Laureηt commited on
Commit
fc1c0ed
1 Parent(s): 2711908

rant: password protected zip are not fun

Browse files
Files changed (1) hide show
  1. icdar-2011.py +119 -0
icdar-2011.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Dataset class for Individuality Of Handwriting dataset."""
2
+
3
+ import itertools
4
+ import pathlib
5
+ import zipfile
6
+
7
+ import tqdm
8
+ from datasets.tasks import ImageClassification
9
+
10
+ import datasets
11
+
12
+ _BASE_URLS = {
13
+ "train": "http://iapr-tc11.org/dataset/ICDAR_SignatureVerification/SigComp2011/sigComp2011-trainingSet.zip",
14
+ "test": "http://iapr-tc11.org/dataset/ICDAR_SignatureVerification/SigComp2011/sigComp2011-test.zip"
15
+ }
16
+
17
+ _BASE_URLS_PWD = b"I hereby accept the SigComp 2011 disclaimer."
18
+
19
+ _HOMEPAGE = "http://iapr-tc11.org/mediawiki/index.php/ICDAR_2011_Signature_Verification_Competition_(SigComp2011)"
20
+
21
+ _DESCRIPTION = """
22
+ The collection contains simultaneously acquired online and offline samples.
23
+ The collection contains offline and online signature samples.
24
+ The offline dataset comprises PNG images, scanned at 400 dpi, RGB color.
25
+ The online dataset comprises ascii files with the format: X, Y, Z (per line).
26
+ """
27
+
28
+ _NAMES = [
29
+ "genuine",
30
+ "forgeries",
31
+ ]
32
+
33
+
34
+ class ICDAR2011(datasets.GeneratorBasedBuilder):
35
+ """ICDAR-2011 Images dataset."""
36
+
37
+ def _info(self):
38
+ return datasets.DatasetInfo(
39
+ description=_DESCRIPTION,
40
+ features=datasets.Features(
41
+ {
42
+ "image": datasets.Image(),
43
+ "label": datasets.ClassLabel(names=_NAMES),
44
+ "forger": datasets.Value("int32"),
45
+ "writer": datasets.Value("uint32"),
46
+ "attempt": datasets.Value("uint32"),
47
+ }
48
+ ),
49
+ supervised_keys=("image", "label"),
50
+ homepage=_HOMEPAGE,
51
+ task_templates=[ImageClassification(image_column="image", label_column="label")],
52
+ )
53
+
54
+ def _split_generators(self, dl_manager):
55
+ train_archive_path = pathlib.Path(dl_manager.download(_BASE_URLS["train"]))
56
+ test_archive_path = pathlib.Path(dl_manager.download(_BASE_URLS["test"]))
57
+
58
+ with zipfile.ZipFile(train_archive_path, 'r') as zf:
59
+ train_dir = train_archive_path.parent / "extracted" / train_archive_path.name
60
+ print(train_dir)
61
+ for member in tqdm.tqdm(zf.infolist(), desc="Extracting training data"):
62
+ try:
63
+ if not pathlib.Path(train_dir / member.filename).exists():
64
+ zf.extract(member, train_dir, pwd=_BASE_URLS_PWD)
65
+ except zipfile.error:
66
+ print("Error extracting", member.filename)
67
+ zf.close()
68
+
69
+ with zipfile.ZipFile(test_archive_path, 'r') as zf:
70
+ test_dir = test_archive_path.parent / "extracted" / test_archive_path.name
71
+ for member in tqdm.tqdm(zf.infolist(), desc="Extracting test data"):
72
+ try:
73
+ if not pathlib.Path(test_dir / member.filename).exists():
74
+ zf.extract(member, test_dir, pwd=_BASE_URLS_PWD)
75
+ except zipfile.error:
76
+ print("Error extracting", member.filename)
77
+ zf.close()
78
+
79
+ return [
80
+ datasets.SplitGenerator(
81
+ name=datasets.Split.TRAIN,
82
+ gen_kwargs={
83
+ "data_dir": train_dir,
84
+ },
85
+ ),
86
+ datasets.SplitGenerator(
87
+ name=datasets.Split.TEST,
88
+ gen_kwargs={
89
+ "data_dir": test_dir,
90
+ },
91
+ ),
92
+ ]
93
+
94
+ def _generate_examples(self, data_dir):
95
+ """Generate images and labels for splits."""
96
+ rglob_lowercase = pathlib.Path(data_dir).rglob("*.png")
97
+ rglob_uppercase = pathlib.Path(data_dir).rglob("*.PNG")
98
+ rglob = itertools.chain(rglob_lowercase, rglob_uppercase)
99
+
100
+ for index, filepath in enumerate(rglob):
101
+ filename = filepath.with_suffix("").name
102
+ prefix, attempt = filename.split("_")
103
+
104
+ if len(prefix) == 7:
105
+ forger = prefix[:4]
106
+ writer = prefix[4:]
107
+ label = "forgeries"
108
+ else:
109
+ writer = prefix
110
+ forger = -1
111
+ label = "genuine"
112
+
113
+ yield index, {
114
+ "image": str(filepath),
115
+ "label": label,
116
+ "forger": forger,
117
+ "writer": writer,
118
+ "attempt": attempt,
119
+ }