|
import os |
|
import json |
|
import random |
|
import argparse |
|
import shutil |
|
from tqdm import tqdm |
|
import yaml |
|
import utils |
|
from safe_executor import SafeExecutor |
|
|
|
class_mapping = { |
|
"lm_dashed": 1, |
|
"lm_solid": 0, |
|
"lm_botts_dot": 0, |
|
"lm_shaded": 0 |
|
} |
|
|
|
def extract_base_dataset(from_res): |
|
os.system(f"python extract_base_dataset.py --from_res {from_res}") |
|
|
|
def remove_cache_dir(cache_dir): |
|
if os.path.exists(cache_dir): |
|
shutil.rmtree(cache_dir) |
|
|
|
def create_cache_dir(cache_dir): |
|
utils.check_and_create_dir(cache_dir) |
|
|
|
def load_annotations(file): |
|
with open(file) as f: |
|
return json.load(f) |
|
|
|
def convert_and_save_annotations(annotated_files, cache_dir, from_res): |
|
width, height = map(int, from_res.split('x')) |
|
for file in tqdm(annotated_files, desc="Converting and saving annotations"): |
|
base_name = os.path.basename(file) |
|
output_file_path = os.path.join(cache_dir, f'{base_name}.txt') |
|
|
|
lane_annotations_path = os.path.join(file, "annotations", "lane_markings.json") |
|
|
|
try: |
|
lane_annotations = load_annotations(lane_annotations_path) |
|
except FileNotFoundError: |
|
with open(output_file_path, 'w') as f: |
|
f.write("") |
|
continue |
|
|
|
yolo_annotations = utils.convert_lane_annotations_to_yolo_seg_format(lane_annotations, class_mapping, width, height) |
|
|
|
with open(output_file_path, 'w') as f: |
|
if yolo_annotations: |
|
for line in yolo_annotations: |
|
f.write(f"{line}\n") |
|
else: |
|
|
|
f.write("") |
|
|
|
def split_files(list_of_files, train_split=0.8): |
|
random.shuffle(list_of_files) |
|
split_index = int(len(list_of_files) * train_split) |
|
return list_of_files[:split_index], list_of_files[split_index:] |
|
|
|
def prepare_yolo_dataset(train_files, val_files, from_res): |
|
dataset_dir = os.path.join(utils.ROOT_DIR, "dataset", f"yolo_seg_lane_{from_res}") |
|
train_dir = os.path.join(dataset_dir, "train") |
|
val_dir = os.path.join(dataset_dir, "val") |
|
|
|
if os.path.exists(dataset_dir): |
|
user_input = input(f"The dataset directory {dataset_dir} already exists. Do you want to remove it? (y/n): ") |
|
if user_input.lower() == 'y': |
|
shutil.rmtree(dataset_dir) |
|
else: |
|
print("Exiting without making changes.") |
|
return |
|
|
|
utils.check_and_create_dir(train_dir) |
|
utils.check_and_create_dir(val_dir) |
|
|
|
for file in tqdm(train_files, desc="Preparing YOLO train dataset"): |
|
base_name = os.path.splitext(os.path.basename(file))[0] |
|
image_file = os.path.join(utils.ROOT_DIR, "dataset", f'{from_res}_images', f'{base_name}.jpg') |
|
if os.path.exists(image_file): |
|
shutil.copy(os.path.join(utils.ROOT_DIR, '.cache', f'{from_res}_annotations', file), train_dir) |
|
shutil.copy(image_file, train_dir) |
|
|
|
for file in tqdm(val_files, desc="Preparing YOLO val dataset"): |
|
base_name = os.path.splitext(os.path.basename(file))[0] |
|
image_file = os.path.join(utils.ROOT_DIR, "dataset", f'{from_res}_images', f'{base_name}.jpg') |
|
if os.path.exists(image_file): |
|
shutil.copy(os.path.join(utils.ROOT_DIR, '.cache', f'{from_res}_annotations', file), val_dir) |
|
shutil.copy(image_file, val_dir) |
|
|
|
create_yaml_file(dataset_dir, train_dir, val_dir) |
|
|
|
def create_yaml_file(dataset_dir, train_dir, val_dir): |
|
yaml_content = { |
|
'path': dataset_dir, |
|
'train': 'train', |
|
'val': 'val', |
|
'names': { |
|
0: 'lm_solid', |
|
1: 'lm_dashed', |
|
} |
|
} |
|
|
|
yaml_file_path = os.path.join(dataset_dir, 'dataset.yaml') |
|
with open(yaml_file_path, 'w') as yaml_file: |
|
yaml.dump(yaml_content, yaml_file, default_flow_style=False) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
supported_resolutions = utils.get_supported_resolutions() |
|
str_supported_resolutions = ', '.join(supported_resolutions) |
|
parser.add_argument('--from_res', type=str, help=f'Choose available dataset: {str_supported_resolutions}', required=True) |
|
parser.add_argument('--cache_enabled', type=bool, help='Enable caching', default=False) |
|
args = parser.parse_args() |
|
|
|
if args.from_res not in supported_resolutions: |
|
print(f"Unsupported resolution. Supported resolutions are: {str_supported_resolutions}") |
|
exit(1) |
|
|
|
extract_base_dataset(args.from_res) |
|
|
|
annotated_files = utils.get_annotated_files_list() |
|
|
|
cache_dir = os.path.join(utils.ROOT_DIR, ".cache", f"{args.from_res}_annotations") |
|
if not args.cache_enabled: |
|
remove_cache_dir(cache_dir) |
|
create_cache_dir(cache_dir) |
|
|
|
paths_to_cleanup = [cache_dir, os.path.join(utils.ROOT_DIR, "dataset", f"yolo_seg_lane_{args.from_res}")] |
|
|
|
with SafeExecutor(paths_to_cleanup): |
|
convert_and_save_annotations(annotated_files, cache_dir, args.from_res) |
|
|
|
list_of_files = os.listdir(cache_dir) |
|
train_files, val_files = split_files(list_of_files) |
|
|
|
prepare_yolo_dataset(train_files, val_files, args.from_res) |
|
|
|
print("Annotations extracted and YOLO dataset prepared successfully") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|