File size: 2,350 Bytes
d8b0ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: dadashzadeh/tiny-bert-Sentiment-persian
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-bert-Sentiment-persian
results: []
datasets:
- hezarai/sentiment-dksf
language:
- fa
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-bert-Sentiment-persian
This model is a fine-tuned version of [dadashzadeh/tiny-bert-Sentiment-persian](https://huggingface.co/dadashzadeh/tiny-bert-Sentiment-persian) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6553
- Accuracy: 0.7611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 45
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 0.6157 | 0.9999 | 3575 | 0.6703 | 0.7577 |
| 0.5833 | 1.9999 | 7150 | 0.7599 | 0.7171 |
| 0.6015 | 2.9998 | 10725 | 0.6824 | 0.7590 |
| 0.5601 | 4.0 | 14301 | 0.6780 | 0.7533 |
| 0.5699 | 4.9999 | 17876 | 0.7071 | 0.7356 |
| 0.5519 | 5.9999 | 21451 | 0.6931 | 0.7391 |
| 0.5436 | 6.9998 | 25026 | 0.6736 | 0.7629 |
| 0.5482 | 8.0 | 28602 | 0.6567 | 0.7685 |
| 0.5367 | 8.9999 | 32177 | 0.6553 | 0.7611 |
| 0.5399 | 9.9999 | 35752 | 0.6691 | 0.7616 |
| 0.5112 | 10.9998 | 39327 | 0.6785 | 0.7564 |
| 0.5113 | 11.9992 | 42900 | 0.6773 | 0.7572 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |