{ "cells": [ { "cell_type": "markdown", "id": "dc3852ca", "metadata": {}, "source": [ "# Evaluate Classification" ] }, { "cell_type": "markdown", "id": "3a2d9fbf", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "markdown", "id": "45140c6e", "metadata": {}, "source": [ "#### Load the API key and libaries." ] }, { "cell_type": "code", "execution_count": 1, "id": "e7bf1b8e", "metadata": { "height": 115, "tags": [] }, "outputs": [], "source": [ "from src.Language_Evaluation import llm_language_evaluation\n", "from src.data_analysis import run_analysis\n", "import pandas as pd" ] }, { "cell_type": "markdown", "id": "10e95383", "metadata": { "height": 30 }, "source": [ "#### Load the Constants" ] }, { "cell_type": "code", "execution_count": 2, "id": "464a2aaa", "metadata": { "height": 47, "tags": [] }, "outputs": [], "source": [ "PATH = 'data/full_dataset.csv'\n", "MODEL = 'gpt-4' #\"gpt-3.5-turbo\" \"gpt-4-turbo-preview\"\n", "TEMPERATURE = 0.0\n", "N_REPETITIONS = 0\n", "REASONING = False\n", "LANGUAGES = ['spanish', 'tagalog', 'portuguese', 'english']" ] }, { "cell_type": "markdown", "id": "92663014", "metadata": {}, "source": [ "#### Run The Experiments:" ] }, { "cell_type": "code", "execution_count": 3, "id": "7c7ccfa1", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "N_REPETITIONS should be a positive integer, not 0\n", "N_REPETITIONS will be set to 1\n", "**************************************************\n", "Question 1: \n", "Language: spanish\n", "Question: \n", "¿En qué región ocular se encuentran fisiológicamente las células caliciformes?\n", "a) córnea.\n", "b) Limbus corneoscleral.\n", "c) Línea gris.\n", "d) Pliegue semilunar.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Aling bahagi ng mata ay kung saan matatagpuan ang mga caliciform cells?\n", "a) Cornea.\n", "b) Corneoscleral limbus.\n", "c) Grey line.\n", "d) Semilunar fold.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Em qual região ocular células caliciformes são fisiologicamente encontradas?\n", "a)Córnea.\n", "b)Limbo corneoescleral.\n", "c)Linha cinzenta.\n", "d)Prega semilunar.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: english\n", "Question: \n", "In which ocular region are caliciform cells physiologically found?\n", "a) Cornea.\n", "b) Corneoscleral limbus.\n", "c) Gray line.\n", "d) Semilunar fold.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 2: \n", "Language: spanish\n", "Question: \n", "Marque la alternativa que mejor correlaciona las características histológicas con los respectivos tejidos oculares:\n", "\n", "I. Monocapa de células estrechamente unidas por complejos de unión.\n", "II.Las estrías paralelas y regulares observadas bajo microscopía óptica, perpendicular al epitelio.\n", "Iii.Contiene células bipolares, células amacrinas, células horizontales y células Muller.\n", "IV.Contiene células magnocelulares, parvocelulares y coniocelulares.\n", "\n", "A. Fotorreceptores.\n", "B. Epitelio pigmentado de la retina.\n", "C. Capa ganglionar de la retina.\n", "D. Capa nuclear interna.\n", "\n", "a) I: A, II: C; III: D; IV: B.\n", "b) I: B; II:A; III: D; IV: C.\n", "c) I: B; II: A; III: C; IV: C.\n", "d) I: C; II: A; III: D; IV: B.\n", "Test #0: \n", "{'response': 'b) I: B; II:A; III: D; IV: C.'}\n", "Language: tagalog\n", "Question: \n", "Ipagpares ang bahagi ng retina sa Hanay B sa tamang paglalarawan ng itong mga katangian sa Hanay A.\n", "\n", "I. Isang hanay ng mga cells na mahigpit na pinagsasama-sama ng mga junctional complexes\n", "II. Pantay at regular na mga hanay ng cells, tadlong sa epithelium\n", "III. May iba't ibang klaseng cells ito, katulad ng bipolar cells, amacrine cells, horizontal cells, at Muller cells.\n", "IV. Mayroon ito ng magnocellular, parvocellular, at coniocellular cells.\n", "\n", "A. Photoreceptors.\n", "B. Retinal pigment epithelium.\n", "C. Retinal ganglionic layer.\n", "D. Inner Nuclear Layer.\n", "\n", "a) I: A, II: C; III: D; IV: B.\n", "b) I: B; II:A; III: D; IV: C.\n", "c) I: B; II: A; III: C; IV: C.\n", "d) I: C; II: A; III: D; IV: B.\n", "Test #0: \n", "{'response': 'b) I: B; II:A; III: D; IV: C.'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que melhor correlaciona as características histológicas com os respectivos tecidos oculares:\n", "\n", "I. Monocamada de células fortemente unidas por complexos juncionais.\n", "II. Estriações paralelas e regulares observadas à microscopia óptica, perpendiculares ao epitélio.\n", "III. Contém células bipolares, células amácrinas, células horizontais e células de Muller.\n", "IV. Contém células magnocelulares, parvocelulares e coniocelulares.\n", "\n", "A. Fotorreceptores.\n", "B. Epitélio pigmentado da pigmentado da retina.\n", "C. Camada ganglionar retiniana.\n", "D. Camada nuclear interna.\n", "\n", "a) I: A, II: C; III: D; IV: B.\n", "b) I: B; II:A; III: D; IV: C.\n", "c) I: B; II: A; III: C; IV: C.\n", "d) I: C; II: A; III: D; IV: B.\n", "Test #0: \n", "{'response': 'b) I: B; II:A; III: D; IV: C.'}\n", "Language: english\n", "Question: \n", "Mark the alternative that best correlates the histological characteristics with the respective ocular tissues:\n", "\n", "I. Monolayer of cells tightly joined together by junctional complexes.\n", "II. Parallel and regular striations observed under optical microscopy, perpendicular to the epithelium.\n", "III. It contains bipolar cells, amacrine cells, horizontal cells and Muller cells.\n", "IV. It contains magnocellular, parvocellular and coniocellular cells.\n", "\n", "A. Photoreceptors.\n", "B. Retinal pigmented epithelium.\n", "C. Retinal ganglionic layer.\n", "D. Inner nuclear layer.\n", "\n", "a) I: A, II: C; III: D; IV: B.\n", "b) I: B; II:A; III: D; IV: C.\n", "c) I: B; II: A; III: C; IV: C.\n", "d) I: C; II: A; III: D; IV: B.\n", "Test #0: \n", "{'response': 'b) I: B; II:A; III: D; IV: C.'}\n", "**************************************************\n", "**************************************************\n", "Question 3: \n", "Language: spanish\n", "Question: \n", "Ordene los tres nombres de células que se encuentran en el epitelio corneal, comenzando con el má superficial, seguidos por el intermedio y lo profundo.\n", "a) Plana, alada, basal.\n", "b) Alada, basal, plana.\n", "c) Basal, plana, alada.\n", "d) Alada, plana, basal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ipagsunud-sunod ang mga cells ng corneal epithelium, mula sa pinakamababaw hanggang sa pinakamalalim.\n", "a) Flat, wing, basal.\n", "b) Wing, basal, flat.\n", "c) Basal, flat, wing.\n", "d) Wing, flat, basal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Ordene as três denominações celulares encontradas no epitélio da córnea, iniciando pelo mais superficial, seguido do intermediário e do profundo.\n", "a)Plana, alada, basal.\n", "b)Alada, basal, plana.\n", "c)Basal, plana, alada.\n", "d)Alada, plana, basal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Order the three cell names found in the corneal epithelium, starting with the most superficial, followed by the intermediate and the deep.\n", "a) Flat, wing, basal.\n", "b) Wing, basal, flat.\n", "c) Basal, flat, wing.\n", "d) Wing, flat, basal.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 4: \n", "Language: spanish\n", "Question: \n", "Con respecto a la membrana de la córnea de Descemet, es correcto declarar:\n", "a) Las células endoteliales no participan en su formación.\n", "b) Su grosor en el adulto es de aproximadamente 30 µm.\n", "c) Su porción más anterior es de origen embrionario.\n", "d) Su grosor se reduce con la edad.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Tama tungkol sa Descemet's membrane ng cornea:\n", "a) Ang mga endothelial cells ay hindi nakikilahok sa pagbuo nito.\n", "b) Ang kapal nito ay halos 30 µm.\n", "c) Ang pinakaharap na bahagi ng Descemet's membrane ay nagmumula sa embryo.\n", "d) Kapag tumatanda, mas numinipis ang Descemet's membrane.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Sobre a membrana de Descemet da córnea, é correto afirmar:\n", "a)As células endoteliais não participam da sua formação.\n", "b)Sua espessura no adulto é de cerca de 30 µm.\n", "c)Sua porção mais anterior é de origem embrionária.\n", "d)Sua espessura reduz-se com a idade.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Regarding Descemet's membrane of the cornea, it is correct to state:\n", "a) Endothelial cells do not participate in its formation.\n", "b) Its thickness in the adult is about 30 µm.\n", "c) Its most anterior portion is of embryonic origin.\n", "d) Its thickness reduces with age.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 5: \n", "Language: spanish\n", "Question: \n", "Respecto a la capa lipídica de la película lagrimal, seleccionar la alternativa correcta.\n", "a) Su finalidad básica es estabilizar la película y es secretada por las glándulas de Meibomio y Manz.\n", "b) Entre sus componentes se encuentran los ésteres de colesterol y una de sus funciones es retrasar la evaporación de la película lagrimal.\n", "c) En la disfunción de las glándulas de Meibomio, el punto de fusión de su secreción disminuye, contribuyendo al estancamiento de estas sustancias.\n", "d) Puede valorarse por el tiempo de ruptura de la película lagrimal, permaneciendo intacta menos de cinco segundos en ojos sanos.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Piliin ang tamang sagot tungkol sa lipid layer ng lacrimal film.\n", "a) Ang lipidic layer ay nagpapatag ng lacrimal film na nanggagaling sa meibomian at manz glands.\n", "b) May laman itong mga cholesterol esters na nakakatulong sa pagbabagal ng pagtuyo ng luha.\n", "c) Kapag nagkakaroon ng meibomian gland dysfunction, bumababa ang fusion point na nagpapahinto ng produksyon ng lipid.\n", "d) Nasusuri ito gamit ang lacrial film break up time, kung saan ay walang lacrimal film break up hanggang 5 na segundo sa normal na mata.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Sobre a camada lipídica do filme lacrimal, assinale a alternativa correta. \n", "a)Tem por propósito básico estabilizar o filme e é secretada pelas glândulas de Meibomius e de Manz. \n", "b)Ésteres de colesterol estão entre seus componentes e uma de suas funções é retardar a evaporação do filme lacrimal. \n", "c)Na disfunção das glândulas de Meibomius, o ponto de fusão de sua secreção diminui, colaborando para a estagnação dessas substâncias. \n", "d)Pode ser avaliada pelo tempo de ruptura do filme lacrimal, permanecendo intacta por menos de cinco segundos em olhos saudáveis.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "About the lipidic layer of the lacrimal film, choose the right answer. \n", "a) its purpose is to stabilize the lacrimal film secreted by the meibomian and manz glans.\n", "b) Cholesterol esters are within its components, and one of the functions is to delay the lacrimal film evaporation. \n", "c) In meibomian gland dysfunction, the fusion point decrease, leading to stagnation.\n", "d) can be evaluated by the lacrimal film break up time, keeping intact less than five seconds in healthy eyes.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 6: \n", "Language: spanish\n", "Question: \n", "En cuanto a los músculos externos del ojo, seleccione la alternativa correcta.\n", "a) En la ley de Hering, la inervación se distribuye por igual entre los músculos agonistas y antagonistas, para una versión determinada.\n", "b) Los movimientos de seguimiento se producen de forma automática, lenta, moviendo el punto de fijación.\n", "c) En la ley de Sherrington, el estímulo de la contracción se distribuye entre los agonistas de ambos ojos, de modo que se produce de forma simétrica.\n", "d) Los movimientos sacádicos se caracterizan por movimientos bruscos, descoordinados y de carácter totalmente reflejo.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa mga extraocular muscles?\n", "a) Sa Hering's Law, ang stimulation na nakukuha ng isang ugat ay pantay sa agonist at antagonist muscles papunta sa isang ocular version.\n", "b) Ang persecutory movements ay kusang nangyayari, kung saan nag-iiba ang fixation point.\n", "c) Inilalahad ng Sherrington's Law na ang agonist muscle sa kaliwa't kanang mata ay makakakuha ng pantay na stimulus mula sa utak.\n", "d) Inilalarawan ang saccadic movements na matarik, hindi tugma, at bilang isang reflex movement.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Sobre os músculos oculares externos, assinale a alternativa correta.\n", "a)Na lei de Hering, a inervação se distribui igualmente para os músculos agonista e antagonista, para determinada versão.\n", "b)Os movimentos persecutórios se dão automaticamente, de maneira lenta, ao deslocamento do ponto de fixação.\n", "c)Na lei de Sherrington, o estímulo de contração é distribuído entre os agonistas de ambos os olhos, para que ela ocorra simetricamente.\n", "d)Os movimentos sacádicos são caracterizados por movimentos bruscos, descoordenados, de natureza totalmente reflexa.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the external ocular muscles, choose the correct answer. \n", "a) in the Hering's law, the innervation is equally distributed to the agosist and antagonist muscles, for a given ocular version. \n", "b) The persecutory movements will automatically occur, slowly, with the displacement of the fixation point.\n", "c) In the sherrington's law, the contraction stimulus is distributed between the agonists of both eyes, so that it occur symmetrically. \n", "d) Saccadic movements are characterized by abrupt, uncoordinated, reflex movments.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 7: \n", "Language: spanish\n", "Question: \n", "Sobre la córnea, es correcto decir:\n", "a) La disposición de las fibrillas de colágeno corneal no está relacionado con su transparencia.\n", "b) El pleomorfismo de las células endoteliales se caracteriza por el tamaño de estas células.\n", "c) Las células de estoma anteriores tienen una gran cantidad de mitocondrias, responsables de la producción de energía que suministra la bomba endotelial.\n", "d) El endotelio se comporta como una barrera permeable no selectiva entre el humor acuoso y su propia sustancia.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa cornea?\n", "a) Ang pag-aayos ng corneal collagen fibrils ay walang kaugnayan sa pagiging transparent nito.\n", "b) Ang pleomorphism ng mga endothelial cells ay nailalarawan sa pagkakaiba sa laki ng mga cell.\n", "c) Maraming mitochondria ang mga cell ng anterior stroma. Sila ay responsable para sa paggawa ng enerhiya para sa endothelial pump.\n", "d) Ang endothelium ay isang permeable non-selective barrier sa gitna ng aqueous humor at substantia propria.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Sobre a córnea, é correto afirmar:\n", "a)A disposição das fibrilas de colágeno corneanas não tem relação com a sua transparência.\n", "b)Pleomorfismo das células endoteliais é caracterizado pela variação do tamanho dessas células.\n", "c)As células do estroma anterior possuem grande quantidade de mitocôndrias, responsáveis pela produção de energia que supre a bomba endotelial.\n", "d)O endotélio comporta-se como uma barreira permeável não-seletiva entre o humor aquoso e a substância própria.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "About the cornea, it is correct to state. \n", "a) The arrangement of corneal collagen fibrils is unrelated to its transparency. \n", "b) Pleomorphism of endothelial cells is characterized by the variation in the size of these cells. \n", "c) anterior stroma have a large number of mitochondria, responsible for the production of energy that supplies the endothelial pump. \n", "d) The endothelium behaves as a permeable non-selective barrier between the aqueous humor and the substantia propria.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 8: \n", "Language: spanish\n", "Question: \n", "Elija la alternativa que llena correctamente los vacíos.La levocicloversión corresponde a ____________ del ojo derecho y ________ del ojo izquierdo y se activa cuando la cabeza está inclinada hacia el hombro___________.\n", "a) Excicloducción / incicloducción / izquierdo.\n", "b) incicloducción / excicloducción / izquierdo.\n", "c) Excicloducción / incicloducción / derecho.\n", "d) Incalducción / excicloducción / derecho.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Piliin ang tamang sagot: Ang levocycloversion ay tumutugma sa ____________ ng kanang mata at ________ ng kaliwang mata. Napapasimuno ito kapag pinaikot ang ulo sa ____ na balikat.\n", "a) Excicloduction / incicloduction / kaliwa\n", "b) incicloduction / excicloduction / kaliwa\n", "c) Excicloduction / incicloduction / kanan\n", "d) incicloduction / excicloduction / kanan\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que preenche corretamente as lacunas. A levocicloversão corresponde a ____________ do olho direito e ________ do olho esquerdo e é desencadeada quando se inclina a cabeça para o ombro___________.\n", "a)Exciclodução / inciclodução / esquerdo.\n", "b)Inciclodução / exciclodução / esquerdo.\n", "c)Exciclodução / inciclodução / direito.\n", "d)Inciclodução / exciclodução / direito.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Choose the alternative that correctly fills in the gaps. Levocycloversion corresponds to ____________ of the right eye and ________ of the left eye and is triggered when the head is tilted towards the ___ shoulder.\n", "a) Excicloduction / incicloduction / left.\n", "b) Incicloduction / excicloduction / left.\n", "c) Excicloduction / incicloduction / right.\n", "d) Incicloduction / excicloduction / right.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 9: \n", "Language: spanish\n", "Question: \n", "Con respecto a las células del cuerpo vítreo, marque la alternativa correcta.\n", "a) Son más numerosas en el adulto que en el vítreo embrionario.\n", "b) Están representadas principalmente por linfocitos y neutrófilos maduros.\n", "c) Son abundantes en la región de la base vítrea.\n", "d) Están ausentes en el recién nacido.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: tagalog\n", "Question: \n", "Alin ang tama tungkol sa mga vitreous cells?\n", "a) Mas marami ang vitreous cells sa matatanda kumpara sa isang embryo.\n", "b) Karamihan sa mga cell na matatagpo sa vitreous ay lymphocytes at mature neutrophils.\n", "c) Sila ay sagana sa rehiyon ng vitreous base.\n", "d) Walang vitreous cells na matatagpo sa mga bagong panganak.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Com relação às células do corpo vítreo, assinale a alternativa correta.\n", "a)São mais numerosos no adulto, comparativamente às do vítreo embrionário.\n", "b)São representadas principalmente por linfócitos e neutrófilos maduros.\n", "c)São abundantes na região da base vítrea.\n", "d)Estão ausentes no recém-nascido.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the vitreous body cells, mark the correct alternative.