--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Large v3 Turbo - Bahriddin Muminov results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: uz split: test args: 'config: uz, split: test' metrics: - name: Wer type: wer value: 99.63288088608068 --- # Whisper Large v3 Turbo - Bahriddin Muminov This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3021 - Wer: 99.6329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4875 | 0.33 | 1000 | 0.4542 | 72.0290 | | 0.3835 | 0.66 | 2000 | 0.3775 | 100.0 | | 0.3371 | 0.99 | 3000 | 0.3221 | 100.0 | | 0.2244 | 1.32 | 4000 | 0.3021 | 99.6329 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2