--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - meta-llama/Llama-2-7b-hf - syzymon/long_llama_code_7b_instruct - georgesung/llama2_7b_chat_uncensored - togethercomputer/LLaMA-2-7B-32K base_model: - meta-llama/Llama-2-7b-hf - syzymon/long_llama_code_7b_instruct - georgesung/llama2_7b_chat_uncensored - togethercomputer/LLaMA-2-7B-32K --- # Llamoe-test Llamoe-test is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) * [syzymon/long_llama_code_7b_instruct](https://huggingface.co/syzymon/long_llama_code_7b_instruct) * [georgesung/llama2_7b_chat_uncensored](https://huggingface.co/georgesung/llama2_7b_chat_uncensored) * [togethercomputer/LLaMA-2-7B-32K](https://huggingface.co/togethercomputer/LLaMA-2-7B-32K) ## 🧩 Configuration ```yaml base_model: meta-llama/Llama-2-7b-chat-hf gate_mode: random dtype: bfloat16 experts_per_token: 2 experts: - source_model: meta-llama/Llama-2-7b-hf positive_prompts: - "should be able to converse properly" negative_prompts: - "Uncensored in my opinion" - source_model: syzymon/long_llama_code_7b_instruct positive_prompts: - "Perform pretty well in coding question" negative_prompts: - "Is quite bad in C++" - source_model: georgesung/llama2_7b_chat_uncensored positive_prompts: - "Uncensored" negative_prompts: - "really bad in high school grade math and science" - source_model: togethercomputer/LLaMA-2-7B-32K positive_prompts: - "really good in long context question answering" negative_prompts: - "incorrect or biased content" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "damerajee/Llamoe-test" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```