a2c-AntBulletEnv-v0 / config.json
dariowsz's picture
Initial commit
1582064
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b03ac8a44c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b03ac8a4550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b03ac8a45e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b03ac8a4670>", "_build": "<function ActorCriticPolicy._build at 0x7b03ac8a4700>", "forward": "<function ActorCriticPolicy.forward at 0x7b03ac8a4790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b03ac8a4820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b03ac8a48b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b03ac8a4940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b03ac8a49d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b03ac8a4a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b03ac8a4af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b03ac8ac4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691022414687063739, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACJqur3r5SS/JANmPzgPpT+Ahxs+okqQv1Z0K7+z0cm+RAxxP7f0Or4a2FG+RI2TvOKoIr9gBww+prVIP17DJr2F4jM+dzKzvwNDbr6tJ4S/SxjGv/0UrjvURzc/Vnj7vfWXdL/KkA8/j1fQPp24Aj8w+Qc+UO2wPo6K4D7MXVo9clsFQOwQ1D9JRSY/h5wQPb2IEr1o8j6+ADVvvr0dpj6b0NW+0hiMP0M2KL/uQIm/bwO8vwOInD8J+gu8XQc9P1LeXD7+Heq+jqbmvq8mhr71l3S/ypAPP49X0D6duAI/Pxg2P5krID70OxM/tozIv+/Mr7/eMeW/kKyyvpZ9QMD9UEQ+XD+Ivu6UNj+gBnLAj23Iv/rMaL/NRjM/3HxiPgy53z92IJm+9w2CvrCbhb85P8m/EU1TPpjZHT/WgXBA9Zd0v8qQDz+PV9A+xqv6v3tgob5plYQ/IEqov00pSkBLhoe+bSMRwN69lj7QBhO/I+xcv4rilT+heuO9doSuP5oDET+aze8+rB+7Ppgd9T9w36m+xygSwBdEMz/Hpo0+mx+9v3jRE78GHLa+6Q9DP/WXdL/KkA8/j1fQPp24Aj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC7uCg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOcn4PQAAAADvoe6/AAAAACdHAD4AAAAAwMX2PwAAAAAe7JA8AAAAAP333z8AAAAAiUalvQAAAACZZwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQYthtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKhQCj4AAAAAHOPxvwAAAAD023g9AAAAAAF44D8AAAAAKVwDvgAAAACmkPw/AAAAAMn6ab0AAAAAr7HtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQBnjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDei9C9AAAAAOpE5b8AAAAAHv6ZPAAAAACFDv0/AAAAAAo0QjwAAAAANurhPwAAAACQ3Ym9AAAAAFyU578