danieladejumo commited on
Commit
83ed3d6
1 Parent(s): fb649d8

Initial Commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HalfCheetahBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 747.07 +/- 1132.58
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: HalfCheetahBulletEnv-v0
20
+ type: HalfCheetahBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **HalfCheetahBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-HalfCheetahBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35977eda28e308fee1afd441bf7d28d06e3feaf5998c2788f7a71e9fc1eb545c
3
+ size 132121
a2c-HalfCheetahBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-HalfCheetahBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f433e00b5f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f433e00b680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f433e00b710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f433e00b7a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f433e00b830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f433e00b8c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f433e00b950>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f433e00b9e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f433e00ba70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f433e00bb00>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f433e00bb90>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f433e05c330>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASVBg0AAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAADV2o9C5ZCnKr9wClNx3Tkhn3nnSDjQ7xi8CThEu/3NcJNutLD9mZELsQLLxJGa1foeltBft1/efUUv/d+YDO5JtoW++6qAwAeRTqV0X6baPU2cEX1jB/D/mSqeyqKiAOi/YImF+jlBL4mpHiENdI4bTeQ2CvxWQGr4Qb290cghJk1v6q6MP5u45jqGlVZspMG0EEhbo35ReE6jlO1keWn7YnmHHJrdv/b2d6jc8i9FWYXhMHNEeTcnCqLN3T+abn/gThNhJztPyenEdnvVdy3V6FeRyHMiq+sSbtVDBfFuNmek4J68JlyLlsJQTY5XIi//w53NcM7TF3SylFLDvap4Rd6vFXUu5yX2wDtGUImJvsuqd5kw8htt3PU7STPSL7etlULMvVduCPAV+rYEaFQqKrWjKKJiQsYC9G6WN+lgZctAfk9+fbubzV3xsxCH8xihjhYvQZ+KfAC9I8T1Qs56v0xOz8ViI/FxW/AoCVLlI95Nw9LqnkVvByWyACfBenece4YIT+MixRvhVYiP2F5S46p2HGluor97OvLMU/kKOnJqxtUzOXlIuZvxNHjvYYiELE74N7cTXjbqphmN6Xs7I4RW2BVblVgFe3KozQCKhCW5tWSP7vT0ZjFViFBDYKSt7DMiZ7icdq0TujbXH5aS+k49eH9XrOljyO8bcSxicdWcKs8ucDA2syCCz4f13hFOsnNx6tAzfT35pluEwwnf3Yp8q9ieXvnLgVmC0nPTt7h8/U9BVYmyoz+QJbDLu8B7ItqFHAkF3U6j273fpuuBMqCJQxPxxu69H3WPm6RikCdb90cMKIMCkbGOtuga9a/81uuGYuMVjwPJA1yW7+ekKrllFkkvSUUhPME/acLu+P+X7Hx16PlIzRgus47hpSQokEvoz3/FsbL4zHN82H0FV0Q/NG9lCJs3d+F0t5u+oz8acxCBmUGmUwcTvy1k97OxKASXmLbRSoTo5gFGmxdJyc8YsU7FbZH8J9P0LFo/9bw8FV6pPvPiR92mEclYpdlXXICzhPKGVp7EzVp4I+kP4tCIu3amD5AmGNwflyDsF0Y+VqZBMEpeFBVHSWIugZWT0XA7u0EiONHseCx9b1xlluJ65t1m93Cg8NneqI/a0f9r0us1F9qUTrnmD4G+rDf1kligK/jDwqtqNuG9BJDbkH//xUorwNFBGkd+gD5t/0jDTwwhDako6DF+gte3pM6zilQus8e3eUXEMsQwybVPfsurDiLLA5qlDeYN2VoFmEXW381TlaouPrqPem29oK8VF6kClN4ETEYKwHCOs94jrPNCvSPInxz1xEQdEah2wLHuj/F08g3v/QC2i+qYiEiR3DQ+Pz9Azlkl9UdLLes8PdhkUY6OZTf77ukueN3Rc0KO/rzAGQwrjCSDQSgox+HyI52Aq49XY9H+o7P/Eq0IMU4dmBWr2DkUl9RKhDUCUV/ZyfdVx2emo/DWcROe28TPHGL8uBMDFHMDzzop5gRfLmxPQm7UWqecO+uUdkJG/Hz+Z0gAepa48roPqlXyszVOhYsJNKXXUesfnVgC9IWvBJzOTR9ySa24f2xqQ/QoPiu5rZ1jxcfrnHcTT/DmvjGcQ9BuTlSXCqOluO2+4HYyFJoMV7jem0T2ekXp+FePyfF68sIPAw2804LOcJaj2sqpzU4nd7F6GUk0kY2nJe3AVk8cVOkMEY6YZhpBi5Kq8ZQkw0+OiHS/XWPr3QQ07YpWi+dOnbgVa7xOsXElzLKfVLZtZNaAwkiqiP86j5RTGoCHXa0aoGyyoKzAT6rkl6LoqVpgzoGTfy8h2Sd5MBC92heqZTHYMBb58gUf5JGvLEa2WKKWiUO/hdC1ddJyvCYVcAQRBXUD1ymEp7I4h503YemfUnPfOplVa6YsPJKT0tNiK9e4btIjNGflSUxxkGEy5fMtAt8pMUvqwgurcx+F9kY38a85t7yOhKy8w79n+6Iuz7c7gCn2X0LoiLs5g7CahavvKKfV3/UaVdNA2BKqYcvHsB+2euJFgIy1NG9othX/17LYTtqDvMT5qXSnPVmUXymVYL1zWWuTqVdc2ATShWBywcvlFjoJN/OF0qoxekRuKgr96AXslzs5Vf+aAZRTlg95adbJ8u4JuLGDaMuAlXcMfUyPRoBbmHxo+ZcoW79Gv7K8MeyotlzoYgPyq5AiC2KNzCamNAiS8qH9kxPJpEKu/LOToHoFPLtTJ15U7wwGRcg7hNhhVHYK+/DXq5ul3q1J7V3Yb/6pysKvKN8O7rPsE70vK8g5T9fdBbV0RgC/0V5psumwRY918AVQScFyxR1+BFP4kLvqVqdForb71XTMLlo2MsTdUrd1wFRdiQFTi4jQGHhgNxZYsIpKsIAEZxoZn4x0OzXb/zhvA1uSEUTs8Nfg5ivrIbqBNpT8mxjPsCG2iO72oPsnMldjLd5eYy5SJgyhUms5Wq1Y8XDCdrdYYBET00eF0jOeeGqe53+5XOj1xukvA1hhflJLXL+JLxvh8Vy2kcInoBTr76CRYbh++DjMFutGUcZRWtq2KzMqhHQg9Ps7K+hkV0j3tMLSCoey56w46wpuPaEGvBMIrBPT/zB8Odl9D6GXZ26x1peoc45LlfMSfAKYUaRxXzfePvr/psiBxpK23+cTTjR4sxmcL6mLS8qVFCJzIakXoVgI7cybff84p8WomRCHWIdhFftcN1vD/eoMHjyzO/msEFjB3iybr/HzpeGBrcHNxbOuJ3ldrFjqmPcT1uOvP6DxJcKlkKNP/QBo8XdjsaeZno2+1qkCt6ZirR7GJQ1bQJ3B+s3wqefZUNUh/hUzVSfCeqDx+ed0TlDWHf2PMOVFFzphaStZej17/K6G0QTaJt2iyvCHPzttrxHrLZCOL7GYt+qP9ur10mCvYXm+Xdlp4ma8EApRVka/Yn+cMgdc5Pam4pe8K/2KEQgV4L1B6oM+LC7h8n5cjyAenuMZEg1oTWeHGHsLLwgKpDtVgfDaYg9v6rxlcA67MdBLCZCx+UpSLpFAROTODLgv69kav9bkRCrCxociAGNRPxKuysXbZVFbgi+FrCUjJW4Vm+cRRb/k/GnxZz+zTixmx3FC61O8niL8Q+i+HtO1wNOobyrA9QfJx4JC3PKiM5MB634c5t8/s/PLiuUJyDX99Mx+47WUU2NHf7gOQ7HFTeTT6rUTuIis1Lcgc8WgxsR0hhhUZO+lOR5TphQrJQMxWlwvftpBT/DzaATkXYQQ2gdNYY40+8TxjS91l9FHYlXlVc2AlqP68XRLfIOvCjLc/DuXcwFwlgZbxa5nZ7agtf2FxJdG7lKEzZwUV7m/1ophz+bLQMGUdJRijANwb3OUSzh1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 26
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]",
45
+ "_np_random": "RandomState(MT19937)"
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGg6jAVzdGF0ZZR9lCiMA2tleZRoEmgUSwCFlGgWh5RSlChLAU1wAoWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiiULACQAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 6
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True]",
57
+ "bounded_above": "[ True True True True True True]",
58
+ "_np_random": "RandomState(MT19937)"
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": 42,
65
+ "action_noise": null,
66
+ "start_time": 1662844534.6270242,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAVHCwQHsmhiZuOOI8vLTav+uA2aPoXjs9fDjivKTmRMBWzOo/eHg3O7pd0j+t/9o8luKjv7+NdjsZAW/AqESUuWpcrL/0Ncq8OVm0P6lHgTxvX1C/6cTavZ+RZ76cYe2/iY3DvabBdb1UcLBAeyaGJm444jy8tNq/64DZo+heOz18OOK8pOZEwC79BUB4eDc7Ae/BP63/2jy0ybi/v412O7yoYcCoRJS5mxWzv/Q1yrz+WKo/qUeBPG9fUL/pxNq9n5Fnvpxh7b+JjcO9psF1vVRwsEB7JoYmbjjiPLy02r/rgNmj6F47PXw44ryk5kTAfZ7sP3h4NzuOXgBArf/aPFK/kb+/jXY7LeFcwKhElLkIeMS/9DXKvF2xvD+pR4E8b19Qv+nE2r2fkWe+nGHtv4mNw72mwXW9VHCwQHsmhiZuOOI8vLTav+uA2aPoXjs9fDjivKTmRMBw3gBAeHg3O9eBwT+t/9o8m3Hav7+NdjuMHz3AqESUuSbX07/0Ncq8eyW5P6lHgTxvX1C/6cTavZ+RZ76cYe2/iY3DvabBdb2UdJRiLg=="
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcQr2+AAAAAArAgrsAAAAAOUA7vgAAAADsN5o+AAAAAKkLWj0AAAAAG8yePwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKo/j74AAAAAN3QPvQAAAACK3VK+AAAAAD0diT4AAAAA3XANugAAAAAmYKQ/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWNO/vgAAAACXBQG+AAAAAEH2R74AAAAAu2aVPgAAAAA2eyU9AAAAAPBqoz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAUUOW+AAAAAHo7Rj0AAAAA0xrevgAAAADQ77c+AAAAAH/HPz0AAAAAWe6TPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEbbKcNH6OMAWyUTegDjAF0lEdApOrck+otMHV9lChoBkdAkGuq7/XGwWgHTegDaAhHQKTq3MsYl6Z1fZQoaAZHQJDHUM/hVENoB03oA2gIR0Ck6t0b961LdX2UKGgGR0CQ/Y8iwB5paAdN6ANoCEdApOrdedCmdnV9lChoBkdAkEiqN6w+uGgHTegDaAhHQKT2S1rqMWJ1fZQoaAZHQJAZksnRb8poB03oA2gIR0Ck9kuXNTtLdX2UKGgGR8CbF69vCMxXaAdN6ANoCEdApPZL8cdYGXV9lChoBkdAjnwXA2ycC2gHTegDaAhHQKT2TFhG6PN1fZQoaAZHQI6ygGSpzcRoB03oA2gIR0ClAQKnFYMfdX2UKGgGR0CPAlxb0OEvaAdN6ANoCEdApQEC5mRNh3V9lChoBkdAj6/hiLEUCmgHTegDaAhHQKUBAzPa+N91fZQoaAZHQI6KHn+yZ8doB03oA2gIR0ClAQOM+/xldX2UKGgGR0CRhoZGKAJ+aAdN6ANoCEdApQxBqIrOJXV9lChoBkdAkW39D+irUGgHTegDaAhHQKUMQeK8+Rp1fZQoaAZHQJGcps67ulZoB03oA2gIR0ClDEI0ALiNdX2UKGgGR0CSWP79AHE/aAdN6ANoCEdApQxCmQ8wH3V9lChoBkdAkPkwJ9iMHmgHTegDaAhHQKUXNSR8twt1fZQoaAZHQJC+d4/u9e1oB03oA2gIR0ClFzVloUSJdX2UKGgGR0CQZUfJ3gUDaAdN6ANoCEdApRc1uzhP03V9lChoBkdAkSJRu89Oh2gHTegDaAhHQKUXNkkKNQ11fZQoaAZHQJTZKz8gpz9oB03oA2gIR0ClI7UoKD02dX2UKGgGR0CUKyREnb7CaAdN6ANoCEdApSO1d5Y5k3V9lChoBkdAk/BWMXJo02gHTegDaAhHQKUjtdTHbRF1fZQoaAZHQJP/5OYYzi1oB03oA2gIR0ClI7ZFgDzRdX2UKGgGR0CWdJS2Yv38aAdN6ANoCEdApS7jTOPeYXV9lChoBkdAkkgxD1Gsm2gHTegDaAhHQKUu43974SJ1fZQoaAZHQJO5q7e2uxNoB03oA2gIR0ClLuPUz9CNdX2UKGgGR0CUkj84gieNaAdN6ANoCEdApS7kNayKN3V9lChoBkdAlAgNDhLoOmgHTegDaAhHQKU6JWvKU3Z1fZQoaAZHQJQAIDq4YrJoB03oA2gIR0ClOiWoFV1fdX2UKGgGR0CTq/B2wFC+aAdN6ANoCEdApTomCmMwUXV9lChoBkdAlGaUSZjQRmgHTegDaAhHQKU6Jm6oVEd1fZQoaAZHQJVWulUIcBFoB03oA2gIR0ClROKgAZKndX2UKGgGR0CUvM7Kq4pdaAdN