\n", "a) They are more numerous in the adult than in the embryonic vitreous.\n", "b) They are mainly represented by lymphocytes and mature neutrophils.\n", "c) They are abundant in the region of the vitreous base.\n", "d) They are absent in the newborn.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 10: \n", "Language: spanish\n", "Question: \n", "Con respecto a la fisiología de los músculos oculomotores, marque la alternativa correcta.\n", "a) La contracción muscular es independiente de la disponibilidad de calcio.\n", "b) La fibra muscular es una célula multinucleada.\n", "c) Cada contracción muscular es el resultado de un ciclo único de formación y destrucción de los puentes de actina-miosina.\n", "d) La relajación muscular depende principalmente de la disponibilidad de sodio.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa pisyolohiya ng mga extraocular muscles?\n", "a) Ang paggalaw ng mga extraocular muscle ay hindi nagdedepende sa karamihan ng calcium sa katawan.\n", "b) Ang muscle fiber ay may maraming nucleus.\n", "c) Ang bawat muscle contraction ay resulta ng panibagong pagbuo at pagkasira ng mga actin-myosin bridges.\n", "d) Ang pagpahinga ng mga oculomotor muscle ay nagdedepende sa karamihan ng sodium sa katawan.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Com relação à fisiologia dos músculos oculomotores, assinale a alternativa correta.\n", "a)A contração muscular independe da disponibilidade de cálcio.\n", "b)A fibra muscular é uma célula multinucleada.\n", "c)Cada contração muscular é resultado de um ciclo único de formação e destruição de pontes de actina-miosina.\n", "d)O relaxamento muscular depende principalmente da disponibilidade de sódio.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding the physiology of the oculomotor muscles, mark the correct alternative.\n", "a) Muscle contraction is independent of calcium availability.\n", "b) The muscle fiber is a multinucleated cell.\n", "c) Each muscle contraction is the result of a unique cycle of formation and destruction of actin-myosin bridges.\n", "d) Muscle relaxation rely mainly on sodium availability.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 11: \n", "Language: spanish\n", "Question: \n", "Con respecto a la lente, marque la alternativa correcta.\n", "a) Aunque su volumen aumenta con la edad, su peso permanece constante.\n", "b) La proteólisis de sus fibras es el mecanismo principal de su crecimiento celular.\n", "c) La síntesis de sus proteínas tiene lugar durante la diferenciación de la célula en fibra.\n", "d) Su síntesis de proteínas es continua durante toda la vida, manteniendo la plasticidad y la elasticidad estables desde la infancia hasta el envejecimiento.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga susunod ang tama tungkol sa lente ng mata?\n", "a) Sa pagtanda, lumalaki ang lente ng mata pero hindi siya bumibigat.\n", "b) Ang paglago ng mga cell ng lente ay dahil sa mekanismo ng proteolysis ng mga fiber.\n", "c) Ang paggawa ng mga protina ng lente ay nagaganap sa differentiation stage ng mga fiber.\n", "d) Ang paggawa ng lente ng mga protina ay nangyayari habambuhay, kaya nananatili ang plasticity at elasticity ng lente.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao cristalino, assinale a alternativa correta.\n", "a)Embora seu volume aumente com a idade, seu peso mantém-se constante.\n", "b)A proteólise de suas fibras é o principal mecanismo de seu crescimento celular.\n", "c)A síntese de suas proteínas processa-se durante a diferenciação da célula em fibra.\n", "d)Sua síntese proteica é continua ao longo da vida, mantendo plasticidade e elasticidade estáveis da infância ao envelhecimento.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "With regard to the lens, mark the correct alternative.\n", "a) Although its volume increases with age, its weight remains constant.\n", "b) The proteolysis of its fibers is the main mechanism of its cellular growth.\n", "c) The synthesis of its proteins takes place during the differentiation of the cell into fiber.\n", "d) Its protein synthesis is continuous throughout life, maintaining stable plasticity and elasticity from childhood to aging.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 12: \n", "Language: spanish\n", "Question: \n", "Un paciente con artrosis ha estado usando altas dosis de cloroquina durante años.Se cree que este medicamento puede causar mal funcionamiento del epitelio de pigmento retiniano, ya que:\n", "a) obstaculiza la síntesis de melanina.\n", "b) obstaculiza la fagocitosis de los discos de los segmentos externos del fotorreceptor.\n", "c) obstaculiza el transporte de iones intracelulares.\n", "d) favorece el intercambio de calor entre los fotorreceptores y el coroides.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "May isang pasyente na may arthrosis na matagal nang rineresetahan ng chloroquine. Ang chloroquine ay nagiging sanhi ng pagkasira ng retinal pigment epithelium sa pamamagitan ng:\n", "a) pagpigil ng paggawa ng melanin.\n", "b) pagpigil ng pagpapatay ng mga disks ng photoreceptor outer segments.\n", "c) pagbabawas ng pagpasok ng mga intracellular ion sa retinal pigment epithelium.\n", "d) pagpabor sa matinding heat exchange ng mga photoreceptor at ang choroid.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "Paciente com artrose faz uso de altas doses de cloroquina há anos. Acredita-se que essa droga pode causar mau funcionamento do epitélio pigmentar retiniano, uma vez que:\n", "a)Impede a síntese de melanina.\n", "b)Impede a fagocitose dos discos dos segmentos externos dos fotorreceptores.\n", "c)Impede o transporte de íons intracelulares.\n", "d)Favorece a intensa troca de calor entre os fotorreceptores e a coroide.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "A patient with arthrosis has been using high doses of chloroquine for years. It is believed that this drug can cause malfunction of the retinal pigment epithelium, since:\n", "a) It hinders the synthesis of melanin.\n", "b) It hinders phagocytosis of the disks of the photoreceptor outer segments.\n", "c) It hinders the transport of intracellular ions.\n", "d) It favors intense heat exchange between the photoreceptors and the choroid.\n", "Test #0: \n", "{'response': 'b'}\n", "**************************************************\n", "**************************************************\n", "Question 13: \n", "Language: spanish\n", "Question: \n", "Con respecto al flujo sanguíneo en la coroides, es posible indicar:\n", "a) Es responsable de toda nutrición de la retina.\n", "b) Es responsable del 95% de la glucosa consumida en la parte interna de la retina.\n", "c) Participa en la regulación térmica de los fotorreceptores.\n", "d) Los esfínteres precapilares evitan el hiperflojo de la sangre en áreas nobles como la mácula.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Posibleng masabi tungkol sa pagdaloy ng dugo sa choroid:\n", "a) Ito ay nagbibigay ng lahat ng sustansya ng retina.\n", "b) Ito ay nagbibigay ng 95% ng glucose para sa panloob na bahagi ng retina.\n", "c) Nakikilahok ito sa thermal regulation ng mga photoreceptor.\n", "d) Ang mga pre-capillary sphincters ay pumipigil sa lubos na pagdaloy ng dugo sa mga importanteng bahagi ng retina, katulad ng macula.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao fluxo sanguíneo na coroide, podemos afirmar:\n", "a)É responsável por toda nutrição da retina.\n", "b)É responsável por 95% da glicose consumida na parte interna da retina.\n", "c)Participa da regulação térmica dos fotorreceptores.\n", "d)Os esfíncteres pré-capilares previnem o hiperfluxo de sangue em áreas nobres como a mácula.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the blood flow in the choroid, it is possible to state:\n", "a) It is responsible for all nutrition of the retina.\n", "b) It is responsible for 95% of the glucose consumed in the inner part of the retina.\n", "c)Participates in the thermal regulation of photoreceptors.\n", "d) The pre-capillary sphincters prevent the hyperflow of blood in noble areas such as the macula.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 14: \n", "Language: spanish\n", "Question: \n", "Respecto a la embriología de la coroides, es correcto afirmar que:\n", "a) La coriocapilar es la primera en formarse, con posterior formación de los grandes vasos.\n", "b) La lámina basal da lugar a la membrana de Bruch, que se sitúa entre los coriocapilares y la capa de Sattler.\n", "c) La capa vascular intermedia es la última en formarse y se desarrolla desde el cuerpo ciliar hacia el ecuador.\n", "d) El estroma coroideo se produce esencialmente a partir de células del mesodermo.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa embryology ng choroid?\n", "a) Nauunang mabuo ang mga choriocapillaris, na sinusundan ng pagbuo ng malalaking ugat.\n", "b) Ang Bruch's membrane ay nanggagaling sa basal lamina, na nakalatag sa kalagitnaan ng choriocapillaris at Sattler's layer.\n", "c) Ang intermediate vascular layer ay huling nabubuo galing sa ciliary body malapit sa gitna ng mata.\n", "d) Ang choroidal stroma ay nanggagaling sa mesoderm cells. \n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Sobre a embriologia da coroide, é correto afirmar:\n", "a)A coriocapilar é a primeira a se formar, com posterior formação dos grandes vasos.\n", "b)A lâmina basal dá origem à membrana de Bruch que se situa entre o coriocapilar e a camada de Sattler.\n", "c)A camada vascular intermediária é a última a se formar e desenvolve-se do corpo ciliar em direção ao equador.\n", "d)O estroma da coroide é essencialmente produzido a partir de células do mesoderma.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Regarding the embryology of the choroid, it is correct to state:\n", "a) The choriocapillaris is the first to be formed, with subsequent formation of the great vessels.\n", "b) The basal lamina originate the Bruch's membrane, which lies between the choriocapillaris and Sattler's layer.\n", "c) The intermediate vascular layer is the last to form and develops from the ciliary body towards the equator.\n", "d) The choroidal stroma is essentially produced from mesoderm cells.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 15: \n", "Language: spanish\n", "Question: \n", "Con respecto a la embriología ocular, es correcto establecer que:\n", "a) El epitelio corneal surge de las células de la cresta neural.\n", "b) Al nacer, la córnea y la esclera tienen el mismo radio de curvatura.\n", "c) La capa de Bowman aparece entre el primer y el segundo mes de embarazo.\n", "d) La córnea se desarrolla a partir de las células de la superficie ectodérmica y la cresta neural.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ay tama tungkol sa ocular embryology?\n", "a) Ang corneal epithelium ay nanggagaling sa neural crest cells.\n", "b) Sa panganganak, ang cornea at sclera ay may parehong curvature radius.\n", "c) Ang Bowman's layer ay nabubuo sa gitna ng pang-una at pangalawang buwan ng pagbubuntis.\n", "d) Ang cornea ay nanggagaling sa ectodermal surface at neural crest cells.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Com relação à embriologia ocular, é correto afirmar:\n", "a)O epitélio da córnea origina-se a partir das células da crista neural.\n", "b)Ao nascimento, córnea e esclera apresentam o mesmo raio de curvatura.\n", "c)A camada de Bowman surge entre o primeiro e o segundo mês de gestação.\n", "d)A córnea desenvolve-se a partir da superfície ectodérmica e das células da crista neural.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Regarding ocular embryology, it is correct to state:\n", "a) Corneal epithelium arises from neural crest cells.\n", "b) At birth, the cornea and sclera have the same curvature radius.\n", "c) Bowman's layer appears between the first and second month of pregnancy.\n", "d) The cornea develops from the ectodermal surface and neural crest cells.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 16: \n", "Language: spanish\n", "Question: \n", "Con respecto a las enfermedades de herencia dominantes autosómicas, es correcto afirmar que:\n", "a) En general, se observan en varias gestaciones.\n", "b) Los hombres tienden a verse más afectados que las mujeres.\n", "c) La gravedad de la enfermedad es siempre la misma entre las personas afectadas de la misma familia.\n", "d) Solo las mujeres transmiten la mutación.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ay tama tungkol sa sakit na namamana sa autosomal dominance?\n", "a) Sa pangkalahatan, makikita ito sa maraming pagbubuntis.\n", "b) Mas apektado ang mga lalaki kaysa sa mga babae.\n", "c) Ang kalubhaan ng sakit ay pareho sa lahat ng apektadong tao mula sa isang pamilya.\n", "d) Ang mga kababaihan lamang ang may dala ng mutation.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Sobre as doenças de herança autossômica dominante, é correto afirmar:\n", "a)Em geral, são observadas em várias gestações.\n", "b)Os homens costumam ser mais afetados do que as mulheres.\n", "c)A gravidade da doença é sempre a mesma entre as pessoas afetadas da mesma família.\n", "d)Apenas as mulheres transmitem a mutação.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Regarding the autosomal dominant inheritance diseases, it is correct to state:\n", "a) In general, they are observed in several gestations.\n", "b) Men tend to be more affected than women.\n", "c) The severity of the disease is always the same among affected people from the same family.\n", "d) Only women transmit the mutation.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 17: \n", "Language: spanish\n", "Question: \n", "Con respecto a las enfermedades de la herencia mitocondrial, es correcto declarar:\n", "a) El daltonismo es un ejemplo de una enfermedad relacionada con el ADN mitocondrial.\n", "b) La herencia ocurre solo a través del linaje materna.\n", "c) Los pacientes masculinos asistidos por la enfermedad transmitirán el fenotipo a todos los descendientes.\n", "d) La neuropatía óptica hereditaria de Leber es un ejemplo de una enfermedad relacionada con el ADN mitocondrial, generalmente causa ceguera congénita y afecta a los pacientes de ambos sexos en la misma proporción.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ay tama tungkol sa mitochondrial inherited diseases?\n", "a) Ang Daltonism ay isang halimbawa ng mitochondrial inherited disease.\n", "b) Ang pagmana ng mitochondrial inherited diseases ay galing sa mga ina lamang.\n", "c) Maipapasa ng isang lalaking apektado ng mitochondrial inherited disease sa lahat ng kanyang anak.\n", "d) Ang Leber's hereditary optic neuropathy ay halimbawa ng mitochondrial inherited disease, at karaniwang nagiging sanhi ng maagang pagbubulag sa parehong lalaki at babae.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Sobre as doenças de padrão de herança mitocondrial, é correto afirmar:\n", "a)Daltonismo é um exemplo de doença ligada ao DNA mitocondrial.\n", "b)A herança ocorre apenas pela linhagem materna.\n", "c)Pacientes do sexo masculino afetados pela doença, transmitirão o fenótipo para toda a prole.\n", "d)A neuropatia óptica hereditária de Leber é um exemplo de doença ligada ao DNA mitocondrial, causa geralmente cegueira congênita e afeta na mesma proporção pacientes de ambos os sexos.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding mitochondrial inheritance diseases, it is correct to state:\n", "a) Daltonism is an example of a disease linked to mitochondrial DNA.\n", "b) Inheritance occurs only through maternal lineage.\n", "c) Male patients afectados by the disease will transmit the phenotype to all offspring.\n", "d) Leber's hereditary optic neuropathy is an example of a disease linked to mitochondrial DNA, it usually causes congenital blindness and affects patients of both sexes in the same proportion.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 18: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes lentes corrige mejor el astigmatismo miope simple?\n", "a)-3,00 dioptría esférica + 1,00 dioptría cilíndrica X 90°.\n", "b)+1,00 dioptría esférica -1,00 dioptría cilíndrica X 90°.\n", "c)-3,00 dioptría esférica + 3,00 dioptría cilíndrica X 180°.\n", "d)0,00 dioptría esférica +1,00 dioptría cilíndrica X 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga lente ay pinakamabuting naitatama ang simpleng myopic astigmatism?\n", "a) -3.00 spherical diopter + 1.00 cylindrical diopter x 90 °.\n", "b) +1.00 spherical diopter -1.00 cylindrical diopter x 90 °.\n", "c) -3.00 spherical diopter + 3.00 cylindrical diopter x 180 °.\n", "d) 0.00 spherical diopter +1.00 cylindrical diopter x 180 °.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual das lentes abaixo melhor corrige um astigmatismo miópico simples?\n", "a)-3,00 dioptria esférica + 1,00 dioptria cilindrica X 90°.\n", "b)+1,00 dioptria esférica -1,00 dioptria cilindrica X 90°.\n", "c)-3,00 dioptria esférica + 3,00 dioptria cilindrica X 180°.\n", "d)0,00 dioptria esférica +1,00 dioptria cilindrica X 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Which of the lenses below best corrects simple myopic astigmatism?\n", "a)-3.00 spherical diopter + 1.00 cylindrical diopter X 90°.\n", "b) +1.00 spherical diopter -1.00 cylindrical diopter X 90°.\n", "c)-3.00 spherical diopter + 3.00 cylindrical diopter X 180°.\n", "d) 0.00 spherical diopter +1.00 cylindrical diopter X 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 19: \n", "Language: spanish\n", "Question: \n", "¿Cuál es la distancia focal del círculo de menor confusión en el conoide de Sturm de una lente esferocilíndrica de +1,00 DE +2,00 DC X 180°?\n", "a)0 metros.\n", "b) 0,5 metros.\n", "c)1 metros.\n", "d) 2 metros.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ano ang focal length ng circle of least confusion sa Sturm's conoid na may sukat ng +1.00 DS and +2.00 DC x 180 ° spherocylindrical lens?\n", "a) 0 m.\n", "b) 0.5 m.\n", "c) 1 m.\n", "d) 2 m.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Qual é a distância focal do círculo de menor confusão no conoide de Sturm de uma lente esferocilíndrica de +1,00 DE +2,00 DC X 180°?\n", "a)0 metros.\n", "b)0,5 metros.\n", "c)1 metros.\n", "d)2 metros.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "What is the focal length of the circle of least confusion on Sturm's conoid of a +1.00 OD +2.00 DC X 180° spherocylindrical lens?\n", "a) 0 m.\n", "b) 0.5 m.\n", "c) 1 m.\n", "d) 2 m.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 20: \n", "Language: spanish\n", "Question: \n", "Un punto objetivo situado a dos metros de una lente convexa 2 DE forma un punto de imagen ¿a qué distancia de la lente?\n", "a) 2,0 metros.\n", "b) 1,5 metros.\n", "c) 0,67 metros.\n", "d) 0,4 m.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang objective point na dalawang metro ang layo mula sa 2 DE convex lens ay gumagawa ng image point sa anong distansya mula sa lente?