from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) LLAMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "damerajee/Llamoe-test": "https://huggingface.co/damerajee/Llamoe-test/resolve/main/config.json", } class LlamoeConfig(PretrainedConfig): model_type = "Llamoe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, head_dim=256, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=false, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, num_experts_per_tok=2, num_local_experts=8, router_aux_loss_coef=0.02, output_router_logits=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts self.router_aux_loss_coef = router_aux_loss_coef self.output_router_logits = output_router_logits super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )