Update modeling_Llamoe.py
Browse files- modeling_Llamoe.py +491 -341
modeling_Llamoe.py
CHANGED
@@ -62,9 +62,11 @@ def load_balancing_loss_func(
|
|
62 |
) -> float:
|
63 |
r"""
|
64 |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
|
|
65 |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
66 |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
67 |
experts is too unbalanced.
|
|
|
68 |
Args:
|
69 |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
70 |
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
@@ -74,6 +76,7 @@ def load_balancing_loss_func(
|
|
74 |
shape [batch_size X sequence_length] if not None.
|
75 |
num_experts (`int`, *optional*):
|
76 |
Number of experts
|
|
|
77 |
Returns:
|
78 |
The auxiliary loss.
|
79 |
"""
|
@@ -130,15 +133,12 @@ def load_balancing_loss_func(
|
|
130 |
return overall_loss * num_experts
|
131 |
|
132 |
|
133 |
-
|
134 |
-
def approx_gelu(x):
|
135 |
-
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * x**3)))
|
136 |
-
|
137 |
def _get_unpad_data(attention_mask):
|
138 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
139 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
140 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
141 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.
|
142 |
return (
|
143 |
indices,
|
144 |
cu_seqlens,
|
@@ -146,53 +146,60 @@ def _get_unpad_data(attention_mask):
|
|
146 |
)
|
147 |
|
148 |
|
149 |
-
|
150 |
class LlamoeRMSNorm(nn.Module):
|
151 |
-
def __init__(self,
|
|
|
|
|
|
|
152 |
super().__init__()
|
153 |
-
self.
|
154 |
-
self.
|
155 |
-
|
156 |
-
def _norm(self, x):
|
157 |
-
x_float = x.float()
|
158 |
-
normed_x = x_float * torch.rsqrt(x_float.pow(2).mean(-1, keepdim=True) + self.eps)
|
159 |
-
return normed_x
|
160 |
|
161 |
-
def forward(self,
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
166 |
|
167 |
-
ALL_LAYERNORM_LAYERS.append(LlamoeRMSNorm)
|
168 |
|
|
|
169 |
class LlamoeRotaryEmbedding(nn.Module):
|
170 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
171 |
super().__init__()
|
|
|
172 |
self.dim = dim
|
173 |
self.max_position_embeddings = max_position_embeddings
|
174 |
self.base = base
|
175 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
178 |
self.max_seq_len_cached = seq_len
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
def forward(self, x, position_ids=None, seq_len=None):
|
191 |
-
if seq_len is None:
|
192 |
-
seq_len = x.size(2)
|
193 |
if seq_len > self.max_seq_len_cached:
|
194 |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
198 |
def rotate_half(x):
|
@@ -202,15 +209,35 @@ def rotate_half(x):
|
|
202 |
return torch.cat((-x2, x1), dim=-1)
|
203 |
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
210 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
211 |
return q_embed, k_embed
|
212 |
|
213 |
-
|
214 |
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
215 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
216 |
"""
|
@@ -223,11 +250,15 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
223 |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
224 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
225 |
|
|
|
|
|
226 |
class LlamoeAttention(nn.Module):
|
227 |
-
"""
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
def __init__(self, config: LlamoeConfig, layer_idx: Optional[int] = None):
|
231 |
super().__init__()
|
232 |
self.config = config
|
233 |
self.layer_idx = layer_idx
|
@@ -238,32 +269,35 @@ class LlamoeAttention(nn.Module):
|
|
238 |
"when creating this class."
|
239 |
)
|
240 |
|
241 |
-
self.attention_dropout = config.attention_dropout
|
242 |
self.hidden_size = config.hidden_size
|
243 |
self.num_heads = config.num_attention_heads
|
244 |
-
self.head_dim =
|
245 |
self.num_key_value_heads = config.num_key_value_heads
|
246 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
247 |
self.max_position_embeddings = config.max_position_embeddings
|
248 |
self.rope_theta = config.rope_theta
|
249 |
self.is_causal = True
|
|
|
250 |
|
251 |
-
if self.
|
252 |
raise ValueError(
|
253 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
254 |
f" and `num_heads`: {self.num_heads})."
|
255 |
)
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
self.
|
258 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
259 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
260 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
261 |
-
self.rotary_emb = LlamoeRotaryEmbedding(
|
262 |
self.head_dim,
|
263 |
max_position_embeddings=self.max_position_embeddings,
|
264 |
base=self.rope_theta,
|
265 |
)
|
266 |
|
|
|
|
|
|
|
267 |
def forward(
|
268 |
self,
|
269 |
hidden_states: torch.Tensor,
|
@@ -272,9 +306,12 @@ class LlamoeAttention(nn.Module):
|
|
272 |
past_key_value: Optional[Cache] = None,
|
273 |
output_attentions: bool = False,
|
274 |
use_cache: bool = False,
|
275 |
-
cache_position: Optional[torch.LongTensor] = None,
|
276 |
**kwargs,
|
277 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
278 |
bsz, q_len, _ = hidden_states.size()
|
279 |
|
280 |
query_states = self.q_proj(hidden_states)
|
@@ -285,26 +322,41 @@ class LlamoeAttention(nn.Module):
|
|
285 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
286 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
if past_key_value is not None:
|
293 |
-
|
294 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
295 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
296 |
|
|
|
297 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
298 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
299 |
|
300 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
301 |
|
302 |
-
if
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
# upcast attention to fp32
|
310 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
@@ -318,8 +370,8 @@ class LlamoeAttention(nn.Module):
|
|
318 |
)
|
319 |
|
320 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
321 |
|
322 |
-
attn_output = attn_output.view(bsz, q_len, -1)
|
323 |
attn_output = self.o_proj(attn_output)
|
324 |
|
325 |
if not output_attentions:
|
@@ -328,14 +380,15 @@ class LlamoeAttention(nn.Module):
|
|
328 |
return attn_output, attn_weights, past_key_value
|
329 |
|
330 |
|
331 |
-
# Copied from transformers.models.
|
332 |
class LlamoeFlashAttention2(LlamoeAttention):
|
333 |
"""
|
334 |
-
|
335 |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
336 |
flash attention and deal with padding tokens in case the input contains any of them.
|
337 |
"""
|
338 |
|
|
|
339 |
def __init__(self, *args, **kwargs):
|
340 |
super().__init__(*args, **kwargs)
|
341 |
|
@@ -344,57 +397,98 @@ class LlamoeFlashAttention2(LlamoeAttention):
|
|
344 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
345 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
346 |
|
347 |
-
# Ignore copy
|
348 |
def forward(
|
349 |
self,
|
350 |
hidden_states: torch.Tensor,
|
351 |
-
attention_mask: Optional[torch.
|
352 |
position_ids: Optional[torch.LongTensor] = None,
|
353 |
past_key_value: Optional[Cache] = None,
|
354 |
output_attentions: bool = False,
|
355 |
use_cache: bool = False,
|
356 |
-
cache_position: Optional[torch.LongTensor] = None,
|
357 |
**kwargs,
|
358 |
-
)
|
359 |
-
|
|
|
|
|
|
|
360 |
|
|
|
|
|
361 |
bsz, q_len, _ = hidden_states.size()
|
362 |
|
363 |
query_states = self.q_proj(hidden_states)
|
364 |
key_states = self.k_proj(hidden_states)
|
365 |
value_states = self.v_proj(hidden_states)
|
366 |
|
367 |
-
# Flash attention requires the input to have the shape
|
368 |
-
# batch_size x seq_length x head_dim x hidden_dim
|
369 |
-
# therefore we just need to keep the original shape
|
370 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
371 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
372 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
373 |
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
if past_key_value is not None:
|
380 |
-
#
|
381 |
-
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
393 |
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
394 |
-
# cast them back in
|
395 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
396 |
-
# in fp32. (GemmoeRMSNorm handles it correctly)
|
397 |
-
|
398 |
input_dtype = query_states.dtype
|
399 |
if input_dtype == torch.float32:
|
400 |
if torch.is_autocast_enabled():
|
@@ -415,11 +509,22 @@ class LlamoeFlashAttention2(LlamoeAttention):
|
|
415 |
key_states = key_states.to(target_dtype)
|
416 |
value_states = value_states.to(target_dtype)
|
417 |
|
|
|
|
|
|
|
|
|
|
|
418 |
attn_output = self._flash_attention_forward(
|
419 |
-
query_states,
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
)
|
421 |
|
422 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
423 |
attn_output = self.o_proj(attn_output)
|
424 |
|
425 |
if not output_attentions:
|
@@ -428,11 +533,20 @@ class LlamoeFlashAttention2(LlamoeAttention):
|
|
428 |
return attn_output, attn_weights, past_key_value
|
429 |
|
430 |
def _flash_attention_forward(
|
431 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
):
|
433 |
"""
|
434 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
435 |
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
436 |
Args:
|
437 |
query_states (`torch.Tensor`):
|
438 |
Input query states to be passed to Flash Attention API
|
@@ -447,11 +561,13 @@ class LlamoeFlashAttention2(LlamoeAttention):
|
|
447 |
Attention dropout
|
448 |
softmax_scale (`float`, *optional*):
|
449 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
|
|
|
450 |
"""
|
451 |
if not self._flash_attn_uses_top_left_mask:
|
452 |
causal = self.is_causal
|
453 |
else:
|
454 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in
|
455 |
causal = self.is_causal and query_length != 1
|
456 |
|
457 |
# Contains at least one padding token in the sequence
|
@@ -464,40 +580,75 @@ class LlamoeFlashAttention2(LlamoeAttention):
|
|
464 |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
465 |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
|
480 |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
481 |
else:
|
482 |
-
|
483 |
-
|
484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
return attn_output
|
487 |
|
488 |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
490 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
491 |
|
492 |
-
key_layer = index_first_axis(
|
493 |
-
|
494 |
-
|
495 |
-
value_layer = index_first_axis(
|
496 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
497 |
-
)
|
498 |
if query_length == kv_seq_len:
|
499 |
query_layer = index_first_axis(
|
500 |
-
query_layer.reshape(batch_size * kv_seq_len,
|
501 |
)
|
502 |
cu_seqlens_q = cu_seqlens_k
|
503 |
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
@@ -524,15 +675,15 @@ class LlamoeFlashAttention2(LlamoeAttention):
|
|
524 |
)
|
525 |
|
526 |
|
527 |
-
# Copied from transformers.models.
|
528 |
class LlamoeSdpaAttention(LlamoeAttention):
|
529 |
"""
|
530 |
-
|
531 |
-
`
|
532 |
SDPA API.
|
533 |
"""
|
534 |
|
535 |
-
#
|
536 |
def forward(
|
537 |
self,
|
538 |
hidden_states: torch.Tensor,
|
@@ -541,12 +692,11 @@ class LlamoeSdpaAttention(LlamoeAttention):
|
|
541 |
past_key_value: Optional[Cache] = None,
|
542 |
output_attentions: bool = False,
|
543 |
use_cache: bool = False,
|
544 |
-
cache_position: Optional[torch.LongTensor] = None,
|
545 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
546 |
if output_attentions:
|
547 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
548 |
logger.warning_once(
|
549 |
-
"
|
550 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
551 |
)
|
552 |
return super().forward(
|
@@ -556,41 +706,41 @@ class LlamoeSdpaAttention(LlamoeAttention):
|
|
556 |
past_key_value=past_key_value,
|
557 |
output_attentions=output_attentions,
|
558 |
use_cache=use_cache,
|
559 |
-
cache_position=cache_position,
|
560 |
)
|
561 |
|
562 |
bsz, q_len, _ = hidden_states.size()
|
563 |
|
564 |
-
|
565 |
query_states = self.q_proj(hidden_states)
|
566 |
key_states = self.k_proj(hidden_states)
|
567 |
value_states = self.v_proj(hidden_states)
|
568 |
-
|
569 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
570 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
571 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
572 |
|
573 |
-
|
574 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
|
575 |
-
|
576 |
-
past_key_value = getattr(self, "past_key_value", past_key_value)
|
577 |
-
|
578 |
if past_key_value is not None:
|
579 |
-
|
580 |
-
|
|
|
|
|
|
|
|
|
|
|
581 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
582 |
|
583 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
584 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
585 |
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
|
|
590 |
|
591 |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
592 |
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
593 |
-
if query_states.device.type == "cuda" and
|
594 |
query_states = query_states.contiguous()
|
595 |
key_states = key_states.contiguous()
|
596 |
value_states = value_states.contiguous()
|
@@ -599,88 +749,129 @@ class LlamoeSdpaAttention(LlamoeAttention):
|
|
599 |
query_states,
|
600 |
key_states,
|
601 |
value_states,
|
602 |
-
attn_mask=
|
603 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
|
|
|
604 |
)
|
605 |
|
606 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
607 |
-
attn_output = attn_output.view(bsz, q_len,
|
608 |
|
609 |
attn_output = self.o_proj(attn_output)
|
610 |
|
611 |
return attn_output, None, past_key_value
|
612 |
|
613 |
|
614 |
-
|
615 |
"eager": LlamoeAttention,
|
616 |
"flash_attention_2": LlamoeFlashAttention2,
|
617 |
"sdpa": LlamoeSdpaAttention,
|
618 |
}
|
619 |
|
620 |
-
|
|
|
621 |
def __init__(self, config: LlamoeConfig):
|
622 |
super().__init__()
|
623 |
self.ffn_dim = config.intermediate_size
|
624 |
self.hidden_dim = config.hidden_size
|
625 |
-
|
626 |
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
627 |
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
628 |
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
629 |
|
630 |
-
self.act_fn =
|
631 |
|
632 |
def forward(self, hidden_states):
|
633 |
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
634 |
current_hidden_states = self.w2(current_hidden_states)
|
635 |
-
return current_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
|
637 |
|
638 |
class LlamoeSparseMoeBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
def __init__(self, config):
|
640 |
super().__init__()
|
641 |
self.hidden_dim = config.hidden_size
|
642 |
self.ffn_dim = config.intermediate_size
|
643 |
self.num_experts = config.num_local_experts
|
644 |
-
self.top_k =
|
645 |
|
646 |
# gating
|
647 |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
648 |
|
649 |
self.experts = nn.ModuleList([LlamoeBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
650 |
|
651 |
-
def forward(self, hidden_states: torch.Tensor) ->
|
|
|
652 |
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
653 |
hidden_states = hidden_states.view(-1, hidden_dim)
|
654 |
-
|
655 |
# router_logits: (batch * sequence_length, n_experts)
|
656 |
router_logits = self.gate(hidden_states)
|
657 |
-
routing_weights = F.softmax(router_logits, dim=1)
|
658 |
-
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
|
659 |
-
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
|
660 |
|
661 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
|
663 |
-
|
|
|
|
|
664 |
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
|
671 |
-
|
|
|
|
|
|
|
|
|
672 |
|
673 |
-
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim)
|
674 |
-
return final_hidden_states.to(hidden_states.dtype), router_logits.to(hidden_states.dtype)
|
675 |
|
676 |
-
|
677 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LLAMA->GEMMOE,Llama->Gemmoe
|
678 |
class LlamoeDecoderLayer(nn.Module):
|
679 |
def __init__(self, config: LlamoeConfig, layer_idx: int):
|
680 |
super().__init__()
|
681 |
self.hidden_size = config.hidden_size
|
682 |
|
683 |
-
self.self_attn =
|
684 |
|
685 |
self.block_sparse_moe = LlamoeSparseMoeBlock(config)
|
686 |
self.input_layernorm = LlamoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
@@ -757,11 +948,13 @@ Llamoe_START_DOCSTRING = r"""
|
|
757 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
758 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
759 |
etc.)
|
|
|
760 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
761 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
762 |
and behavior.