\n", "a) 2.0 m.\n", "b) 1.5 m.\n", "c) 0.67 m.\n", "d) 0.4 m.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um ponto objetivo situado a dois metros de uma lente convexa de 2 DE forma um ponto imagem a que distância da lente?\n", "a)2,0 m.\n", "b)1,5 m.\n", "c)0,67 m.\n", "d)0,4 m.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "An objective point located two meters from a 2 DE convex lens forms an image point at what distance from the lens?\n", "a)2.0 m.\n", "b)1.5 m.\n", "c)0.67 m.\n", "d)0.4 m.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 21: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes valores en el logaritmo decimal (logMar) corresponde a la agudeza visual normal (1.0)?\n", "a) -1.\n", "b) 0.\n", "c) 1.\n", "d) 2.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na decimal logarithm (LogMAR) ay katugma ng normal na visual acuity (1.0)?\n", "a) -1.\n", "b) 0.\n", "c) 1.\n", "d) 2.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Qual dos valores abaixo em logaritmo decimal (logMAR) corresponde a acuidade visual normal (1,0)?\n", "a)-1.\n", "b)0.\n", "c)1.\n", "d)2.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: english\n", "Question: \n", "Which of the following values ​​in decimal logarithm (logMAR) corresponds to normal visual acuity (1.0)?\n", "a) -1.\n", "b)0.\n", "c)1.\n", "d)2.\n", "Test #0: \n", "{'response': 'b'}\n", "**************************************************\n", "**************************************************\n", "Question 22: \n", "Language: spanish\n", "Question: \n", "¿Cuál es el efecto óptico resultante de la interpolación de dos filtros polaroides perpendiculares entre sí?\n", "a) Transmisión reducida en un 50%.\n", "b) Transmisión ampliada en un 50%.\n", "c) Ausencia de transmisión luminosa.\n", "D) Sin pérdida de energía luminosa.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ano ang optical effect na nagreresulta sa interpolation ng dalawang polaroid filters na perpendikular sa bawa't isa?\n", "a) Ang pagdaloy ng ilaw ay nabawasan ng 50%.\n", "b) Ang pagdaloy ng ilaw ay nadagdagan ng 50%.\n", "c) Walang pagdaloy ng ilaw ang nagaganap.\n", "d) Walang light energy ang nababawasan.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Qual o efeito óptico decorrente da interpolação de dois filtros polaroides perpendiculares entre si?\n", "a)Transmissão reduzida em 50%.\n", "b)Transmissão ampliada em 50%.\n", "c)Ausência de transmissão luminosa.\n", "d)Nenhuma perda de energia luminosa.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "What is the optical effect resulting from the interpolation of two polaroid filters perpendicular to each other?\n", "a) Transmission is reduced by 50%.\n", "b) Transmission is increased by 50%.\n", "c) Absence of light transmission.\n", "d)No loss of light energy.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 23: \n", "Language: spanish\n", "Question: \n", "¿En cuál de los materiales es la velocidad de la luz más baja?\n", "a) aire.\n", "b) diamante.\n", "c) vidrio.\n", "d) La velocidad de la luz es constante independientemente del medio.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Aling materyales ang may pinakamabagal ang daloy ng ilaw?\n", "a) Hangin.\n", "b) Brilyante.\n", "c) Salamin.\n", "d) Ang bilis ng ilaw ay pare-pareho anuman ang daluyan nito.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Em qual dos materiais abaixo a velocidade da luz é a menor?\n", "a)Ar.\n", "b)Diamante.\n", "c)Vidro.\n", "d)A velocidade da luz é constante independente do meio.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "In which of the materials is the speed of light the lowest?\n", "a) Air.\n", "b) Diamond.\n", "c) Glass.\n", "d) The speed of light is constant regardless of the medium.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 24: \n", "Language: spanish\n", "Question: \n", "Marque la alternativa que corresponde a un reflejo de un espejo convexo.\n", "a) queratoscopia con disco placido.\n", "b) Espejo de afeitar.\n", "c) Mirror del dentista.\n", "d) Lechas de faro reflector.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin ang katumbas ng repleksyon mula sa isang salamin na convex?\n", "a) Keratoscopy na may Placido disc.\n", "b) Salamin na ginagamit sa pag-ahit\n", "c) Salamin ng dentista.\n", "d) Reflector headlamp.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que corresponde a uma reflexão de um espelho convexo.\n", "a)Ceratoscopia com disco de Plácido.\n", "b)Espelho de barbear.\n", "c)Espelho do dentista.\n", "d)Farol refletor.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Choose which corresponds to a reflection from a convex mirror.\n", "a) Keratoscopy with Placido disc.\n", "b) Shaving mirror.\n", "c) Dentist's mirror.\n", "d) Reflector headlamp.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 25: \n", "Language: spanish\n", "Question: \n", "Una lente convergente enfoca la luz desde una fuente a 1 m a una distancia de 50 cm.¿Qué tan poderosa es esta lente?\n", "a) + 1 diopter.\n", "b) + 2 diopter.\n", "c) + 3 diopter.\n", "d) + 4 diopter.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: tagalog\n", "Question: \n", "Ang isang converging lens ay nagpopokus ng ilaw na mula 1 metro sa distansya na 50cm. Ano ang power ng lenteng ito?\n", "a) + 1 diopter.\n", "b) + 2 diopter.\n", "c) + 3 diopter.\n", "d) + 4 diopter.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "Uma lente convergente foca a luz proveniente de uma fonte situada a 1 m a uma distância de 50 cm. Qual o poder desta lente?\n", "a)+ 1 dioptria.\n", "b)+ 2 dioptria.\n", "c)+ 3 dioptria.\n", "d)+ 4 dioptria.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: english\n", "Question: \n", "\n", "A converging lens focuses light from a source 1 m away at a distance of 50 cm. How powerful is this lens?\n", "a) + 1 diopter.\n", "b) + 2 diopter.\n", "c) + 3 diopter.\n", "d) + 4 diopter.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 26: \n", "Language: spanish\n", "Question: \n", "Si tuviéramos que medir la imagen de potencia focal de la superficie posterior de la córnea después de su extracción del globo ocular, tendríamos un valor alrededor (considérese la curvatura anterior de la córnea de 7,7 mm; la curvatura posterior de la córnea de 6,8 mm; la índice de refracción del estroma corneal 1,376 y el índice de refracción del aire 1,00):\n", "a)+ 5,00 Dioptrías.\n", "b)0,00 dioptrías.\n", "c)- 5,00 Dioptrías.\n", "d)- 55,00 Dioptrías.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Ang focal power ng imahe sa posterior surface ng cornea pagkatapos itong tanggalin sa mata ay:\n", "Isaalang-alang na ang anterior curvatur ng cornea ay 7.7mm, ang posterior curvature 6.8mm, ang index ng corneal stroma refraction 1.376, at ang refractive index ng hangin ay 1.00\n", "a) + 5.00 dioptres.\n", "b) 0.00 dioptres.\n", "c)- 5.00 dioptres.\n", "d)- 55.00 dioptres.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Se fossemos medir o poder focal imagem da face posterior da córnea após sua retirada do globo ocular, teríamos um valor ao redor de (considere a curvatura anterior da córnea 7,7 mm; a curvatura posterior da córnea 6,8 mm; o índice de refração do estroma corneano 1,376 e o índice de refração do ar 1,00):\n", "a)+ 5,00 Dioptrias.\n", "b)0,00 Dioptrias.\n", "c)- 5,00 Dioptrias.\n", "d)- 55,00 Dioptrias.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "If we were to measure the focal power of the image of the posterior surface of the cornea after its removal from the eyeball, we would have a value around (consider the anterior curvature of the cornea 7.7 mm; the posterior curvature of the cornea 6.8 mm; the index of corneal stroma refraction 1.376 and the refractive index of air 1.00):\n", "a) + 5.00 Dioptres.\n", "b) 0.00 Dioptres.\n", "c)- 5.00 Dioptres.\n", "d)- 55.00 Dioptres.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 27: \n", "Language: spanish\n", "Question: \n", "Al reducir la prescripción del cilindro en un paciente que no se ha adaptado a sus gafas con la siguiente prescripción -1.50 dioptría esférica < > -3.50 dioptría cilíndrica X 180°, una posible prescripción manteniendo el equivalente esférico es:\n", "a)- 2,50 dioptrías esféricas < > -2,50 dioptrías cilíndricas X 180°.\n", "b)+1,50 dioptría esférica < > -2,50 dioptría cilíndrica X 180°.\n", "c) -4,50 dioptrías esféricas < > +2,50 dioptrías cilíndricas X 90°.\n", "d)-2,50 dioptría esférica < > +3,00 dioptría cilíndrica X 90°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Hindi nakasanayan ng isang pasyente ang kanyang mga salamin na -1.50 spherical diopter < > -3.50 cylindrical diopter X 180° ang sukat. Alin ang tamang pagbabawas ng cylinder na sukat habang ipanatili ang katumbas niyang sphere?\n", "a) - 2.50 spherical diopter <> -2.50 cylindrical diopter x 180 °.\n", "b) +1.50 spherical diopter <> -2.50 cylindrical diopter x 180 °.\n", "c) -4.50 spherical diopter <> +2.50 cylindrical diopter x 90 °.\n", "d) -2.50 spherical diopter <> +3.00 cylindrical diopter x 90 °\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Ao reduzirmos a prescrição do cilindro em um paciente que não se adaptou a seus óculos com a seguinte prescrição -1,50 Diotria esferica < > -3,50 dioptria cilindrica X 180°, uma possível prescrição mantendo o equivalente esférico é:\n", "a)- 2,50 dioptria esferica < > -2,50 dioptria cilindrica X 180°.\n", "b)+1,50 dioptria esferica < > -2,50 dioptria cilindrica X 180°.\n", "c)-4,50 dioptria esferica < > +2,50 dioptria cilindrica X 90°.\n", "d)-2,50 dioptria esferica < > +3,00 dioptria cilindrica X 90°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "When reducing the cylinder prescription in a patient who did not adapt to his glasses with the following prescription -1.50 spherical diopter < > -3.50 cylindrical diopter X 180°, a possible prescription maintaining the spherical equivalent is:\n", "a)- 2.50 spherical diopter < > -2.50 cylindrical diopter X 180°.\n", "b) +1.50 spherical diopter < > -2.50 cylindrical diopter X 180°.\n", "c) -4.50 spherical diopter < > +2.50 cylindrical diopter X 90°.\n", "d) -2.50 spherical diopter < > +3.00 cylindrical diopter X 90°\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 28: \n", "Language: spanish\n", "Question: \n", "Un rayo de luz se desvía a 20 mm del eje visual a una distancia de 50 cm de un prisma.¿Cuál es el poder del prisma en los diopters-prismáticos?\n", "a) 0.4.\n", "b) 2.5.\n", "c) 4.\n", "d) 10.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Lumiwas ang isang ilaw ng 20mm mula sa visual axis sa distansya na 50cm mula sa isang prisma. Ano ang power ng primsa sa sukat ng diopters-prismatics?\n", "a) 0.4.\n", "b) 2.5.\n", "c) 4.\n", "d) 10.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "Um raio de luz sofre desvio de 20 mm do eixo visual a uma distância de 50 cm de um prima. Qual é o poder do prisma em dioptrias-prismáticas?\n", "a)0,4.\n", "b)2,5.\n", "c)4.\n", "d)10.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "A light ray is deviated by 20 mm from the visual axis at a distance of 50 cm from a prism. What is the power of the prism in diopters-prismatics?\n", "a) 0.4.\n", "b)2.5.\n", "c)4.\n", "d) 10.\n", "Test #0: \n", "{'response': 'a'}\n", "**************************************************\n", "**************************************************\n", "Question 29: \n", "Language: spanish\n", "Question: \n", "Teniendo en cuenta el ojo esquemático de Gullstrand, ¿cuál es la característica de la imagen formada en la retina?\n", "a) Real, invertido.\n", "b) virtual, invertido.\n", "c) Real, directo.\n", "d) Virtual, directo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Sa Gullstrand's schematic eye, paano mailalarawan ang imahe na nabubuo sa retina?\n", "a) Tunay, baligtad.\n", "b) virtual, baligtad.\n", "c) Tunay, direkta.\n", "d) virtual, direkta.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: portuguese\n", "Question: \n", "Considerando o olho esquemático de Gullstrand, qual a característica da imagem formada na retina?\n", "a)Real, invertida.\n", "b)Virtual, invertida.\n", "c)Real, direta.\n", "d)Virtual, direta.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "\n", "Considering Gullstrand's schematic eye, what is the characteristic of the image formed on the retina?\n", "a) Real, inverted.\n", "b) Virtual, inverted.\n", "c) Real, direct.\n", "d) Virtual, direct.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 30: \n", "Language: spanish\n", "Question: \n", "Seleccione la alternativa que correlacione correctamente las clases de antibacterianos con sus respectivos sitios principales de acción.\n", "\n", "I- Cefalosporinas\n", "II- Tetraciclinas\n", "III- Quinolonas\n", "IV- Macrólidos\n", "\n", "A- Síntesis de proteínas (inhibidor de los 30)\n", "B- Síntesis de proteínas (inhibidor de los años 50)\n", "C-ADN girasa\n", "D- Síntesis de la pared celular\n", "\n", "a)I: A; II: D; III: D; IV: B.\n", "b)I: D; II: A; III: C; IV: B.\n", "c)I: A; II: D; III: B; IV: C.\n", "d)I: D; II: B; III: A; IV: C.\n", "Test #0: \n", "{'response': 'b)I: D; II: A; III: C; IV: B.'}\n", "Language: tagalog\n", "Question: \n", "Ipagpares ang mga klase ng antibiotics sa kanilang pangunahing site of action.\n", "\n", "I- Cephalosporins\n", "II- Tetracyclines\n", "III- quinolones\n", "IV- Macrolides\n", "\n", "A- Protein Synthesis (30S Inhibitor)\n", "B- Protein Synthesis (50s Inhibitor)\n", "C- DNA Gyrase\n", "D- Cell Wall Synthesis\n", "\n", "a)I: A; II: D; III: D; IV: B.\n", "b)I: D; II: A; III: C; IV: B.\n", "c)I: A; II: D; III: B; IV: C.\n", "d)I: D; II: B; III: A; IV: C.\n", "Test #0: \n", "{'response': 'b)I: D; II: A; III: C; IV: B.'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que correlaciona corretamente as classes de antibacterianos aos seus respectivos principais sítios de ação.\n", "\n", "I- Cefalosporinas\n", "II- Tetraciclínicas\n", "III- Quinolonas\n", "IV- Macrolídeos\n", "\n", "A- Síntese proteica (inibidor 30s)\n", "B- Síntese proteica (inibidor 50s)\n", "C- DNA girase\n", "D- Síntese de parede celular\n", "\n", "a)I: A; II: D; III: D; IV: B.\n", "b)I: D; II: A; III: C; IV: B.\n", "c)I: A; II: D; III: B; IV: C.\n", "d)I: D; II: B; III: A; IV: C.\n", "Test #0: \n", "{'response': 'b)I: D; II: A; III: C; IV: B.'}\n", "Language: english\n", "Question: \n", "Match the classes of antibacterials to their respective main sites of action.\n", "\n", "I- Cephalosporins\n", "II- Tetracyclines\n", "III- Quinolones\n", "IV- Macrolides\n", "\n", "A- Protein synthesis (30s inhibitor)\n", "B- Protein synthesis (50s inhibitor)\n", "C- DNA gyrase\n", "D- Cell wall synthesis\n", "\n", "a)I: A; II: D; III: D; IV: B.\n", "b)I: D; II: A; III: C; IV: B.\n", "c)I: A; II: D; III: B; IV: C.\n", "d)I: D; II: B; III: A; IV: C.\n", "Test #0: \n", "{'response': 'b)I: D; II: A; III: C; IV: B.'}\n", "**************************************************\n", "**************************************************\n", "Question 31: \n", "Language: spanish\n", "Question: \n", "Un paciente con síndrome de Sjogren comenzó a experimentar mejoras en sus síntomas bucales (aumento de la salivación) después de que un no oftalmólogo le recetara:\n", "a) Brimonidina, sin embargo, desarrolló miosis puntiforme y mala visión.\n", "b) La tetracaína, sin embargo, evolucionó con el desprendimiento de retina tradicional.\n", "c) La atropina, sin embargo, evolucionó con midriasis leve y dificultades de acomodación.\n", "d) La pilocarpina, sin embargo, evolucionó con espasmo acomodativo.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Nawala ang labis na paglalaway ng isang pasyenteng may Sjogren's syndrome pagkatapos siyang resetahan ng:\n", "a) Brimonidine, ngunit nagkaroon ng punctiform miosis at malabong paningin.\n", "B) Tetracaine, ngunit nagkaroon ng traditional retinal detachment.\n", "c) Atropine, ngunit nagkaroon ng kaunting pagdilat ng balintataw at hirap sa accommodation ng mata.\n", "d) Pilocarpine, ngunit nagkaroon ng accommodative spasms.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Paciente com síndrome Sjogren passou a ter melhoras dos seus sintomas orais (aumento da salivação) após o médico não-oftalmologista prescrever:\n", "a)Brimonidina, todavia, evoluiu com miose puntiforme e baixa de visão.\n", "b)Tetracaína, todavia, evoluiu com descolamento de retina tradicional.\n", "c)Atropina, todavia, evoluiu com média midríase e dificuldades de acomodação.\n", "d)Pilocarpina, todavia, evoluiu com espasmo acomodativo.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "A patient with Sjogren's syndrome started to have improvements in his oral symptoms (increased salivation) after the non-ophthalmologist prescribed:\n", "a) Brimonidine, however, evolved with punctiform miosis and low vision.\n", "b) Tetracaine, however, evolved with traditional retinal detachment.\n", "c) Atropine, however, evolved with medium mydriasis and accommodation difficulties.\n", "d) Pilocarpine, however, evolved with accommodative spasm.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 32: \n", "Language: spanish\n", "Question: \n", "Con respecto al uso del factor activador del plasminógeno tisular, es correcto afirmar:\n", "a) Está prohibido este medicamento en el espacio intracameral.\n", "b) La activación de la plasmina en plasminógeno ayuda a la descomposición de la sangre.\n", "c) La activación del plasminógeno en plasmina ayuda a la descomposición de la sangre.\n", "d) Su mayor indicación es el sangrado en el espacio vítreo.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Tama tungkol sa tissue plasminogen activating factor:\n", "a) Ang tamang pagbigay ng drogang ito ay nasa loob ng anterior chamber, o intracameral.\n", "b) Ang pagbago ng plasmin na maging plasminogen ay nakakatulong sa pagsira ng mga blood cell.\n", "c) Ang pagbago ng plasminogen na maging plasmin ay nakakatulong sa pagsira ng mga blood cell.\n", "d) Ang pangunahing indikasyon nito ay ang pagdurugo sa vitreous space.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao uso de fator ativador do plasminogênio tecidual, é correto afirmar:\n", "a)Essa medicação no espaço intracameral é proscrita.\n", "b)A ativação da plasmina em plaminogênio ajuda na degradação do sangue.\n", "c)A ativação do plasminogênio em plasmina ajuda na degradação do sangue.\n", "d)Sua maior indicação é em sangramentos no espaço vítreo.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the use of tissue plasminogen activating factor, it is correct to state:\n", "a) This medication in the intracameral space is prohibited.\n", "b) Activation of plasmin into plaminogen helps in the degradation of blood.\n", "c) Activation of plasminogen to plasmin helps in the degradation of blood.\n", "d) Its main indication is in bleeding in the vitreous space.