File size: 2,373 Bytes
2e1d7fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
library_name: transformers
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_keras_callback
model-index:
- name: damand2061/pfsa-id-indobert-nlu
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# damand2061/pfsa-id-indobert-nlu

This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0564
- Validation Loss: 0.3296
- Validation F1: 0.8278
- Validation Accuracy: 0.9226
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 10440, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Validation F1 | Validation Accuracy | Epoch |
|:----------:|:---------------:|:-------------:|:-------------------:|:-----:|
| 0.3292     | 0.2490          | 0.7686        | 0.9169              | 0     |
| 0.2018     | 0.2370          | 0.8140        | 0.9267              | 1     |
| 0.1353     | 0.2506          | 0.8206        | 0.9220              | 2     |
| 0.0842     | 0.2787          | 0.8220        | 0.9263              | 3     |
| 0.0564     | 0.3296          | 0.8278        | 0.9226              | 4     |


### Framework versions

- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 2.21.0
- Tokenizers 0.19.1