
|
484 |
+
value_states,
|
485 |
+
attention_mask,
|
486 |
+
q_len,
|
487 |
+
position_ids=position_ids,
|
488 |
+
dropout=dropout_rate,
|
489 |
+
sliding_window=getattr(self, "sliding_window", None),
|
490 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
491 |
+
is_causal=self.is_causal,
|
492 |
+
**kwargs,
|
493 |
)
|
494 |
|
495 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
496 |
attn_output = self.o_proj(attn_output)
|
497 |
|
498 |
if not output_attentions:
|
|
|
500 |
|
501 |
return attn_output, attn_weights, past_key_value
|
502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
|
504 |
class LlamaSdpaAttention(LlamaAttention):
|
505 |
"""
|
|
|
518 |
output_attentions: bool = False,
|
519 |
use_cache: bool = False,
|
520 |
cache_position: Optional[torch.LongTensor] = None,
|
521 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
522 |
+
**kwargs,
|
523 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
524 |
if output_attentions:
|
525 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
|
|
535 |
output_attentions=output_attentions,
|
536 |
use_cache=use_cache,
|
537 |
cache_position=cache_position,
|
538 |
+
position_embeddings=position_embeddings,
|
539 |
)
|
540 |
|
541 |
bsz, q_len, _ = hidden_states.size()
|
|
|
548 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
549 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
550 |
|
551 |
+
if position_embeddings is None:
|
552 |
+
logger.warning_once(
|
553 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
554 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
555 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
556 |
+
"removed and `position_embeddings` will be mandatory."
|
557 |
+
)
|
558 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
559 |
+
else:
|
560 |
+
cos, sin = position_embeddings
|
561 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
562 |
|
|
|
|
|
|
|
563 |
if past_key_value is not None:
|
564 |
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
565 |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
|
579 |
key_states = key_states.contiguous()
|
580 |
value_states = value_states.contiguous()
|
581 |
|
582 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
583 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
584 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
585 |
+
|
586 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
587 |
query_states,
|
588 |
key_states,
|
589 |
value_states,
|
590 |
attn_mask=causal_mask,
|
591 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
592 |
+
is_causal=is_causal,
|
593 |
)
|
594 |
|
595 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
596 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
597 |
|
598 |
attn_output = self.o_proj(attn_output)
|
599 |
|
|
|
623 |
hidden_states: torch.Tensor,
|
624 |
attention_mask: Optional[torch.Tensor] = None,
|
625 |
position_ids: Optional[torch.LongTensor] = None,
|
626 |
+
past_key_value: Optional[Cache] = None,
|
627 |
output_attentions: Optional[bool] = False,
|
628 |
use_cache: Optional[bool] = False,
|
629 |
cache_position: Optional[torch.LongTensor] = None,
|
630 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
631 |
**kwargs,
|
632 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
633 |
"""
|
|
|
643 |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
644 |
(see `past_key_values`).
|
645 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
646 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
647 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
648 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
649 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
650 |
+
with `head_dim` being the embedding dimension of each attention head.
|
651 |
+
kwargs (`dict`, *optional*):
|
652 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
653 |
+
into the model
|
654 |
"""
|
|
|
|
|
|
|
|
|
|
|
655 |
residual = hidden_states
|
656 |
|
657 |
hidden_states = self.input_layernorm(hidden_states)
|
|
|
665 |
output_attentions=output_attentions,
|
666 |
use_cache=use_cache,
|
667 |
cache_position=cache_position,
|
668 |
+
position_embeddings=position_embeddings,
|
669 |
**kwargs,
|
670 |
)
|
671 |
hidden_states = residual + hidden_states
|
|
|
717 |
_supports_flash_attn_2 = True
|
718 |
_supports_sdpa = True
|
719 |
_supports_cache_class = True
|
720 |
+
_supports_quantized_cache = True
|
721 |
+
_supports_static_cache = True
|
722 |
|
723 |
def _init_weights(self, module):
|
724 |
std = self.config.initializer_range
|
|
|
731 |
if module.padding_idx is not None:
|
732 |
module.weight.data[module.padding_idx].zero_()
|
733 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
734 |
|
735 |
LLAMA_INPUTS_DOCSTRING = r"""
|
736 |
Args:
|
|
|
773 |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
774 |
|
775 |
Two formats are allowed:
|
776 |
+
- a [`~cache_utils.Cache`] instance, see our
|
777 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
778 |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
779 |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
780 |
cache format.