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDlHG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVRSXvQAAAAAkLv2/AAAAALDhfD0AAAAA45T8PwAAAAAEXZW9AAAAAKAS5D8AAAAAYWXNPQAAAACqm/i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIp1KJqIrOKMAWyUTegDjAF0lEdArZyb544ZM3V9lChoBkdAgg7YpUgjhWgHTegDaAhHQK2e5bj94u91fZQoaAZHQI1GTVpbliloB03oA2gIR0CtpRshxHXmdX2UKGgGR0CHW17yhBZ7aAdN6ANoCEdAra1IbZOBUnV9lChoBkdAiSd15jYqXmgHTegDaAhHQK2tVY4ACGN1fZQoaAZHQIp5MEs8PnVoB03oA2gIR0Ctr4GLUCq7dX2UKGgGR0CMszWOIZZTaAdN6ANoCEdArbPbNOdoWnV9lChoBkdAjEDdAood/GgHTegDaAhHQK2739aUzKt1fZQoaAZHQJAgXl1bJOpoB03oA2gIR0Ctu/UIToMbdX2UKGgGR0CN5HkgfU4JaAdN6ANoCEdArb8A3Lmp2nV9lChoBkdAjF+UMoc7yWgHTegDaAhHQK3ELmNipeh1fZQoaAZHQIPGZ3os7MhoB03oA2gIR0Cty/iPyTY/dX2UKGgGR0CPD3gRbr1NaAdN6ANoCEdArcwFZX+2mnV9lChoBkdAizvPVd5Y5mgHTegDaAhHQK3OLj+717J1fZQoaAZHQIy4Q4yXUpdoB03oA2gIR0Ct0mrw4KhMdX2UKGgGR0CK3LQSBbwCaAdN6ANoCEdArdxz50r9VHV9lChoBkdAjQ6Ddgv12GgHTegDaAhHQK3ciCkoF3Z1fZQoaAZHQIr8s1EVnEloB03oA2gIR0Ct3rdjPOY6dX2UKGgGR0CPZb1Iy0rtaAdN6ANoCEdAreLwoJAt4HV9lChoBkdAjjS8E3bVSWgHTegDaAhHQK3qkpJf6XV1fZQoaAZHQI1AeCAc1fpoB03oA2gIR0Ct6qEnTiKjdX2UKGgGR0COTxp0OmSAaAdN6ANoCEdAreyoKIBRynV9lChoBkdAj54woLG7z2gHTegDaAhHQK3xDf6XSjR1fZQoaAZHQI1YiwY+B6NoB03oA2gIR0Ct+qIYekpJdX2UKGgGR0CQJwVTJhfCaAdN6ANoCEdArfqtr9ETg3V9lChoBkdAjod/ICEHuGgHTegDaAhHQK381K6nR9h1fZQoaAZHQIxY9M495hVoB03oA2gIR0CuARrrX18LdX2UKGgGR0CFMdBMSK3vaAdN6ANoCEdArgi0dzXBg3V9lChoBkdAjH94aP0ZnGgHTegDaAhHQK4IwmY0EYB1fZQoaAZHQI1t0neBQN1oB03oA2gIR0CuCtrKNhmYdX2UKGgGR0CLuimHgxagaAdN6ANoCEdArhCXvttygnV9lChoBkdAjhT5cC5mRWgHTegDaAhHQK4ZLUCJXQt1fZQoaAZHQI7u7ehwl0JoB03oA2gIR0CuGTlF+d9VdX2UKGgGR0CFbCmG/N7jaAdN6ANoCEdArhtUdFOO83V9lChoBkdAhAygW8AaN2gHTegDaAhHQK4frCE6DGt1fZQoaAZHQIrMDeZXuE5oB03oA2gIR0CuJ604iosJdX2UKGgGR0CCcgCmuTzNaAdN6ANoCEdArifCMo+fRXV9lChoBkdAhDsLQokRjGgHTegDaAhHQK4q0HARChN1fZQoaAZHQIQ/1tCRfWtoB03oA2gIR0CuMEe7L+xXdX2UKGgGR0CNZabXpW3jaAdN6ANoCEdArjgAarFOwnV9lChoBkdAgsqw2VE/jmgHTegDaAhHQK44DHEuQIV1fZQoaAZHQIzAGdGy5ZtoB03oA2gIR0CuOhLjo6jndX2UKGgGR0CQuKyt3fQ8aAdN6ANoCEdArj5aSX+l03V9lChoBkdAkWbJKzzErGgHTegDaAhHQK5Hy3BpHqh1fZQoaAZHQI8pfk3juKJoB03oA2gIR0CuR+HK4hECdX2UKGgGR0CMzU8+RoysaAdN6ANoCEdArkpSqZML4XV9lChoBkdAjxfWKEWZZ2gHTegDaAhHQK5OitSQ5m11fZQoaAZHQIk2fS+g13toB03oA2gIR0CuVi4L9deIdX2UKGgGR0CQVBekYXO4aAdN6ANoCEdArlY8mOU+tHV9lChoBkdAkp5yzsyBTWgHTegDaAhHQK5YPVDrqt51fZQoaAZHQIdsHo1UEPloB03oA2gIR0CuXIcFyJbddX2UKGgGR0COxfBCUornaAdN6ANoCEdArmaAbOu7pXV9lChoBkdAkbcmEsasIWgHTegDaAhHQK5mkGB4D9x1fZQoaAZHQIw+gYUFjd5oB03oA2gIR0CuaJSquKXOdX2UKGgGR0COU9iMHbAUaAdN6ANoCEdArmzXgHeJpHV9lChoBkdAiWg/+KjzqmgHTegDaAhHQK50lSofjjt1fZQoaAZHQI0+jIJZ4fRoB03oA2gIR0CudKJqASWadX2UKGgGR0CMG6UzKs+3aAdN6ANoCEdArna3IXCTEHV9lChoBkdAiVdBSDRMOGgHTegDaAhHQK58TshxHXp1fZQoaAZHQJBf6V2Rq49oB03oA2gIR0CuhUUoBq9HdX2UKGgGR0COeGBNmDlHaAdN6ANoCEdAroVT+Haew3V9lChoBkdAjlNt3fQ8fWgHTegDaAhHQK6HXp9qk/N1fZQoaAZHQJC6iWQfZEloB03oA2gIR0Cui5JLVWjodX2UKGgGR0CHCI73fyf+aAdN6ANoCEdArpNwo1DSgHV9lChoBkdAjm7nSv1UVGgHTegDaAhHQK6TgZ8a4tp1fZQoaAZHQIYgMuvllshoB03oA2gIR0Culm7NSqEOdX2UKGgGR0CP/TUBnzxxaAdN6ANoCEdArp0wFs54nnV9lChoBkdAeJ0tMPBi1GgHTfMBaAhHQK6eLbGFSKp1fZQoaAZHQI+k8JBw++xoB03oA2gIR0CupsMkyDZldX2UKGgGR0CLaJHG0eEJaAdN6ANoCEdArqjv0btJF3V9lChoBkdAkGuW6PKdQWgHTegDaAhHQK6tQOMl1KZ1fZQoaAZHQI67uBDohZBoB03oA2gIR0CurdW2gFotdX2UKGgGR0CQNGzMA3kxaAdN6ANoCEdArrXwRwqAjXV9lChoBkdAkACnGjsUqWgHTegDaAhHQK65IDUVi4J1fZQoaAZHQIi/NqWTouBoB03oA2gIR0Cuvcpz90ihdX2UKGgGR0CPMfiWE9McaAdN6ANoCEdArr5hj+aScXV9lChoBkdAjN375uZTh2gHTegDaAhHQK7FemQbMot1fZQoaAZHQIk8klgMMJBoB03oA2gIR0Cux5ea8YhudX2UKGgGR0CLUDSE12q2aAdN6ANoCEdArsv7RD1GsnV9lChoBkdAjeGHoPkJbGgHTegDaAhHQK7Mj7BO58V1fZQoaAZHQJFswe5nUUhoB03oA2gIR0Cu1hUeU6gedX2UKGgGR0CECYXLvCuVaAdN6ANoCEdArtgt2xIJ7nV9lChoBkdAjdUIwdsBQ2gHTegDaAhHQK7cbdcB2fV1fZQoaAZHQJE8yTr3TNNoB03oA2gIR0Cu3P9Zid8RdX2UKGgGR0CSrx9CNS62aAdN6ANoCEdAruQKt5le4XV9lChoBkdAjXdjo6jnFGgHTegDaAhHQK7mJD5TIeZ1fZQoaAZHQJBhfenAIppoB03oA2gIR0Cu6vApjMFEdX2UKGgGR0CRBRgOBlMAaAdN6ANoCEdAruvKnDR+jXV9lChoBkdAj/jZTZQHiWgHTegDaAhHQK70uilBQep1fZQoaAZHQIfF8HQhOgxoB03oA2gIR0Cu9ttVR1oydX2UKGgGR0CFDsN3GGVSaAdN6ANoCEdArvsaXOW0JHV9lChoBkdAj79G5c1O02gHTegDaAhHQK77pmDDjzZ1fZQoaAZHQJAazSE12q1oB03oA2gIR0CvAuVnmJWOdX2UKGgGR0CQz1ea8YhuaAdN6ANoCEdArwT0rGza9XV9lChoBkdAjwyPcBU70WgHTegDaAhHQK8LQb4Ju2t1fZQoaAZHQJB5ANayKN1oB03oA2gIR0CvDBsSkCV9dX2UKGgGR0CP+Co9cKPXaAdN6ANoCEdArxNQ71ZkkXV9lChoBkdAhpB3IuGsWGgHTegDaAhHQK8VVGT9sJp1fZQoaAZHQI/66YRdyDJoB03oA2gIR0CvGX/yf+S9dX2UKGgGR0CRifaV2Rq5aAdN6ANoCEdArxoRhWo3rHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}