Muennighoff
commited on
Commit
•
ac2efad
1
Parent(s):
329c483
Add eval
Browse files- .gitattributes +4 -0
- c4perplexity-results_lm-eval_global_step52452_2023-01-17-12-11-16.csv +21 -0
- c4perplexity-results_lm-eval_global_step52452_2023-01-17-12-11-16.json +87 -0
- evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +1 -0
- evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +1 -0
- evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +1 -0
- evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +1 -0
- evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl +3 -0
- evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl +3 -0
- evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl +3 -0
- evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl +3 -0
- evaluation/merged.csv +5 -0
- evaluation/merged.json +1 -0
- evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +133 -0
- evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +133 -0
- evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +133 -0
- evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json +133 -0
.gitattributes
CHANGED
@@ -32,3 +32,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl filter=lfs diff=lfs merge=lfs -text
|
36 |
+
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl filter=lfs diff=lfs merge=lfs -text
|
37 |
+
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl filter=lfs diff=lfs merge=lfs -text
|
38 |
+
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl filter=lfs diff=lfs merge=lfs -text
|
c4perplexity-results_lm-eval_global_step52452_2023-01-17-12-11-16.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task,metric,value,err,version
|
2 |
+
anli_r1,acc,0.337,0.014955087918653605,0
|
3 |
+
anli_r2,acc,0.336,0.014944140233795027,0
|
4 |
+
anli_r3,acc,0.33416666666666667,0.013622434813136781,0
|
5 |
+
arc_challenge,acc,0.2440273037542662,0.012551447627856257,0
|
6 |
+
arc_challenge,acc_norm,0.2841296928327645,0.013179442447653886,0
|
7 |
+
arc_easy,acc,0.5782828282828283,0.010133255284012325,0
|
8 |
+
arc_easy,acc_norm,0.5155723905723906,0.010254806331961897,0
|
9 |
+
boolq,acc,0.5464831804281346,0.008707182331111646,1
|
10 |
+
cb,acc,0.4107142857142857,0.0663363415035954,1
|
11 |
+
cb,f1,0.1940928270042194,,1
|
12 |
+
copa,acc,0.76,0.04292346959909283,0
|
13 |
+
hellaswag,acc,0.4558852818163712,0.004970322156997941,0
|
14 |
+
hellaswag,acc_norm,0.5975901214897431,0.004893814890208305,0
|
15 |
+
piqa,acc,0.7540805223068553,0.010047331865625194,0
|
16 |
+
piqa,acc_norm,0.7622415669205659,0.009932525779525492,0
|
17 |
+
rte,acc,0.51985559566787,0.030072723167317184,0
|
18 |
+
sciq,acc,0.818,0.012207580637662153,0
|
19 |
+
sciq,acc_norm,0.743,0.013825416526895045,0
|
20 |
+
storycloze_2016,acc,0.7113842864778194,0.01047831178564294,0
|
21 |
+
winogrande,acc,0.5777426992896606,0.013881582030658554,0
|
c4perplexity-results_lm-eval_global_step52452_2023-01-17-12-11-16.json
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"anli_r1": {
|
4 |
+
"acc": 0.337,
|
5 |
+
"acc_stderr": 0.014955087918653605
|
6 |
+
},
|
7 |
+
"anli_r2": {
|
8 |
+
"acc": 0.336,
|
9 |
+
"acc_stderr": 0.014944140233795027
|
10 |
+
},
|
11 |
+
"anli_r3": {
|
12 |
+
"acc": 0.33416666666666667,
|
13 |
+
"acc_stderr": 0.013622434813136781
|
14 |
+
},
|
15 |
+
"cb": {
|
16 |
+
"acc": 0.4107142857142857,
|
17 |
+
"acc_stderr": 0.0663363415035954,
|
18 |
+
"f1": 0.1940928270042194
|
19 |
+
},
|
20 |
+
"copa": {
|
21 |
+
"acc": 0.76,
|
22 |
+
"acc_stderr": 0.04292346959909283
|
23 |
+
},
|
24 |
+
"hellaswag": {
|
25 |
+
"acc": 0.4558852818163712,
|
26 |
+
"acc_stderr": 0.004970322156997941,
|
27 |
+
"acc_norm": 0.5975901214897431,
|
28 |
+
"acc_norm_stderr": 0.004893814890208305
|
29 |
+
},
|
30 |
+
"rte": {
|
31 |
+
"acc": 0.51985559566787,
|
32 |
+
"acc_stderr": 0.030072723167317184
|
33 |
+
},
|
34 |
+
"winogrande": {
|
35 |
+
"acc": 0.5777426992896606,
|
36 |
+
"acc_stderr": 0.013881582030658554
|
37 |
+
},
|
38 |
+
"storycloze_2016": {
|
39 |
+
"acc": 0.7113842864778194,
|
40 |
+
"acc_stderr": 0.01047831178564294
|
41 |
+
},
|
42 |
+
"boolq": {
|
43 |
+
"acc": 0.5464831804281346,
|
44 |
+
"acc_stderr": 0.008707182331111646
|
45 |
+
},
|
46 |
+
"arc_easy": {
|
47 |
+
"acc": 0.5782828282828283,
|
48 |
+
"acc_stderr": 0.010133255284012325,
|
49 |
+
"acc_norm": 0.5155723905723906,
|
50 |
+
"acc_norm_stderr": 0.010254806331961897
|
51 |
+
},
|
52 |
+
"arc_challenge": {
|
53 |
+
"acc": 0.2440273037542662,
|
54 |
+
"acc_stderr": 0.012551447627856257,
|
55 |
+
"acc_norm": 0.2841296928327645,
|
56 |
+
"acc_norm_stderr": 0.013179442447653886
|
57 |
+
},
|
58 |
+
"sciq": {
|
59 |
+
"acc": 0.818,
|
60 |
+
"acc_stderr": 0.012207580637662153,
|
61 |
+
"acc_norm": 0.743,
|
62 |
+
"acc_norm_stderr": 0.013825416526895045