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 33: \n", "Language: spanish\n", "Question: \n", "Con respecto al uso de mitomicina-C en la trabeculectomía, es correcto afirmar:\n", "a) Al ser análogo de la pirimidina, su acción resulta de bloquear la síntesis de timina, impidiendo la producción de ADN/ARN.\n", "b) El adelgazamiento escleral, la ampolla avascular, el dolor postoperatorio y el edema corneal son complicaciones relacionadas con su uso.\n", "c) En mujeres embarazadas se debe aumentar la concentración debido a la mayor tendencia a la fibrosis.\n", "d) No debe utilizarse en pacientes melanodermicos.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Tama tungkol sa paggamit ng mitomycin-C sa trabeculectomy:\n", "a) Sapagkat ito ay isang pyrimidine analogue, napapahinto nya ang paggawa ng thymin upang mapapigil ang paggawa ng DNA/RNA.\n", "b) Ang mga komplikasyon na kasama ng paggamit ng mitomycin-C ay scleral thinning, avascular bleb, pagkirot pagkatapos ng operasyon, at pamamaga ng cornea.\n", "c) Sa mga buntis, dapat damihan ang dose ng mitomycin-C dahil mas malaki ang pagkakataon na magkaroon ng fibrosis.\n", "d) Hindi ito dapat gamitin sa mga pasyenteng melanodermic.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao uso de mitomicina-C na trabeculectomia, é correto afirmar:\n", "a)Por ser um análogo da pirimidina, sua ação decorre do bloqueio da síntese de timina, evitando a produção de DNA/RNA.\n", "b)Afinamento escleral, bolha avascular, dor pós-operatória e edema de córnea são complicações relacionadas ao seu uso.\n", "c)Nas gestantes, a concentração deve ser aumentada pela maior tendência à fibrose.\n", "d)Não deve ser usada em pacientes melanodérmicos.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding the use of mitomycin-C in trabeculectomy, it is correct to state:\n", "a) Because it is a pyrimidine analogue, its action stems from the blockage of thymine synthesis, preventing the production of DNA/RNA.\n", "b) Scleral thinning, avascular bleb, postoperative pain and corneal edema are complications related to its use.\n", "c) In pregnant women, the concentration should be increased due to a greater tendency to fibrosis.\n", "d) It should not be used in melanodermic patients.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 34: \n", "Language: spanish\n", "Question: \n", "Los pacientes con retinopatía diabética proliferativa complementarán su tratamiento con anti-VEGF intravítreo. Podemos afirmar que:\n", "a) Se debe dar prioridad a la inhibición de las isoformas B del VEGF, ya que son las principales formadoras de neovasos.\n", "b) Ranibizumab inhibe todas las isoformas de VEGF-B, pero no VEGF-A.\n", "c) Bevacizumab no permite que las isoformas VEFG-A se unan a sus receptores.\n", "d) Ya no se utiliza el pegaptanib, ya que el fármaco no penetra las capas de la retina.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ang mga pasyenteng may proliferative diabetic retinopathy ay puwedeng bigyan ng intravitreal anti-VEGF. Maaari nating sabihin na:\n", "a) Dapat bigyan ng prioridad ang paghinto ng B isoforms ng VEG-F, dahil sila ang pangunahing taga-buo ng mga bagong ugat.\n", "b) Ang ranibizumab ay nagpipigil sa lahat ng B isoforms ng VEG-F, pero walang epekto sa A isoforms ng VEG-F.\n", "c) Ang bevacizumab ay naghaharang ng A isoforms ng VEG-F upang hindi nila maka-ugnay ang kanilang mga receptors.\n", "d) Hindi na ginagamit ang pegapatanib dahil hindi ito tumatagos sa mga layer ng retina.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Paciente com retinopatia diabética proliferativa complementará seu tratamento com anti-VEGF intravítreo. Podemos afirmar que:\n", "a)Deve-se priorizar a inibição das isoformas B do VEGF, uma vez que são as principais formadoras de neovasos.\n", "b)O ranibizumabe inibe todas as isoformas do VEGF-B, mas não as de VEGF-A.\n", "c)O bevacizumabe não permite que as isoformas de VEFG-A se liguem aos seus receptores.\n", "d)O uso de pegaptanibe não é mais utilizado, pois a droga não penetra nas camadas da retina.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Patients with proliferative diabetic retinopathy will complement their treatment with intravitreal anti-VEGF. We can state that:\n", "a) Priority should be given to the inhibition of the B isoforms of VEGF, since they are the main new vessel formers.\n", "b)Ranibizumab inhibits all VEGF-B isoforms, but not VEGF-A.\n", "c) Bevacizumab does not allow VEGF-A isoforms to bind to their receptors.\n", "d) The use of pegaptanib is no longer used, as the drug does not penetrate the retinal layers.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 35: \n", "Language: spanish\n", "Question: \n", "Considerando los tumores conjuntivales, ¿cuál de los siguientes parámetros se utiliza para diferenciar entre displasia conjuntival y carcinoma invasivo?\n", "a) Atipia celular.\n", "b) Afectación del epitelio en todo su espesor.\n", "c) Aumento del número de nucléolos atípicos.\n", "d) Invasión de la membrana basal.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Sa mga bukol ng conjunctiva, aling sukat ang nakakatulong sa pagkakaiba ng conjunctival dysplasia at invasive carcinoma?\n", "a) Atypia ng mga cells\n", "b) Pagka-apekto sa epithelial full thickness\n", "c) Pagkarami ng mga nucleoli na hindi typikal\n", "d) Pagsalakay ng basement membrane\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Considerando os tumores conjuntivais, a presença de qual parâmetro abaixo é utilizado para a diferenciação entre displasia da conjuntiva e carcinoma invasivo?\n", "a)Atipia celular.\n", "b)Envolvimento da espessura total epitelial.\n", "c)Aumento do número de nucleolos atípicos.\n", "d)Invasão da membrana basal.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "Considering conjunctival tumors, the presence of which parameter below is used to differentiate between conjunctival dysplasia and invasive carcinoma?\n", "a) Cellular atypia.\n", "b) Involvement of the epithelial full thickness.\n", "c)Increase in the number of atypical nucleoli.\n", "d) Invasion of the basement membrane.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 36: \n", "Language: spanish\n", "Question: \n", "¿Para cuál de los agentes enumerados a continuación son los anticuerpos monoclonales marcados con fluoresceína (FITC) y dirigidos contra la membrana proteica externa de la pared celular un mejor método de diagnóstico?\n", "a) C. trachomatis.\n", "b) Acanthamoeba sp.\n", "c) Criptococos sp.\n", "d) Neisseria meningitidis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang flourescein-labelled monoclonal antibodies (FITC) patungo sa outer membrane cell wall protein ay magandang eksaminasyon upang makompirma ang alin sa mga bakteryang ito?\n", "a) C. trachomatis.\n", "b) Acanthamoeba sp.\n", "c) Cryptococcus sp.\n", "d) Neisseria meningitidis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Anticorpos monoclonais marcados com fluoresceína (FITC) e dirigidos contra a membrana externa proteica da parede celular são um método diagnóstico mais bem indicado para qual dos agentes listados abaixo?\n", "a)C. tracomatis.\n", "b)Acanthamoeba sp.\n", "c)Cryptococcus sp.\n", "d)Neisseria meningitidis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Fluorescein-labelled monoclonal antibodies (FITC) directed against the outer membrane cell wall protein are a better diagnostic method for which of the agents listed below?\n", "a) C. trachomatis.\n", "b) Acanthamoeba sp.\n", "c)Cryptococcus sp.\n", "d) Neisseria meningitidis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 37: \n", "Language: spanish\n", "Question: \n", "¿La inervación de la córnea se realiza principalmente por los nervios ciliares?\n", "a) anterior anterior.\n", "b) Posterior corto.\n", "c) Anterior largo.\n", "d) largo posterior.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Aling bahagi ng ciliary nerve ay ang pangunahing ugat ng cornea?\n", "a) Short anterior.\n", "b) Short posterior.\n", "c) Long anterior.\n", "d) Long posterior.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "A inervação da córnea é feita, principalmente, por quais nervos ciliares?\n", "a)Anteriores curtos.\n", "b)Posteriores curtos.\n", "c)Anteriores longos.\n", "d)Posteriores longos.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: english\n", "Question: \n", "The innervation of the cornea is mainly done by which ciliary nerves?\n", "a) Short anterior.\n", "b) Short posterior.\n", "c) Long anterior.\n", "d) Long posterior.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 38: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes músculos oculares extrínsecos está inervado por la división superior del nervio oculomotor?\n", "a) Oblique superior.\n", "b) recto inferior.\n", "c) recto medial\n", "d) recto superior.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Aling extraocular muscle ang pinapaggalaw ng superior division ng oculomotor nerve?\n", "a) Superior oblique.\n", "b) Inferior rectum.\n", "c) Medial rectus\n", "d) Superior rectum.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Qual dos músculos oculares extrínsecos abaixo é inervado pela divisão superior do nervo oculomotor?\n", "a)Oblíquo superior.\n", "b)Reto inferior.\n", "c)Reto medial\n", "d)Reto superior.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "Which of the following extraocular muscle is innervated by the superior division of the oculomotor nerve?\n", "a) Superior oblique.\n", "b) Inferior rectum.\n", "c) medial rectus\n", "d) Superior rectum.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 39: \n", "Language: spanish\n", "Question: \n", "Basándose en el conocimiento anatómico, elija la alternativa más probable.\n", "a) La fractura del hueso etmoides puede provocar enfisema orbitario.\n", "b) La fractura de la parte lateral de la órbita puede provocar hemorragia intraorbitaria, por rotura de las arterias etmoidales anterior y posterior.\n", "c) La fractura del suelo orbitario puede provocar alteración de los movimientos de masticación, debido al daño del nervio maxilar, una rama del nervio trigémino.\n", "d) La fractura del hueso lagrimal puede reducir la excreción de lágrimas por la glándula lagrimal principal, debido al deterioro del nervio lagrimal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin ang tama tungkol sa anatomya ng mata?\n", "a) Ang pagbali ng ethmoid bone ay maaaring maging sanhi ng orbital emphysema.\n", "b) Ang pagbali ng lateral orbit ay maaaring maging sanhi ng pagdugo sa loob ng orbit dahil sa pagsugat sa anterior at posterior ethmoidal arteries.\n", "c) Ang pagbali ng orbital floor ay maaaring maging sanhi ng kahinaan ng mga paggalaw ng masticatory muscles dahil sa pinsala sa maxillary nerve, isang sangay ng trigeminal nerve.\n", "d) Ang pagbali ng lacrimal bone ay maaaring maging sanhi ng pagbawas ng luha mula sa lacrimal gland dahil sa pagsugat sa lacrimal nerve.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Com base em conhecimentos anatômicos, escolha a alternativa mais provável.\n", "a)Fratura do osso etmoidal pode causar enfisema orbitário.\n", "b)Fratura da parte lateral da órbita pode causar hemorragia intraorbital, por ruptura das artérias etmoidais anteriores e posteriores.\n", "c)Fratura do assoalho da órbita pode causar comprometimento dos movimentos mastigatórios, por lesão no nervo maxilar, ramo do nervo trigêmeo.\n", "d)Fratura do osso lacrimal pode diminuir a excreção de lágrima pela glândula lacrimal principal, por comprometimento do nervo lacrimal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Based on anatomical knowledge, choose the most likely alternative.\n", "a) Fracture of the ethmoid bone can cause orbital emphysema.\n", "b) Fracture of the lateral part of the orbit can cause intraorbital hemorrhage, due to rupture of the anterior and posterior ethmoidal arteries.\n", "c) Fracture of the orbital floor can cause impairment of masticatory movements, due to damage to the maxillary nerve, a branch of the trigeminal nerve.\n", "d) Fracture of the lacrimal bone may decrease tear excretion by the main lacrimal gland, by compromising the lacrimal nerve.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 40: \n", "Language: spanish\n", "Question: \n", "Hay muchos factores que contribuyen a la transparencia de la córnea, pero los principales son:\n", "a) Ausencia de proteoglicanos de adhesión, aumentando el espacio interfibrilar laxo y permitiendo el libre paso de la luz.\n", "b)Baja demanda metabólica, que permite la nutrición a través de una red reticular de capilares estromales extremadamente finos.\n", "c) Característica hiperosmótica de la membrana de Descemet, que reduce la hidratación estromal.\n", "d)Organización de las fibrillas de colágeno de forma regular, uniforme y paralela entre sí.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Maraming mga kadahilanan na nag-aambag sa transparency ng cornea, ngunit ang pangunahing dahilan ay:\n", "a) Ang kawalan ng adhesion proteoglycans, na nagpapalago ng loose interfibrillar space upang makadaan ang ilaw.\n", "b) Ang mababang demanda ng metabolismo, upang makapasok ang sustansya sa pamamagitan ng reticular mesh sa loob ng maliliit na stromal capillaries.\n", "c) Ang hyperosmolarity ng Descemet's membrane, upang mabawasan ang stromal hydration.\n", "d) Ang pagka-ayos ng mga collagen fibrils ng regular, pare-pareho, at nakalinya sa isa't isa.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Muitos são os fatores que contribuem para a transparência da córnea, mas o principal deles é:\n", "a)Ausência de proteoglicanos de adesão, aumentando o espaço interfibrilar frouxo e permitindo a passagem livre da luz.\n", "b)Baixa demanda metabólica, que permite a nutrição por uma malha reticular de capilares estromais extremamente finos.\n", "c)Característica hiperosmótica da membrana de Descemet, que reduz a hidratação estromal.\n", "d)Organização das fibrilas de colágeno de forma regular, uniforme e paralela umas às outras.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "There are many factors that contribute to the transparency of the cornea, but the main one is:\n", "a) Absence of adhesion proteoglycans, increasing the loose interfibrillar space and allowing free passage of light.\n", "b) Low metabolic demand, which allows nutrition by a reticular mesh of extremely fine stromal capillaries.\n", "c) Hyperosmotic characteristic of Descemet's membrane, which reduces stromal hydration.\n", "d) Organization of collagen fibrils in a regular, uniform and parallel way to each other.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 41: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa correcta respecto a la anatomía del segmento posterior del ojo.\n", "a) La aparición de los dos nervios ciliares largos en el ecuador del ojo, aproximadamente a las doce y a las seis, explica una mayor sensibilidad al dolor en estos cuadrantes durante la panfotocoagulación.\n", "b) Las arterias vórtices subretinianas dan la apariencia de encaje de “tigre” en el examen oftalmoscópico de personas con atrofia difusa del epitelio pigmentado de la retina.\n", "c) En la ora serrata existen pequeños pliegues meridionales radiales junto a las apófisis dentadas con, posiblemente, un pequeño agujero retiniano atrófico en su base, que no es necesario bloquear.\n", "d) La foveola, zona de mayor actividad metabólica debido a la alta concentración de fotorreceptores, presenta una intensa red vascular formada por anastomosis de las arcadas temporales superior e inferior.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa anatomya ng posterior segment ng mata?\n", "a) Mas sensitibo ang alas dose at alas sais na rehiyon ng equator ng mata sa panphotocoagulation dahil may dalawang long ciliary nerves na dumadaan dito.\n", "b) Ang mga subretinal vorticose artery ang nagbubuo ng \"tiger\" o makabuluhang itsura sa mga taong may diffuse atrophy ng retinal pigment epithelium.\n", "c) Sa loob ng ora serrata, may maliliit na radial meridional folds na katabi ng dentate processes, na mayroong maliit na atrophic retinal hole na hindi kinakailangan harangan.\n", "d) Ang foveola ay isang rehiyon na mataas ang metabolismo dahil sa karamihan ng kanyang mga photoreceptor. Ito ay mayroong makabuluhang koneksyon ng mga ugat dahil sa mga superior at inferior temporal arcade.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Marque a alternativa correta quanto à anatomia do segmento posterior do olho.\n", "a)A emergência dos dois nervos ciliares longos no equador do olho, aproximadamente às doze e seis horas, explica maior sensibilidade à dor nesses quadrantes durante a panfotocoagulação.\n", "b)As artérias vorticosas sub-retinianas conferem o aspecto rendilhado \"em tigre\" no exame oftalmoscópico de pessoas com atrofia difusa do epitélio pigmentado da retina.\n", "c)Na ora serrata encontram-se pequenas pregas meridionais radiais junto aos processos denteados com, eventualmente pequeno buraco retiniano atrófico na sua base, que não necessita ser bloqueado.\n", "d)A fovéola, área de maior atividade metabólica devido a alta concentração de fotorreceptores, apresenta intensa rede vascular formada por anastomoses das arcadas temporais superiores e inferiores.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Mark the correct alternative regarding the anatomy of the posterior segment of the eye.\n", "a) The emergence of the two long ciliary nerves at the equator of the eye, approximately at twelve and six o'clock, explains greater sensitivity to pain in these quadrants during panphotocoagulation.\n", "b) The subretinal vorticose arteries give the lacy \"tiger\" appearance in the ophthalmoscopic examination of people with diffuse atrophy of the retinal pigment epithelium.\n", "c) In the ora serrata, there are small radial meridional folds next to the dentate processes, with, eventually, a small atrophic retinal hole at its base, which does not need to be blocked.\n", "d) The foveola, area of ​​greater metabolic activity due to the high concentration of photoreceptors, presents an intense vascular network formed by anastomoses of the superior and inferior temporal arcades.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 42: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa correcta respecto a la anatomía del seno camerular.\n", "a) La línea de Schwalbe corresponde a la proyección gonioscópica del espolón escleral.\n", "b) La banda del cuerpo ciliar generalmente no puede observarse mediante gonioscopia.\n", "c) Los procesos pectíneos del iris que llegan a la línea de Schwalbe no están presentes en ojos normales; y cuando se encuentran, son indicativos de iridociclitis previa.\n", "d) El flujo de drenaje del humor acuoso se produce principalmente en la porción posterior de la malla trabecular, que está más pigmentada.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa camerular sinus?