6ANoCEdApUTi3LFGX3V9lChoBkdAlTgm2oegc2gHTegDaAhHQKVE4y31BdF1fZQoaAZHQJW1UxFiKBNoB03oA2gIR0ClROOOsDGMdX2UKGgGR0CU7IZ5iVjaaAdN6ANoCEdApVApKzzErHV9lChoBkdAlYco51eSjmgHTegDaAhHQKVQKWkadc11fZQoaAZHQJT9asKb8WNoB03oA2gIR0ClUCm9QGfPdX2UKGgGR0CVb92OQyRCaAdN6ANoCEdApVAqTKT0QXV9lChoBkdAldjxje9BbGgHTegDaAhHQKVbUU4aP0Z1fZQoaAZHQJRHzKp1ifBoB03oA2gIR0ClW1GKAJ9idX2UKGgGR0CV1/jBl+VkaAdN6ANoCEdApVtR3cHnlnV9lChoBkdAlJgMPvrnkmgHTegDaAhHQKVbUj59E1F1fZQoaAZHQJWgkwJw84hoB03oA2gIR0ClZ2ZhKDkEdX2UKGgGR0CV2qAbADaHaAdN6ANoCEdApWdmnuRcNnV9lChoBkdAle5DGT9sJ2gHTegDaAhHQKVnZvQWvbJ1fZQoaAZHQJTvxhG6PKdoB03oA2gIR0ClZ2dgnc+JdX2UKGgGR0CURd2c8TzvaAdN6ANoCEdApXKo1m8M/nV9lChoBkdAk8cIEjgQ6WgHTegDaAhHQKVyqbaRISV1fZQoaAZHQJQSC4NI9TxoB03oA2gIR0ClcqptJnQIdX2UKGgGR0CU9s8dxQzlaAdN6ANoCEdApXKrJ+2E03V9lChoBkdAlBrwo9cKPWgHTegDaAhHQKV9vVWCEpR1fZQoaAZHQJOmUbgjyFxoB03oA2gIR0Clfb2v8qFzdX2UKGgGR0CS8T/kvK2baAdN6ANoCEdApX2+IwdsBXV9lChoBkdAkb7ACOmzjWgHTegDaAhHQKV9voPkJa91fZQoaAZHQJMq6J/G2kVoB03oA2gIR0CliR3MY/FBdX2UKGgGR0CSF03HJcPfaAdN6ANoCEdApYkeZ3LV4HV9lChoBkdAkz6tYfW+XmgHTegDaAhHQKWJH0A93bF1fZQoaAZHQJK7bSx7iQ1oB03oA2gIR0CliSAqd6LPdX2UKGgGR0CNvgQbMotuaAdN6ANoCEdApZPdqk/KQ3V9lChoBkdAhRzFEJBw/GgHTegDaAhHQKWT3gWrOqx1fZQoaAZHQIUVzQ5WBBloB03oA2gIR0Clk95o4+8odX2UKGgGR0CO4oURnOB2aAdN6ANoCEdApZPe63AmA3V9lChoBkdAjuUv9LpRoGgHTegDaAhHQKWfdgSeyzJ1fZQoaAZHQI/buSU1Q69oB03oA2gIR0Cln3aoVEeAdX2UKGgGR0CPhql1KXfJaAdN6ANoCEdApZ93Vf/m1nV9lChoBkdAjiSVm8M/hWgHTegDaAhHQKWfeCih37l1fZQoaAZHQJGjn/EOy3VoB03oA2gIR0ClqtdLQHAzdX2UKGgGR0CQkBBJI1+BaAdN6ANoCEdAparXiLl3hXV9lChoBkdAkJLiQkona2gHTegDaAhHQKWq19pAUtZ1fZQoaAZHQJMJisr/bTNoB03oA2gIR0Clqtg3cYZVdX2UKGgGR0CScSq//NqyaAdN6ANoCEdApbYGTRplBnV9lChoBkdAk50Zqh11XGgHTegDaAhHQKW2BpKSPlx1fZQoaAZHQJE2+qhlDnhoB03oA2gIR0Cltgbm2b5NdX2UKGgGR0CSot2ki2UjaAdN6ANoCEdApbYHTCtRvXV9lChoBkdAkn7b7O3UhGgHTegDaAhHQKXAvftQbdd1fZQoaAZHQJKkGP91loVoB03oA2gIR0ClwL41He7+dX2UKGgGR0CRFhZIxxkvaAdN6ANoCEdApcC+hAWznnV9lChoBkdAkWo7L6k692gHTegDaAhHQKXAvuLrHEN1fZQoaAZHQI90hM36yjZoB03oA2gIR0Cly+luWKMvdX2UKGgGR0CQbjg2Ifr9aAdN6ANoCEdApcvp1DBuXXV9lChoBkdAjVJp6IFeOWgHTegDaAhHQKXL6h+vyLB1fZQoaAZHQI+xZpcophFoB03oA2gIR0Cly+p+2E00dX2UKGgGR0CQvtFt8/liaAdN6ANoCEdApdaK1AqusHV9lChoBkdAj7OxUFSsKmgHTegDaAhHQKXWiwnH/951fZQoaAZHQJDG6Cwr1/VoB03oA2gIR0Cl1otZmqYJdX2UKGgGR0CSBIyad+XraAdN6ANoCEdApdaLuBtk4HV9lChoBkdAkjOYxxkupWgHTegDaAhHQKXis+h4+r51fZQoaAZHQJIH9fOUt7NoB03oA2gIR0Cl4rQo9cKPdX2UKGgGR0CRuAkadc0MaAdN6ANoCEdApeK0ehf0E3V9lChoBkdAkNzud07r9mgHTegDaAhHQKXitNW2gFp1fZQoaAZHQJQm79fkWARoB03oA2gIR0Cl7Y15rxiHdX2UKGgGR0CStEXmvGIbaAdN6ANoCEdApe2NuaWonHV9lChoBkdAkqpnCbc452gHTegDaAhHQKXtjg2Ifr91fZQoaAZHQJOGbaxoqTdoB03oA2gIR0Cl7Y5xR2r5dX2UKGgGR0CTQNHskY4yaAdN6ANoCEdApfjQG+sYEXV9lChoBkdAku/GrS3LFGgHTegDaAhHQKX40Fxn3+N1fZQoaAZHQJNEBadMCcRoB03oA2gIR0Cl+NCuuA7QdX2UKGgGR0CTU9Z88cMmaAdN6ANoCEdApfjRFXq7iHVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5568caf80e45351c1ec934af35bd7e41e9944e9d805fd5f491a5deca9aa257aa
