File size: 14,396 Bytes
04ec676
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b23ae59e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b23ae5a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b23ae5b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b23ae5b90>", "_build": "<function ActorCriticPolicy._build at 0x7f0b23ae5c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b23ae5cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b23ae5d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b23ae5dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b23ae5e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b23ae5ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b23ae5f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b23abd2a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1392640, "_total_timesteps": 1379518, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660854444.8348734, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAjZU3PhTZ1D6bQPS9isPEvvIWwj3qSgi+AAAAAAAAAABNVQ4+PU+KPhcwjb7R2Zy+n/+LPIq4V7wAAAAAAAAAAG1sKD4VeQU/AkhNvlEPwL7sYso9MmOevAAAAAAAAAAAImKavrIQzj7mVhc+Ueqjvnn7Mb5lOeI9AAAAAAAAAAAznbM8Cvwdu2CTnzsXl6M860z4u4ZkjD0AAIA/AACAP4B2N76yPZU+2QtLPqJUdr5XwVO8xvsMvgAAAAAAAAAAM50bvCYH5T5rR2e9mqffvrgsD7sT+WI8AAAAAAAAAADNJNC9GKftPmyuBD6/5L2+aFM8vUKmuj0AAAAAAAAAAE0qvT0UMJK6iauiNxXWjjJLC3q6KpS8tgAAgD8AAAAAc2qvvTQigj+7/S2+jQAUv1cio73TvQc9AAAAAAAAAACmcag9jx5Suo5XCDqrov0y3COXuyhWHrkAAIA/AAAAAM2M6jp1QLU/dN+LPFHCPb5CYIS83fEhvQAAAAAAAAAAsw4UPk8EhD+j+aY+cesTv1ekfj7lLFA9AAAAAAAAAAAzYWY8uLbRuY6hgrOGXOwuFpPJO63evDMAAIA/AACAP41RBb5c7Cc9ljYNPpHxQL5qnBq9lcbBPQAAAAAAAAAAzV2zvXuyNj/eq328KgPDvpIqar3i8pc9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00951201796569534, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuqRqu4lJc0CUhpRSlIwBbJRL/YwBdJRHQKBp4VVxS511fZQoaAZoCWgPQwjFdvcA3dRsQJSGlFKUaBVL2mgWR0Cgae5VwPy1dX2UKGgGaAloD0MIatswCgLucUCUhpRSlGgVS9poFkdAoGrAv+OwPnV9lChoBmgJaA9DCMUbmUc+p3JAlIaUUpRoFUvaaBZHQKBqzHVf/m11fZQoaAZoCWgPQwhzZyYYjgxyQJSGlFKUaBVL42gWR0CgatA9vCMxdX2UKGgGaAloD0MIIoyfxv35ckCUhpRSlGgVS/BoFkdAoGsSzPa+OHV9lChoBmgJaA9DCJG0G33M/nFAlIaUUpRoFUvdaBZHQKBrQy+HrQh1fZQoaAZoCWgPQwg83uS36DdxQJSGlFKUaBVNAgFoFkdAoGthradtmHV9lChoBmgJaA9DCP0xrU2jAXJAlIaUUpRoFUvNaBZHQKBrap3HJcR1fZQoaAZoCWgPQwgVNgNc0NBxQJSGlFKUaBVL1WgWR0Cga5CSA6MjdX2UKGgGaAloD0MIOh4zUNkqckCUhpRSlGgVS9FoFkdAoGud+PRzBHV9lChoBmgJaA9DCAtFup9TYnNAlIaUUpRoFUvbaBZHQKBsFdNWU8p1fZQoaAZoCWgPQwj8byU7NnVzQJSGlFKUaBVLzGgWR0CgbHBz3h4udX2UKGgGaAloD0MImyFVFG+VckCUhpRSlGgVS/NoFkdAoGzetwJgLXV9lChoBmgJaA9DCPUrnQ8P7XJAlIaUUpRoFUvQaBZHQKBs3ta6jFh1fZQoaAZoCWgPQwj5u3fUWHNxQJSGlFKUaBVL4GgWR0CgbQugg5imdX2UKGgGaAloD0MIVI80uK1oc0CUhpRSlGgVTcsCaBZHQKBtm938n/l1fZQoaAZoCWgPQwgouFhRAz9wQJSGlFKUaBVL3WgWR0CgbfoOQQtjdX2UKGgGaAloD0MIOQ68Wq4Ec0CUhpRSlGgVS/RoFkdAoG5FKEnLJXV9lChoBmgJaA9DCPBS6pIxoXFAlIaUUpRoFUvwaBZHQKBukWEbo8p1fZQoaAZoCWgPQwgtzEI7p41vQJSGlFKUaBVL4mgWR0CgbrRx95QhdX2UKGgGaAloD0MI2sngKHneb0CUhpRSlGgVS+doFkdAoG6/r6ciGHV9lChoBmgJaA9DCB79L9eigXFAlIaUUpRoFUvfaBZHQKBu0foRqXZ1fZQoaAZoCWgPQwiOrPwymFFyQJSGlFKUaBVL32gWR0Cgbt8QyylfdX2UKGgGaAloD0MICRfyCG48c0CUhpRSlGgVTQoBaBZHQKBvG/O+qR51fZQoaAZoCWgPQwiLTwEw3l1xQJSGlFKUaBVL1WgWR0Cgb4hw++uedX2UKGgGaAloD0MI+BdBYyZzc0CUhpRSlGgVS/BoFkdAoG+Tkhib2HV9lChoBmgJaA9DCNzZVx6khHNAlIaUUpRoFU0nAmgWR0Cgb5nmJWNndX2UKGgGaAloD0MI071O6ksXbUCUhpRSlGgVS9NoFkdAoG/ba9K28nV9lChoBmgJaA9DCKw8gbBT83BAlIaUUpRoFUv4aBZHQKB50qbSZ0F1fZQoaAZoCWgPQwhJ88e0dkpyQJSGlFKUaBVL/GgWR0CgegTNUwSKdX2UKGgGaAloD0MIu16aIkBNc0CUhpRSlGgVS/FoFkdAoHpfoq0+knV9lChoBmgJaA9DCOurqwJ1KXFAlIaUUpRoFUvcaBZHQKB6bRHf/FR1fZQoaAZoCWgPQwgIyJdQgelxQJSGlFKUaBVLyGgWR0Cgem1LzwtrdX2UKGgGaAloD0MInGnC9tNFcECUhpRSlGgVS9RoFkdAoHrp6dDpknV9lChoBmgJaA9DCKa3PxcNIW9AlIaUUpRoFUvgaBZHQKB685myxA11fZQoaAZoCWgPQwjWdD3RdZxvQJSGlFKUaBVL12gWR0Cgev28RL9NdX2UKGgGaAloD0MIXVFKCNanc0CUhpRSlGgVS+FoFkdAoHs2Dxsl9nV9lChoBmgJaA9DCMsvgzFirXJAlIaUUpRoFUvZaBZHQKB7VMRHww11fZQoaAZoCWgPQwh6ck2BzP1wQJSGlFKUaBVL/2gWR0Cge4ZgogFHdX2UKGgGaAloD0MImPp5U5HacECUhpRSlGgVS/RoFkdAoHwoCSzPbHV9lChoBmgJaA9DCNApyM/GzXNAlIaUUpRoFU0KAWgWR0CgfGTgEU0vdX2UKGgGaAloD0MIzGJi87GKc0CUhpRSlGgVTQ4BaBZHQKB8fW912aF1fZQoaAZoCWgPQwh6bqErkRJxQJSGlFKUaBVL3WgWR0CgfKWJ79hrdX2UKGgGaAloD0MISNxj6YP+cECUhpRSlGgVTRMBaBZHQKB84UliSaF1fZQoaAZoCWgPQwhljXqIxj5yQJSGlFKUaBVL1WgWR0CgfR/KISDidX2UKGgGaAloD0MIFOrpI3BzckCUhpRSlGgVS/JoFkdAoH0nQa72+XV9lChoBmgJaA9DCDBntis0B3BAlIaUUpRoFUvWaBZHQKB9MYYR/Vl1fZQoaAZoCWgPQwiyKy0jdUdxQJSGlFKUaBVL22gWR0CgfUF3IMjNdX2UKGgGaAloD0MIEeD0Lt5RckCUhpRSlGgVS95oFkdAoH3IVuaWonV9lChoBmgJaA9DCLzplh1ibnBAlIaUUpRoFUvVaBZHQKB9/mGucMF1fZQoaAZoCWgPQwjaykv+J79uQJSGlFKUaBVL7WgWR0CgfhBttQ9BdX2UKGgGaAloD0MIdbFppdCycECUhpRSlGgVS9hoFkdAoH4sRUWEb3V9lChoBmgJaA9DCG8Sg8DKUHNAlIaUUpRoFUv7aBZHQKB+NQLux8l1fZQoaAZoCWgPQwiR8/4/DjtyQJSGlFKUaBVL02gWR0CgfkyeiBXkdX2UKGgGaAloD0MIM2/VdSjicUCUhpRSlGgVS9FoFkdAoH8VvXK8tnV9lChoBmgJaA9DCJsff2mR/XBAlIaUUpRoFUvLaBZHQKB/GfHPu5V1fZQoaAZoCWgPQwg+k/3zdEVxQJSGlFKUaBVL7WgWR0Cgfzk/r0J4dX2UKGgGaAloD0MIz6J3KuAscECUhpRSlGgVS99oFkdAoH+Fwm3OOnV9lChoBmgJaA9DCDCca5ghvnJAlIaUUpRoFU1QA2gWR0Cgf6r74zrNdX2UKGgGaAloD0MIvtpRnCPTcUCUhpRSlGgVS9poFkdAoH+tyWAwwnV9lChoBmgJaA9DCE5+i06Wg3JAlIaUUpRoFUvgaBZHQKB/9xJd0JZ1fZQoaAZoCWgPQwiLUGwFTRJxQJSGlFKUaBVL4GgWR0CggAYJ3PiUdX2UKGgGaAloD0MIH0q05DFxcUCUhpRSlGgVS+ZoFkdAoIAOd7OVxHV9lChoBmgJaA9DCInS3uBL0XBAlIaUUpRoFUvkaBZHQKCAHbN8ma91fZQoaAZoCWgPQwh+yFuufkRxQJSGlFKUaBVLxGgWR0CggGTRplBhdX2UKGgGaAloD0MIHT7pRMIccUCUhpRSlGgVS8loFkdAoIB/yqdYn3V9lChoBmgJaA9DCKfK94zE8W9AlIaUUpRoFUvjaBZHQKCAjTmW+oN1fZQoaAZoCWgPQwi/84sStBRwQJSGlFKUaBVL3WgWR0CggNRbbDdhdX2UKGgGaAloD0MIMGghAaN6ckCUhpRSlGgVS+5oFkdAoID6c9W6snV9lChoBmgJaA9DCEj7H2DtkXBAlIaUUpRoFUvtaBZHQKCBFesPrfN1fZQoaAZoCWgPQwgzb9V16NZwQJSGlFKUaBVL0mgWR0CggXw1zhgmdX2UKGgGaAloD0MI02ndBrUcc0CUhpRSlGgVS85oFkdAoIGQY1pCbHV9lChoBmgJaA9DCNJu9DGf921AlIaUUpRoFUvraBZHQKCBypw0fo11fZQoaAZoCWgPQwgD6WLTiphxQJSGlFKUaBVLv2gWR0CggiqSowVTdX2UKGgGaAloD0MIZktWRXiacUCUhpRSlGgVS+5oFkdAoIJWpXIU8HV9lChoBmgJaA9DCKQzMPIyi3JAlIaUUpRoFUv/aBZHQKCCbFkxyn11fZQoaAZoCWgPQwjzOXe7HshyQJSGlFKUaBVL+GgWR0CggntpdrwfdX2UKGgGaAloD0MI6Q5iZwoycUCUhpRSlGgVS+VoFkdAoIKaVhTfi3V9lChoBmgJaA9DCN4f71WrXHBAlIaUUpRoFUvjaBZHQKCCrk/bCaZ1fZQoaAZoCWgPQwh81F+vMBJxQJSGlFKUaBVL92gWR0Cggr8CYCyRdX2UKGgGaAloD0MI46jcRG19cUCUhpRSlGgVS+doFkdAoIMCZ6Uqx3V9lChoBmgJaA9DCE6aBkVzWnBAlIaUUpRoFUvhaBZHQKCDDlCCz1N1fZQoaAZoCWgPQwhxOzQsBndyQJSGlFKUaBVL82gWR0Cgg01NYbKidX2UKGgGaAloD0MIfEj43h+zcECUhpRSlGgVS9FoFkdAoINdTR6WxHV9lChoBmgJaA9DCF97ZklA93BAlIaUUpRoFUvlaBZHQKCDsnQY1pF1fZQoaAZoCWgPQwiwyoXKv6RyQJSGlFKUaBVL/WgWR0Cgg7HbItDldX2UKGgGaAloD0MI4zWv6mxMc0CUhpRSlGgVS9BoFkdAoIPcGcFyJnV9lChoBmgJaA9DCGGnWDWIVXNAlIaUUpRoFUv3aBZHQKCEaR5kbxV1fZQoaAZoCWgPQwigcHZrmR1yQJSGlFKUaBVL72gWR0CghI+NkvsadX2UKGgGaAloD0MIkpGzsKeobkCUhpRSlGgVS9NoFkdAoIScYGdI5HV9lChoBmgJaA9DCHC044ZfpnBAlIaUUpRoFUvYaBZHQKCFHK6Fuel1fZQoaAZoCWgPQwjjNa/qrChwQJSGlFKUaBVL7WgWR0CghTJUgjhUdX2UKGgGaAloD0MIRzoDI29+ckCUhpRSlGgVS9RoFkdAoIU7zAeq73V9lChoBmgJaA9DCDuKc9RRmG9AlIaUUpRoFUvaaBZHQKCFPDKHO8l1fZQoaAZoCWgPQwgai6az00RxQJSGlFKUaBVL92gWR0CghT/h2nsLdX2UKGgGaAloD0MIAfkSKjiucECUhpRSlGgVTQYBaBZHQKCFiKk2xY91fZQoaAZoCWgPQwi53jZTYeVwQJSGlFKUaBVL3WgWR0CghagH3UQTdX2UKGgGaAloD0MIpwhwepdPc0CUhpRSlGgVS+xoFkdAoIXHrD63zHV9lChoBmgJaA9DCNmZQuc1SG5AlIaUUpRoFUvfaBZHQKCGAYRdyDJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 340, "n_steps": 1024, "gamma": 0.9924500724639644, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}