\n", "a) Ang Schwabe's line ay katumbas ng gonioscopic projection ng scleral spur.\n", "b) Karaniwang hindi nakikita sa gonioscopy ang ciliary body band.\n", "c) Sa normal na mata, walang pectineal iris processes na umaabot sa Scwabe's line. Kapag sila'y nakita, ito'y indikasyon ng nakaraang iridocyclitis.\n", "d) Ang pagdaloy ng aqueous humor ay karaniwang nasa likuran ng trabecular meshwork kung saan mas marami ang mga pigment.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa correta quanto à anatomia do seio camerular.\n", "a)A linha de Schwalbe corresponde à projeção gonioscópica do esporão escleral.\n", "b)A banda do corpo ciliar geralmente não pode ser observada pela gonioscopia.\n", "c)Processos irianos pectíneos que alcançam a linha de Schwalbe não estão presentes em olhos normais; e quando encontrados são indicativos de iridociclite prévia.\n", "d)O fluxo de drenagem do humor aquoso ocorre principalmente na porção posterior da malha trabecular, que é mais pigmentada.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Mark the correct alternative regarding the anatomy of the camerular sinus.\n", "a) Schwalbe's line corresponds to the gonioscopic projection of the scleral spur.\n", "b) The ciliary body band usually cannot be seen by gonioscopy.\n", "c) pectineal iris processes reaching Schwalbe's line are not present in normal eyes; and when found, they are indicative of previous iridocyclitis.\n", "d) The drainage flow of aqueous humor occurs mainly in the posterior portion of the trabecular meshwork, which is more pigmented.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 43: \n", "Language: spanish\n", "Question: \n", "¿Las oraciones siguientes se refieren a qué estructura del ojo humano?\n", "\n", "1- Extensión más anterior del tracto uveal.\n", "2- Formado por vasos sanguíneos, tejido conectivo y malanocitos.\n", "3- Presenta epitelio pigmentado cuyo extremo basal de las células mira hacia la cámara posterior.\n", "4- Tiene fibras musculares lisas con inervación simpática.\n", "\n", "a) Cuerpo ciliar.\n", "b) Iris.\n", "c) Seno camerular.\n", "d) Tracto coroideo de la ora serrata.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: tagalog\n", "Question: \n", "Ang mga pahayag ay tumutukoy sa aling bahagi ng mata?\n", "\n", "1- Pinakaharap na bahagi ng uveal tract.\n", "2- Binuo ng mga ugat, connective tissue, at melanocytes.\n", "3- Mayroong pigmented epithelium, kung saan ang talikuran ng mga cell ay nakaharap sa posterior chamber.\n", "4- Mayroong mga smooth muscle fiber na may sympathetic innervation.\n", "\n", "a) Ciliary body.\n", "b) iris.\n", "c) Camerular sinus.\n", "d) Choroidal tract ng Ora serrata.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: portuguese\n", "Question: \n", "As sentenças abaixo dizem respeito a qual estrutura do olho humano?\n", "\n", "1- Extensão mais anterior do trato uveal.\n", "2- Formada por vasos sanguíneos, tecido conjuntivo e malanócitos.\n", "3- Apresenta epitélio pigmentado cuja extremidade basal das células está voltada para a câmara posterior.\n", "4- Possui fibras musculares lisas de inervação simpática.\n", "\n", "a)Corpo ciliar.\n", "b)Íris.\n", "c)Seio camerular.\n", "d)Trato coroidal da ora serrata.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: english\n", "Question: \n", "The sentences below refer to which structure of the human eye?\n", "\n", "1- Most anterior extension of the uveal tract.\n", "2- Formed by blood vessels, connective tissue and melanocytes.\n", "3- Presents pigmented epithelium whose basal end of the cells is facing the posterior chamber.\n", "4- It has smooth muscle fibers of sympathetic innervation.\n", "\n", "a) ciliary body.\n", "b) iris.\n", "c) Camerular sinus.\n", "d) Choroidal tract of ora serrata.\n", "Test #0: \n", "{'response': 'b'}\n", "**************************************************\n", "**************************************************\n", "Question 44: \n", "Language: spanish\n", "Question: \n", "En cuanto a la anatomía de la retina, elija la alternativa que contenga la correlación correcta entre las dos columnas a continuación:\n", "\n", "I- Capa plexiforme externa\n", "II- Limitación externa\n", "III- Capa nuclear interna\n", "IV- Limitación interna\n", "V- Capa de fibras nerviosas\n", "\n", "A- Está en contacto con el vítreo.\n", "B- Está entre los fotorreceptores y las células bipolares.\n", "C- Contiene células amacrinas y horizontales.\n", "D- Estos son procesos de las células de Muller.\n", "E- Contiene axones de células ganglionares.\n", "\n", "a)A: II; B: III; C: I; D: V; E: IV.\n", "b)A: IV; B: I; C: III; D: II; E: V.\n", "c)A: IV; B: V; C: III; D: I; E: II.\n", "d)A: V; B: II; C: III; D: IV; E: I.\n", "Test #0: \n", "{'response': 'b)'}\n", "Language: tagalog\n", "Question: \n", "Ipagpares ang mga layer ng retina sa tamang paglalarawan nito.\n", "\n", "I - outer plexiform layer\n", "II - External limit\n", "III - inner nuclear layer\n", "IV - Internal limit\n", "V - Nerve fiber layer\n", "\n", "A- Nakadikit sa vitreous\n", "B- Nasa gitna ng mga photoreceptor at bipolar cells\n", "C- Mayroong mga amacrine at horizontal cells\n", "D- May mga Muller cell process\n", "E- May axons ng mga ganglion cell\n", "\n", "a) A: II; B: III; C: I; D: V; I: IV.\n", "b) A: IV; B: I; C: III; D: II; E: V.\n", "c) A: IV; B: V; C: III; D: I; I: II.\n", "d) A: V; B:II; C: III; D: IV; E:I.\n", "Test #0: \n", "{'response': 'a) A: II; B: III; C: I; D: V; I: IV.'}\n", "Language: portuguese\n", "Question: \n", "A respeito da anatomia da retina, escolha a alternativa que contenha a correlação correta entre as duas colunas abaixo:\n", "\n", "I- Camada plexiforme externa\n", "II- Limitante externa\n", "III- Camada nuclear interna\n", "IV- Limitante interna\n", "V- Camada de fibras nervosas\n", "\n", "A- Está em contato com o vítreo\n", "B- Está entre os fotorreceptores e as células bipolares\n", "C- Contém células amácrinas e horizontais\n", "D- São processos das células de Muller\n", "E- Contém axônios de células ganglionares\n", "\n", "a)A: II; B: III; C: I; D: V; E: IV.\n", "b)A: IV; B: I; C: III; D: II; E: V.\n", "c)A: IV; B: V; C: III; D: I; E: II.\n", "d)A: V; B: II; C: III; D: IV; E: I.\n", "Test #0: \n", "{'response': 'b)A: IV; B: I; C: III; D: II; E: V.'}\n", "Language: english\n", "Question: \n", "Regarding the anatomy of the retina, choose the alternative that contains the correct correlation between the two columns below:\n", "\n", "I - outer plexiform layer\n", "II - External limit\n", "III - inner nuclear layer\n", "IV - Internal limit\n", "V - Nerve fiber layer\n", "\n", "A- It is in contact with the vitreous\n", "B- It is between the photoreceptors and the bipolar cells\n", "C- Contains amacrine and horizontal cells\n", "D - Muller cell processes\n", "E- Contains axons of ganglion cells\n", "\n", "a) A: II; B: III; C: I; D: V; I: IV.\n", "b) A: IV; B: I; C: III; D: II; E: V.\n", "c) A: IV; B: V; C: III; D: I; I: II.\n", "d) A: V; B:II; C: III; D: IV; E:I.\n", "Test #0: \n", "{'response': 'b) A: IV; B: I; C: III; D: II; E: V.'}\n", "**************************************************\n", "**************************************************\n", "Question 45: \n", "Language: spanish\n", "Question: \n", "Un paciente fáquico desarrolló un aumento significativo de la presión intraocular y atalamia 15 horas después de la trabeculectomía. Es correcto afirmar que:\n", "a) Esta grave afección ocular es más prevalente en pacientes afáquicos.\n", "b) El uso de ciclopléjicos tópicos durante el postoperatorio inmediato es un factor de riesgo para esta afección.\n", "c) Si hay iridotomía permeable, esta condición no ocurre.\n", "d) Normalmente, esta afección se presenta en ojos con un diámetro anteroposterior menor que los de la población general.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Labing-limang oras pagkatapos ngtrabeculectomy, tumaas ang presyon ng mata ng isang phakic na pasyente na may kasamang athalamia. Alin sa mga sumusunod ang tama?\n", "a) Ang malubhang kondisyon na ito ay mas karaniwan sa mga pasyenteng walang lente.\n", "b) Ang paggamit ng pinapatak na cycloplegic pagkatapos ng operasyon ay isang dahilan kung bakit nangyayari ang komplikasyong ito.\n", "c) Kapag may dating iridotomy na ginawa sa pasyente, hindi ito mangyayari.\n", "d) Mas nasa panganib ang mga matang mas maliit ang anteroposterior diameter sa kondisyong ito.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Paciente fácico evoluiu com quadro de aumento importante da pressão intraocular e atalamia 15 horas após uma trabeculectomia. É correto afirmar que:\n", "a)Esse quadro ocular grave é mais prevalente em pacientes afácicos.\n", "b)O uso de cicloplégico tópico durante o pós-operatório imediato é fator de risco para esse quadro.\n", "c)Se há iridotomia pérvia, esse quadro não ocorre.\n", "d)Tipicamente, esse quadro ocorre em olhos com diâmetro anteroposterior menor que os da população em geral.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Phakic patient evolved with a significant increase in intraocular pressure and athalamia 15 hours after a trabeculectomy. It is correct to say that:\n", "a) This severe ocular condition is more prevalent in aphakic patients.\n", "b) The use of topical cycloplegic during the immediate postoperative period is a risk factor for this condition.\n", "c) If there is a pervious iridotomy, this would not occur.\n", "d) Typically, this condition occurs in eyes with an anteroposterior diameter smaller than those of the general population.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 46: \n", "Language: spanish\n", "Question: \n", "Respecto al glaucoma inducido por corticoides es correcto afirmar que:\n", "a) Ocurre en todas las edades.\n", "b) Los corticosteroides en bajas concentraciones no aumentan la presión intraocular.\n", "c) El glaucoma suele ser de ángulo cerrado.\n", "d) Es más común por el uso de corticoides orales que en forma de colirios.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tama tungkol sa corticosonic glaucoma?\n", "a) Puwedeng mangyari kahit anong edad ng pasyente.\n", "b) Kapag mababa ang dose ng corticosteroids, hindi ito nakakataas ng presyon ng mata.\n", "c) Ang pangkaraniwang klase ng corticosonic glaucoma ay angle-closure.\n", "d) Ito'y madalas dahil sa paggamit ng iniinom na corticosteroids kaysa sa mga pinapatak sa mata.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Sobre o glaucoma induzido por corticoesteroide, é correto afirmar que:\n", "a)Ocorre em todas as idades.\n", "b)Os corticoides em concentrações baixas não elevam a pressão intraocular.\n", "c)O glaucoma é tipicamente de ângulo fechado.\n", "d)É mais frequente por uso de corticoide via oral do que na forma de colírio.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Regarding steroid induced glaucoma, it is correct to state that:\n", "a) Occurs at all ages.\n", "b) Corticosteroids in low concentrations do not increase intraocular pressure.\n", "c) Glaucoma is typically angle-closure.\n", "d) It is more frequent due to the use of oral corticosteroids than in the form of eye drops.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 47: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes defectos del campo visual se correlaciona mejor con la pérdida localizada de la capa de fibras nerviosas peripapilares (signo de Hoyt) en el sector temporal inferior?\n", "a) Centrocecal temporal inferior.\n", "b) Nasal superior.\n", "c) Cuña temporal superior.\n", "d) Vertical inferior.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga visual field defects na ito ang pangkaraniwang nakikita sa kawalan ng peripapillary nerve fiber layer o Hoyt's sign sa inferior temporal sector?\n", "a) Inferior temporal cecal center.\n", "b) Upper nasal.\n", "c) Wedge-shaped upper temporal.\n", "d) Lower vertical.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Qual dos defeitos de campo visual abaixo melhor se correlaciona com perda localizada da camada de fibras nervosas peripapilar (sinal de Hoyt) no setor temporal inferior?\n", "a)Centro-cecal temporal inferior.\n", "b)Nasal superior.\n", "c)Temporal superior em cunha.\n", "d)Vertical inferior.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: english\n", "Question: \n", "Which of the visual field defects below best correlates with localized loss of the peripapillary nerve fiber layer (Hoyt's sign) in the inferior temporal sector?\n", "a) Inferior temporal cecal center.\n", "b) Upper nasal.\n", "c) Wedge-shaped upper temporal.\n", "d) Lower vertical.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 48: \n", "Language: spanish\n", "Question: \n", "El glaucoma hemosiderótico es causado por:\n", "a) Acumulación de macrófagos en la red trabecular.\n", "b) Acumulación de células sanguíneas incapaces de diapédesis en la red trabecular.\n", "c) Acumulación de hierro presente en la hemoglobina en la red trabecular.\n", "d) Obstrucción de la red trabecular por glóbulos rojos frescos, fibrina y plasma.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ang hemosiderotic glaucoma ay sanhi ng:\n", "a) Pag-ipon ng mga macrophage sa trabecular meshwork.\n", "b) Pag-ipon ng dugo na walang kakayahang ng diapedesis sa trabecular meshwork.\n", "c) Pag-ipon ng iron mula sa hemoglobin sa trabecular meshwork.\n", "d) Pagbara ng trabecular meshwork ng mga sariwang red blood cell, fibrin, at plasma.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "O glaucoma hemossiderótico é causado por: \n", "a) Acúmulo de macrófagos na malha trabecular. \n", "b) Acúmulo de células sanguíneas incapazes de diapedese na malha trabecular. \n", "c) Acúmulo de ferro presente na hemoglobina na malha trabecular. \n", "d) Entupimento da malha trabecular por hemácias frescas, fibrina e plasma.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Hemosiderotic glaucoma is caused by: \n", "a) Accumulation of macrophages in the trabecular meshwork. \n", "b) Accumulation of blood cells incapable of diapedesis in the trabecular meshwork. \n", "c) Accumulation of iron present in hemoglobin in the trabecular meshwork. \n", "d) Clogging of the trabecular meshwork by fresh red blood cells, fibrin and plasma.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 49: \n", "Language: spanish\n", "Question: \n", "Los siguientes son factores de riesgo clásicos para el desarrollo de glaucoma primario de ángulo abierto:\n", "a) Asiáticos, antecedentes familiares positivos, jóvenes.\n", "b) Presión intraocular elevada, raza caucásica, edad entre 25 y 45 años.\n", "c) Presión intraocular elevada, raza negra, antecedentes familiares positivos.\n", "d) Sexo femenino, espesor corneal elevado, presión intraocular con amplias fluctuaciones.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ang mga karaniwang panganib ng pagkaroon ng primary open-angle glaucoma ay:\n", "a) Mga Asyano, lahi ng glaucoma, at mga kabataan.\n", "b) Mataas na presyon sa mata, mga Caucasian, at ang edad sa pagitan ng 25 hanggang 45 na taon.\n", "c) Mataas na presyon sa mata, mga African-American, at may lahi ng glaucoma.\n", "d) Mga kababaihan, makapal na corneal thickness, at pabago-bago na presyon ng mata.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "São fatores de risco clássicos para o desenvolvimento de glaucoma primário de ângulo aberto: \n", "a) Asiáticos, história familiar positiva, jovens. \n", "b) Pressão intraocular elevada, raça caucasiana, idade entre 25 e 45 anos. \n", "c) Pressão intraocular elevada, raça negra, história familiar positiva. \n", "d) Sexo feminino, espessura corneal elevada, pressão intraocular com ampla flutuação.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "The classic risk factors for the development of primary open-angle glaucoma are: \n", "a) Asians, positive family history, young people. \n", "b) Elevated intraocular pressure, Caucasian race, age between 25 and 45 years. \n", "c) Elevated intraocular pressure, black race, positive family history. \n", "d) Female gender, increased corneal thickness, intraocular pressure with wide fluctuation.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 50: \n", "Language: spanish\n", "Question: \n", "Paciente masculino, 25 años, con hipertensión ocular recurrente (entre 40 y 60 mmHg), indolora, unilateral y de corta duración, sin pérdida de visión. ¿Cuáles son los diagnósticos más probables?\n", "a) Uveítis heterocrómica de Fuchs.\n", "b) Crisis aguda de glaucoma con iris bombé.\n", "c) Crisis aguda de glaucoma con iris meseta.\n", "d) Crisis glaucomatocíclica.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "May lalaking pasyente, 25 na taong gulang, na mayroong pabalik-balik na mataas na presyon ng isang mata (40 hanggang 60 mmHg) sa maiikling panahon. Wala siyang kirot na nararamdaman at hindi lumalabo ang paningin. Ano siguro ang diagnosis ng pasyenteng ito?\n", "\n", "a) Fuchs heterochromic uveitis. \n", "b) Atake ng acute glaucoma na may kasamang bombé iris. \n", "c) Atake ng acute glaucoma na may kasamang plateau iris. \n", "d) Glaucomatocyclic crisis.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Paciente masculino, 25 anos, com quadros reincidentes de hipertensão ocular (entre 40 e 60 mmHg), indolor, unilateral e de curta duração, sem baixa de visão. Qual o diagnóstico mais provável? \n", "a) Uveíte heterocrômica de Fuchs. \n", "b) Crise de glaucoma agudo com íris bombé. \n", "c) Crise de glaucoma agudo com íris em plateau. \n", "d) Crise glaucomatocíclica.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Male patient, 25 years old, with recurrent ocular hypertension (between 40 and 60 mmHg), painless, unilateral and of short duration, without loss of vision. Which are the most probable diagnostics? \n", "a) Fuchs heterochromic uveitis. \n", "b) Attack of acute glaucoma with bombé iris. \n", "c) Attack of acute glaucoma with plateau iris. \n", "d) Glaucomatocyclic crisis.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 51: \n", "Language: spanish\n", "Question: \n", "Un paciente diabético de 60 años refiere dolor y mala agudeza visual en el ojo derecho. Al examen oftalmológico la agudeza visual fue de 0,1, la presión intraocular de 45 mmHg, edema corneal, neovascularización del iris, ángulo abierto en todos los cuadrantes en la gonioscopia, relación copa/disco de 0,3 y retinopatía diabética proliferativa. Tras iniciar tratamiento clínico hipotensor presentó buena respuesta. Entre las opciones siguientes, ¿cuál es la conducta más adecuada a seguir?\n", "a) Ciclofotocoagulación.\n", "b) Implante de drenaje.\n", "c) Fotocoagulación panretiniana.\n", "d) Trabeculectomía con mitomicina C.