|
63 |
+
},
|
64 |
+
"piqa": {
|
65 |
+
"acc": 0.7540805223068553,
|
66 |
+
"acc_stderr": 0.010047331865625194,
|
67 |
+
"acc_norm": 0.7622415669205659,
|
68 |
+
"acc_norm_stderr": 0.009932525779525492
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"versions": {
|
72 |
+
"anli_r1": 0,
|
73 |
+
"anli_r2": 0,
|
74 |
+
"anli_r3": 0,
|
75 |
+
"cb": 1,
|
76 |
+
"copa": 0,
|
77 |
+
"hellaswag": 0,
|
78 |
+
"rte": 0,
|
79 |
+
"winogrande": 0,
|
80 |
+
"storycloze_2016": 0,
|
81 |
+
"boolq": 1,
|
82 |
+
"arc_easy": 0,
|
83 |
+
"arc_challenge": 0,
|
84 |
+
"sciq": 0,
|
85 |
+
"piqa": 0
|
86 |
+
}
|
87 |
+
}
|
evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.44983162806527605, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.038154018591984334}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.071413617880418, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0014314988577837512}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.36121845616052844, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005456116499217837}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.11147137683487435, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0019659665903934338}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03213823237467542, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008563458625515534}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.17097921105516134, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036300270018532117}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.05042435840541935, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012067757893367797}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.06670334417280534, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0012884965791976942}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3363081320406107, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004917871710898438}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.10420727855856317, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017848841642653212}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.06755791243184023, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001343070108019487}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.34079824561716204, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.005016173768502028}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10544393773714214, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001845516360617543}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.17892096147640557, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0022648525570164767}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.28394021777601, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0028653211542179397}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.20054602824156798, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002000312312143333}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.042047063434399935, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0010066804392018039}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.06791589976567478, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015879262638163016}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.04655649352957454, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009914762488450282}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.13109089164647547, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015859197320449397}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.2143739250636573, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0022488504088131875}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.14794102711054255, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0013617604986620765}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.16637070185395486, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0021074798010892954}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.26496660044445103, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027004470852608512}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.18664417732685562, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0018598279590220587}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.275559653426858, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06399269196052909}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 