|
|
|
763 |
Parameters:
|
764 |
-
config ([`
|
765 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
766 |
load the weights associated with the model, only the configuration. Check out the
|
767 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
@@ -769,17 +962,16 @@ Llamoe_START_DOCSTRING = r"""
|
|
769 |
|
770 |
|
771 |
@add_start_docstrings(
|
772 |
-
"The bare
|
773 |
Llamoe_START_DOCSTRING,
|
774 |
)
|
775 |
-
|
776 |
class LlamoePreTrainedModel(PreTrainedModel):
|
777 |
config_class = LlamoeConfig
|
778 |
base_model_prefix = "model"
|
779 |
supports_gradient_checkpointing = True
|
780 |
-
_keep_in_fp32_modules = ["inv_freq", "rotary_emb", "cos_cached", "sin_cached"]
|
781 |
_no_split_modules = ["LlamoeDecoderLayer"]
|
782 |
-
_skip_keys_device_placement =
|
783 |
_supports_flash_attn_2 = True
|
784 |
_supports_sdpa = True
|
785 |
_supports_cache_class = True
|
@@ -795,68 +987,53 @@ class LlamoePreTrainedModel(PreTrainedModel):
|
|
795 |
if module.padding_idx is not None:
|
796 |
module.weight.data[module.padding_idx].zero_()
|
797 |
|
798 |
-
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
799 |
-
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
800 |
-
raise ValueError(
|
801 |
-
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
802 |
-
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
803 |
-
)
|
804 |
-
|
805 |
-
if max_cache_len > self.model.causal_mask.shape[-1] or self.device != self.model.causal_mask.device:
|
806 |
-
causal_mask = torch.full((max_cache_len, max_cache_len), fill_value=1, device=self.device)
|
807 |
-
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
|
808 |
-
|
809 |
-
for layer in self.model.layers:
|
810 |
-
weights = layer.self_attn.o_proj.weight
|
811 |
-
layer.self_attn.past_key_value = cache_cls(
|
812 |
-
self.config, max_batch_size, max_cache_len, device=weights.device, dtype=weights.dtype
|
813 |
-
)
|
814 |
-
|
815 |
-
def _reset_cache(self):
|
816 |
-
for layer in self.model.layers:
|
817 |
-
layer.self_attn.past_key_value = None
|
818 |
|
819 |
-
|
820 |
-
LLAMOE_INPUTS_DOCSTRING = r"""
|
821 |
Args:
|
822 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
823 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
824 |
it.
|
|
|
825 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
826 |
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
827 |
[What are input IDs?](../glossary#input-ids)
|
828 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
829 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
830 |
- 1 for tokens that are **not masked**,
|
831 |
- 0 for tokens that are **masked**.
|
|
|
832 |
[What are attention masks?](../glossary#attention-mask)
|
|
|
833 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
834 |
[`PreTrainedTokenizer.__call__`] for details.
|
835 |
-
|
|
|
836 |
`past_key_values`).
|
|
|
837 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
838 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
839 |
information on the default strategy.
|
|
|
840 |
- 1 indicates the head is **not masked**,
|
841 |
- 0 indicates the head is **masked**.
|
842 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
843 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
844 |
config.n_positions - 1]`.
|
|
|
845 |
[What are position IDs?](../glossary#position-ids)
|
846 |
-
past_key_values (`
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
858 |
-
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
859 |
-
of shape `(batch_size, sequence_length)`.
|
860 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
861 |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
862 |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
@@ -870,28 +1047,28 @@ LLAMOE_INPUTS_DOCSTRING = r"""
|
|
870 |
output_hidden_states (`bool`, *optional*):
|
871 |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
872 |
more detail.
|
|
|
|
|
|
|
873 |
return_dict (`bool`, *optional*):
|
874 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
875 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
876 |
-
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
877 |
-
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
878 |
-
the complete sequence length.
|
879 |
"""
|
880 |
|
881 |
|
882 |
@add_start_docstrings(
|
883 |
-
"The bare
|
884 |
Llamoe_START_DOCSTRING,
|
885 |
)
|
886 |
-
|
887 |
-
class
|
888 |
"""
|
889 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`
|
|
|
890 |
Args:
|
891 |
-
config:
|
892 |
"""
|
893 |
|
894 |
-
def __init__(self, config:
|
895 |
super().__init__(config)
|
896 |
self.padding_idx = config.pad_token_id
|
897 |
self.vocab_size = config.vocab_size
|
@@ -900,15 +1077,10 @@ class LlamoeModel(LlamoePreTrainedModel):
|
|
900 |
self.layers = nn.ModuleList(
|
901 |
[LlamoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
902 |
)
|
|
|
903 |
self.norm = LlamoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
904 |
-
self.gradient_checkpointing = False
|
905 |
|
906 |
-
|
907 |
-
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`.
|
908 |
-
causal_mask = torch.full(
|
909 |
-
(config.max_position_embeddings, config.max_position_embeddings), fill_value=True, dtype=torch.bool
|
910 |
-
)
|
911 |
-
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
|
912 |
# Initialize weights and apply final processing
|
913 |
self.post_init()
|
914 |
|
@@ -918,7 +1090,8 @@ class LlamoeModel(LlamoePreTrainedModel):
|
|
918 |
def set_input_embeddings(self, value):
|
919 |
self.embed_tokens = value
|
920 |
|
921 |
-
|
|
|
922 |
def forward(
|
923 |
self,
|
924 |
input_ids: torch.LongTensor = None,
|
@@ -931,89 +1104,118 @@ class LlamoeModel(LlamoePreTrainedModel):
|
|
931 |
output_hidden_states: Optional[bool] = None,
|
932 |
output_router_logits: Optional[bool] = None,
|
933 |
return_dict: Optional[bool] = None,
|
934 |
-
cache_position: Optional[torch.LongTensor] = None,
|
935 |
) -> Union[Tuple, MoeModelOutputWithPast]:
|
936 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
937 |
output_hidden_states = (
|
938 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
939 |
)
|
940 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
941 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
942 |
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
|
|
|
|
|
|
|
|
|
|
947 |
|
948 |
-
|
949 |
-
logger.warning_once(
|
950 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
951 |
-
)
|
952 |
-
use_cache = False
|
953 |
|
954 |
-
if
|
955 |
-
|
|
|
|
|
|
|
|
|
956 |
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
if inputs_embeds.dtype == torch.bfloat16:
|
961 |
-
pass
|
962 |
-
|
963 |
-
hidden_states = inputs_embeds * hidden_size_sqrt
|
964 |
-
|
965 |
-
past_seen_tokens = 0
|
966 |
-
if use_cache: # kept for BC (cache positions)
|
967 |
-
if not isinstance(past_key_values, StaticCache):
|
968 |
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
969 |
-
|
970 |
|
971 |
-
if
|
972 |
-
|
973 |
-
|
|
|
974 |
)
|
|
|
|
|
|
|
975 |
|
976 |
-
if
|
977 |
-
|
978 |
|
979 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
980 |
|
981 |
-
|
982 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
983 |
|
984 |
-
|
985 |
-
hidden_states = hidden_states * (self.config.hidden_size**0.5)
|
986 |
|
987 |
# decoder layers
|
988 |
all_hidden_states = () if output_hidden_states else None
|
989 |
all_self_attns = () if output_attentions else None
|
|
|
990 |
next_decoder_cache = None
|
991 |
|
992 |
for decoder_layer in self.layers:
|
993 |
if output_hidden_states:
|
994 |
all_hidden_states += (hidden_states,)
|
|
|
|
|
995 |
layer_outputs = self._gradient_checkpointing_func(
|
996 |
decoder_layer.__call__,
|
997 |
hidden_states,
|
998 |
-
|
999 |
position_ids,
|
1000 |
past_key_values,
|
1001 |
output_attentions,
|
1002 |
output_router_logits,
|
1003 |
-
use_cache
|
1004 |
-
cache_position,
|
1005 |
-
output_router_logits,
|
1006 |
)
|
1007 |
else:
|
1008 |
layer_outputs = decoder_layer(
|
1009 |
hidden_states,
|
1010 |
-
attention_mask=
|
1011 |
position_ids=position_ids,
|
1012 |
past_key_value=past_key_values,
|
1013 |
output_attentions=output_attentions,
|
1014 |
output_router_logits=output_router_logits,
|
1015 |
-
use_cache=use_cache
|
1016 |
-
cache_position=cache_position,
|
1017 |
)
|
1018 |
|
1019 |
hidden_states = layer_outputs[0]
|
@@ -1024,6 +1226,9 @@ class LlamoeModel(LlamoePreTrainedModel):
|
|
1024 |
if output_attentions:
|
1025 |
all_self_attns += (layer_outputs[1],)
|
1026 |
|
|
|
|
|
|
|
1027 |
hidden_states = self.norm(hidden_states)
|
1028 |
|
1029 |
# add hidden states from the last decoder layer
|
@@ -1032,74 +1237,29 @@ class LlamoeModel(LlamoePreTrainedModel):
|
|
1032 |
|
1033 |
next_cache = None
|
1034 |
if use_cache:
|
1035 |
-
next_cache = (
|
1036 |
-
|
1037 |
-
)
|
1038 |
if not return_dict:
|
1039 |
-
return tuple(
|
|
|
|
|
|
|
|
|
1040 |
return MoeModelOutputWithPast(
|
1041 |
last_hidden_state=hidden_states,
|
1042 |
past_key_values=next_cache,
|
1043 |
hidden_states=all_hidden_states,
|
1044 |
attentions=all_self_attns,
|
|
|
1045 |
)
|
1046 |
|
1047 |
-
def _update_causal_mask(self, attention_mask, input_tensor):
|
1048 |
-
if self.config._attn_implementation == "flash_attention_2":
|
1049 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
1050 |
-
return attention_mask
|
1051 |
-
return None
|
1052 |
-
|
1053 |
-
batch_size, seq_length = input_tensor.shape[:2]
|
1054 |
-
dtype = input_tensor.dtype
|
1055 |
-
device = input_tensor.device
|
1056 |
-
|
1057 |
-
# support going beyond cached `max_position_embedding`
|
1058 |
-
if seq_length > self.causal_mask.shape[-1]:
|
1059 |
-
causal_mask = torch.full((2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), fill_value=1)
|
1060 |
-
self.register_buffer("causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False)
|
1061 |
-
|
1062 |
-
# We use the current dtype to avoid any overflows
|
1063 |
-
min_dtype = torch.finfo(dtype).min
|
1064 |
-
|
1065 |
-
causal_mask = self.causal_mask[None, None, :, :].to(dtype=dtype, device=device) * min_dtype
|
1066 |
-
causal_mask = causal_mask.expand(batch_size, 1, -1, -1)
|
1067 |
-
if attention_mask is not None:
|
1068 |
-
causal_mask = causal_mask.clone()
|
1069 |
-
if attention_mask.dim() == 2:
|
1070 |
-
mask_length = attention_mask.shape[-1]
|
1071 |
-
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1072 |
-
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1073 |
-
elif attention_mask.dim() == 4:
|
1074 |
-
mask_shape = attention_mask.shape
|
1075 |
-
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1076 |
-
causal_mask[: mask_shape[0], : mask_shape[1], : mask_shape[2], : mask_shape[3]] = mask_slice
|
1077 |
-
|
1078 |
-
if (
|
1079 |
-
self.config._attn_implementation == "sdpa"
|
1080 |
-
and attention_mask is not None
|
1081 |
-
and attention_mask.device.type == "cuda"
|
1082 |
-
):
|
1083 |
-
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1084 |
-
is_tracing = (
|
1085 |
-
torch.jit.is_tracing()
|
1086 |
-
or isinstance(input_tensor, torch.fx.Proxy)
|
1087 |
-
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1088 |
-
)
|
1089 |
-
if not is_tracing and torch.any(attention_mask != 1):
|
1090 |
-
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1091 |
-
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1092 |
-
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1093 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1094 |
-
|
1095 |
-
return causal_mask
|
1096 |
|
1097 |
class LlamoeForCausalLM(LlamoePreTrainedModel):
|
1098 |
_tied_weights_keys = ["lm_head.weight"]
|
1099 |
|
1100 |
def __init__(self, config):
|
1101 |
super().__init__(config)
|
1102 |
-
self.model =
|
1103 |
self.vocab_size = config.vocab_size
|
1104 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1105 |
self.router_aux_loss_coef = config.router_aux_loss_coef
|
@@ -1126,7 +1286,7 @@ class LlamoeForCausalLM(LlamoePreTrainedModel):
|
|
1126 |
def get_decoder(self):
|
1127 |
return self.model
|
1128 |
|
1129 |
-
@add_start_docstrings_to_model_forward(
|
1130 |
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1131 |
# Ignore copy
|
1132 |
def forward(
|
@@ -1149,14 +1309,20 @@ class LlamoeForCausalLM(LlamoePreTrainedModel):
|
|
1149 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1150 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1151 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
1152 |
Returns:
|
|
|
1153 |
Example:
|
|
|
1154 |
```python
|
1155 |
-
>>> from transformers import AutoTokenizer,
|
1156 |
-
|
1157 |
-
>>>
|
|
|
|
|
1158 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1159 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
1160 |
>>> # Generate
|
1161 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1162 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
@@ -1190,12 +1356,6 @@ class LlamoeForCausalLM(LlamoePreTrainedModel):
|
|
1190 |
hidden_states = outputs[0]
|
1191 |
logits = self.lm_head(hidden_states)
|
1192 |
logits = logits.float()
|
1193 |
-
|
1194 |
-
if self.training:
|
1195 |
-
for expert in self.model.layers[-1].block_sparse_moe.experts:
|
1196 |
-
for param in expert.parameters():
|
1197 |
-
if param.requires_grad and param.grad is None:
|
1198 |
-
param.grad = torch.zeros_like(param)
|
1199 |
|
1200 |
loss = None
|
1201 |
if labels is not None:
|
@@ -1299,14 +1459,4 @@ class LlamoeForCausalLM(LlamoePreTrainedModel):
|
|
1299 |
"output_router_logits": output_router_logits,
|
1300 |
}
|
1301 |
)
|
1302 |
-
return model_inputs
|
1303 |
-
|
1304 |
-
@staticmethod
|
1305 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1306 |
-
reordered_past = ()
|
1307 |
-
for layer_past in past_key_values:
|
1308 |
-
reordered_past += (
|
1309 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1310 |
-
)
|
1311 |
-
return reordered_past
|
1312 |
-
|
|
|
62 |
) -> float:
|
63 |
r"""
|
64 |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
65 |
+
|
66 |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
67 |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
68 |
experts is too unbalanced.
|
69 |
+
|
70 |
Args:
|
71 |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
72 |
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
|
|
76 |
shape [batch_size X sequence_length] if not None.
|
77 |
num_experts (`int`, *optional*):
|
78 |
Number of experts
|
79 |
+
|
80 |
Returns:
|
81 |
The auxiliary loss.
