|
import datasets |
|
import pandas as pd |
|
from pathlib import Path |
|
from PIL import ImageFile |
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
|
_URLS = { |
|
"F-45": "https://zenodo.org/records/7912264/files/embryo_dataset_F-45.tar.gz?download=1", |
|
"F-30": "https://zenodo.org/records/7912264/files/embryo_dataset_F-30.tar.gz?download=1", |
|
"F-15": "https://zenodo.org/records/7912264/files/embryo_dataset_F-15.tar.gz?download=1", |
|
"F0": "https://zenodo.org/records/7912264/files/embryo_dataset.tar.gz?download=1", |
|
"F+15": "https://zenodo.org/records/7912264/files/embryo_dataset_F15.tar.gz?download=1", |
|
"F+30": "https://zenodo.org/records/7912264/files/embryo_dataset_F30.tar.gz?download=1", |
|
"F+45": "https://zenodo.org/records/7912264/files/embryo_dataset_F45.tar.gz?download=1", |
|
"grades": "https://zenodo.org/records/7912264/files/embryo_dataset_grades.csv?download=1", |
|
"annotations": "https://zenodo.org/records/7912264/files/embryo_dataset_annotations.tar.gz?download=1", |
|
"time_elapsed": "https://zenodo.org/records/7912264/files/embryo_dataset_time_elapsed.tar.gz?download=1", |
|
} |
|
|
|
_EVENT_NAMES = [ |
|
"tPB2", "tPNa", "tPNf", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9+", "tM", "tSB", "tB", "tEB", "tHB", |
|
] |
|
|
|
_GRADES = ["A", "B", "C", "NA"] |
|
|
|
_DESCRIPTION = """ |
|
This dataset is composed of 704 videos, each recorded at 7 focal planes, accompanied by the annotations of 16 cellular events. |
|
""" |
|
|
|
_VERSION = datasets.Version("0.3.0") |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/7912264" |
|
|
|
_LICENSE = "CC BY-NC-SA 4.0" |
|
|
|
class HumanEmbryoTimelapse(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
version=_VERSION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
features=datasets.Features( |
|
{ |
|
"name": datasets.Value("string"), |
|
"F-45": datasets.Sequence(datasets.Image()), |
|
"F-30": datasets.Sequence(datasets.Image()), |
|
"F-15": datasets.Sequence(datasets.Image()), |
|
"F0": datasets.Sequence(datasets.Image()), |
|
"F+45": datasets.Sequence(datasets.Image()), |
|
"F+30": datasets.Sequence(datasets.Image()), |
|
"F+15": datasets.Sequence(datasets.Image()), |
|
"events": datasets.Sequence( |
|
{ |
|
"name": datasets.ClassLabel(names=_EVENT_NAMES), |
|
"frame_index_start": datasets.Value("uint16"), |
|
"frame_index_stop": datasets.Value("uint16"), |
|
}, |
|
), |
|
"timeline": { |
|
"frame_index": datasets.Sequence(datasets.Value("uint16")), |
|
"time": datasets.Sequence(datasets.Value("float32")), |
|
}, |
|
"grades": { |
|
"TE": datasets.ClassLabel(names=_GRADES), |
|
"ICM": datasets.ClassLabel(names=_GRADES), |
|
} |
|
} |
|
), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Generate splits.""" |
|
|
|
|
|
directories = { |
|
name: Path(dl_manager.download_and_extract(url)) |
|
for name, url in _URLS.items() |
|
} |
|
|
|
|
|
embryo_names_dir = directories["F0"] / "embryo_dataset" |
|
embryo_names = [x.name for x in embryo_names_dir.iterdir() if x.is_dir()] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"embryo_names": embryo_names, |
|
"directories": directories, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, embryo_names, directories): |
|
"""Generate images and labels for splits.""" |
|
|
|
|
|
pd_grades = pd.read_csv(directories["grades"], keep_default_na=False) |
|
grades = { |
|
row["video_name"]: { |
|
"TE": row["TE"], |
|
"ICM": row["ICM"], |
|
} |
|
for _, row in pd_grades.iterrows() |
|
} |
|
|
|
for index, embryo_name in enumerate(embryo_names): |
|
|
|
|
|
pd_events = pd.read_csv(directories["annotations"] / "embryo_dataset_annotations" / f"{embryo_name}_phases.csv", header=None) |
|
events = [ |
|
{ |
|
"name": row[0], |
|
"frame_index_start": row[1], |
|
"frame_index_stop": row[2], |
|
} |
|
for _, row in pd_events.iterrows() |
|
] |
|
|
|
|
|
pd_time = pd.read_csv(directories["time_elapsed"] / "embryo_dataset_time_elapsed" / f"{embryo_name}_timeElapsed.csv") |
|
timeline = { |
|
"frame_index": pd_time["frame_index"].tolist(), |
|
"time": pd_time["time"].tolist(), |
|
} |
|
|
|
|
|
F_m45 = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F-45"] / "embryo_dataset_F-45" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
|
|
F_m30 = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F-30"] / "embryo_dataset_F-30" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
|
|
F_m15 = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F-15"] / "embryo_dataset_F-15" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
|
|
F_zero = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F0"] / "embryo_dataset" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
|
|
F_p15 = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F+15"] / "embryo_dataset_F15" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
|
|
F_p30 = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F+30"] / "embryo_dataset_F30" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
|
|
F_p45 = list(map( |
|
lambda x: str(x), |
|
sorted( |
|
(directories["F+45"] / "embryo_dataset_F45" / embryo_name).glob("*.jpeg"), |
|
key=lambda x: int(x.stem.split("RUN")[-1]), |
|
), |
|
)) |
|
|
|
yield index, { |
|
"name": embryo_name, |
|
"F-45": F_m45, |
|
"F-30": F_m30, |
|
"F-15": F_m15, |
|
"F0": F_zero, |
|
"F+15": F_p15, |
|
"F+30": F_p30, |
|
"F+45": F_p45, |
|
"events": events, |
|
"grades": grades[embryo_name], |
|
"timeline": timeline, |
|
} |
|
|