4.60857341288916, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07091478097604244}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.22003605992748757, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0016634925664108194}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.4349109426362562, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0026795975680511614}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.28307413792452757, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0017345666507319096}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.08133706936294005, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001011706981693919}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.16609374412846958, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001955786555953094}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.10538118293432128, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011922460727243065}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.17905562119769688, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0011815805464116809}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.36101365402052843, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002253209383791391}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.2320488807632003, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001266631291357149}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.17784834223848153, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001488841924808455}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.3521512097724569, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0025235785084938953}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.22885806406725848, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0016097640905790775}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
evaluation/agg.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.11527813018783109, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0017932590108456488}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.2851427490566371, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004149472686464088}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.16214203494333726, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0024112737892753133}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.021424469955042002, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0009015566861994638}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.055056684725856495, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023739933653977095}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.030418541159472234, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012717097325942262}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.0909829458725424, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0013238250644292398}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.2270115690543438, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0032363302876825557}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.12824160933859685, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017962920547828305}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.09207403605608483, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001448778184518186}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.22997778938614646, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0035243817191569385}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.12983804475653796, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001974954778554704}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.2470641961768807, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09745406322184069}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f95f003341420560e694d6bff5152b3e7e0037dc2d8787247873c083b9b2f3d
|
3 |
+
size 5145453
|
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aacdd39936cec4218acd9455e10a9690f8c4659a4cf67034c32234cc789f7f5
|
3 |
+
size 13298450
|
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57dcb0fad2ff5cc861197ebc85eb319b31133728db5bbc41c232c2fc7da412c6
|
3 |
+
size 5553379
|
evaluation/examples.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1999fda099b38db9be1d61d1ec45943e931f6f42c3979ee3e2e9a7501ccf9148
|
3 |
+
size 5101298
|
evaluation/merged.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset,prompt,metric,value
|
2 |
+
e2e_nlg_cleaned,generate_text_restaurant,rouge2_fmeasure,0.10538118293432128
|
3 |
+
gem_xsum,article_DOC_summary,rouge2_fmeasure,0.030418541159472234
|
4 |
+
web_nlg_en,PALM_prompt,rouge2_fmeasure,0.05042435840541935
|
5 |
+
wiki_lingua_en,tldr_en,rouge2_fmeasure,0.04655649352957454
|
evaluation/merged.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GEM/web_nlg_en": {"PALM_prompt": {"bleu": 0.44983162806527605, "bleu_stderr": 0.038154018591984334, "rouge1_fmeasure": 0.11147137683487435, "rouge1_fmeasure_stderr": 0.0019659665903934338, "rouge1_precision": 0.071413617880418, "rouge1_precision_stderr": 0.0014314988577837512, "rouge1_recall": 0.36121845616052844, "rouge1_recall_stderr": 0.005456116499217837, "rouge2_fmeasure": 0.05042435840541935, "rouge2_fmeasure_stderr": 0.0012067757893367797, "rouge2_precision": 0.03213823237467542, "rouge2_precision_stderr": 0.0008563458625515534, "rouge2_recall": 0.17097921105516134, "rouge2_recall_stderr": 0.0036300270018532117, "rougeL_fmeasure": 0.10420727855856317, "rougeL_fmeasure_stderr": 0.0017848841642653212, "rougeL_precision": 0.06670334417280534, "rougeL_precision_stderr": 0.0012884965791976942, "rougeL_recall": 0.3363081320406107, "rougeL_recall_stderr": 0.004917871710898438, "rougeLsum_fmeasure": 0.10544393773714214, "rougeLsum_fmeasure_stderr": 0.001845516360617543, "rougeLsum_precision": 0.06755791243184023, "rougeLsum_precision_stderr": 0.001343070108019487, "rougeLsum_recall": 0.34079824561716204, "rougeLsum_recall_stderr": 0.005016173768502028}}, "GEM/wiki_lingua_en": {"tldr_en": {"bleu": 2.275559653426858, "bleu_stderr": 0.06399269196052909, "rouge1_fmeasure": 0.20054602824156798, "rouge1_fmeasure_stderr": 0.002000312312143333, "rouge1_precision": 0.17892096147640557, "rouge1_precision_stderr": 0.0022648525570164767, "rouge1_recall": 0.28394021777601, "rouge1_recall_stderr": 0.0028653211542179397, "rouge2_fmeasure": 0.04655649352957454, "rouge2_fmeasure_stderr": 0.0009914762488450282, "rouge2_precision": 0.042047063434399935, "rouge2_precision_stderr": 0.0010066804392018039, "rouge2_recall": 0.06791589976567478, "rouge2_recall_stderr": 0.0015879262638163016, "rougeL_fmeasure": 0.14794102711054255, "rougeL_fmeasure_stderr": 0.0013617604986620765, "rougeL_precision": 0.13109089164647547, "rougeL_precision_stderr": 0.0015859197320449397, "rougeL_recall": 0.2143739250636573, "rougeL_recall_stderr": 0.0022488504088131875, "rougeLsum_fmeasure": 0.18664417732685562, "rougeLsum_fmeasure_stderr": 0.0018598279590220587, "rougeLsum_precision": 0.16637070185395486, "rougeLsum_precision_stderr": 0.0021074798010892954, "rougeLsum_recall": 0.26496660044445103, "rougeLsum_recall_stderr": 0.0027004470852608512}}, "e2e_nlg_cleaned": {"generate_text_restaurant": {"bleu": 4.60857341288916, "bleu_stderr": 0.07091478097604244, "rouge1_fmeasure": 0.28307413792452757, "rouge1_fmeasure_stderr": 0.0017345666507319096, "rouge1_precision": 0.22003605992748757, "rouge1_precision_stderr": 0.0016634925664108194, "rouge1_recall": 0.4349109426362562, "rouge1_recall_stderr": 0.0026795975680511614, "rouge2_fmeasure": 0.10538118293432128, "rouge2_fmeasure_stderr": 0.0011922460727243065, "rouge2_precision": 0.08133706936294005, "rouge2_precision_stderr": 0.001011706981693919, "rouge2_recall": 0.16609374412846958, "rouge2_recall_stderr": 0.001955786555953094, "rougeL_fmeasure": 0.2320488807632003, "rougeL_fmeasure_stderr": 0.001266631291357149, "rougeL_precision": 0.17905562119769688, "rougeL_precision_stderr": 0.0011815805464116809, "rougeL_recall": 0.36101365402052843, "rougeL_recall_stderr": 0.002253209383791391, "rougeLsum_fmeasure": 0.22885806406725848, "rougeLsum_fmeasure_stderr": 0.0016097640905790775, "rougeLsum_precision": 0.17784834223848153, "rougeLsum_precision_stderr": 0.001488841924808455, "rougeLsum_recall": 0.3521512097724569, "rougeLsum_recall_stderr": 0.0025235785084938953}}, "gem_xsum": {"article_DOC_summary": {"bleu": 1.2470641961768807, "bleu_stderr": 0.09745406322184069, "rouge1_fmeasure": 0.16214203494333726, "rouge1_fmeasure_stderr": 0.0024112737892753133, "rouge1_precision": 0.11527813018783109, "rouge1_precision_stderr": 0.0017932590108456488, "rouge1_recall": 0.2851427490566371, "rouge1_recall_stderr": 0.004149472686464088, "rouge2_fmeasure": 0.030418541159472234, "rouge2_fmeasure_stderr": 0.0012717097325942262, "rouge2_precision": 0.021424469955042002, "rouge2_precision_stderr": 0.0009015566861994638, "rouge2_recall": 0.055056684725856495, "rouge2_recall_stderr": 0.0023739933653977095, "rougeL_fmeasure": 0.12824160933859685, "rougeL_fmeasure_stderr": 0.0017962920547828305, "rougeL_precision": 0.0909829458725424, "rougeL_precision_stderr": 0.0013238250644292398, "rougeL_recall": 0.2270115690543438, "rougeL_recall_stderr": 0.0032363302876825557, "rougeLsum_fmeasure": 0.12983804475653796, "rougeLsum_fmeasure_stderr": 0.001974954778554704, "rougeLsum_precision": 0.09207403605608483, "rougeLsum_precision_stderr": 0.001448778184518186, "rougeLsum_recall": 0.22997778938614646, "rougeLsum_recall_stderr": 0.0035243817191569385}}}
|
evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-web_nlg_en.templates=PALM_prompt.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 0.44983162806527605,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.038154018591984334
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.071413617880418,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.0014314988577837512
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.36121845616052844,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.005456116499217837
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.11147137683487435,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.0019659665903934338
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.03213823237467542,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.0008563458625515534
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.17097921105516134,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.0036300270018532117
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.05042435840541935,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.0012067757893367797
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.06670334417280534,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.0012884965791976942
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.3363081320406107,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004917871710898438
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.10420727855856317,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.0017848841642653212
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.06755791243184023,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.001343070108019487
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.34079824561716204,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.005016173768502028
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.10544393773714214,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.001845516360617543
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 1,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=GEM-wiki_lingua_en.templates=tldr_en.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/wiki_lingua_en",
|
5 |
+
"prompt_name": "tldr_en",
|
6 |
+
"rouge1_precision": 0.17892096147640557,
|
7 |
+
"dataset_path": "GEM/wiki_lingua",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"rouge1_precision_stderr": 0.0022648525570164767
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/wiki_lingua_en",
|
14 |
+
"prompt_name": "tldr_en",
|
15 |
+
"rouge1_recall": 0.28394021777601,
|
16 |
+
"dataset_path": "GEM/wiki_lingua",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_recall_stderr": 0.0028653211542179397
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/wiki_lingua_en",
|
23 |
+
"prompt_name": "tldr_en",
|
24 |
+
"rouge1_fmeasure": 0.20054602824156798,
|
25 |
+
"dataset_path": "GEM/wiki_lingua",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_fmeasure_stderr": 0.002000312312143333
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/wiki_lingua_en",
|
32 |
+
"prompt_name": "tldr_en",
|
33 |
+
"rouge2_precision": 0.042047063434399935,
|
34 |
+
"dataset_path": "GEM/wiki_lingua",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge2_precision_stderr": 0.0010066804392018039
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/wiki_lingua_en",
|
41 |
+
"prompt_name": "tldr_en",
|
42 |
+
"rouge2_recall": 0.06791589976567478,
|
43 |
+
"dataset_path": "GEM/wiki_lingua",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_recall_stderr": 0.0015879262638163016
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/wiki_lingua_en",
|
50 |
+
"prompt_name": "tldr_en",
|
51 |
+
"rouge2_fmeasure": 0.04655649352957454,
|
52 |
+
"dataset_path": "GEM/wiki_lingua",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_fmeasure_stderr": 0.0009914762488450282
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/wiki_lingua_en",
|
59 |
+
"prompt_name": "tldr_en",
|
60 |
+
"rougeL_precision": 0.13109089164647547,
|
61 |
+
"dataset_path": "GEM/wiki_lingua",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rougeL_precision_stderr": 0.0015859197320449397
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/wiki_lingua_en",
|
68 |
+
"prompt_name": "tldr_en",
|
69 |
+
"rougeL_recall": 0.2143739250636573,
|
70 |
+
"dataset_path": "GEM/wiki_lingua",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_recall_stderr": 0.0022488504088131875
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/wiki_lingua_en",
|
77 |
+
"prompt_name": "tldr_en",
|
78 |
+
"rougeL_fmeasure": 0.14794102711054255,
|
79 |
+
"dataset_path": "GEM/wiki_lingua",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_fmeasure_stderr": 0.0013617604986620765
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/wiki_lingua_en",
|
86 |
+
"prompt_name": "tldr_en",
|
87 |
+
"rougeLsum_precision": 0.16637070185395486,
|
88 |
+
"dataset_path": "GEM/wiki_lingua",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeLsum_precision_stderr": 0.0021074798010892954
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/wiki_lingua_en",
|
95 |
+
"prompt_name": "tldr_en",
|
96 |
+
"rougeLsum_recall": 0.26496660044445103,
|
97 |
+
"dataset_path": "GEM/wiki_lingua",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_recall_stderr": 0.0027004470852608512
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/wiki_lingua_en",
|
104 |
+
"prompt_name": "tldr_en",
|
105 |
+
"rougeLsum_fmeasure": 0.18664417732685562,
|
106 |
+
"dataset_path": "GEM/wiki_lingua",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_fmeasure_stderr": 0.0018598279590220587
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/wiki_lingua_en",
|
113 |
+
"prompt_name": "tldr_en",
|
114 |
+
"bleu": 2.275559653426858,
|
115 |
+
"dataset_path": "GEM/wiki_lingua",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"bleu_stderr": 0.06399269196052909
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 1,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=e2e_nlg_cleaned.templates=generate_text_restaurant.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "e2e_nlg_cleaned",
|
5 |
+
"prompt_name": "generate_text_restaurant",
|
6 |
+
"bleu": 4.60857341288916,
|
7 |
+
"dataset_path": "e2e_nlg_cleaned",
|
8 |
+
"dataset_name": null,
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.07091478097604244
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "e2e_nlg_cleaned",
|
14 |
+
"prompt_name": "generate_text_restaurant",
|
15 |
+
"rouge1_precision": 0.22003605992748757,
|
16 |
+
"dataset_path": "e2e_nlg_cleaned",
|
17 |
+
"dataset_name": null,
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.0016634925664108194
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "e2e_nlg_cleaned",
|
23 |
+
"prompt_name": "generate_text_restaurant",
|
24 |
+
"rouge1_recall": 0.4349109426362562,
|
25 |
+
"dataset_path": "e2e_nlg_cleaned",
|
26 |
+
"dataset_name": null,
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.0026795975680511614
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "e2e_nlg_cleaned",
|
32 |
+
"prompt_name": "generate_text_restaurant",
|
33 |
+
"rouge1_fmeasure": 0.28307413792452757,
|
34 |
+
"dataset_path": "e2e_nlg_cleaned",
|
35 |
+
"dataset_name": null,
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.0017345666507319096
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "e2e_nlg_cleaned",
|
41 |
+
"prompt_name": "generate_text_restaurant",
|
42 |
+
"rouge2_precision": 0.08133706936294005,
|
43 |
+
"dataset_path": "e2e_nlg_cleaned",
|
44 |
+
"dataset_name": null,
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.001011706981693919
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "e2e_nlg_cleaned",
|
50 |
+
"prompt_name": "generate_text_restaurant",
|
51 |
+
"rouge2_recall": 0.16609374412846958,
|
52 |
+
"dataset_path": "e2e_nlg_cleaned",
|
53 |
+
"dataset_name": null,
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.001955786555953094
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "e2e_nlg_cleaned",
|
59 |
+
"prompt_name": "generate_text_restaurant",
|
60 |
+
"rouge2_fmeasure": 0.10538118293432128,
|
61 |
+
"dataset_path": "e2e_nlg_cleaned",
|
62 |
+
"dataset_name": null,
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.0011922460727243065
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "e2e_nlg_cleaned",
|
68 |
+
"prompt_name": "generate_text_restaurant",
|
69 |
+
"rougeL_precision": 0.17905562119769688,
|
70 |
+
"dataset_path": "e2e_nlg_cleaned",
|
71 |
+
"dataset_name": null,
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.0011815805464116809
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "e2e_nlg_cleaned",
|
77 |
+
"prompt_name": "generate_text_restaurant",
|
78 |
+
"rougeL_recall": 0.36101365402052843,
|
79 |
+
"dataset_path": "e2e_nlg_cleaned",
|
80 |
+
"dataset_name": null,
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.002253209383791391
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "e2e_nlg_cleaned",
|
86 |
+
"prompt_name": "generate_text_restaurant",
|
87 |
+
"rougeL_fmeasure": 0.2320488807632003,
|
88 |
+
"dataset_path": "e2e_nlg_cleaned",
|
89 |
+
"dataset_name": null,
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.001266631291357149
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "e2e_nlg_cleaned",
|
95 |
+
"prompt_name": "generate_text_restaurant",
|
96 |
+
"rougeLsum_precision": 0.17784834223848153,
|
97 |
+
"dataset_path": "e2e_nlg_cleaned",
|
98 |
+
"dataset_name": null,
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.001488841924808455
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "e2e_nlg_cleaned",
|
104 |
+
"prompt_name": "generate_text_restaurant",
|
105 |
+
"rougeLsum_recall": 0.3521512097724569,
|
106 |
+
"dataset_path": "e2e_nlg_cleaned",
|
107 |
+
"dataset_name": null,
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.0025235785084938953