|
82 |
"""
|
|
|
133 |
return overall_loss * num_experts
|
134 |
|
135 |
|
136 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
|
|
|
|
|
137 |
def _get_unpad_data(attention_mask):
|
138 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
139 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
140 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
141 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
142 |
return (
|
143 |
indices,
|
144 |
cu_seqlens,
|
|
|
146 |
)
|
147 |
|
148 |
|
149 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral
|
150 |
class LlamoeRMSNorm(nn.Module):
|
151 |
+
def __init__(self, hidden_size, eps=1e-6):
|
152 |
+
"""
|
153 |
+
LlamoeRMSNorm is equivalent to T5LayerNorm
|
154 |
+
"""
|
155 |
super().__init__()
|
156 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
157 |
+
self.variance_epsilon = eps
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
def forward(self, hidden_states):
|
160 |
+
input_dtype = hidden_states.dtype
|
161 |
+
hidden_states = hidden_states.to(torch.float32)
|
162 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
163 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
164 |
+
return self.weight * hidden_states.to(input_dtype)
|
165 |
|
|
|
166 |
|
167 |
+
# Copied from transformers.models.mistral.modeling_mistral.LlamoeRotaryEmbedding with Mistral->Mixtral
|
168 |
class LlamoeRotaryEmbedding(nn.Module):
|
169 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
170 |
super().__init__()
|
171 |
+
|
172 |
self.dim = dim
|
173 |
self.max_position_embeddings = max_position_embeddings
|
174 |
self.base = base
|
175 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
176 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
177 |
+
|
178 |
+
# Build here to make `torch.jit.trace` work.
|
179 |
+
self._set_cos_sin_cache(
|
180 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
181 |
+
)
|
182 |
|
183 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
184 |
self.max_seq_len_cached = seq_len
|
185 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
186 |
+
|
187 |
+
freqs = torch.outer(t, self.inv_freq)
|
188 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
189 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
190 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
191 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
192 |
+
|
193 |
+
def forward(self, x, seq_len=None):
|
194 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
|
|
|
|
|
|
|
195 |
if seq_len > self.max_seq_len_cached:
|
196 |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
197 |
+
|
198 |
+
return (
|
199 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
200 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
201 |
+
)
|
202 |
+
|
203 |
|
204 |
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
205 |
def rotate_half(x):
|
|
|
209 |
return torch.cat((-x2, x1), dim=-1)
|
210 |
|
211 |
|
212 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
213 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
214 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
q (`torch.Tensor`): The query tensor.
|
218 |
+
k (`torch.Tensor`): The key tensor.
|
219 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
220 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
221 |
+
position_ids (`torch.Tensor`):
|
222 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
223 |
+
used to pass offsetted position ids when working with a KV-cache.
|
224 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
225 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
226 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
227 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
228 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
229 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
230 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
231 |
+
Returns:
|
232 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
233 |
+
"""
|
234 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
235 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
236 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
237 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
238 |
return q_embed, k_embed
|
239 |
|
240 |
+
|
241 |
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
242 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
243 |
"""
|
|
|
250 |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
251 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
252 |
|
253 |
+
|
254 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral
|
255 |
class LlamoeAttention(nn.Module):
|
256 |
+
"""
|
257 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
258 |
+
and "Generating Long Sequences with Sparse Transformers".
|
259 |
+
"""
|
260 |
|
261 |
+
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
|
|
|
262 |
super().__init__()
|
263 |
self.config = config
|
264 |
self.layer_idx = layer_idx
|
|
|
269 |
"when creating this class."
|
270 |
)
|
271 |
|
|
|
272 |
self.hidden_size = config.hidden_size
|
273 |
self.num_heads = config.num_attention_heads
|
274 |
+
self.head_dim = self.hidden_size // self.num_heads
|
275 |
self.num_key_value_heads = config.num_key_value_heads
|
276 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
277 |
self.max_position_embeddings = config.max_position_embeddings
|
278 |
self.rope_theta = config.rope_theta
|
279 |
self.is_causal = True
|
280 |
+
self.attention_dropout = config.attention_dropout
|
281 |
|
282 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
283 |
raise ValueError(
|
284 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
285 |
f" and `num_heads`: {self.num_heads})."
|
286 |
)
|
287 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
288 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
289 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
290 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
291 |
|
292 |
+
self.rotary_emb = MixtralRotaryEmbedding(
|
|
|
|
|
|
|
|
|
293 |
self.head_dim,
|
294 |
max_position_embeddings=self.max_position_embeddings,
|
295 |
base=self.rope_theta,
|
296 |
)
|
297 |
|
298 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
299 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
300 |
+
|
301 |
def forward(
|
302 |
self,
|
303 |
hidden_states: torch.Tensor,
|
|
|
306 |
past_key_value: Optional[Cache] = None,
|
307 |
output_attentions: bool = False,
|
308 |
use_cache: bool = False,
|
|
|
309 |
**kwargs,
|
310 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
311 |
+
if "padding_mask" in kwargs:
|
312 |
+
warnings.warn(
|
313 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
314 |
+
)
|
315 |
bsz, q_len, _ = hidden_states.size()
|
316 |
|
317 |
query_states = self.q_proj(hidden_states)
|
|
|
322 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
323 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
324 |
|
325 |
+
kv_seq_len = key_states.shape[-2]
|
326 |
+
if past_key_value is not None:
|
327 |
+
if self.layer_idx is None:
|
328 |
+
raise ValueError(
|
329 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
330 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
331 |
+
"with a layer index."
|
332 |
+
)
|
333 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
334 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
335 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
336 |
|
337 |
if past_key_value is not None:
|
338 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
|
|
339 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
340 |
|
341 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
342 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
343 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
344 |
|
345 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
346 |
|
347 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
348 |
+
raise ValueError(
|
349 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
350 |
+
f" {attn_weights.size()}"
|
351 |
+
)
|
352 |
+
|
353 |
+
if attention_mask is not None:
|
354 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
355 |
+
raise ValueError(
|
356 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
357 |
+
)
|
358 |
+
|
359 |
+
attn_weights = attn_weights + attention_mask
|
360 |
|
361 |
# upcast attention to fp32
|
362 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
370 |
)
|
371 |
|
372 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
373 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
374 |
|
|
|
375 |
attn_output = self.o_proj(attn_output)
|
376 |
|
377 |
if not output_attentions:
|
|
|
380 |
return attn_output, attn_weights, past_key_value
|
381 |
|
382 |
|
383 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral
|
384 |
class LlamoeFlashAttention2(LlamoeAttention):
|
385 |
"""
|
386 |
+
Mixtral flash attention module. This module inherits from `MixtralAttention` as the weights of the module stays
|
387 |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
388 |
flash attention and deal with padding tokens in case the input contains any of them.
|
389 |
"""
|
390 |
|
391 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
392 |
def __init__(self, *args, **kwargs):
|
393 |
super().__init__(*args, **kwargs)
|
394 |
|
|
|
397 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
398 |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
399 |
|
|
|
400 |
def forward(
|
401 |
self,
|
402 |
hidden_states: torch.Tensor,
|
403 |
+
attention_mask: Optional[torch.Tensor] = None,
|
404 |
position_ids: Optional[torch.LongTensor] = None,
|
405 |
past_key_value: Optional[Cache] = None,
|
406 |
output_attentions: bool = False,
|
407 |
use_cache: bool = False,
|
|
|
408 |
**kwargs,
|
409 |
+
):
|
410 |
+
if "padding_mask" in kwargs:
|
411 |
+
warnings.warn(
|
412 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
413 |
+
)
|
414 |
|
415 |
+
# overwrite attention_mask with padding_mask
|
416 |
+
attention_mask = kwargs.pop("padding_mask")
|
417 |
bsz, q_len, _ = hidden_states.size()
|
418 |
|
419 |
query_states = self.q_proj(hidden_states)
|
420 |
key_states = self.k_proj(hidden_states)
|
421 |
value_states = self.v_proj(hidden_states)
|
422 |
|
|
|
|
|
|
|
423 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
424 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
425 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
426 |
|
427 |
+
kv_seq_len = key_states.shape[-2]
|
428 |
+
if past_key_value is not None:
|
429 |
+
if self.layer_idx is None:
|
430 |
+
raise ValueError(
|
431 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
432 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
433 |
+
"with a layer index."
|
434 |
+
)
|
435 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
436 |
|
437 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
438 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
439 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
440 |
+
|
441 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
442 |
+
|
443 |
+
use_sliding_windows = (
|
444 |
+
_flash_supports_window_size
|
445 |
+
and getattr(self.config, "sliding_window", None) is not None
|
446 |
+
and kv_seq_len > self.config.sliding_window
|
447 |
+
)
|
448 |
+
|
449 |
+
if not _flash_supports_window_size:
|
450 |
+
logger.warning_once(
|
451 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
452 |
+
" make sure to upgrade flash-attn library."