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Isang 60 taong gulang na pasyente na may diyabetis ay dumadaing ng kirot at paglabo ng kanang mata. Sa pagsusuri napag-alamang ang visual acuity ay 0.1, intraocular pressure na 45 mmHg, may pamamaga ng cornea, pagbuo ng bagong ugat sa iris, open angle sa lahat ng kwadrant sa gonioscopy, cup:disc ratio na 0.3, at mayroong proliferative diabetic retinopathy. Pagkatapos bigyan ng gamot sa mababang presyon, naging mainam ang pagtanggap ng kanyang katawan dito. Alin sa mga sumusunod ang pinakaangkop na gawain pagkatapos?\n", "a) Cyclophotocoagulation.\n", "b) Drainage implant.\n", "c) Panretinal photocoagulation.\n", "d) Trabeculectomy na may mitomycin C.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Paciente diabético com 60 anos queixa-se de dor e baixa de acuidade visual no olho direito. Ao exame oftalmológico apresenta acuidade visual 0,1, pressão intraocular 45 mmHg, edema de cornea, neovascularização de íris, ângulo aberto em todos os quadrantes na gonioscopia, relação escavação/disco 0,3 e retinopatia diabética proliferativa. Após iniciar tratamento clínico hipotensor, apresentou boa resposta. Dentre as opções abaixo, qual é a conduta mais adequada a seguir? \n", "a) Ciclofotocoagulação. \n", "b) Implante de drenagem. \n", "c) Panfotocoagulação retiniana. \n", "d) Trabeculectomia com mitomicina C.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "A 60-year-old diabetic patient complains of pain and low visual acuity in the right eye. On ophthalmological examination, visual acuity was 0.1, intraocular pressure 45 mmHg, corneal edema, iris neovascularization, open angle in all quadrants on gonioscopy, cup/disc ratio 0.3, and proliferative diabetic retinopathy. After initiating hypotensive clinical treatment, the patient had a good response. Among the options below, which is the most appropriate course of action to follow? \n", "a) Cyclophotocoagulation. \n", "b) Drainage implant. \n", "c) Panretinal photocoagulation. \n", "d) Trabeculectomy with mitomycin C.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 52: \n", "Language: spanish\n", "Question: \n", "Entre las opciones siguientes, ¿cuál sería el hallazgo más sugerente para un glaucoma?\n", "a) Asimetría de excavación de 0,2 entre los ojos.\n", "b) Atrofia peripapilar con zona alfa en la región temporal del nervio.\n", "c) Relación copa/disco bilateral de 0,5.\n", "d) Relación copa/disco del nervio óptico de 0,4 con presencia de una escotadura temporal inferior.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang pinakanagpapahiwatig ng glaucoma?\n", "a) Cupping asymmetry na 0.2 sa pagitan ng mga mata.\n", "b) Peripapillary atrophy na may alpha zone sa temporal na parte ng nerve. \n", "c) Bilateral excavation/disk ratio na 0.5.\n", "d) Optic nerve cup/disk ratio na 0.4 na may kasamang inferior temporal notch.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Dentre as opções abaixo, qual seria o achado mais sugestivo de glaucoma? \n", "a) Assimetria de escavação de 0,2 entre os olhos. \n", "b) Atrofia peripapilar com zona alfa na região temporal do nervo. \n", "c) Relação escavação/disco bilateral de 0,5. \n", "d) Relação escavação/disco do nervo óptico de 0,4 com a presença de um notch temporal inferior.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Among the options below, which would be the most suggestive finding of glaucoma? \n", "a) Cupping asymmetry of 0.2 between the eyes. \n", "b) Peripapillary atrophy with alpha zone in the temporal region of the nerve. c) Bilateral excavation/disk ratio of 0.5. \n", "d) Optic nerve cup/disk ratio of 0.4 with the presence of an inferior temporal notch.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 53: \n", "Language: spanish\n", "Question: \n", "¿En cuál de las siguientes situaciones se debe evitar el uso tópico de colirios con alfa-2-agonista, como el tartarato de brimonidina?\n", "a) Niños menores de dos años.\n", "b) Litiasis renal.\n", "c) Asma.\n", "d) Anemia falciforme.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang paggamit ng alpha-2-agonist na pampatak sa mata, tulad ng brimonidine tartrate, ay dapat iwasan sa aling sitwasyon?\n", "a) Mga batang wala pang dalawang taong gulang.\n", "b) Renal lithiasis\n", "c) Hika\n", "d) Sickle cell anemia\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "O uso tópico de colírio de alfa-2-agonista, como tartarato de brimonidina, deve ser evitado em qual situação, dentre as abaixo? \n", "a) Crianças abaixo de dois anos. \n", "b) Litíase renal. \n", "c) Asma. \n", "d) Anemia falciforme.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "\n", "Topical use of alpha-2-agonist eye drops, such as brimonidine tartrate, should be avoided in which of the following situations? \n", "a) Children under two years old. \n", "b) Renal lithiasis. \n", "c) Asthma. \n", "d) Sickle cell anemia.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 54: \n", "Language: spanish\n", "Question: \n", "¿Qué hallazgo se asocia más comúnmente con el glaucoma congénito primario?\n", "a) Edema del nervio óptico.\n", "b) Roturas de la membrana de Descemet.\n", "c) Luxación del cristalino.\n", "d) Sinequias periféricas anteriores en tienda.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang pinakakaraniwang pahiwatig ng pangunahing konhenital na glaucoma?\n", "a) Pamamaga ng optic nerve\n", "b) Pagkasira ng Descemet's membrane\n", "c) Dislokasyon ng lente\n", "d) Tent-like peripheral anterior synechiae.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual achado é mais comumente associado ao glaucoma congênito primário? \n", "a) Edema de nervo óptico. \n", "b) Rupturas na membrana de Descemet. \n", "c) Luxação do cristalino. \n", "d) Sinéquias anteriores periféricas em tenda.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Which finding is most commonly associated with primary congenital glaucoma? \n", "a) Optic nerve edema. \n", "b) Ruptures in Descemet's membrane. \n", "c) Dislocation of the lens. \n", "d) Tent-like peripheral anterior synechiae.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 55: \n", "Language: spanish\n", "Question: \n", "Respecto al ensayo del agujero estenopeico, es correcto afirmar:\n", "a) Si la agudeza visual del paciente no mejora, se trata de ambliopía.\n", "b) Disminuye la profundidad de enfoque, debido a la reducción de la pupila.\n", "c) Reduce los círculos de difusión en la retina.\n", "d) El tamaño del agujero estenopeico debe estar entre 4 y 5 mm.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tamang pahayag patungkol sa pinhole test?\n", "a) Kung hindi bumuti ang kalagayan ng panlalabo ng mata, ito ay amblyopia\n", "b) Ang pagbawas sa lalim ng pokus ay dahil sa pagbawas sa pupil\n", "c) Nababawasan ng mga diffusion circles sa retina\n", "d) Ang laki ng butas ng pinhole ay dapat nasa pagitan ng 4 at 5 mm.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Sobre o teste do buraco estenopeico, é correto afirmar: \n", "a) Se a acuidade visual do paciente não melhorar, trata-se de um caso de ambliopia. \n", "b) Diminui a profundidade de foco, por haver redução da pupila. \n", "c) Reduz os círculos de difusão na retina. \n", "d) O tamanho do buraco estenopeico deve ser entre 4 e 5 mm.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the pinhole test, it is correct to state: \n", "a) If the patient's visual acuity does not improve, it is a case of amblyopia. \n", "b) Decrease the depth of focus, due to the reduction of the pupil. \n", "c) Reduces diffusion circles on the retina. \n", "d) The size of the pinhole hole should be between 4 and 5 mm.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 56: \n", "Language: spanish\n", "Question: \n", "Respecto a la tabla de Snellen, es correcto afirmar:\n", "a) Agudeza visual de 0,05 en un ojo permite tener permiso de conducir profesional letra D.\n", "b) La facectomía con implante de lente intraocular es necesaria en pacientes fáquicos con agudezas visuales de 1,5 con mejor corrección.\n", "c) El paciente con una agudeza visual de 0,25 tiene un ángulo visual de 0,5 minutos.\n", "d) El paciente con una agudeza visual de 0,2 tiene baja visión.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang tamang pahayag patungkol sa Snellen chart?\n", "a) Pinapayagang magkaroon ng propesyonal na lisensyang pangmaneho, class D ang isang tao kung ang visual acuity ng isang mata ay 0.05 \n", "b) Ang facectomy na may pagtatanim ng isang intraocular lens ay kinakailangan sa mga pasyente ng phakic na may visual acuity na 1.5 na may pinakamahusay na pagkakaayos.\n", "c) Ang pasyente na may visual acuity na 0.25 ay may isang visual na anggulo na 0.5 minuto.\n", "d) Ang pasyente na may visual acuity na 0.2 ay may subnormal na paningin.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Com relação à tabela de Snellen, é correto afirmar: \n", "a) A acuidade visual de 0,05 em um olho permite a carteira profissional de direção letra D. \n", "b) É necessária a facectomia com implante de lente intraocular em pacientes fácicos com acuidades visuais de 1,5 com a melhor correção. \n", "c) O paciente com acuidade visual de 0,25 tem um ângulo visual de 0,5 minuto. \n", "d) O paciente com acuidade visual de 0,2 tem visão subnormal.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "With regard to the Snellen chart, it is correct to state: \n", "a) A visual acuity of 0.05 in one eye allows for a professional D driver's license. \n", "b) Facectomy with implantation of an intraocular lens is necessary in phakic patients with visual acuity of 1.5 with the best fix. \n", "c) The patient with a visual acuity of 0.25 has a visual angle of 0.5 minutes.\n", "d) The patient with a visual acuity of 0.2 has subnormal vision.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 57: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes materiales tiene el índice de Abbe más alto?\n", "a) resina CR-39\n", "b) Trivex.\n", "c) Resina de alto índice.\n", "d) Policarbonato.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga materyales ang may pinakamataas na Abbe index?\n", "a) CR-39 dagta\n", "b) Tivex.\n", "c) High index resin.\n", "d) Polycarbonate.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Qual dos materiais abaixo apresenta maior índice Abbe? \n", "a) Resina CR-39 \n", "b) Trivex. \n", "c) Resina de alto índice. \n", "d) Policarbonato.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Which of the materials below has the highest Abbe index? \n", "a) CR-39 resin \n", "b) Trivex. \n", "c) High index resin. \n", "d) Polycarbonate.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 58: \n", "Language: spanish\n", "Question: \n", "Un paciente de 65 años, miope -1,00 dioptrías esféricas en ambos ojos, puede leer a 66 cm, sin corrección cristalina. ¿Cuál es su rango de acomodación y qué grado de gafas le basta para leer a 33 cm, respectivamente?\n", "a) 0,50 dioptrías esféricas; +1,00 dioptrías esféricas.\n", "b) 0,50 dioptrías esféricas; +1,50 dioptrías esféricas.\n", "c) 1,00 dioptrías esféricas; +1,50 dioptrías esféricas.\n", "d) 1,00 dioptrías esféricas; +2,00 dioptrías esféricas.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang isang 65 taong gulang na pasyenteng myopic na may sukat -1.00 spherical diopters sa parehong mga mata, at nakakapagbasa sa layo na 66 cm nang walang pagwawasto ng lens. Ano ang kanyang accommodative range at kung ano ang sapat na salamin sa mata na basahin ng siya ay makapagbasa sa layo na 33 cm? \n", "a) 0.50 spherical diopters; +1.00 spherical diopters.\n", "b) 0.50 spherical diopters; +1.50 spherical diopters.\n", "c) 1.00 spherical diopters; +1.50 spherical diopters.\n", "d) 1.00 spherical diopters; +2.00 spherical diopters.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Um paciente de 65 anos, míope de -1,00 dioptrias esfericas em ambos olhos, consegue ler a 66 cm, sem correção de lentes. Qual a sua amplitude acomodativa e qual grau de óculos é suficiente para ele ler a 33 cm, respectivamente? \n", "a) 0,50 dioptrias esfericas; +1,00 dioptrias esfericas. \n", "b) 0,50 dioptrias esfericas; +1,50 dioptrias esfericas. \n", "c) 1,00 dioptrias esfericas; +1,50 dioptrias esfericas. \n", "d) 1,00 dioptrias esfericas; +2,00 dioptrias esfericas.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "A 65-year-old patient, myopic to -1.00 spherical diopters in both eyes, can read at 66 cm without lens correction. What is his accommodative range and what eyeglasses are sufficient for him to read at 33 cm, respectively? \n", "a) 0.50 spherical diopters; +1.00 spherical diopters. \n", "b) 0.50 spherical diopters; +1.50 spherical diopters. \n", "c) 1.00 spherical diopters; +1.50 spherical diopters. \n", "d) 1.00 spherical diopters; +2.00 spherical diopters.\n", "Test #0: \n", "{'response': 'd'}\n", "**************************************************\n", "**************************************************\n", "Question 59: \n", "Language: spanish\n", "Question: \n", "¿Qué tipo de comodación se espera para una persona de 30 años?\n", "a) 1,00 dioptría esférica.\n", "b) 4,00 dioptrías esféricas.\n", "c) 7,00 dioptrías esféricas.\n", "d) 12,00 dioptrías esféricas.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Anong range of accomodation ang inaasahan para sa isang 30 taong gulang?\n", "a) 1.00 spherical diopters.\n", "b) 4.00 spherical diopters.\n", "c) 7.00 spherical diopters.\n", "d) 12.00 spherical diopters.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual amplitude de acomodação esperada para uma pessoa de 30 anos de idade? \n", "a) 1,00 dioptria esferica. \n", "b) 4,00 dioptria esferica. \n", "c) 7,00 dioptria esferica. \n", "d) 12,00 dioptria esferica.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "What range of accommodation is expected for a 30-year-old? \n", "a) 1.00 spherical diopters. \n", "b) 4.00 spherical diopters. \n", "c) 7.00 spherical diopters. \n", "d) 12.00 spherical diopters.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 60: \n", "Language: spanish\n", "Question: \n", "Un técnico en electrónica realiza, sin corrección, un esfuerzo acomodativo de 6.00 DE cuando trabaja a 20 cm. ¿Qué alternativa representa mejor la refracción de este paciente?\n", "a) +1,50 dioptrías esféricas -2,00 dioptrías cilíndricas x 180°.\n", "b) +1,50 dioptrías esféricas -3,00 dioptrías cilíndricas x 90°.\n", "c) +2,50 dioptrías esféricas -3,00 dioptrías cilíndricas x 180°.\n", "d) +3,50 dioptrías esféricas -3,00 dioptrías cilíndricas x 90°.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Ang isang electronics technician ay may accomodative effort ng 6.00 DE, nang walang salamin, kapag nagtatrabaho ng 20 cm. Aling sukat ang pinaka-angkop na maglalarawan sa kanyang refraction?\n", "a) +1.50 spherical diopters -2.00 cylindrical diopters x 180 °.\n", "b) +1.50 spherical diopters -3.00 cylindrical diopters x 90 °.\n", "c) +2.50 spherical diopters -3.00 cylindrical diopters x 180 °.\n", "d) +3.50 spherical diopters -3.00 cylindrical diopters x 90 °.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Um técnico em eletrônica realiza, sem correção, esforço acomodativo de 6,00 DE quando trabalha a 20 cm. Qual alternativa melhor representa a refração deste paciente? \n", "a) +1,50 dioptrias esfericas -2,00 dioptrias cilindricas x 180°. \n", "b) +1,50 dioptrias esfericas -3,00 dioptrias cilindricas x 90°. \n", "c) +2,50 dioptrias esfericas -3,00 dioptrias cilindricas x 180°. \n", "d) +3,50 dioptrias esfericas -3,00 dioptrias cilindricas x 90°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "An electronics technician performs, without correction, an accommodative effort of 6.00 DE when working at 20 cm. Which alternative best represents this patient's refraction? \n", "a) +1.50 spherical diopters -2.00 cylindrical diopters x 180°. \n", "b) +1.50 spherical diopters -3.00 cylindrical diopters x 90°. \n", "c) +2.50 spherical diopters -3.00 cylindrical diopters x 180°. \n", "d) +3.50 spherical diopters -3.00 cylindrical diopters x 90°.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 61: \n", "Language: spanish\n", "Question: \n", "Un niño de tres años tiene una esotropía de 70 dioptrías prismáticas (sin corregir), una relación convergencia/acomodación acomodativa de 6 y una refracción bajo cicloplejía de +3,50 dioptrías esféricas en ambos ojos. Después de la prescripción de la refracción, lo más probable es que la desviación con el uso de gafas, en dioptrías prismáticas, sea aproximadamente:\n", "a) Cero.\n", "b) 20.\n", "c) 50.\n", "d) 70.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Ang tatlong taong gulang na bata ay may esotropia ng 70 prismatic diopters (hindi pa naitatama), accommodative convergence/accommodation ratio ng 6, at pagwawasto sa ilalim ng cycloplegia ng +3.50 spherical diopters sa parehong mga mata. Matapos ang pagwawasto, malaki ang posibilidad na ang paglihis ng imahe, kapag ginagamit ang salamin ay mayroong sukat na\n", "a) 0.\n", "b) 20.\n", "c) 50.\n", "d) 70.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Criança de três anos apresenta esotropia de 70 dioptrias prismáticas (sem correção), relação convergência acomodativa/acomodação de 6, e refração sob cicloplegia de +3.50 dioptrias esfericas em ambos os olhos. Após a prescrição da refração, é mais provável que o desvio com o uso dos óculos, em dioptrias prismáticas, seja de aproximadamente: \n", "a) Zero. \n", "b) 20. \n", "c) 50. \n", "d) 70.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "A three-year-old child has an esotropia of 70 prismatic diopters (uncorrected), an accommodative convergence/accommodation ratio of 6, and refraction under cycloplegia of +3.50 spherical diopters in both eyes. After prescription of refraction, it is more likely that the deviation with the use of glasses, in prismatic diopters, is approximately: \n", "a) 0. \n", "b) 20. \n", "c) 50. \n", "d) 70.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 62: \n", "Language: spanish\n", "Question: \n", "La medición de la amplitud de convergencia fusional se realiza colocando prismas delante de los ojos. ¿Cuál de las siguientes alternativas representa mejor la posición adecuada de los prismas, considerando un paciente sin estrabismo?\n", "a) Base temporal en el ojo con mejor agudeza visual y base nasal en el otro ojo.\n", "b) Base temporal en el ojo derecho.\n", "c) Base nasal en el ojo con mejor agudeza visual y base temporal en el otro ojo.\n", "d) Base nasal en el ojo izquierdo.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Sinusukat ang amplitude ng fusional convergence sa pamamagitan ng paglalagay ng mga prismo sa harap ng mga mata. Alin sa sumusunod ang pinakaangkop na posisyon ng mga prismo, para sa isang pasyente na walang strabismus?\n", "a) Temporal base sa mata na may mas malinaw na visual acuity at nasal base ng kabilang mata.\n", "b) Temporal base sa kanang mata.\n", "c) Nasal base sa mata na may mas malinaw na visual acuity at temporal base sa kabilang mata.\n", "d) Nasal base sa kaliwang mata.