ppo-LunarLander-v2 / config.json
damilare-akin's picture
initial commit
fd52a53
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f532d58a8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f532d58a950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f532d58a9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f532d58aa70>", "_build": "<function ActorCriticPolicy._build at 0x7f532d58ab00>", "forward": "<function ActorCriticPolicy.forward at 0x7f532d58ab90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f532d58ac20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f532d58acb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f532d58ad40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f532d58add0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f532d58ae60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f532d5e7060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659737253.8117752, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAFpLxrmrY9R/wAvU1/JL7vqHE8vn79vAAAAAAAAAAAs+AhPa02dj4iFs+992xcvpMzLLyWE129AAAAAAAAAACNoww+s0c6P+iRgb2qCmW+oMJxPMrnmjwAAAAAAAAAAFCdyj4AMVE/pe+TPX59zr7IuJg+B6EavQAAAAAAAAAATdgLvcgq7zsA+RY9enR5vtcn7DzNYkC7AAAAAAAAAABNrSQ9JJkePJTouzxVlFS+DTkDPM9+AT0AAAAAAAAAADMIAr09Sjk49hrAPBP65ry7lM47XtyzvAAAAAAAAAAAxlKEPq/tbD52yMW9O8xqvqVpsT1RgQ69AAAAAAAAAACdsWm+kOySP8vagr4UCX2+/WyEvrJjKz0AAAAAAAAAAPpLaD7RhoQ/YgiePdw3ub7wURA+U7EsOwAAAAAAAAAAmtupPPYcL7p4u4m8CbsBvD1/TTvzSuO8AAAAAAAAgD8NW1y+U5OYP2f9jr3fVaC+saMZvtYzPT0AAAAAAAAAAGao8TzsrbI+Vb3Wvc+ceb7DcqS8EFw8vQAAAAAAAAAA2ioOPjFBnT+HIQ8/9Ab0vnN9Jj7Wtxw+AAAAAAAAAACaeYe7KSUtO6HlST1zRkq96UcAumT3Gr0AAAAAAAAAAADQjzypnxE9duHzPDVbNb6Xqaq8Z8krPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQiECDuGBcECUhpRSlIwBbJRNBwGMAXSUR0CRs0Pwd8zAdX2UKGgGaAloD0MIwAgaM8n8cECUhpRSlGgVTQ4BaBZHQJG0QpjMFEB1fZQoaAZoCWgPQwhflnZqLnZsQJSGlFKUaBVNRAFoFkdAkbRei35N5HV9lChoBmgJaA9DCPEPW3p043FAlIaUUpRoFU1ZAWgWR0CRtLOrhisodX2UKGgGaAloD0MIOdGuQkoibkCUhpRSlGgVTTEBaBZHQJG1NbfP5YZ1fZQoaAZoCWgPQwic3sX78ddxQJSGlFKUaBVNDQFoFkdAkbj6AvtdA3V9lChoBmgJaA9DCGFUUicgnnFAlIaUUpRoFU0RAWgWR0CRuSYPGyX2dX2UKGgGaAloD0MICtgORmxzbkCUhpRSlGgVTSMBaBZHQJG6jMvAXVN1fZQoaAZoCWgPQwi5/If0231cQJSGlFKUaBVN6ANoFkdAkbqOueSSvHV9lChoBmgJaA9DCK3D0VU6mnFAlIaUUpRoFU0gAWgWR0CRvKFdcB2fdX2UKGgGaAloD0MI6MByhIzUbkCUhpRSlGgVTUwBaBZHQJG99OUMXrN1fZQoaAZoCWgPQwhVhnE3iABxQJSGlFKUaBVNgAFoFkdAkb4tke6qbXV9lChoBmgJaA9DCPFkNzP6xW5AlIaUUpRoFU1VAWgWR0CRvo6pHZsbdX2UKGgGaAloD0MILCl3n2MccECUhpRSlGgVTUUBaBZHQJG/6butwJh1fZQoaAZoCWgPQwibVZ+rLTFwQJSGlFKUaBVNTgFoFkdAkcCWTX8O1HV9lChoBmgJaA9DCJRt4A4UTnJAlIaUUpRoFU1GAWgWR0CRwP3l0YCRdX2UKGgGaAloD0MIVYZxNwgXa0CUhpRSlGgVTUcBaBZHQJHCGfmLcbl1fZQoaAZoCWgPQwjP2QJC6y5vQJSGlFKUaBVNOgFoFkdAkcIs36yjYnV9lChoBmgJaA9DCO7of7nWGnJAlIaUUpRoFU2NAWgWR0CRwvD8cdYGdX2UKGgGaAloD0MItDukGCDCbECUhpRSlGgVTXYBaBZHQJHDs4zabnZ1fZQoaAZoCWgPQwgKStHKPR5yQJSGlFKUaBVNZgFoFkdAkcQrDQ7cPHV9lChoBmgJaA9DCFrZPuSt93BAlIaUUpRoFU04AWgWR0CRxYcn3L3cdX2UKGgGaAloD0MISkONQhLGbUCUhpRSlGgVTSMBaBZHQJHFvYI0IkZ1fZQoaAZoCWgPQwjEtdrDHltwQJSGlFKUaBVNMQFoFkdAkcY02cawU3V9lChoBmgJaA9DCDPFHASd+W5AlIaUUpRoFU1mAWgWR0CRxvgvDgqFdX2UKGgGaAloD0MI3GYqxGM3cECUhpRSlGgVTQ4BaBZHQJHHRGI9C/p1fZQoaAZoCWgPQwizQpHu551yQJSGlFKUaBVNRwFoFkdAkcg25paibnV9lChoBmgJaA9DCL+6KlCLFXBAlIaUUpRoFU05AWgWR0CRyILaVUuMdX2UKGgGaAloD0MIwtzu5f7ZcECUhpRSlGgVTXABaBZHQJHgKTRplBh1fZQoaAZoCWgPQwjuWkI+aGpuQJSGlFKUaBVNFQFoFkdAkeCtyo4uLHV9lChoBmgJaA9DCGvvU1VoXG1AlIaUUpRoFU1KAWgWR0CR4O+/QBxQdX2UKGgGaAloD0MIEoPAyqF0ckCUhpRSlGgVTUgBaBZHQJHhP9vS+g11fZQoaAZoCWgPQwhN1qiHKGZwQJSGlFKUaBVNewFoFkdAkeHqNAC4jXV9lChoBmgJaA9DCM77/zhhJ3FAlIaUUpRoFU1AAWgWR0CR4gnCO3lTdX2UKGgGaAloD0MId4U+WIZTckCUhpRSlGgVTSwBaBZHQJHiO+nIhhZ1fZQoaAZoCWgPQwimft5UpBBDQJSGlFKUaBVNJAFoFkdAkeMkDQqqfnV9lChoBmgJaA9DCGJLj6Z6TXBAlIaUUpRoFU08AWgWR0CR43UmUnogdX2UKGgGaAloD0MImnlyTYHFbECUhpRSlGgVTSQBaBZHQJHkdfAsTWZ1fZQoaAZoCWgPQwind/F+3FhuQJSGlFKUaBVNHwFoFkdAkeWvP9kz43V9lChoBmgJaA9DCPLQd7cyuGtAlIaUUpRoFU07AWgWR0CR5dhOP/70dX2UKGgGaAloD0MIb4Pab+3/b0CUhpRSlGgVTU4BaBZHQJHl/0wrUb11fZQoaAZoCWgPQwjH155ZUq5xQJSGlFKUaBVNFwFoFkdAkebbXYlIE3V9lChoBmgJaA9DCLKbGf0oWnJAlIaUUpRoFU1CAWgWR0CR5+nWrfcfdX2UKGgGaAloD0MI6kDWU6sPcECUhpRSlGgVTQoBaBZHQJHolHoX9BN1fZQoaAZoCWgPQwifH0YIzzlyQJSGlFKUaBVNEwFoFkdAkelYS+QEIXV9lChoBmgJaA9DCEXVr3Q+WXFAlIaUUpRoFU2TAWgWR0CR6aFUQ04zdX2UKGgGaAloD0MIZRcMrjmRckCUhpRSlGgVTRoBaBZHQJHrG8zyjHp1fZQoaAZoCWgPQwjZeLDFbp9uQJSGlFKUaBVNVAFoFkdAkeu9dzGPxXV9lChoBmgJaA9DCBXhJqMKp3FAlIaUUpRoFU1KAWgWR0CR67rTpgTidX2UKGgGaAloD0MIH0jeOdRucUCUhpRSlGgVTRYBaBZHQJHr/u1F6Rh1fZQoaAZoCWgPQwiMSuoE9P5yQJSGlFKUaBVNSwFoFkdAkexiad+Xq3V9lChoBmgJaA9DCK+YEd6ej3FAlIaUUpRoFU1OAWgWR0CR7Jw97ngYdX2UKGgGaAloD0MIWvCiryCrb0CUhpRSlGgVTSUBaBZHQJHsw9LYf4h1fZQoaAZoCWgPQwiMTSuFgOdxQJSGlFKUaBVNGQFoFkdAke6lawD/2nV9lChoBmgJaA9DCL+4VKWtinBAlIaUUpRoFU0wAWgWR0CR7z3ljmSydX2UKGgGaAloD0MIGJeqtMU/cUCUhpRSlGgVTRgBaBZHQJHvzAN5MUR1fZQoaAZoCWgPQwgn2lVIuQBxQJSGlFKUaBVNQgFoFkdAkfAllGwzL3V9lChoBmgJaA9DCJXTnpLzgW5AlIaUUpRoFU15AWgWR0CR8FmJWNm2dX2UKGgGaAloD0MI93R1x2KtbkCUhpRSlGgVTSoBaBZHQJHxXM/yGzt1fZQoaAZoCWgPQwi8JM6K6OhwQJSGlFKUaBVNNAFoFkdAkfJjCHh0hnV9lChoBmgJaA9DCLfVrDM+yG5AlIaUUpRoFU00AWgWR0CR849PUKAsdX2UKGgGaAloD0MI5x2n6Mhob0CUhpRSlGgVTVEBaBZHQJH0rU7Sy+p1fZQoaAZoCWgPQwgBbhYv1rlxQJSGlFKUaBVNGAFoFkdAkfVqNdZ7onV9lChoBmgJaA9DCHBdMSN8a3JAlIaUUpRoFU1LAWgWR0CR9yOM2m52dX2UKGgGaAloD0MIdSDrqdUabkCUhpRSlGgVTRkBaBZHQJH3M2NvOyF1fZQoaAZoCWgPQwh6VtKKr3FwQJSGlFKUaBVNPQFoFkdAkfhex8lXzXV9lChoBmgJaA9DCLMG76vyGHBAlIaUUpRoFU1NAWgWR0CR+IeiBXjmdX2UKGgGaAloD0MIFJfjFUgecECUhpRSlGgVTTwBaBZHQJH4p4SpR411fZQoaAZoCWgPQwjdlzPbFUtwQJSGlFKUaBVNJgFoFkdAkfyQW8AaN3V9lChoBmgJaA9DCIL+Qo/YSHFAlIaUUpRoFU1WAWgWR0CR/KMvysjndX2UKGgGaAloD0MI+Z6RCM1rcUCUhpRSlGgVTSoBaBZHQJH85wJgLJF1fZQoaAZoCWgPQwjhXS7iu0ZxQJSGlFKUaBVNVgFoFkdAkf0vseGO/HV9lChoBmgJaA9DCClcj8K1inBAlIaUUpRoFU1QAWgWR0CR/X3Sa3I/dX2UKGgGaAloD0MIJgD/lCoYckCUhpRSlGgVTSoBaBZHQJH94EV32VV1fZQoaAZoCWgPQwigM2lTdYhwQJSGlFKUaBVNBQJoFkdAkf8Kya/h2nV9lChoBmgJaA9DCBOe0OtP4nBAlIaUUpRoFU0VAWgWR0CR/ykAggX/dX2UKGgGaAloD0MI0Chd+tehckCUhpRSlGgVTUoBaBZHQJH/0rI5o5B1fZQoaAZoCWgPQwizfF2G/1ZxQJSGlFKUaBVNNwFoFkdAkgFTru6VdHV9lChoBmgJaA9DCKzj+KFSH3BAlIaUUpRoFU0iAWgWR0CSAcD4gzP9dX2UKGgGaAloD0MI2nQEcLPQbECUhpRSlGgVTQkBaBZHQJIB0/keZG91fZQoaAZoCWgPQwgNUYU/AzNwQJSGlFKUaBVNVwFoFkdAkgHglF+d9XV9lChoBmgJaA9DCDv/dtnvPXFAlIaUUpRoFU0SAWgWR0CSAitMfzSUdX2UKGgGaAloD0MIlIeFWtNzckCUhpRSlGgVTT4BaBZHQJIChBomG/N1fZQoaAZoCWgPQwgboDTUqAtwQJSGlFKUaBVNRQFoFkdAkhgYRZlnRXV9lChoBmgJaA9DCJAQ5QvaR2xAlIaUUpRoFU3ZAWgWR0CSJDf6GgzydX2UKGgGaAloD0MItMcL6TDIcECUhpRSlGgVTfQBaBZHQJIxLfdhy811fZQoaAZoCWgPQwjzxklh3phVQJSGlFKUaBVN6ANoFkdAklEHlS0jT3V9lChoBmgJaA9DCMPvplv2jmBAlIaUUpRoFU3oA2gWR0CSUjCf6Gg0dX2UKGgGaAloD0MI1lWBWozLYECUhpRSlGgVTegDaBZHQJJTOKvV3EB1fZQoaAZoCWgPQwjjb3uCRLJhQJSGlFKUaBVN6ANoFkdAklRn2IwdsHV9lChoBmgJaA9DCEok0cso8F9AlIaUUpRoFU3oA2gWR0CSVaXHR1HOdX2UKGgGaAloD0MIjEgUWtZQYUCUhpRSlGgVTegDaBZHQJJY2s4ku6F1fZQoaAZoCWgPQwie7jzxnBJTQJSGlFKUaBVN6ANoFkdAklkgvL5h0HV9lChoBmgJaA9DCKoM426QnWRAlIaUUpRoFU3oA2gWR0CSWm9Vmz0IdX2UKGgGaAloD0MI41MAjGe+WECUhpRSlGgVTegDaBZHQJJd9dNWU8p1fZQoaAZoCWgPQwirs1pgj8NTQJSGlFKUaBVN6ANoFkdAkl4WkN4JNXV9lChoBmgJaA9DCHpTkQpjwl5AlIaUUpRoFU3oA2gWR0CSXjCgbp/xdX2UKGgGaAloD0MIB9Dv+zfNYUCUhpRSlGgVTegDaBZHQJJeoQjD8+B1fZQoaAZoCWgPQwi2ateEtLpbQJSGlFKUaBVN6ANoFkdAkl8ra7EpAnV9lChoBmgJaA9DCFWKHY1DTFlAlIaUUpRoFU3oA2gWR0CSYGB+WnjydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}