|
453 |
+
)
|
454 |
|
455 |
if past_key_value is not None:
|
456 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
457 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
458 |
+
if (
|
459 |
+
getattr(self.config, "sliding_window", None) is not None
|
460 |
+
and kv_seq_len > self.config.sliding_window
|
461 |
+
and cache_has_contents
|
462 |
+
):
|
463 |
+
slicing_tokens = 1 - self.config.sliding_window
|
464 |
|
465 |
+
past_key = past_key_value[self.layer_idx][0]
|
466 |
+
past_value = past_key_value[self.layer_idx][1]
|
467 |
+
|
468 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
469 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
470 |
+
|
471 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
472 |
+
raise ValueError(
|
473 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
474 |
+
f" {past_key.shape}"
|
475 |
+
)
|
476 |
+
|
477 |
+
if attention_mask is not None:
|
478 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
479 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
480 |
|
481 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
482 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
483 |
+
|
484 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
485 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
486 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
487 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
488 |
|
489 |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
490 |
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
491 |
+
# cast them back in float16 just to be sure everything works as expected.
|
|
|
|
|
|
|
492 |
input_dtype = query_states.dtype
|
493 |
if input_dtype == torch.float32:
|
494 |
if torch.is_autocast_enabled():
|
|
|
509 |
key_states = key_states.to(target_dtype)
|
510 |
value_states = value_states.to(target_dtype)
|
511 |
|
512 |
+
# Reashape to the expected shape for Flash Attention
|
513 |
+
query_states = query_states.transpose(1, 2)
|
514 |
+
key_states = key_states.transpose(1, 2)
|
515 |
+
value_states = value_states.transpose(1, 2)
|
516 |
+
|
517 |
attn_output = self._flash_attention_forward(
|
518 |
+
query_states,
|
519 |
+
key_states,
|
520 |
+
value_states,
|
521 |
+
attention_mask,
|
522 |
+
q_len,
|
523 |
+
dropout=dropout_rate,
|
524 |
+
use_sliding_windows=use_sliding_windows,
|
525 |
)
|
526 |
|
527 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
528 |
attn_output = self.o_proj(attn_output)
|
529 |
|
530 |
if not output_attentions:
|
|
|
533 |
return attn_output, attn_weights, past_key_value
|
534 |
|
535 |
def _flash_attention_forward(
|
536 |
+
self,
|
537 |
+
query_states,
|
538 |
+
key_states,
|
539 |
+
value_states,
|
540 |
+
attention_mask,
|
541 |
+
query_length,
|
542 |
+
dropout=0.0,
|
543 |
+
softmax_scale=None,
|
544 |
+
use_sliding_windows=False,
|
545 |
):
|
546 |
"""
|
547 |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
548 |
first unpad the input, then computes the attention scores and pad the final attention scores.
|
549 |
+
|
550 |
Args:
|
551 |
query_states (`torch.Tensor`):
|
552 |
Input query states to be passed to Flash Attention API
|
|
|
561 |
Attention dropout
|
562 |
softmax_scale (`float`, *optional*):
|
563 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
564 |
+
use_sliding_windows (`bool`, *optional*):
|
565 |
+
Whether to activate sliding window attention.
|
566 |
"""
|
567 |
if not self._flash_attn_uses_top_left_mask:
|
568 |
causal = self.is_causal
|
569 |
else:
|
570 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
571 |
causal = self.is_causal and query_length != 1
|
572 |
|
573 |
# Contains at least one padding token in the sequence
|
|
|
580 |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
581 |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
582 |
|
583 |
+
if not use_sliding_windows:
|
584 |
+
attn_output_unpad = flash_attn_varlen_func(
|
585 |
+
query_states,
|
586 |
+
key_states,
|
587 |
+
value_states,
|
588 |
+
cu_seqlens_q=cu_seqlens_q,
|
589 |
+
cu_seqlens_k=cu_seqlens_k,
|
590 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
591 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
592 |
+
dropout_p=dropout,
|
593 |
+
softmax_scale=softmax_scale,
|
594 |
+
causal=causal,
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
attn_output_unpad = flash_attn_varlen_func(
|
598 |
+
query_states,
|
599 |
+
key_states,
|
600 |
+
value_states,
|
601 |
+
cu_seqlens_q=cu_seqlens_q,
|
602 |
+
cu_seqlens_k=cu_seqlens_k,
|
603 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
604 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
605 |
+
dropout_p=dropout,
|
606 |
+
softmax_scale=softmax_scale,
|
607 |
+
causal=causal,
|
608 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
609 |
+
)
|
610 |
|
611 |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
612 |
else:
|
613 |
+
if not use_sliding_windows:
|
614 |
+
attn_output = flash_attn_func(
|
615 |
+
query_states,
|
616 |
+
key_states,
|
617 |
+
value_states,
|
618 |
+
dropout,
|
619 |
+
softmax_scale=softmax_scale,
|
620 |
+
causal=causal,
|
621 |
+
)
|
622 |
+
else:
|
623 |
+
attn_output = flash_attn_func(
|
624 |
+
query_states,
|
625 |
+
key_states,
|
626 |
+
value_states,
|
627 |
+
dropout,
|
628 |
+
softmax_scale=softmax_scale,
|
629 |
+
causal=causal,
|
630 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
631 |
+
)
|
632 |
|
633 |
return attn_output
|
634 |
|
635 |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
636 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
637 |
+
|
638 |
+
# On the first iteration we need to properly re-create the padding mask
|
639 |
+
# by slicing it on the proper place
|
640 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
641 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
642 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
643 |
+
|
644 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
|
645 |
|
646 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
647 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
648 |
+
|
|
|
|
|
|
|
649 |
if query_length == kv_seq_len:
|
650 |
query_layer = index_first_axis(
|
651 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
652 |
)
|
653 |
cu_seqlens_q = cu_seqlens_k
|
654 |
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
|
675 |
)
|
676 |
|
677 |
|
678 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Mixtral
|
679 |
class LlamoeSdpaAttention(LlamoeAttention):
|
680 |
"""
|
681 |
+
Mixtral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
682 |
+
`MixtralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
683 |
SDPA API.
|
684 |
"""
|
685 |
|
686 |
+
# Adapted from MixtralAttention.forward
|
687 |
def forward(
|
688 |
self,
|
689 |
hidden_states: torch.Tensor,
|
|
|
692 |
past_key_value: Optional[Cache] = None,
|
693 |
output_attentions: bool = False,
|
694 |
use_cache: bool = False,
|
|
|
695 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
696 |
if output_attentions:
|
697 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
698 |
logger.warning_once(
|
699 |
+
"MixtralModel is using MixtralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
700 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
701 |
)
|
702 |
return super().forward(
|
|
|
706 |
past_key_value=past_key_value,
|
707 |
output_attentions=output_attentions,
|
708 |
use_cache=use_cache,
|
|
|
709 |
)
|
710 |
|
711 |
bsz, q_len, _ = hidden_states.size()
|
712 |
|
|
|
713 |
query_states = self.q_proj(hidden_states)
|
714 |
key_states = self.k_proj(hidden_states)
|
715 |
value_states = self.v_proj(hidden_states)
|
716 |
+
|
717 |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
718 |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
719 |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
720 |
|
721 |
+
kv_seq_len = key_states.shape[-2]
|
|
|
|
|
|
|
|
|
722 |
if past_key_value is not None:
|
723 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
724 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
725 |
+
|
726 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
727 |
+
|
728 |
+
if past_key_value is not None:
|
729 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
730 |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
731 |
|
732 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
733 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
734 |
|
735 |
+
if attention_mask is not None:
|
736 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
737 |
+
raise ValueError(
|
738 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
739 |
+
)
|
740 |
|
741 |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
742 |
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
743 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
744 |
query_states = query_states.contiguous()
|
745 |
key_states = key_states.contiguous()
|
746 |
value_states = value_states.contiguous()
|
|
|
749 |
query_states,
|
750 |
key_states,
|
751 |
value_states,
|
752 |
+
attn_mask=attention_mask,
|
753 |
dropout_p=self.attention_dropout if self.training else 0.0,
|
754 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
755 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
756 |
)
|
757 |
|
758 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
759 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
760 |
|
761 |
attn_output = self.o_proj(attn_output)
|
762 |
|
763 |
return attn_output, None, past_key_value
|
764 |
|
765 |
|
766 |
+
Llamoe_ATTENTION_CLASSES = {
|
767 |
"eager": LlamoeAttention,
|
768 |
"flash_attention_2": LlamoeFlashAttention2,
|
769 |
"sdpa": LlamoeSdpaAttention,
|
770 |
}
|
771 |
|
772 |
+
|
773 |
+
class MixtralBlockSparseTop2MLP(nn.Module):
|
774 |
def __init__(self, config: LlamoeConfig):
|
775 |
super().__init__()
|
776 |
self.ffn_dim = config.intermediate_size
|
777 |
self.hidden_dim = config.hidden_size
|
778 |
+
|
779 |
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
780 |
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
781 |
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
782 |
|
783 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
784 |
|
785 |
def forward(self, hidden_states):
|
786 |
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
787 |
current_hidden_states = self.w2(current_hidden_states)
|
788 |
+
return current_hidden_states
|
789 |
+
|
790 |
+
|
791 |
+
class LlamoeBLockSparseTop2MLP(LlamoeBlockSparseTop2MLP):
|
792 |
+
def __init__(self, *args, **kwargs):
|
793 |
+
logger.warning_once(
|
794 |
+
"LlamoeBLockSparseTop2MLP is deprecated by MixtralBlockSparseTop2MLP and will be removed in v4.40."
|
795 |
+
)
|
796 |
+
super().__init__(*args, **kwargs)
|
797 |
|
798 |
|
799 |
class LlamoeSparseMoeBlock(nn.Module):
|
800 |
+
"""
|
801 |
+
This implementation is
|
802 |
+
strictly equivalent to standard MoE with full capacity (no
|
803 |
+
dropped tokens). It's faster since it formulates MoE operations
|
804 |
+
in terms of block-sparse operations to accomodate imbalanced
|
805 |
+
assignments of tokens to experts, whereas standard MoE either
|
806 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
807 |
+
capacity factor to number of experts and thus waste computation
|
808 |
+
and memory on padding.
|
809 |
+
"""
|
810 |
+
|
811 |
def __init__(self, config):
|
812 |
super().__init__()
|
813 |
self.hidden_dim = config.hidden_size
|
814 |
self.ffn_dim = config.intermediate_size
|
815 |
self.num_experts = config.num_local_experts
|
816 |
+
self.top_k = config.num_experts_per_tok
|
817 |
|
818 |
# gating
|
819 |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
820 |
|
821 |
self.experts = nn.ModuleList([LlamoeBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
822 |
|
823 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
824 |
+
""" """
|
825 |
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
826 |
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
827 |
# router_logits: (batch * sequence_length, n_experts)
|
828 |
router_logits = self.gate(hidden_states)
|
|
|
|
|
|
|
829 |
|
830 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
831 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
832 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
833 |
+
# we cast back to the input dtype
|
834 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
835 |
+
|
836 |
+
final_hidden_states = torch.zeros(
|
837 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
838 |
+
)
|
839 |
+
|
840 |
+
# One hot encode the selected experts to create an expert mask
|
841 |
+
# this will be used to easily index which expert is going to be sollicitated
|
842 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
843 |
+
|
844 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
845 |
+
for expert_idx in range(self.num_experts):
|
846 |
+
expert_layer = self.experts[expert_idx]
|
847 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
848 |
+
|
849 |
+
if top_x.shape[0] == 0:
|
850 |
+
continue
|
851 |
|
852 |
+
# in torch it is faster to index using lists than torch tensors
|
853 |
+
top_x_list = top_x.tolist()
|
854 |
+
idx_list = idx.tolist()
|
855 |
|
856 |
+
# Index the correct hidden states and compute the expert hidden state for
|
857 |
+
# the current expert. We need to make sure to multiply the output hidden
|
858 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
859 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
860 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
861 |
|
862 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
863 |
+
# the `top_x` tensor here.
|
864 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
865 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
866 |
+
return final_hidden_states, router_logits
|
867 |
|
|
|
|
|
868 |
|
|
|
|
|
869 |
class LlamoeDecoderLayer(nn.Module):
|
870 |
def __init__(self, config: LlamoeConfig, layer_idx: int):
|
871 |
super().__init__()
|
872 |
self.hidden_size = config.hidden_size
|
873 |
|
874 |
+
self.self_attn = MIXTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
875 |
|
876 |
self.block_sparse_moe = LlamoeSparseMoeBlock(config)
|
877 |
self.input_layernorm = LlamoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
948 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
949 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
950 |
etc.)
|
951 |
+
|
952 |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
953 |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
954 |
and behavior.
|
955 |
+
|
956 |
Parameters:
|
957 |
+
config ([`MixtralConfig`]):
|
958 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
959 |
load the weights associated with the model, only the configuration. Check out the
|
960 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
962 |
|
963 |
|
964 |
@add_start_docstrings(
|
965 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
966 |
Llamoe_START_DOCSTRING,
|
967 |
)
|
968 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral
|
969 |
class LlamoePreTrainedModel(PreTrainedModel):
|
970 |
config_class = LlamoeConfig
|
971 |
base_model_prefix = "model"
|
972 |
supports_gradient_checkpointing = True
|
|
|
973 |
_no_split_modules = ["LlamoeDecoderLayer"]
|
974 |
+
_skip_keys_device_placement = "past_key_values"
|
975 |
_supports_flash_attn_2 = True
|
976 |
_supports_sdpa = True
|
977 |
_supports_cache_class = True
|
|
|
987 |
if module.padding_idx is not None:
|
988 |
module.weight.data[module.padding_idx].zero_()
|
989 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
990 |
|
991 |
+
Llamoe_INPUTS_DOCSTRING = r"""
|
|
|
992 |
Args:
|
993 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
994 |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
995 |
it.
|
996 |
+
|
997 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
998 |
[`PreTrainedTokenizer.__call__`] for details.
|
999 |
+
|
1000 |
[What are input IDs?](../glossary#input-ids)
|
1001 |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1002 |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1003 |
+
|
1004 |
- 1 for tokens that are **not masked**,
|
1005 |
- 0 for tokens that are **masked**.
|
1006 |
+
|
1007 |
[What are attention masks?](../glossary#attention-mask)
|
1008 |
+
|
1009 |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1010 |
[`PreTrainedTokenizer.__call__`] for details.
|
1011 |
+
|
1012 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1013 |
`past_key_values`).
|
1014 |
+
|
1015 |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1016 |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1017 |
information on the default strategy.
|
1018 |
+
|
1019 |
- 1 indicates the head is **not masked**,
|
1020 |
- 0 indicates the head is **masked**.
|
1021 |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1022 |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1023 |
config.n_positions - 1]`.
|
1024 |
+
|
1025 |
[What are position IDs?](../glossary#position-ids)
|
1026 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1027 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1028 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1029 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1030 |
+
|
1031 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1032 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1033 |
+
|
1034 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1035 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1036 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
|
|
|
|
|
1037 |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1038 |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1039 |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
|
1047 |
output_hidden_states (`bool`, *optional*):
|
1048 |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1049 |
more detail.
|
1050 |
+
output_router_logits (`bool`, *optional*):
|
1051 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1052 |
+
should not be returned during inference.
|
1053 |
return_dict (`bool`, *optional*):
|
1054 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
|
|
|
|
|
1055 |
"""
|
1056 |
|
1057 |
|
1058 |
@add_start_docstrings(
|
1059 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
1060 |
Llamoe_START_DOCSTRING,
|
1061 |
)
|
1062 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
|
1063 |
+
class MixtralModel(LlamoePreTrainedModel):
|
1064 |
"""
|
1065 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
|
1066 |
+
|
1067 |
Args:
|
1068 |
+
config: MixtralConfig
|
1069 |
"""
|
1070 |
|
1071 |
+
def __init__(self, config: MixtralConfig):
|
1072 |
super().__init__(config)
|
1073 |
self.padding_idx = config.pad_token_id
|
1074 |
self.vocab_size = config.vocab_size
|
|
|
1077 |
self.layers = nn.ModuleList(
|
1078 |
[LlamoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1079 |
)
|
1080 |
+
self._attn_implementation = config._attn_implementation
|
1081 |
self.norm = LlamoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
1082 |
|
1083 |
+
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
|
|
|
1084 |
# Initialize weights and apply final processing
|
1085 |
self.post_init()
|
1086 |
|
|
|
1090 |
def set_input_embeddings(self, value):
|
1091 |
self.embed_tokens = value
|
1092 |
|
1093 |
+
# Ignore copy
|
1094 |
+
@add_start_docstrings_to_model_forward(Llamoe_INPUTS_DOCSTRING)
|
1095 |
def forward(
|
1096 |
self,
|
1097 |
input_ids: torch.LongTensor = None,
|
|
|
1104 |
output_hidden_states: Optional[bool] = None,
|
1105 |
output_router_logits: Optional[bool] = None,
|
1106 |
return_dict: Optional[bool] = None,
|
|
|
1107 |
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1108 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1109 |
+
output_router_logits = (
|
1110 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1111 |
+
)
|
1112 |
output_hidden_states = (
|
1113 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1114 |
)
|
1115 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1116 |
+
|
1117 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1118 |
|
1119 |
+
# retrieve input_ids and inputs_embeds
|
1120 |
+
if input_ids is not None and inputs_embeds is not None:
|
1121 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1122 |
+
elif input_ids is not None:
|
1123 |
+
batch_size, seq_length = input_ids.shape
|
1124 |
+
elif inputs_embeds is not None:
|
1125 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1126 |
+
else:
|
1127 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1128 |
|
1129 |
+
past_key_values_length = 0
|
|
|
|
|
|
|
|
|
1130 |
|
1131 |
+
if self.gradient_checkpointing and self.training:
|
1132 |
+
if use_cache:
|
1133 |
+
logger.warning_once(
|
1134 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1135 |
+
)
|
1136 |
+
use_cache = False
|
1137 |
|
1138 |
+
if use_cache:
|
1139 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1140 |
+
if use_legacy_cache:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1141 |
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1142 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1143 |
|
1144 |
+
if position_ids is None:
|
1145 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1146 |
+
position_ids = torch.arange(
|
1147 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1148 |
)
|
1149 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1150 |
+
else:
|
1151 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1152 |
|
1153 |
+
if inputs_embeds is None:
|
1154 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1155 |
|
1156 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1157 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1158 |
+
if is_padding_right:
|
1159 |
+
raise ValueError(
|
1160 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1161 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
|
1162 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1163 |
+
)
|
1164 |
|
1165 |
+
if self._attn_implementation == "flash_attention_2":
|
1166 |
+
# 2d mask is passed through the layers
|
1167 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1168 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1169 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1170 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1171 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1172 |
+
attention_mask,
|
1173 |
+
(batch_size, seq_length),
|
1174 |
+
inputs_embeds,
|
1175 |
+
past_key_values_length,
|
1176 |
+
)
|
1177 |
+
else:
|
1178 |
+
# 4d mask is passed through the layers
|
1179 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1180 |
+
attention_mask,
|
1181 |
+
(batch_size, seq_length),
|
1182 |
+
inputs_embeds,
|
1183 |
+
past_key_values_length,
|
1184 |
+
sliding_window=self.config.sliding_window,
|
1185 |
+
)
|
1186 |
|
1187 |
+
hidden_states = inputs_embeds
|
|
|
1188 |
|
1189 |
# decoder layers
|
1190 |
all_hidden_states = () if output_hidden_states else None
|
1191 |
all_self_attns = () if output_attentions else None
|
1192 |
+
all_router_logits = () if output_router_logits else None
|
1193 |
next_decoder_cache = None
|
1194 |
|
1195 |
for decoder_layer in self.layers:
|
1196 |
if output_hidden_states:
|
1197 |
all_hidden_states += (hidden_states,)
|
1198 |
+
|
1199 |
+
if self.gradient_checkpointing and self.training:
|
1200 |
layer_outputs = self._gradient_checkpointing_func(
|
1201 |
decoder_layer.__call__,
|
1202 |
hidden_states,
|
1203 |
+
attention_mask,
|
1204 |
position_ids,
|
1205 |
past_key_values,
|
1206 |
output_attentions,
|
1207 |
output_router_logits,
|
1208 |
+
use_cache,
|
|
|
|
|
1209 |
)
|
1210 |
else:
|
1211 |
layer_outputs = decoder_layer(
|
1212 |
hidden_states,
|
1213 |
+
attention_mask=attention_mask,
|
1214 |
position_ids=position_ids,
|
1215 |
past_key_value=past_key_values,
|
1216 |
output_attentions=output_attentions,
|
1217 |
output_router_logits=output_router_logits,
|
1218 |
+
use_cache=use_cache,
|
|
|
1219 |
)
|
1220 |
|
1221 |
hidden_states = layer_outputs[0]
|
|
|
1226 |
if output_attentions:
|
1227 |
all_self_attns += (layer_outputs[1],)
|
1228 |
|
1229 |
+
if output_router_logits:
|
1230 |
+
all_router_logits += (layer_outputs[-1],)
|
1231 |
+
|
1232 |
hidden_states = self.norm(hidden_states)
|
1233 |
|
1234 |
# add hidden states from the last decoder layer
|
|
|
1237 |
|
1238 |
next_cache = None
|
1239 |
if use_cache:
|
1240 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1241 |
+
|
|
|
1242 |
if not return_dict:
|
1243 |
+
return tuple(
|
1244 |
+
v
|
1245 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1246 |
+
if v is not None
|
1247 |
+
)
|
1248 |
return MoeModelOutputWithPast(
|
1249 |
last_hidden_state=hidden_states,
|
1250 |
past_key_values=next_cache,
|
1251 |
hidden_states=all_hidden_states,
|
1252 |
attentions=all_self_attns,
|
1253 |
+
router_logits=all_router_logits,
|
1254 |
)
|
1255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1256 |
|
1257 |
class LlamoeForCausalLM(LlamoePreTrainedModel):
|
1258 |
_tied_weights_keys = ["lm_head.weight"]
|
1259 |
|
1260 |
def __init__(self, config):
|
1261 |
super().__init__(config)
|
1262 |
+
self.model = MixtralModel(config)
|
1263 |
self.vocab_size = config.vocab_size
|
1264 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1265 |
self.router_aux_loss_coef = config.router_aux_loss_coef
|
|
|
1286 |
def get_decoder(self):
|
1287 |
return self.model
|
1288 |
|
1289 |
+
@add_start_docstrings_to_model_forward(Llamoe_INPUTS_DOCSTRING)
|
1290 |
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1291 |
# Ignore copy
|
1292 |
def forward(
|
|
|
1309 |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1310 |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1311 |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1312 |
+
|
1313 |
Returns:
|
1314 |
+
|
1315 |
Example:
|
1316 |
+
|
1317 |
```python
|
1318 |
+
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
1319 |
+
|
1320 |
+
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
1321 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
1322 |
+
|
1323 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1324 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1325 |
+
|
1326 |
>>> # Generate
|
1327 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1328 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
1356 |
hidden_states = outputs[0]
|
1357 |
logits = self.lm_head(hidden_states)
|
1358 |
logits = logits.float()
|
|
|
|
|
|
|
|
|
|
|
|
|
1359 |
|
1360 |
loss = None
|
1361 |
if labels is not None:
|
|
|
1459 |
"output_router_logits": output_router_logits,
|
1460 |
}
|
1461 |
)
|
1462 |
+
return model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|