File size: 2,771 Bytes
d0dd3ff
 
f7d34b7
d0dd3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d34b7
d0dd3ff
c2f13ce
 
d0dd3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d34b7
 
 
d0dd3ff
 
 
c2f13ce
d0dd3ff
 
 
 
 
c2f13ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0dd3ff
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: dadashzadeh/tiny-bert-Sentiment-persian
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-bert-Sentiment-persian
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tiny-bert-Sentiment-persian

This model is a fine-tuned version of [dadashzadeh/tiny-bert-Sentiment-persian](https://huggingface.co/dadashzadeh/tiny-bert-Sentiment-persian) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6538
- Accuracy: 0.7287

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 22

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8279        | 1.0   | 2384  | 0.7849          | 0.6544   |
| 0.8218        | 2.0   | 4768  | 0.7674          | 0.6587   |
| 0.8155        | 3.0   | 7152  | 0.7421          | 0.6821   |
| 0.8037        | 4.0   | 9536  | 0.7378          | 0.6829   |
| 0.799         | 5.0   | 11920 | 0.7983          | 0.6324   |
| 0.7943        | 6.0   | 14304 | 0.7071          | 0.7015   |
| 0.7764        | 7.0   | 16688 | 0.7438          | 0.6756   |
| 0.7763        | 8.0   | 19072 | 0.7328          | 0.6829   |
| 0.7717        | 9.0   | 21456 | 0.7300          | 0.6825   |
| 0.7733        | 10.0  | 23840 | 0.6943          | 0.7106   |
| 0.7517        | 11.0  | 26224 | 0.6859          | 0.7210   |
| 0.7515        | 12.0  | 28608 | 0.6538          | 0.7287   |
| 0.7497        | 13.0  | 30992 | 0.6930          | 0.7084   |
| 0.7177        | 14.0  | 33376 | 0.7055          | 0.6972   |
| 0.734         | 15.0  | 35760 | 0.6893          | 0.7123   |
| 0.7247        | 16.0  | 38144 | 0.7026          | 0.7045   |
| 0.7317        | 17.0  | 40528 | 0.6711          | 0.7210   |
| 0.7145        | 18.0  | 42912 | 0.7192          | 0.6911   |
| 0.7136        | 19.0  | 45296 | 0.6951          | 0.7102   |
| 0.7159        | 20.0  | 47680 | 0.6776          | 0.7197   |
| 0.7278        | 21.0  | 50064 | 0.6814          | 0.7162   |
| 0.6952        | 22.0  | 52448 | 0.6829          | 0.7158   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1