|
|
|
829 |
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
830 |
)
|
831 |
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
832 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
833 |
self.gradient_checkpointing = False
|
834 |
|
835 |
# Initialize weights and apply final processing
|
|
|
847 |
input_ids: torch.LongTensor = None,
|
848 |
attention_mask: Optional[torch.Tensor] = None,
|
849 |
position_ids: Optional[torch.LongTensor] = None,
|
850 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
851 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
852 |
use_cache: Optional[bool] = None,
|
853 |
output_attentions: Optional[bool] = None,
|
854 |
output_hidden_states: Optional[bool] = None,
|
855 |
return_dict: Optional[bool] = None,
|
856 |
cache_position: Optional[torch.LongTensor] = None,
|
857 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
858 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
859 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
860 |
output_hidden_states = (
|
|
|
864 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
865 |
|
866 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
867 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
|
868 |
|
869 |
if self.gradient_checkpointing and self.training and use_cache:
|
870 |
logger.warning_once(
|
|
|
875 |
if inputs_embeds is None:
|
876 |
inputs_embeds = self.embed_tokens(input_ids)
|
877 |
|
878 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
879 |
+
return_legacy_cache = False
|
880 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
881 |
+
return_legacy_cache = True
|
882 |
+
if past_key_values is None:
|
883 |
+
past_key_values = DynamicCache()
|
884 |
+
else:
|
885 |
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
886 |
+
logger.warning_once(
|
887 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
888 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
889 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
890 |
+
)
|
891 |
|
892 |
if cache_position is None:
|
893 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
|
894 |
cache_position = torch.arange(
|
895 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
896 |
)
|
|
|
897 |
if position_ids is None:
|
898 |
position_ids = cache_position.unsqueeze(0)
|
899 |
|
900 |
+
causal_mask = self._update_causal_mask(
|
901 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
902 |
+
)
|
903 |
hidden_states = inputs_embeds
|
904 |
|
905 |
+
# create position embeddings to be shared across the decoder layers
|
906 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
907 |
+
|
908 |
# decoder layers
|
909 |
all_hidden_states = () if output_hidden_states else None
|
910 |
all_self_attns = () if output_attentions else None
|
|
|
924 |
output_attentions,
|
925 |
use_cache,
|
926 |
cache_position,
|
927 |
+
position_embeddings,
|
928 |
)
|
929 |
else:
|
930 |
layer_outputs = decoder_layer(
|
|
|
935 |
output_attentions=output_attentions,
|
936 |
use_cache=use_cache,
|
937 |
cache_position=cache_position,
|
938 |
+
position_embeddings=position_embeddings,
|
939 |
+
**flash_attn_kwargs,
|
940 |
)
|
941 |
|
942 |
hidden_states = layer_outputs[0]
|
|
|
953 |
if output_hidden_states:
|
954 |
all_hidden_states += (hidden_states,)
|
955 |
|
956 |
+
next_cache = next_decoder_cache if use_cache else None
|
957 |
+
if return_legacy_cache:
|
958 |
+
next_cache = next_cache.to_legacy_cache()
|
959 |
+
|
|
|
960 |
if not return_dict:
|
961 |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
962 |
return BaseModelOutputWithPast(
|
|
|
971 |
attention_mask: torch.Tensor,
|
972 |
input_tensor: torch.Tensor,
|
973 |
cache_position: torch.Tensor,
|
974 |
+
past_key_values: Cache,
|
975 |
+
output_attentions: bool,
|
976 |
):
|
|
|
|
|
|
|
|
|
|
|
977 |
if self.config._attn_implementation == "flash_attention_2":
|
978 |
if attention_mask is not None and 0.0 in attention_mask:
|
979 |
return attention_mask
|
980 |
return None
|
981 |
|
982 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
983 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
984 |
+
# to infer the attention mask.
|
985 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
986 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
987 |
+
|
988 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
989 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
990 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
991 |
+
attention_mask,
|
992 |
+
inputs_embeds=input_tensor,
|
993 |
+
past_key_values_length=past_seen_tokens,
|
994 |
+
is_training=self.training,
|
995 |
):
|
996 |
return None
|
997 |
|
998 |
dtype, device = input_tensor.dtype, input_tensor.device
|
|
|
999 |
sequence_length = input_tensor.shape[1]
|
1000 |
+
if using_static_cache:
|
1001 |
+
target_length = past_key_values.get_max_cache_shape()
|
1002 |
+
else:
|
1003 |
target_length = (
|
1004 |
attention_mask.shape[-1]
|
1005 |
if isinstance(attention_mask, torch.Tensor)
|
1006 |
else past_seen_tokens + sequence_length + 1
|
1007 |
)
|
1008 |
|
1009 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1010 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
1011 |
+
attention_mask,
|
1012 |
+
sequence_length=sequence_length,
|
1013 |
+
target_length=target_length,
|
1014 |
+
dtype=dtype,
|
1015 |
+
device=device,
|
1016 |
+
cache_position=cache_position,
|
1017 |
+
batch_size=input_tensor.shape[0],
|
1018 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1019 |
|
1020 |
if (
|
1021 |
self.config._attn_implementation == "sdpa"
|
1022 |
and attention_mask is not None
|
1023 |
and attention_mask.device.type == "cuda"
|
1024 |
+
and not output_attentions
|
1025 |
):
|
1026 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1027 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1028 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1029 |
+
min_dtype = torch.finfo(dtype).min
|
1030 |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1031 |
|
1032 |
return causal_mask
|
1033 |
|
1034 |
+
@staticmethod
|
1035 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1036 |
+
attention_mask: torch.Tensor,
|
1037 |
+
sequence_length: int,
|
1038 |
+
target_length: int,
|
1039 |
+
dtype: torch.dtype,
|
1040 |
+
device: torch.device,
|
1041 |
+
cache_position: torch.Tensor,
|
1042 |
+
batch_size: int,
|
1043 |
+
**kwargs,
|
1044 |
+
):
|
1045 |
+
"""
|
1046 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1047 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1048 |
|
1049 |
+
Args:
|
1050 |
+
attention_mask (`torch.Tensor`):
|
1051 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
1052 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
1053 |
+
sequence_length (`int`):
|
1054 |
+
The sequence length being processed.
|
1055 |
+
target_length (`int`):
|
1056 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
1057 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
1058 |
+
dtype (`torch.dtype`):
|
1059 |
+
The dtype to use for the 4D attention mask.
|
1060 |
+
device (`torch.device`):
|
1061 |
+
The device to plcae the 4D attention mask on.
|
1062 |
+
cache_position (`torch.Tensor`):
|
1063 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1064 |
+
batch_size (`torch.Tensor`):
|
1065 |
+
Batch size.