3
+ size 54078
a2c-HalfCheetahBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e9812937022d08395400fb6205fdf6793e4e547aa3a8c9234bbed24365f7a9
3
+ size 54718
a2c-HalfCheetahBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-HalfCheetahBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-debian-bullseye-sid #1 SMP Sat Sep 3 14:51:58 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f433e00b5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f433e00b680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f433e00b710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f433e00b7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f433e00b830>", "forward": "<function ActorCriticPolicy.forward at 0x7f433e00b8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f433e00b950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f433e00b9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f433e00ba70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f433e00bb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f433e00bb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f433e05c330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVBg0AAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAADV2o9C5ZCnKr9wClNx3Tkhn3nnSDjQ7xi8CThEu/3NcJNutLD9mZELsQLLxJGa1foeltBft1/efUUv/d+YDO5JtoW++6qAwAeRTqV0X6baPU2cEX1jB/D/mSqeyqKiAOi/YImF+jlBL4mpHiENdI4bTeQ2CvxWQGr4Qb290cghJk1v6q6MP5u45jqGlVZspMG0EEhbo35ReE6jlO1keWn7YnmHHJrdv/b2d6jc8i9FWYXhMHNEeTcnCqLN3T+abn/gThNhJztPyenEdnvVdy3V6FeRyHMiq+sSbtVDBfFuNmek4J68JlyLlsJQTY5XIi//w53NcM7TF3SylFLDvap4Rd6vFXUu5yX2wDtGUImJvsuqd5kw8htt3PU7STPSL7etlULMvVduCPAV+rYEaFQqKrWjKKJiQsYC9G6WN+lgZctAfk9+fbubzV3xsxCH8xihjhYvQZ+KfAC9I8T1Qs56v0xOz8ViI/FxW/AoCVLlI95Nw9LqnkVvByWyACfBenece4YIT+MixRvhVYiP2F5S46p2HGluor97OvLMU/kKOnJqxtUzOXlIuZvxNHjvYYiELE74N7cTXjbqphmN6Xs7I4RW2BVblVgFe3KozQCKhCW5tWSP7vT0ZjFViFBDYKSt7DMiZ7icdq0TujbXH5aS+k49eH9XrOljyO8bcSxicdWcKs8ucDA2syCCz4f13hFOsnNx6tAzfT35pluEwwnf3Yp8q9ieXvnLgVmC0nPTt7h8/U9BVYmyoz+QJbDLu8B7ItqFHAkF3U6j273fpuuBMqCJQxPxxu69H3WPm6RikCdb90cMKIMCkbGOtuga9a/81uuGYuMVjwPJA1yW7+ekKrllFkkvSUUhPME/acLu+P+X7Hx16PlIzRgus47hpSQokEvoz3/FsbL4zHN82H0FV0Q/NG9lCJs3d+F0t5u+oz8acxCBmUGmUwcTvy1k97OxKASXmLbRSoTo5gFGmxdJyc8YsU7FbZH8J9P0LFo/9bw8FV6pPvPiR92mEclYpdlXXICzhPKGVp7EzVp4I+kP4tCIu3amD5AmGNwflyDsF0Y+VqZBMEpeFBVHSWIugZWT0XA7u0EiONHseCx9b1xlluJ65t1m93Cg8NneqI/a0f9r0us1F9qUTrnmD4G+rDf1kligK/jDwqtqNuG9BJDbkH//xUorwNFBGkd+gD5t/0jDTwwhDako6DF+gte3pM6zilQus8e3eUXEMsQwybVPfsurDiLLA5qlDeYN2VoFmEXW381TlaouPrqPem29oK8VF6kClN4ETEYKwHCOs94jrPNCvSPInxz1xEQdEah2wLHuj/F08g3v/QC2i+qYiEiR3DQ+Pz9Azlkl9UdLLes8PdhkUY6OZTf77ukueN3Rc0KO/rzAGQwrjCSDQSgox+HyI52Aq49XY9H+o7P/Eq0IMU4dmBWr2DkUl9RKhDUCUV/ZyfdVx2emo/DWcROe28TPHGL8uBMDFHMDzzop5gRfLmxPQm7UWqecO+uUdkJG/Hz+Z0gAepa48roPqlXyszVOhYsJNKXXUesfnVgC9IWvBJzOTR9ySa24f2xqQ/QoPiu5rZ1jxcfrnHcTT/DmvjGcQ9BuTlSXCqOluO2+4HYyFJoMV7jem0T2ekXp+FePyfF68sIPAw2804LOcJaj2sqpzU4nd7F6GUk0kY2nJe3AVk8cVOkMEY6YZhpBi5Kq8ZQkw0+OiHS/XWPr3QQ07YpWi+dOnbgVa7xOsXElzLKfVLZtZNaAwkiqiP86j5RTGoCHXa0aoGyyoKzAT6rkl6LoqVpgzoGTfy8h2Sd5MBC92heqZTHYMBb58gUf5JGvLEa2WKKWiUO/hdC1ddJyvCYVcAQRBXUD1ymEp7I4h503YemfUnPfOplVa6YsPJKT0tNiK9e4btIjNGflSUxxkGEy5fMtAt8pMUvqwgurcx+F9kY38a85t7yOhKy8w79n+6Iuz7c7gCn2X0LoiLs5g7CahavvKKfV3/UaVdNA2BKqYcvHsB+2euJFgIy1NG9othX/17LYTtqDvMT5qXSnPVmUXymVYL1zWWuTqVdc2ATShWBywcvlFjoJN/OF0qoxekRuKgr96AXslzs5Vf+aAZRTlg95adbJ8u4JuLGDaMuAlXcMfUyPRoBbmHxo+ZcoW79Gv7K8MeyotlzoYgPyq5AiC2KNzCamNAiS8qH9kxPJpEKu/LOToHoFPLtTJ15U7wwGRcg7hNhhVHYK+/DXq5ul3q1J7V3Yb/6pysKvKN8O7rPsE70vK8g5T9fdBbV0RgC/0V5psumwRY918AVQScFyxR1+BFP4kLvqVqdForb71XTMLlo2MsTdUrd1wFRdiQFTi4jQGHhgNxZYsIpKsIAEZxoZn4x0OzXb/zhvA1uSEUTs8Nfg5ivrIbqBNpT8mxjPsCG2iO72oPsnMldjLd5eYy5SJgyhUms5Wq1Y8XDCdrdYYBET00eF0jOeeGqe53+5XOj1xukvA1hhflJLXL+JLxvh8Vy2kcInoBTr76CRYbh++DjMFutGUcZRWtq2KzMqhHQg9Ps7K+hkV0j3tMLSCoey56w46wpuPaEGvBMIrBPT/zB8Odl9D6GXZ26x1peoc45LlfMSfAKYUaRxXzfePvr/psiBxpK23+cTTjR4sxmcL6mLS8qVFCJzIakXoVgI7cybff84p8WomRCHWIdhFftcN1vD/eoMHjyzO/msEFjB3iybr/HzpeGBrcHNxbOuJ3ldrFjqmPcT1uOvP6DxJcKlkKNP/QBo8XdjsaeZno2+1qkCt6ZirR7GJQ1bQJ3B+s3wqefZUNUh/hUzVSfCeqDx+ed0TlDWHf2PMOVFFzphaStZej17/K6G0QTaJt2iyvCHPzttrxHrLZCOL7GYt+qP9ur10mCvYXm+Xdlp4ma8EApRVka/Yn+cMgdc5Pam4pe8K/2KEQgV4L1B6oM+LC7h8n5cjyAenuMZEg1oTWeHGHsLLwgKpDtVgfDaYg9v6rxlcA67MdBLCZCx+UpSLpFAROTODLgv69kav9bkRCrCxociAGNRPxKuysXbZVFbgi+FrCUjJW4Vm+cRRb/k/GnxZz+zTixmx3FC61O8niL8Q+i+HtO1wNOobyrA9QfJx4JC3PKiM5MB634c5t8/s/PLiuUJyDX99Mx+47WUU2NHf7gOQ7HFTeTT6rUTuIis1Lcgc8WgxsR0hhhUZO+lOR5TphQrJQMxWlwvftpBT/DzaATkXYQQ2gdNYY40+8TxjS91l9FHYlXlVc2AlqP68XRLfIOvCjLc/DuXcwFwlgZbxa5nZ7agtf2FxJdG7lKEzZwUV7m/1ophz+bLQMGUdJRijANwb3OUSzh1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGg6jAVzdGF0ZZR9lCiMA2tleZRoEmgUSwCFlGgWh5RSlChLAU1wAoWUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiiULACQAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1662844534.6270242, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAVHCwQHsmhiZuOOI8vLTav+uA2aPoXjs9fDjivKTmRMBWzOo/eHg3O7pd0j+t/9o8luKjv7+NdjsZAW/AqESUuWpcrL/0Ncq8OVm0P6lHgTxvX1C/6cTavZ+RZ76cYe2/iY3DvabBdb1UcLBAeyaGJm444jy8tNq/64DZo+heOz18OOK8pOZEwC79BUB4eDc7Ae/BP63/2jy0ybi/v412O7yoYcCoRJS5mxWzv/Q1yrz+WKo/qUeBPG9fUL/pxNq9n5Fnvpxh7b+JjcO9psF1vVRwsEB7JoYmbjjiPLy02r/rgNmj6F47PXw44ryk5kTAfZ7sP3h4NzuOXgBArf/aPFK/kb+/jXY7LeFcwKhElLkIeMS/9DXKvF2xvD+pR4E8b19Qv+nE2r2fkWe+nGHtv4mNw72mwXW9VHCwQHsmhiZuOOI8vLTav+uA2aPoXjs9fDjivKTmRMBw3gBAeHg3O9eBwT+t/9o8m3Hav7+NdjuMHz3AqESUuSbX07/0Ncq8eyW5P6lHgTxvX1C/6cTavZ+RZ76cYe2/iY3DvabBdb2UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAcQr2+AAAAAArAgrsAAAAAOUA7vgAAAADsN5o+AAAAAKkLWj0AAAAAG8yePwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKo/j74AAAAAN3QPvQAAAACK3VK+AAAAAD0diT4AAAAA3XANugAAAAAmYKQ/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWNO/vgAAAACXBQG+AAAAAEH2R74AAAAAu2aVPgAAAAA2eyU9AAAAAPBqoz8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAUUOW+AAAAAHo7Rj0AAAAA0xrevgAAAADQ77c+AAAAAH/HPz0AAAAAWe6TPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEbbKcNH6OMAWyUTegDjAF0lEdApOrck+otMHV9lChoBkdAkGuq7/XGwWgHTegDaAhHQKTq3MsYl6Z1fZQoaAZHQJDHUM/hVENoB03oA2gIR0Ck6t0b961LdX2UKGgGR0CQ/Y8iwB5paAdN6ANoCEdApOrdedCmdnV9lChoBkdAkEiqN6w+uGgHTegDaAhHQKT2S1rqMWJ1fZQoaAZHQJAZksnRb8poB03oA2gIR0Ck9kuXNTtLdX2UKGgGR8CbF69vCMxXaAdN6ANoCEdApPZL8cdYGXV9lChoBkdAjnwXA2ycC2gHTegDaAhHQKT2TFhG6PN1fZQoaAZHQI6ygGSpzcRoB03oA2gIR0ClAQKnFYMfdX2UKGgGR0CPAlxb0OEvaAdN6ANoCEdApQEC5mRNh3V9lChoBkdAj6/hiLEUCmgHTegDaAhHQKUBAzPa+N91fZQoaAZHQI6KHn+yZ8doB03oA2gIR0ClAQOM+/xldX2UKGgGR0CRhoZGKAJ+aAdN6ANoCEdApQxBqIrOJXV9lChoBkdAkW39D+irUGgHTegDaAhHQKUMQeK8+Rp1fZQoaAZHQJGcps67ulZoB03oA2gIR0ClDEI0ALiNdX2UKGgGR0CSWP79AHE/aAdN6ANoCEdApQxCmQ8wH3V9lChoBkdAkPkwJ9iMHmgHTegDaAhHQKUXNSR8twt1fZQoaAZHQJC+d4/u9e1oB03oA2gIR0ClFzVloUSJdX2UKGgGR0CQZUfJ3gUDaAdN6ANoCEdApRc1uzhP03V9lChoBkdAkSJRu89Oh2gHTegDaAhHQKUXNkkKNQ11fZQoaAZHQJTZKz8gpz9oB03oA2gIR0ClI7UoKD02dX2UKGgGR0CUKyREnb7CaAdN6ANoCEdApSO1d5Y5k3V9lChoBkdAk/BWMXJo02gHTegDaAhHQKUjtdTHbRF1fZQoaAZHQJP/5OYYzi1oB03oA2gIR0ClI7ZFgDzRdX2UKGgGR0CWdJS2Yv38aAdN6ANoCEdApS7jTOPeYXV9lChoBkdAkkgxD1Gsm2gHTegDaAhHQKUu43974SJ1fZQoaAZHQJO5q7e2uxNoB03oA2gIR0ClLuPUz9CNdX2UKGgGR0CUkj84gieNaAdN6ANoCEdApS7kNayKN3V9lChoBkdAlAgNDhLoOmgHTegDaAhHQKU6JWvKU3Z1fZQoaAZHQJQAIDq4YrJoB03oA2gIR0ClOiWoFV1fdX2UKGgGR0CTq/B2wFC+aAdN6ANoCEdApTomCmMwUXV9lChoBkdAlGaUSZjQRmgHTegDaAhHQKU6Jm6oVEd1fZQoaAZHQJVWulUIcBFoB03oA2gIR0ClROKgAZKndX2UKGgGR0CUvM7Kq4pdaAdN6ANoCEdApUTi3LFGX3V9lChoBkdAlTgm2oegc2gHTegDaAhHQKVE4y31BdF1fZQoaAZHQJW1UxFiKBNoB03oA2gIR0ClROOOsDGMdX2UKGgGR0CU7IZ5iVjaaAdN6ANoCEdApVApKzzErHV9lChoBkdAlYco51eSjmgHTegDaAhHQKVQKWkadc11fZQoaAZHQJT9asKb8WNoB03oA2gIR0ClUCm9QGfPdX2UKGgGR0CVb92OQyRCaAdN6ANoCEdApVAqTKT0QXV9lChoBkdAldjxje9BbGgHTegDaAhHQKVbUU4aP0Z1fZQoaAZHQJRHzKp1ifBoB03oA2gIR0ClW1GKAJ9idX2UKGgGR0CV1/jBl+VkaAdN6ANoCEdApVtR3cHnlnV9lChoBkdAlJgMPvrnkmgHTegDaAhHQKVbUj59E1F1fZQoaAZHQJWgkwJw84hoB03oA2gIR0ClZ2ZhKDkEdX2UKGgGR0CV2qAbADaHaAdN6ANoCEdApWdmnuRcNnV9lChoBkdAle5DGT9sJ2gHTegDaAhHQKVnZvQWvbJ1fZQoaAZHQJTvxhG6PKdoB03oA2gIR0ClZ2dgnc+JdX2UKGgGR0CURd2c8TzvaAdN6ANoCEdApXKo1m8M/nV9lChoBkdAk8cIEjgQ6WgHTegDaAhHQKVyqbaRISV1fZQoaAZHQJQSC4NI9TxoB03oA2gIR0ClcqptJnQIdX2UKGgGR0CU9s8dxQzlaAdN6ANoCEdApXKrJ+2E03V9lChoBkdAlBrwo9cKPWgHTegDaAhHQKV9vVWCEpR1fZQoaAZHQJOmUbgjyFxoB03oA2gIR0Clfb2v8qFzdX2UKGgGR0CS8T/kvK2baAdN6ANoCEdApX2+IwdsBXV9lChoBkdAkb7ACOmzjWgHTegDaAhHQKV9voPkJa91fZQoaAZHQJMq6J/G2kVoB03oA2gIR0CliR3MY/FBdX2UKGgGR0CSF03HJcPfaAdN6ANoCEdApYkeZ3LV4HV9lChoBkdAkz6tYfW+XmgHTegDaAhHQKWJH0A93bF1fZQoaAZHQJK7bSx7iQ1oB03oA2gIR0CliSAqd6LPdX2UKGgGR0CNvgQbMotuaAdN6ANoCEdApZPdqk/KQ3V9lChoBkdAhRzFEJBw/GgHTegDaAhHQKWT3gWrOqx1fZQoaAZHQIUVzQ5WBBloB03oA2gIR0Clk95o4+8odX2UKGgGR0CO4oURnOB2aAdN6ANoCEdApZPe63AmA3V9lChoBkdAjuUv9LpRoGgHTegDaAhHQKWfdgSeyzJ1fZQoaAZHQI/buSU1Q69oB03oA2gIR0Cln3aoVEeAdX2UKGgGR0CPhql1KXfJaAdN6ANoCEdApZ93Vf/m1nV9lChoBkdAjiSVm8M/hWgHTegDaAhHQKWfeCih37l1fZQoaAZHQJGjn/EOy3VoB03oA2gIR0ClqtdLQHAzdX2UKGgGR0CQkBBJI1+BaAdN6ANoCEdAparXiLl3hXV9lChoBkdAkJLiQkona2gHTegDaAhHQKWq19pAUtZ1fZQoaAZHQJMJisr/bTNoB03oA2gIR0Clqtg3cYZVdX2UKGgGR0CScSq//NqyaAdN6ANoCEdApbYGTRplBnV9lChoBkdAk50Zqh11XGgHTegDaAhHQKW2BpKSPlx1fZQoaAZHQJE2+qhlDnhoB03oA2gIR0Cltgbm2b5NdX2UKGgGR0CSot2ki2UjaAdN6ANoCEdApbYHTCtRvXV9lChoBkdAkn7b7O3UhGgHTegDaAhHQKXAvftQbdd1fZQoaAZHQJKkGP91loVoB03oA2gIR0ClwL41He7+dX2UKGgGR0CRFhZIxxkvaAdN6ANoCEdApcC+hAWznnV9lChoBkdAkWo7L6k692gHTegDaAhHQKXAvuLrHEN1fZQoaAZHQI90hM36yjZoB03oA2gIR0Cly+luWKMvdX2UKGgGR0CQbjg2Ifr9aAdN6ANoCEdApcvp1DBuXXV9lChoBkdAjVJp6IFeOWgHTegDaAhHQKXL6h+vyLB1fZQoaAZHQI+xZpcophFoB03oA2gIR0Cly+p+2E00dX2UKGgGR0CQvtFt8/liaAdN6ANoCEdApdaK1AqusHV9lChoBkdAj7OxUFSsKmgHTegDaAhHQKXWiwnH/951fZQoaAZHQJDG6Cwr1/VoB03oA2gIR0Cl1otZmqYJdX2UKGgGR0CSBIyad+XraAdN6ANoCEdApdaLuBtk4HV9lChoBkdAkjOYxxkupWgHTegDaAhHQKXis+h4+r51fZQoaAZHQJIH9fOUt7NoB03oA2gIR0Cl4rQo9cKPdX2UKGgGR0CRuAkadc0MaAdN6ANoCEdApeK0ehf0E3V9lChoBkdAkNzud07r9mgHTegDaAhHQKXitNW2gFp1fZQoaAZHQJQm79fkWARoB03oA2gIR0Cl7Y15rxiHdX2UKGgGR0CStEXmvGIbaAdN6ANoCEdApe2NuaWonHV9lChoBkdAkqpnCbc452gHTegDaAhHQKXtjg2Ifr91fZQoaAZHQJOGbaxoqTdoB03oA2gIR0Cl7Y5xR2r5dX2UKGgGR0CTQNHskY4yaAdN6ANoCEdApfjQG+sYEXV9lChoBkdAku/GrS3LFGgHTegDaAhHQKX40Fxn3+N1fZQoaAZHQJNEBadMCcRoB03oA2gIR0Cl+NCuuA7QdX2UKGgGR0CTU9Z88cMmaAdN6ANoCEdApfjRFXq7iHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-debian-bullseye-sid #1 SMP Sat Sep 3 14:51:58 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.6.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (719 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 747.0657201463357, "std_reward": 1132.5800003057159, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-10T22:07:51.032060"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:843510fa02747001e93c7d742925a13b2ccdd0f7ca8fcdab3e40dc2efeeb6d73
3
+ size 2291