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "A medida da amplitude de convergência fusional é feita pela colocação de prismas diante dos olhos. Qual das alternativas abaixo melhor representa a posição adequada dos prismas, considerando um paciente sem estrabismo? \n", "a) Base temporal no olho de melhor acuidade visual e base nasal no outro olho. \n", "b) Base temporal no olho direito. \n", "c) Base nasal no olho de melhor acuidade visual e base temporal no outro olho. \n", "d) Base nasal no olho esquerdo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "The measurement of the amplitude of fusional convergence is made by placing prisms in front of the eyes. Which of the alternatives below best represents the proper position of the prisms, considering a patient without strabismus? \n", "a) Temporal base in the eye with better visual acuity and nasal base in the other eye. \n", "b) Temporal base in the right eye. \n", "c) Nasal base in the eye with better visual acuity and temporal base in the other eye. \n", "d) Nasal base in the left eye.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 63: \n", "Language: spanish\n", "Question: \n", "Respecto al colirio de atropina al 1%, seleccione la alternativa correcta.\n", "a) Está contraindicado para el tratamiento de la ambliopía.\n", "b) Provoca buena cicloplejía, pero midriasis leve.\n", "c) Provoca cicloplejía prolongada, con un efecto que se prolonga hasta 15 días después de la instilación.\n", "d) Su máxima acción se produce cuatro horas después de la instilación.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga pahayag ang tama patungkol sa atropine 1% eye drops:\n", "a) Ito ay bawal upang gamutin ang amblyopia\n", "b) Nagdudulot ito ng mahusay na cycloplegia, ngunit may katamtamang mydriasis.\n", "c) Nagdudulot ito ng matagal na cycloplegia, na tumatagal hanggang sa 15 araw pagkatapos ng ipatak.\n", "d) Ang maximum action nito ay nangyayari apat na oras pagkatapos ng pagpatak.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao colírio de atropina 1%, assinale a alternativa correta. \n", "a) É contraindicado para tratamento de ambliopia \n", "b) Provoca boa cicloplegia, mas midríase discreta. \n", "c) Provoca cicloplegia prolongada, com efeito que se estende por, até, 15 dias após a instilação. \n", "d) Sua ação máxima ocorre quatro horas após a instilação.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding atropine 1% eye drops, mark the correct alternative. \n", "a) It is contraindicated for the treatment of amblyopia \n", "b) It causes good cycloplegia, but mild mydriasis. \n", "c) It causes prolonged cycloplegia, with an effect that lasts for up to 15 days after instillation. \n", "d) Its maximum action occurs four hours after instillation.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 64: \n", "Language: spanish\n", "Question: \n", "Un niño emétrope de 6 años presenta exoforia de 6 dioptrías prismáticas (PD). Tras inserción de lentes negativos de -2,00 dioptrías esféricas presentó esoforia de 2 DE. Su relación convergencia acomodativa/acomodación es:\n", "a) 2.\n", "b) 4.\n", "c) 6.\n", "d) 8.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: tagalog\n", "Question: \n", "Isang 6-taong-gulang na emmetropic na bata ay may exophoria ng 6 prismatic diopters (PD). Matapos ang paglalagay ng mga minus lens na -2.00 spherical diopters, naging 2SD ang kanyang esophoria. Ang accommodative convergence/accommodation ratio nito ay:\n", "a) 2.\n", "b) 4.\n", "c) 6.\n", "d) 8.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: portuguese\n", "Question: \n", "Criança de 6 anos de idade, emétrope, apresenta exoforia de 6 dioptrias prismáticas (DP). Após colocação de lentes negativas de -2,00 dioptrias esféricas, apresentou esoforia de 2 DP. Sua relação convergência acomodativa/acomodação é: \n", "a) 2. \n", "b) 4. \n", "c) 6. \n", "d) 8.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: english\n", "Question: \n", "A 6-year-old emmetropic child has an exophoria of 6 prismatic diopters (PD). After placement of minus lenses of -2.00 spherical diopters, he presented esophoria of 2 SD. Its accommodative convergence/accommodation ratio is: \n", "a) 2. \n", "b) 4. \n", "c) 6. \n", "d) 8.\n", "Test #0: \n", "{'response': 'b'}\n", "**************************************************\n", "**************************************************\n", "Question 65: \n", "Language: spanish\n", "Question: \n", "En cuanto a los prismas de Fresnel, seleccione la respuesta correcta.\n", "a) Aquellos con valores elevados se asocian con una agudeza visual reducida.\n", "b) Se obtienen a partir de prismas de igual potencia unidos por sus bases.\n", "c) Se obtienen a partir de prismas de igual potencia unidos por sus vértices.\n", "d) Son poco utilizados, principalmente por las molestias que provoca su elevado peso.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga pahayag ang tama tungkol sa Fresnel prisms?\n", "a) Ang pagkakaroon ng mataas na iskor ay may kaugnayan sa mas mababang visual acuity.\n", "b) Nakukuha ang mga ito mula sa mga prismo ng pantay na lakas na sinamahan ng kanilang mga base.\n", "c) Nakukuha ang mga ito mula sa mga prismo ng pantay na lakas na sinamahan ng kanilang mga tuktok.\n", "d) Ang mga ito ay bihirang nagagamit dahil sa kakulangan sa ginhawa na dulot ng kanilang mabigat na timbang.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Com relação aos prismas de Fresnel, assinale a alternativa correta. \n", "a) Os de altos valores são associados à redução da acuidade visual. \n", "b) São obtidos a partir de prismas de igual poder unidos por suas bases. \n", "c) São obtidos a partir de prismas de igual poder unidos por seus ápices.\n", "d) São pouco usados, principalmente pelo desconforto causado pelo seu alto peso.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding Fresnel prisms, mark the correct alternative. \n", "a) Those with high values ​​are associated with reduced visual acuity. \n", "b) They are obtained from prisms of equal power joined by their bases. \n", "c) They are obtained from prisms of equal power joined by their apexes. \n", "d) They are rarely, mainly due to the discomfort caused by their high weight.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 66: \n", "Language: spanish\n", "Question: \n", "Un paciente hipermétrope de 45 años con +1,00 dioptrías esféricas ya no tiene tolerancia acomodativa. Por tanto, para realizar una actividad a 25 cm, ¿qué corrección a continuación necesitarás?\n", "a) +1,00 dioptrías esféricas.\n", "b) +2,00 dioptrías esféricas.\n", "c) +4,00 dioptrías esféricas.\n", "d) +5,00 dioptrías esféricas.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: tagalog\n", "Question: \n", "Ang 45 taong gulang na may +1.00 spherical diopter hyperopic pasyente ay walang accommodative tolerance. Upang magsagawa ng isang aktibidad na 25 cm ang layo, aling pagwawasto ang kakailanganin?\n", "a) +1.00 spherical diopters.\n", "b) +2.00 spherical diopters.\n", "c) +4.00 spherical diopters.\n", "d) +5.00 spherical diopters.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Um paciente hipermétrope de +1,00 dioptrias esfericas de 45 anos não possui mais tolerância acomodativa. Logo, para exercer uma atividade a 25 cm necessitará de qual correção abaixo? \n", "a) +1,00 Dioptrias esfericas. \n", "b) +2,00 dioptrias esfericas. \n", "c) +4,00 dioptrias esfericas. \n", "d) +5,00 dioptrias esfericas.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "A 45-year-old +1.00 spherical diopter hyperopic patient no longer has accommodative tolerance. Therefore, to carry out an activity at 25 cm, which correction below will you need? \n", "a) +1.00 spherical diopters. \n", "b) +2.00 spherical diopters. \n", "c) +4.00 spherical diopters. \n", "d) +5.00 spherical diopters.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 67: \n", "Language: spanish\n", "Question: \n", "Un niño de seis años con dificultades de aprendizaje tiene una refracción estática de +2,00 DE en ambos ojos, alcanzando una agudeza visual de 1,0. No hay desviación ocular. ¿Cuál es el mejor curso de acción en este caso?\n", "a) No es necesaria prescripción médica para gafas.\n", "b) Prescripción completa.\n", "c) Prescripción de +1,00 dioptrías esféricas en ambos ojos.\n", "d) Prescripción de gafas de lectura.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Ang anim na taong gulang na bata na may learning disability at may static na repraksyon ng +2.00 spherical diopter sa kaniyang dalawang mata, ay may visual acuity ng 1.0 at walang paglihis sa paningin. Ano ang pinakaangkop gawin sa kasong ito?\n", "a) Hindi kinakailangang magpasalamin\n", "b) Buong reseta.\n", "c) Reseta ng +1.00 pherical diopters sa parehong mga mata.\n", "d) Reseta ng pagbabasa ng baso.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Uma criança de seis anos de idade com dificuldade de aprendizado, apresenta refração estática de +2,00 DE em ambos os olhos, alcançando acuidade visual 1,0. Não apresenta desvio ocular. Qual a melhor conduta neste caso? \n", "a) Não é necessária a prescrição de óculos. \n", "b) Prescrição total. \n", "c) Prescrição de +1,00 dioptrias esfericas em ambos os olhos. \n", "d) Prescrição de óculos de leitura.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "A six-year-old child with a learning disability has a static refraction of +2.00 spherical diopters in both eyes, achieving a visual acuity of 1.0. No ocular deviation. What is the best course of action in this case? \n", "a) It is not necessary to prescribe glasses. \n", "b) Full prescription. \n", "c) Prescription of +1.00 pherical diopters in both eyes. \n", "d) Prescription of reading glasses.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 68: \n", "Language: spanish\n", "Question: \n", "¿Cuál es la anisometropía del paciente que utiliza -3.00 dioptrías esféricas en el ojo derecho y +1.00 dioptrías esféricas -2.00 dioptrías cilíndricas x 90° en el ojo izquierdo?\n", "a) 0DE.\n", "b) 1 dioptrías esféricas.\n", "c) 2 dioptrías esféricas.\n", "d) 3 dioptrías esféricas.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Ano ang anisometropia ng pasyente na gumagamit ng -3.00 spherical diopters sa kanang mata at +1.00 spherical diopters -2.00 cylindrical diopters x 90 ° sa kaliwang mata?\n", "a) 0 de.\n", "b) 1 spherical diopters.\n", "c) 2 spherical diopters.\n", "d) 3 spherical diopters.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Qual a anisometropia do paciente que usa -3,00 dioptrias esfericas no olho direito e +1,00 dioptrias esfericas -2,00 dioptrias cilindricas x 90° no olho esquerdo? \n", "a) 0 DE. \n", "b) 1 dioptrias esfericas. \n", "c) 2 dioptrias esfericas. \n", "d) 3 dioptrias esfericas.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "What is the anisometropia of the patient who uses -3.00 spherical diopters in the right eye and +1.00 spherical diopters -2.00 cylindrical diopters x 90° in the left eye? \n", "a) 0 DE. \n", "b) 1 spherical diopters. \n", "c) 2 spherical diopters. \n", "d) 3 spherical diopters.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 69: \n", "Language: spanish\n", "Question: \n", "Un examinador situado a 0,67 m del ojo examinado utiliza un retinoscopio y escanea el meridiano horizontal (eje vertical), observando un movimiento a favor. Después de añadir lentes positivos, el reflejo se neutraliza con +1,50 dioptrías. Con esta lente, al escanear el meridiano vertical (eje horizontal), se observa un movimiento a favor. ¿Cuál de las siguientes podría ser una receta para el paciente?\n", "a) +1,00 dioptría esférica - 1,00 x 90°.\n", "b) +1,00 dioptría esférica - 1,00 x 180°.\n", "c) -1,00 dioptría esférica + 1,00 X 90°.\n", "d) -1,00 dioptría esférica + 1,00 X 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Nasa may layo na 0.67 ang isang examiner mula sa mata ng pasyente gamit ang isang retinoscope and tintignan ang horizontal meridian (vertical axis), at nakapagtala ng paggalaw. Pagkatapos magdagdag ng lente, nanyutralisa ang flare sa pamamagitan ng +1.5 diopter. Gamit ang lens na ito, kapag naii-sweep ang vertical meridian (horizontal axis) at mayroong nakikitang paggalaw, anong sukat ang dapat ibigay sa pasyente?
\n", "\n", "a) +1.00 spherical diopter - 1.00 x 90°. \n", "b) +1.00 spherical diopter - 1.00 x 180°. \n", "c) -1.00 spherical diopter + 1.00 X 90°. \n", "d) -1.00 spherical diopter + 1.00 X 180°.\n", "\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um examinador localizado a 0,67 m do olho examinado utiliza um retinoscópio e varre o meridiano horizontal (eixo vertical), observando um movimento a favor. Após adicionar lentes positivas, o reflexo é neutralizado com +1,50 dioptria. Com esta lente, ao varrer o meridiano vertical (eixo horizontal), observa-se um movimento a favor. Qual das alternativas abaixo pode ser uma prescrição para o paciente? \n", "a) +1,00 dioptria esferica - 1,00 x 90°. \n", "b) +1,00 dioptria esferica - 1,00 x 180°. \n", "c) -1,00 dioptria esferica + 1,00 X 90°. \n", "d) -1,00 dioptria esferica + 1,00 X 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "An examiner located 0.67 m from the examined eye uses a retinoscope and scans the horizontal meridian (vertical axis), observing a movement in favor. After adding plus lenses, the flare is neutralized with +1.50 diopter. With this lens, when sweeping the vertical meridian (horizontal axis), a movement in favor is observed. Which of the following could be a prescription for the patient? \n", "a) +1.00 spherical diopter - 1.00 x 90°. \n", "b) +1.00 spherical diopter - 1.00 x 180°. \n", "c) -1.00 spherical diopter + 1.00 X 90°. \n", "d) -1.00 spherical diopter + 1.00 X 180°.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 70: \n", "Language: spanish\n", "Question: \n", "Un paciente de 40 años previamente emétrope con antecedentes de epilepsia refiere aparición repentina de visión borrosa a distancia en ambos ojos. Presenta miopía de -4,50 dioptrías esféricas en ambos ojos, logrando agudeza visual normal. ¿Cuál es la causa probable?\n", "a) Accidente cerebrovascular.\n", "b) Uso de topiramato.\n", "c) Ectopia lenticular.\n", "d) Catarata.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Ang dating emmetropic 40 taong gulang na pasyente na may dating epilepsy ay biglaang nagrereklamo ng panlalabo ng paningin sa kaparehas na mata. Mayroon siyang myopia ng -4.50 spherical diopters sa parehong mga mata na umaabot sa normal na visual acuity. Ano ang pwedeng naging sanhi?\n", "a) Stroke.\n", "b) Paggamit ng topiramate.\n", "c) Ectopia lentis.\n", "d) Katarata.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Um paciente previamente emétrope de 40 anos de idade com histórico de epilepsia refere visão embaçada para longe de aparecimento súbito em ambos os olhos. Apresenta miopia de -4,50 dioptrias esfericas em ambos os olhos atingindo acuidade visual normal. Qual a provável causa? \n", "a) Acidente vascular cerebral. \n", "b) Uso de topiramato. \n", "c) Ectopia lentis. \n", "d) Catarata.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "A previously emmetropic 40-year-old patient with a history of epilepsy reports sudden onset blurred vision in both eyes. He has myopia of -4.50 spherical diopters in both eyes, reaching normal visual acuity. What is the likely cause? \n", "a) Stroke. \n", "b) Use of topiramate. \n", "c) Ectopia lentis. \n", "d) Cataract.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 71: \n", "Language: spanish\n", "Question: \n", "Seleccione la alternativa que correlacione correctamente las columnas.\n", "I - Astigmatismo hipermétrope compuesto a favor de la regla.\n", "II - Astigmatismo miope compuesto contra la regla.\n", "III- Anisometropía astigmática.\n", "IV - Anisometropía antimetrópica.\n", "\n", "A - Ojo derecho: -1,00 dioptrías esféricas -1,50 dioptrías cilíndricas x 90° Ojo izquierdo: -1,00 dioptrías esféricas -1,50 dioptrías cilíndricas x 90°.\n", "B - Ojo derecho: +5,00 dioptrías esféricas Ojo izquierdo: -1,00 dioptrías esféricas.\n", "C - Ojo derecho: +5,00 dioptrías esféricas -5,00 dioptrías cilíndricas x 90° ojo izquierdo: +1,00 dioptrías esféricas -1,00 dioptrías cilíndricas x 90°.\n", "D - Ojo derecho: +5,00 dioptrías esféricas +2,50 dioptrías cilíndricas x 90° ojo izquierdo: +5,00 dioptrías esféricas +2,50 dioptrías cilíndricas x 90°.\n", "\n", "a)I: C / II: A / III: D / IV: B.\n", "b)I: C / II : B / III: A / IV: D.\n", "c)I: D / II: A / III: C / IV: B.\n", "d)I: D / II: C / III: B / IV: A.\n", "Test #0: \n", "{'response': 'a)I: C / II: A / III: D / IV: B.'}\n", "Language: tagalog\n", "Question: \n", "Pagtambalin ang tugmang kondisyon sa mata sa Hanay A at ang angkop nitong sukat sa Column B\n", "\n", "I - Compound hypermetropic astigmatism in favor of the rule\n", "II - Compound myopic astigmatism against the rule\n", "III.- Astigmatic anisometropia.\n", "IV - Antimetropic Anisometropia.\n", "\n", "A- Kanang mata: -1.00 spherical diopter -1.50 cylindrical diopters x 90 ° Kaliwang mata: -1.00 spherical diopter -1.50 cylindrical diopters x 90 °.\n", "B- Kanang mata: +5.00 spherical diopters Kaliwang mata: -1.00 spherical diopters.\n", "C- Kanang mata: +5.00 spherical diopters -5.00 cylindrical diopters x 90 ° Kaliwang mata: +1.00 spherical diopters -1.00 cylindrical diopters x 90 °.\n", "D- Kanang mata: +5.00 spherical diopters +2.50 cylindrical diopters x 90 ° Kaliwang mata: +5.00 spherical diopters +2.50 cylindrical diopters x 90 °.\n", "\n", "a)I: C / II: A / III: D / IV: B.\n", "b)I: C / II : B / III: A / IV: D.\n", "c)I: D / II: A / III: C / IV: B.\n", "d)I: D / II: C / III: B / IV: A.\n", "Test #0: \n", "{'response': 'a)I: C / II: A / III: D / IV: B.'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que correlaciona corretamente as colunas.\n", "\n", "I - Astigmatismo hipermetrópico composto a favor da regra.\n", "II - Astigmatismo miópico composto contra a regra.\n", "III- Anisometropia astigmática.\n", "IV - Anisometropia antimetrópica.\n", "\n", "A - OD: -1,00 DE -1,50 DC x 90°\n", "OE: -1,00DE -1,50 DC x 90°.\n", "\n", "B - OD: +5,00 DE\n", "OE: -1,00 DE.\n", "\n", "C - OD: +5,00 DE -5,00 DC x 90°\n", "OE: +1,00 DE -1,00 DC x 90°.\n", "\n", "D - OD: +5,00 DE +2,50 DC x 90°\n", "OE: +5,00 DE +2,50 DC x 90°.\n", "\n", "a)I: C / II: A / III: D / IV: B.\n", "b)I: C / II : B / III: A / IV: D.\n", "c)I: D / II: A / III: C / IV: B.\n", "d)I: D / II: C / III: B / IV: A.\n", "Test #0: \n", "{'response': 'a)I: C / II: A / III: D / IV: B.'}\n", "Language: english\n", "Question: \n", "Mark the alternative that correctly correlates the columns. \n", "I - Compound hypermetropic astigmatism in favor of the rule. \n", "II - Compound myopic astigmatism against the rule. \n", "III- Astigmatic anisometropia. \n", "IV - Antimetropic anisometropia. \n", "\n", "A - Right eye: -1.00 spherical diopters -1.50 cylindrical diopters x 90° Left eye: -1.00 spherical diopters -1.50 cylindrical diopters x 90°. \n", "B - Right eye: +5.00 spherical diopters Left eye: -1.00 spherical diopters. \n", "C - Right eye: +5.00 spherical diopters -5.00 cylindrical diopters x 90° left eye: +1.00 spherical diopters -1.00 cylindrical diopters x 90°. \n", "D - Right eye: +5.00 spherical diopters +2.50 cylindrical diopters x 90° left eye: +5.00 spherical diopters +2.50 cylindrical diopters x 90°.