|
1066 |
+
"""
|
1067 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1068 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1069 |
+
causal_mask = attention_mask
|
1070 |
+
else:
|
1071 |
+
min_dtype = torch.finfo(dtype).min
|
1072 |
+
causal_mask = torch.full(
|
1073 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1074 |
+
)
|
1075 |
+
if sequence_length != 1:
|
1076 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1077 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1078 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1079 |
+
if attention_mask is not None:
|
1080 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1081 |
+
mask_length = attention_mask.shape[-1]
|
1082 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1083 |
+
padding_mask = padding_mask == 0
|
1084 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1085 |
+
padding_mask, min_dtype
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
return causal_mask
|
1089 |
+
|
1090 |
+
|
1091 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
1092 |
+
|
1093 |
+
|
1094 |
+
class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
1095 |
_tied_weights_keys = ["lm_head.weight"]
|
1096 |
|
1097 |
def __init__(self, config):
|
|
|
1128 |
input_ids: torch.LongTensor = None,
|
1129 |
attention_mask: Optional[torch.Tensor] = None,
|
1130 |
position_ids: Optional[torch.LongTensor] = None,
|
1131 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1132 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1133 |
labels: Optional[torch.LongTensor] = None,
|
1134 |
use_cache: Optional[bool] = None,
|
|
|
1136 |
output_hidden_states: Optional[bool] = None,
|
1137 |
return_dict: Optional[bool] = None,
|
1138 |
cache_position: Optional[torch.LongTensor] = None,
|
1139 |
+
num_logits_to_keep: int = 0,
|
1140 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
1141 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1142 |
r"""
|
1143 |
Args:
|
|
|
1146 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1147 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1148 |
|
1149 |
+
num_logits_to_keep (`int`, *optional*):
|
1150 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1151 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1152 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1153 |
+
|
1154 |
Returns:
|
1155 |
|
1156 |
Example:
|
|
|
1187 |
output_hidden_states=output_hidden_states,
|
1188 |
return_dict=return_dict,
|
1189 |
cache_position=cache_position,
|
1190 |
+
**kwargs,
|
1191 |
)
|
1192 |
|
1193 |
hidden_states = outputs[0]
|
|
|
1196 |
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1197 |
logits = torch.cat(logits, dim=-1)
|
1198 |
else:
|
1199 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1200 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1201 |
|
1202 |
loss = None
|
1203 |
if labels is not None:
|
1204 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1205 |
|
1206 |
if not return_dict:
|
1207 |
output = (logits,) + outputs[1:]
|
|
|
1215 |
attentions=outputs.attentions,
|
1216 |
)
|
1217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1218 |
|
1219 |
@add_start_docstrings(
|
1220 |
"""
|
|
|
1250 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1251 |
def forward(
|
1252 |
self,
|
1253 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1254 |
attention_mask: Optional[torch.Tensor] = None,
|
1255 |
position_ids: Optional[torch.LongTensor] = None,
|
1256 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1257 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1258 |
labels: Optional[torch.LongTensor] = None,
|
1259 |
use_cache: Optional[bool] = None,
|
|
|
1305 |
|
1306 |
loss = None
|
1307 |
if labels is not None:
|
1308 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
1309 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1310 |
if not return_dict:
|
1311 |
output = (pooled_logits,) + transformer_outputs[1:]
|
1312 |
return ((loss,) + output) if loss is not None else output
|
|
|
1351 |
input_ids: Optional[torch.LongTensor] = None,
|
1352 |
attention_mask: Optional[torch.FloatTensor] = None,
|
1353 |
position_ids: Optional[torch.LongTensor] = None,
|
1354 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1355 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1356 |
start_positions: Optional[torch.LongTensor] = None,
|
1357 |
end_positions: Optional[torch.LongTensor] = None,
|
1358 |
