Laureηt
commited on
Commit
•
fc1c0ed
1
Parent(s):
2711908
rant: password protected zip are not fun
Browse files- icdar-2011.py +119 -0
icdar-2011.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Dataset class for Individuality Of Handwriting dataset."""
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
import pathlib
|
5 |
+
import zipfile
|
6 |
+
|
7 |
+
import tqdm
|
8 |
+
from datasets.tasks import ImageClassification
|
9 |
+
|
10 |
+
import datasets
|
11 |
+
|
12 |
+
_BASE_URLS = {
|
13 |
+
"train": "http://iapr-tc11.org/dataset/ICDAR_SignatureVerification/SigComp2011/sigComp2011-trainingSet.zip",
|
14 |
+
"test": "http://iapr-tc11.org/dataset/ICDAR_SignatureVerification/SigComp2011/sigComp2011-test.zip"
|
15 |
+
}
|
16 |
+
|
17 |
+
_BASE_URLS_PWD = b"I hereby accept the SigComp 2011 disclaimer."
|
18 |
+
|
19 |
+
_HOMEPAGE = "http://iapr-tc11.org/mediawiki/index.php/ICDAR_2011_Signature_Verification_Competition_(SigComp2011)"
|
20 |
+
|
21 |
+
_DESCRIPTION = """
|
22 |
+
The collection contains simultaneously acquired online and offline samples.
|
23 |
+
The collection contains offline and online signature samples.
|
24 |
+
The offline dataset comprises PNG images, scanned at 400 dpi, RGB color.
|
25 |
+
The online dataset comprises ascii files with the format: X, Y, Z (per line).
|
26 |
+
"""
|
27 |
+
|
28 |
+
_NAMES = [
|
29 |
+
"genuine",
|
30 |
+
"forgeries",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
class ICDAR2011(datasets.GeneratorBasedBuilder):
|
35 |
+
"""ICDAR-2011 Images dataset."""
|
36 |
+
|
37 |
+
def _info(self):
|
38 |
+
return datasets.DatasetInfo(
|
39 |
+
description=_DESCRIPTION,
|
40 |
+
features=datasets.Features(
|
41 |
+
{
|
42 |
+
"image": datasets.Image(),
|
43 |
+
"label": datasets.ClassLabel(names=_NAMES),
|
44 |
+
"forger": datasets.Value("int32"),
|
45 |
+
"writer": datasets.Value("uint32"),
|
46 |
+
"attempt": datasets.Value("uint32"),
|
47 |
+
}
|
48 |
+
),
|
49 |
+
supervised_keys=("image", "label"),
|
50 |
+
homepage=_HOMEPAGE,
|
51 |
+
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
52 |
+
)
|
53 |
+
|
54 |
+
def _split_generators(self, dl_manager):
|
55 |
+
train_archive_path = pathlib.Path(dl_manager.download(_BASE_URLS["train"]))
|
56 |
+
test_archive_path = pathlib.Path(dl_manager.download(_BASE_URLS["test"]))
|
57 |
+
|
58 |
+
with zipfile.ZipFile(train_archive_path, 'r') as zf:
|
59 |
+
train_dir = train_archive_path.parent / "extracted" / train_archive_path.name
|
60 |
+
print(train_dir)
|
61 |
+
for member in tqdm.tqdm(zf.infolist(), desc="Extracting training data"):
|
62 |
+
try:
|
63 |
+
if not pathlib.Path(train_dir / member.filename).exists():
|
64 |
+
zf.extract(member, train_dir, pwd=_BASE_URLS_PWD)
|
65 |
+
except zipfile.error:
|
66 |
+
print("Error extracting", member.filename)
|
67 |
+
zf.close()
|
68 |
+
|
69 |
+
with zipfile.ZipFile(test_archive_path, 'r') as zf:
|
70 |
+
test_dir = test_archive_path.parent / "extracted" / test_archive_path.name
|
71 |
+
for member in tqdm.tqdm(zf.infolist(), desc="Extracting test data"):
|
72 |
+
try:
|
73 |
+
if not pathlib.Path(test_dir / member.filename).exists():
|
74 |
+
zf.extract(member, test_dir, pwd=_BASE_URLS_PWD)
|
75 |
+
except zipfile.error:
|
76 |
+
print("Error extracting", member.filename)
|
77 |
+
zf.close()
|
78 |
+
|
79 |
+
return [
|
80 |
+
datasets.SplitGenerator(
|
81 |
+
name=datasets.Split.TRAIN,
|
82 |
+
gen_kwargs={
|
83 |
+
"data_dir": train_dir,
|
84 |
+
},
|
85 |
+
),
|
86 |
+
datasets.SplitGenerator(
|
87 |
+
name=datasets.Split.TEST,
|
88 |
+
gen_kwargs={
|
89 |
+
"data_dir": test_dir,
|
90 |
+
},
|
91 |
+
),
|
92 |
+
]
|
93 |
+
|
94 |
+
def _generate_examples(self, data_dir):
|
95 |
+
"""Generate images and labels for splits."""
|
96 |
+
rglob_lowercase = pathlib.Path(data_dir).rglob("*.png")
|
97 |
+
rglob_uppercase = pathlib.Path(data_dir).rglob("*.PNG")
|
98 |
+
rglob = itertools.chain(rglob_lowercase, rglob_uppercase)
|
99 |
+
|
100 |
+
for index, filepath in enumerate(rglob):
|
101 |
+
filename = filepath.with_suffix("").name
|
102 |
+
prefix, attempt = filename.split("_")
|
103 |
+
|
104 |
+
if len(prefix) == 7:
|
105 |
+
forger = prefix[:4]
|
106 |
+
writer = prefix[4:]
|
107 |
+
label = "forgeries"
|
108 |
+
else:
|
109 |
+
writer = prefix
|
110 |
+
forger = -1
|
111 |
+
label = "genuine"
|
112 |
+
|
113 |
+
yield index, {
|
114 |
+
"image": str(filepath),
|
115 |
+
"label": label,
|
116 |
+
"forger": forger,
|
117 |
+
"writer": writer,
|
118 |
+
"attempt": attempt,
|
119 |
+
}
|