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "e2e_nlg_cleaned",
|
113 |
+
"prompt_name": "generate_text_restaurant",
|
114 |
+
"rougeLsum_fmeasure": 0.22885806406725848,
|
115 |
+
"dataset_path": "e2e_nlg_cleaned",
|
116 |
+
"dataset_name": null,
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.0016097640905790775
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 1,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
evaluation/slim.limited=3000.model=lm1-2b8-55b-c4-perplexity.task=gem_xsum.templates=article_DOC_summary.fewshot=1.batchsize=16.seed=1234.timestamp=2023-01-17T12:14:07.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "gem_xsum",
|
5 |
+
"prompt_name": "article_DOC_summary",
|
6 |
+
"rouge1_precision": 0.11527813018783109,
|
7 |
+
"dataset_path": "GEM/xsum",
|
8 |
+
"dataset_name": null,
|
9 |
+
"subset": "",
|
10 |
+
"rouge1_precision_stderr": 0.0017932590108456488
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "gem_xsum",
|
14 |
+
"prompt_name": "article_DOC_summary",
|
15 |
+
"rouge1_recall": 0.2851427490566371,
|
16 |
+
"dataset_path": "GEM/xsum",
|
17 |
+
"dataset_name": null,
|
18 |
+
"subset": "",
|
19 |
+
"rouge1_recall_stderr": 0.004149472686464088
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "gem_xsum",
|
23 |
+
"prompt_name": "article_DOC_summary",
|
24 |
+
"rouge1_fmeasure": 0.16214203494333726,
|
25 |
+
"dataset_path": "GEM/xsum",
|
26 |
+
"dataset_name": null,
|
27 |
+
"subset": "",
|
28 |
+
"rouge1_fmeasure_stderr": 0.0024112737892753133
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "gem_xsum",
|
32 |
+
"prompt_name": "article_DOC_summary",
|
33 |
+
"rouge2_precision": 0.021424469955042002,
|
34 |
+
"dataset_path": "GEM/xsum",
|
35 |
+
"dataset_name": null,
|
36 |
+
"subset": "",
|
37 |
+
"rouge2_precision_stderr": 0.0009015566861994638
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "gem_xsum",
|
41 |
+
"prompt_name": "article_DOC_summary",
|
42 |
+
"rouge2_recall": 0.055056684725856495,
|
43 |
+
"dataset_path": "GEM/xsum",
|
44 |
+
"dataset_name": null,
|
45 |
+
"subset": "",
|
46 |
+
"rouge2_recall_stderr": 0.0023739933653977095
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "gem_xsum",
|
50 |
+
"prompt_name": "article_DOC_summary",
|
51 |
+
"rouge2_fmeasure": 0.030418541159472234,
|
52 |
+
"dataset_path": "GEM/xsum",
|
53 |
+
"dataset_name": null,
|
54 |
+
"subset": "",
|
55 |
+
"rouge2_fmeasure_stderr": 0.0012717097325942262
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "gem_xsum",
|
59 |
+
"prompt_name": "article_DOC_summary",
|
60 |
+
"rougeL_precision": 0.0909829458725424,
|
61 |
+
"dataset_path": "GEM/xsum",
|
62 |
+
"dataset_name": null,
|
63 |
+
"subset": "",
|
64 |
+
"rougeL_precision_stderr": 0.0013238250644292398
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "gem_xsum",
|
68 |
+
"prompt_name": "article_DOC_summary",
|
69 |
+
"rougeL_recall": 0.2270115690543438,
|
70 |
+
"dataset_path": "GEM/xsum",
|
71 |
+
"dataset_name": null,
|
72 |
+
"subset": "",
|
73 |
+
"rougeL_recall_stderr": 0.0032363302876825557
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "gem_xsum",
|
77 |
+
"prompt_name": "article_DOC_summary",
|
78 |
+
"rougeL_fmeasure": 0.12824160933859685,
|
79 |
+
"dataset_path": "GEM/xsum",
|
80 |
+
"dataset_name": null,
|
81 |
+
"subset": "",
|
82 |
+
"rougeL_fmeasure_stderr": 0.0017962920547828305
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "gem_xsum",
|
86 |
+
"prompt_name": "article_DOC_summary",
|
87 |
+
"rougeLsum_precision": 0.09207403605608483,
|
88 |
+
"dataset_path": "GEM/xsum",
|
89 |
+
"dataset_name": null,
|
90 |
+
"subset": "",
|
91 |
+
"rougeLsum_precision_stderr": 0.001448778184518186
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "gem_xsum",
|
95 |
+
"prompt_name": "article_DOC_summary",
|
96 |
+
"rougeLsum_recall": 0.22997778938614646,
|
97 |
+
"dataset_path": "GEM/xsum",
|
98 |
+
"dataset_name": null,
|
99 |
+
"subset": "",
|
100 |
+
"rougeLsum_recall_stderr": 0.0035243817191569385
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "gem_xsum",
|
104 |
+
"prompt_name": "article_DOC_summary",
|
105 |
+
"rougeLsum_fmeasure": 0.12983804475653796,
|
106 |
+
"dataset_path": "GEM/xsum",
|
107 |
+
"dataset_name": null,
|
108 |
+
"subset": "",
|
109 |
+
"rougeLsum_fmeasure_stderr": 0.001974954778554704
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "gem_xsum",
|
113 |
+
"prompt_name": "article_DOC_summary",
|
114 |
+
"bleu": 1.2470641961768807,
|
115 |
+
"dataset_path": "GEM/xsum",
|
116 |
+
"dataset_name": null,
|
117 |
+
"subset": "",
|
118 |
+
"bleu_stderr": 0.09745406322184069
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-2b8-55b-c4-perplexity/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 1,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|