output_attentions: Optional[bool] = None,
|
1359 |
output_hidden_states: Optional[bool] = None,
|
1360 |
return_dict: Optional[bool] = None,
|
1361 |
+
**kwargs,
|
1362 |
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1363 |
r"""
|
1364 |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
1390 |
start_logits = start_logits.squeeze(-1).contiguous()
|
1391 |
end_logits = end_logits.squeeze(-1).contiguous()
|
1392 |
|
1393 |
+
loss = None
|
1394 |
if start_positions is not None and end_positions is not None:
|
1395 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1396 |
|
1397 |
if not return_dict:
|
1398 |
output = (start_logits, end_logits) + outputs[2:]
|
1399 |
+
return ((loss,) + output) if loss is not None else output
|
1400 |
|
1401 |
return QuestionAnsweringModelOutput(
|
1402 |
+
loss=loss,
|
1403 |
start_logits=start_logits,
|
1404 |
end_logits=end_logits,
|
1405 |
hidden_states=outputs.hidden_states,
|
1406 |
attentions=outputs.attentions,
|
1407 |
)
|
1408 |
+
|
1409 |
+
|
1410 |
+
@add_start_docstrings(
|
1411 |
+
"""
|
1412 |
+
The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1413 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1414 |
+
""",
|
1415 |
+
LLAMA_START_DOCSTRING,
|
1416 |
+
)
|
1417 |
+
class LlamaForTokenClassification(LlamaPreTrainedModel):
|
1418 |
+
def __init__(self, config):
|
1419 |
+
super().__init__(config)
|
1420 |
+
self.num_labels = config.num_labels
|
1421 |
+
self.model = LlamaModel(config)
|
1422 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1423 |
+
classifier_dropout = config.classifier_dropout
|
1424 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1425 |
+
classifier_dropout = config.hidden_dropout
|
1426 |
+
else:
|
1427 |
+
classifier_dropout = 0.1
|
1428 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1429 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1430 |
+
|
1431 |
+
# Initialize weights and apply final processing
|
1432 |
+
self.post_init()
|
1433 |
+
|
1434 |
+
def get_input_embeddings(self):
|
1435 |
+
return self.model.embed_tokens
|
1436 |
+
|
1437 |
+
def set_input_embeddings(self, value):
|
1438 |
+
self.model.embed_tokens = value
|
1439 |
+
|
1440 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1441 |
+
@add_code_sample_docstrings(
|
1442 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1443 |
+
output_type=TokenClassifierOutput,
|
1444 |
+
config_class=_CONFIG_FOR_DOC,
|
1445 |
+
)
|
1446 |
+
def forward(
|
1447 |
+
self,
|
1448 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1449 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1450 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1451 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1452 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1453 |
+
labels: Optional[torch.LongTensor] = None,
|
1454 |
+
use_cache: Optional[bool] = None,
|
1455 |
+
output_attentions: Optional[bool] = None,
|
1456 |
+
output_hidden_states: Optional[bool] = None,
|
1457 |
+
return_dict: Optional[bool] = None,
|
1458 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1459 |
+
r"""
|
1460 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1461 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1462 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1463 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1464 |
+
"""
|
1465 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1466 |
+
|
1467 |
+
outputs = self.model(
|
1468 |
+
input_ids,
|
1469 |
+
attention_mask=attention_mask,
|
1470 |
+
position_ids=position_ids,
|
1471 |
+
past_key_values=past_key_values,
|
1472 |
+
inputs_embeds=inputs_embeds,
|
1473 |
+
use_cache=use_cache,
|
1474 |
+
output_attentions=output_attentions,
|
1475 |
+
output_hidden_states=output_hidden_states,
|
1476 |
+
return_dict=return_dict,
|
1477 |
+
)
|
1478 |
+
sequence_output = outputs[0]
|
1479 |
+
sequence_output = self.dropout(sequence_output)
|
1480 |
+
logits = self.score(sequence_output)
|
1481 |
+
|
1482 |
+
loss = None
|
1483 |
+
if labels is not None:
|
1484 |
+
loss = self.loss_function(logits, labels, self.config)
|
1485 |
+
|
1486 |
+
if not return_dict:
|
1487 |
+
output = (logits,) + outputs[2:]
|
1488 |
+
return ((loss,) + output) if loss is not None else output
|
1489 |
+
|
1490 |
+
return TokenClassifierOutput(
|
1491 |
+
loss=loss,
|
1492 |
+
logits=logits,
|
1493 |
+
hidden_states=outputs.hidden_states,
|
1494 |
+
attentions=outputs.attentions,
|
1495 |
+
)
|