\n", "\n", "a)I: C / II: A / III: D / IV: B.\n", "b)I: C / II : B / III: A / IV: D.\n", "c)I: D / II: A / III: C / IV: B.\n", "d)I: D / II: C / III: B / IV: A.\n", "Test #0: \n", "{'response': 'a)I: C / II: A / III: D / IV: B.'}\n", "**************************************************\n", "**************************************************\n", "Question 72: \n", "Language: spanish\n", "Question: \n", "Clasifica los astigmatismos a continuación según la queratometría central. Considere el astigmatismo interno insignificante.\n", "\n", "I- 44,00 @ 90° x 42,00 @ 180°.\n", "II- 44,00 @ 180° x 42,00 @ 90°.\n", "III- 44,00 @ 45° x 42,00 @ 135°.\n", "\n", "A- Astigmatismo a favor de la regla.\n", "B- Astigmatismo contra la regla.\n", "C- Astigmatismo oblicuo.\n", "\n", "a)I: A, II: B, III: C.\n", "b)I: A, II: C, III: B.\n", "c)I: B, II: A, III: C.\n", "d)I: B, II: C, III: A.\n", "Test #0: \n", "{'response': 'a)I: A, II: B, III: C.'}\n", "Language: tagalog\n", "Question: \n", "Pagtambalin ayon sa central keratometry sa Hanay A at ang uri ng astigmatism sa Hanay B. Alalahanin ang inisignifant internal astigmatism.\n", "\n", "I- 44.00 @ 90 ° x 42.00 @ 180 °.\n", "II- 44.00 @ 180 ° x 42.00 @ 90 °.\n", "III- 44.00 @ 45 ° x 42.00 @ 135 °.\n", "\n", "A- Astigmatism in favor of the rule.\n", "B- Astigmatism against the rule\n", "C- Oblique astigmatism.\n", "\n", "a) I: A, II: B, III: C.\n", "b) I: A, II: C, III: B.\n", "c) I: B, II: A, III: C.\n", "d) I: B, II: C, III: A.\n", "Test #0: \n", "{'response': 'a) I: A, II: B, III: C.'}\n", "Language: portuguese\n", "Question: \n", "Classifique os astigmatismos abaixo de acordo com a ceratometria central. Considere o astigmatismo interno insignificante.\n", "\n", "I- 44,00 @ 90° x 42,00 @ 180°.\n", "II- 44,00 @ 180° x 42,00 @ 90°.\n", "III- 44,00 @ 45° x 42,00 @ 135°.\n", "\n", "A- Astigmatismo a favor da regra.\n", "B- Astigmatismo contra a regra.\n", "C- Astigmatismo oblíquo.\n", "\n", "a)I: A, II: B, III: C.\n", "b)I: A, II: C, III: B.\n", "c)I: B, II: A, III: C.\n", "d)I: B, II: C, III: A.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Classify the astigmatisms below according to the central keratometry. Consider insignificant internal astigmatism.\n", "\n", "I- 44.00 @ 90° x 42.00 @ 180°.\n", "II- 44.00 @ 180° x 42.00 @ 90°.\n", "III- 44.00 @ 45° x 42.00 @ 135°.\n", "\n", "A- Astigmatism in favor of the rule.\n", "B- Astigmatism against the rule.\n", "C- Oblique astigmatism.\n", "\n", "a) I: A, II: B, III: C.\n", "b) I: A, II: C, III: B.\n", "c) I: B, II: A, III: C.\n", "d) I: B, II: C, III: A.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 73: \n", "Language: spanish\n", "Question: \n", "Un paciente se aleja de los refractores Greens para evitar que se empañen los lentes debido al uso de una mascarilla durante el examen. ¿Cuál de las siguientes alternativas es la correcta si se mantiene alejado de los Greens y el oftalmólogo no se da cuenta?\n", "a) Si es miope, su prescripción estará subcorregida.\n", "b) Si es miope habrá sobrecorrección en su prescripción.\n", "c) Si es miope, no habrá cambio en su prescripción.\n", "d) Si es previsor, necesitará un mayor esfuerzo de acomodación.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Lumayo ang isang pasyente mula sa Greens upang hindi lumabo ang kanyang suot na salamin dala ng pagsusuot ng mask habang siya ay nagsusulit. Alin sa mga sumusunod na pahayag ang tama kung siya ay lumayo sa Greens at hindi napansin ng ophthalmologist?\n", "a) Kung siya ay myopic, magkakaroon ng undercorrection sa kanyang preskripsyon\n", "b) Kung siya ay myopic, magkakaroon ng overcorrection sa kanyang preskripsyon\n", "c) Kung siya ay nearsighted, walang pagbabago sa kanyang presktipston.\n", "d) Kung siya ay farsighted, kakailanganin niya ng mas mataas na accommodative effort. \n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um paciente se afasta do Greens para não embaçar as lentes devido ao uso de máscara durante o exame. Qual das alternativas abaixo é correta caso ele permaneça afastado do Greens e o oftalmologista não perceba? \n", "a) Se ele for míope, haverá hipocorreção em sua prescrição. \n", "b) Se ele for míope, haverá hipercorreção em sua prescrição. \n", "c) Se ele for míope, não haverá mudança em sua prescrição. \n", "d) Se ele for hipermetrope, necessitará de maior esforço acomodativo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "A patient moves away from the Greens so as not to fog up his lenses due to the use of a mask during the exam. Which of the following is correct if he stays away from the Greens and the ophthalmologist doesn't notice? \n", "a) If he is myopic, there will be undercorrection in his prescription. \n", "b) If he is myopic, there will be overcorrection in his prescription. \n", "c) If he is nearsighted, there will be no change in his prescription. \n", "d) If he is farsighted, he will need greater accommodative effort.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 74: \n", "Language: spanish\n", "Question: \n", "¿Cuál es la función del ajuste \"P\" en el refractor Greens?\n", "a) Aumente la potencia esférica positiva para probar la refracción cercana.\n", "b) Aumentar la potencia esférica negativa para reducir la distancia de trabajo en skiascopia.\n", "c) Insertar un prisma de 6 DP y permitir la evaluación de la balanza refractométrica.\n", "d) Separar las imágenes y permitir la valoración del equilibrio refractométrico y la estereopsis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ano ang gamit ng \"P\" setting sa Greens refractor?\n", "a) Dinadagdagan ang positibong spherical power upang suriin ang near refraction.\n", "b) Dinadagdagan ang negatibong spherical power upang bawasan ang working distance o sa skiascopy.\n", "c) Ilagay ang isang 6 DP prism at payagan ang pagsusuri ng refractometric balance.\n", "d) Paghiwalayin ang mga imahe at payagan ang pagsusuri ng refractometric na balanse at stereopsis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual a função do ajuste \"P\" no refrator de Greens? \n", "a) Aumentar o poder esférico positivo para testar a refração para perto. \n", "b) Aumentar o poder esférico negativo para descontar a distância de trabalho na esquiascopia. \n", "c) Inserir um prisma de 6 DP e possibilitar a avaliação do balanço refratométrico. \n", "d) Separar as imagens e possibilitar avaliação do balanço refratométrico e da estereopsia.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "What is the function of the \"P\" setting on the Greens refractor? \n", "a) Increase positive spherical power to test near refraction. \n", "b) Increase the negative spherical power to discount the working distance in skiascopy. \n", "c) Insert a 6 DP prism and allow the evaluation of the refractometric balance.\n", "d) Separate the images and allow evaluation of refractometric balance and stereopsis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 75: \n", "Language: spanish\n", "Question: \n", "Una persona miope con corrección insuficiente suele inclinar sus gafas para ver mejor. ¿Qué efecto tiene esta maniobra en tus lentes correctivos?\n", "a) Aumento de la divergencia óptica e inducción de un cilindro positivo en el eje de inclinación.\n", "b) Mayor convergencia óptica e inducción de un cilindro negativo en el eje de inclinación.\n", "c) Aumento de la divergencia óptica e inducción de un cilindro negativo en el eje de inclinación.\n", "d) Mayor convergencia óptica e inducción de un cilindro positivo en el eje de inclinación.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang isang undercorrected myopic na tao ay madalas na nagkikiling ng salamin upang makita nang mas malinaw. Ano ang epekto nito sa kanyang mga corrective lens?\n", "a) Nadagdagan ang optical divergence at positibong cylinder induction sa tilting axis\n", "b) Nadagdagan ang optical convergence at negatibong cylinder induction sa tilting axis\n", "c) Nadagdagan ang optical divergence at negatibong cylinder induction sa tilting axis\n", "d) Nadagdagan ang optical convergence at positibong cylinder induction sa tilting axis\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um míope hipocorrigido frequentemente inclina seus óculos para enxergar melhor. Qual o efeito desta manobra em suas lentes corretoras? \n", "a) Aumento da divergência óptica e indução de cilindro positivo no eixo da inclinação. \n", "b) Aumento da convergência óptica e indução de cilindro negativo no eixo da inclinação. \n", "c) Aumento da divergência óptica e indução de cilindro negativo no eixo da inclinação. \n", "d) Aumento da convergência óptica e indução de cilindro positivo no eixo da inclinação.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "An undercorrected myopic person often tilts his glasses to see better. What effect does this maneuver have on your corrective lenses? \n", "a) Increased optical divergence and positive cylinder induction on the tilt axis. \n", "b) Increased optical convergence and negative cylinder induction on the tilt axis. \n", "c) Increased optical divergence and negative cylinder induction on the tilt axis. \n", "d) Increased optical convergence and positive cylinder induction on the tilt axis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 76: \n", "Language: spanish\n", "Question: \n", "Durante la práctica clínica de refracción, el residente de primer año instiló gotas ciclopléjicas para los ojos a los pacientes, pero perdió el frasco. Su preceptor decidió medir el efecto de acomodación para saber qué colirios se utilizaban y observó que los pacientes tenían buena midriasis y presentaban una reducción máxima de la acomodación entre 20 y 30 minutos después de la instilación, con un efecto fugaz. ¿Qué gotas para los ojos le puso el residente?\n", "a) Atropina.\n", "b) Ciclopentolato.\n", "c) Fenilefrina.\n", "d) Tropicamida.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Sa refraction outpatient clinic, ang first year resident ay nagpatak ng cycloplegic eye drop sa mata ng mga pasyente, ngunit nawala ang bote. Nagpasya ang kanyang preceptor na sukatin ang accomodation effect upang malaman kung aling bote ang ginamit, napansin nila na ang mga pasyente ay may mainamna mydriasis at nagkaroon ng maximum na pagbawas sa accomodation pagkatapos ng 20 hanggang 30 minuto pagkatapos ng pagpatak sa kanil na mabilis ding mawala ang epekto. Anong eyedrop ang ginamit ng resident?\n", "a) Atropine.\n", "b) Cyclopentolate.\n", "c) Phenylephrine.\n", "d) Tropicamide.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Durante o ambulatório de refração o residente do primeiro ano instilou um colírio cicloplégico nos pacientes, mas perdeu o frasco. Seu preceptor resolveu medir o efeito de acomodação para descobrir qual colírio foi usado e notou que os pacientes estavam com boa midríase e tiveram redução máxima na acomodação 20 a 30 minutos após a instilação, com efeito fugaz. Qual colírio o residente instilou? \n", "a) Atropina. \n", "b) Ciclopentolato. \n", "c) Fenilefrina. \n", "d) Tropicamida.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "During the refraction outpatient clinic, the first-year resident instilled a cycloplegic eye drop in the patients, but lost the bottle. His preceptor decided to measure the accommodation effect to find out which drops were used and noticed that the patients had good mydriasis and had a maximum reduction in accommodation 20 to 30 minutes after instillation, with a fleeting effect. What eye drops did the resident instill? \n", "a) Atropine. \n", "b) Cyclopentolate. \n", "c) Phenylephrine. \n", "d) Tropicamide.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 77: \n", "Language: spanish\n", "Question: \n", "Durante la skiascopia de un paciente, ¿cuál de las siguientes características indica que el examinador está más cerca del punto de neutralidad?\n", "a) Velocidad de haz rápida, alto brillo, haz amplio.\n", "b) Velocidad de haz rápida, brillo bajo, haz estrecho.\n", "c) Velocidad de haz lenta, alto brillo, haz amplio.\n", "d) Velocidad de haz lenta, brillo bajo, haz estrecho.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Sa tuwing sumasailalim sa skiascopy ang pasyente, aling katangian ang nagpapahiwatig na ang tagasuri ay pinakamalapit sa point of neutrality?\n", "a) Mabilis na beam speed, mataas na katingkaran, malawak na beam.\n", "b) Mabilis na beam speed, mababang katingkaran, makitid na bean.\n", "c) Mabagal na beam speed, mataas na katingkaran, malawak na beam.\n", "d) Mabagal na beam speed, mababang na katingkaran, makitid na beam.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Durante a esquiascopia de um paciente, qual das características abaixo indica que o examinador está mais próximo do ponto de neutralidade? \n", "a) Velocidade do feixe rápida, brilho alto, feixe largo. \n", "b) Velocidade do feixe rápida, brilho baixo, feixe estreito. \n", "c) Velocidade do feixe lenta, brilho alto, feixe largo. \n", "d) Velocidade do feixe lenta, brilho baixo, feixe estreito.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "During a patient's skiascopy, which of the following characteristics indicates that the examiner is closest to the point of neutrality? \n", "a) Fast beam speed, high brightness, wide beam. \n", "b) Fast beam speed, low brightness, narrow beam. \n", "c) Slow beam speed, high brightness, wide beam. \n", "d) Slow beam speed, low brightness, narrow beam.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 78: \n", "Language: spanish\n", "Question: \n", "En el examen de un paciente fáquico, el punto cercano de acomodación se encontró en el ojo derecho a 30 cm y en el ojo izquierdo a 50 cm. En este caso se puede afirmar que:\n", "a) El ojo izquierdo debe ser más miope que el derecho.\n", "b) Lo más probable es que sea necesario ajustar la refracción del paciente.\n", "c) Es una condición común, ya que la acomodación rara vez es similar en ambos ojos.\n", "d) Una enfermedad que hace avanzar la retina, como la coriorretinopatía serosa central, es la causa de esta menor distancia en el ojo derecho.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Sa pagsusuri ng pasyente na phakic, ang pinakamalapit na punto ng accomodation ay natagpuan sa kanang mata na may 30 cm na layo at sa kaliwang mata sa 50 cm. Sa kasong ito, ipinapahiwatig na:\n", "a) Ang kaliwang mata ay dapat na mas myopic kaysa sa kanang mata.\n", "b) Inaasahan na may pangangailangan upang iakma ang refraction ng mata ng pasyente\n", "c) Ito ay isang pangkaraniwang kondisyon, sapagkat ang accommodation ng mata ay madalang na magkatulad sa parehong mata\n", "d) Ang mga karamdamang guamagalaw papaharap ang retina, tulad ng central serous chorioretinopathy, ay nagdulot ng mas maikling distansya sa kanang mata\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "No exame de um paciente fácico, foi encontrado o ponto próximo de acomodação no olho direito a 30 cm e no olho esquerdo a 50 cm. Neste caso, pode-se afirmar: \n", "a) O olho esquerdo deve ser mais míope que o olho direito. \n", "b) Mais provavelmente há necessidade de se ajustar a refração do paciente. \n", "c) É uma condição comum, já que a acomodação é raramente semelhante nos dois olhos. \n", "d) Uma doença que desloque a retina para frente, como a coriorretinopatia central serosa, é causa dessa menor distância no olho direito.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "On examination of a phakic patient, the closest point of accommodation was found in the right eye at 30 cm and in the left eye at 50 cm. In this case, it can be stated: \n", "a) The left eye must be more myopic than the right eye. \n", "b) More likely there is a need to adjust the patient's refraction. \n", "c) It is a common condition, as accommodation is rarely similar in both eyes. \n", "d) A disease that moves the retina forward, such as central serous chorioretinopathy, is the cause of this shorter distance in the right eye.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 79: \n", "Language: spanish\n", "Question: \n", "Si la refracción del paciente es de +1,50 dioptrías esféricas y -0,50 dioptrías cilíndricas x 180° y su queratometría es de 42,00 dioptrías x 180° y 44,00 dioptrías x 90°, podemos decir que el astigmatismo interno es:\n", "a) +1,50 dioptrías cilíndricas x 90°.\n", "b) +2,50 dioptrías cilíndricas x 180°.\n", "c) -1,50 dioptrías cilíndricas x 90°.\n", "d) -2,50 dioptrías cilíndricas x 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Kung ang refraction ng mata ng pasyente ay +1.50 spherical diopters at -0.50 cylindrical diopters x 180 ° at ang kanyang keratometry ay 42.00 diopters x 180 ° at 44.00 diopters x 90 °, maaaring sabihin na ang internal astigmatism ay:\n", "a) +1.50 cylindrical diopters x 90 °.\n", "b) +2.50 cylindrical diopters x 180 °.\n", "c) -1.50 cylindrical diopters x 90 °.\n", "d) -2.50 cylindrical diopters x 180 °.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Se a refração do paciente é +1,50 dioptrias esfericas e -0,50 dioptrias cilindricas x 180° e sua ceratometria é 42,00 Dioptrias x 180° e 44,00 Dioptrias x 90°, podemos afirmar que o astigmatismo interno é: \n", "a) +1,50 dioptrias cilindricas x 90°. \n", "b) +2,50 dioptrias cilindricas x 180°. \n", "c) -1,50 dioptrias cilindricas x 90°. \n", "d) -2,50 dioptrias cilindricas x 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "If the patient's refraction is +1.50 spherical diopters and -0.50 cylindrical diopters x 180° and his keratometry is 42.00 diopters x 180° and 44.00 diopters x 90°, we can say that the internal astigmatism is : \n", "a) +1.50 cylindrical diopters x 90°. \n", "b) +2.50 cylindrical diopters x 180°. \n", "c) -1.50 cylindrical diopters x 90°. \n", "d) -2.50 cylindrical diopters x 180°.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 80: \n", "Language: spanish\n", "Question: \n", "Un paciente pseudofáquico con una refracción de +1,00 dioptrías esféricas y -3,00 dioptrías cilíndricas x 180° probablemente notará una visión menos borrosa en:\n", "a) 0,5 metros.\n", "b) 1m.\n", "c) 2 metros.\n", "d) 4 metros.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Ang pseudophakic na pasyente na may refraction na +1.00 spherical diopters at -3.00 cylindrical diopters x 180 ° ay mas mapapansin ang kaunting panlalabo ng paningin sa distansyang:\n", "a) 0.5 m.\n", "b) 1 m.\n", "c) 2 m.\n", "d) 4 m.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um paciente pseudofácico com refração de +1,00 dioptrias esfericas e -3,00 dioptrias cilindricas x 180° provavelmente notará um visão menos borrada a: \n", "a) 0,5 m. \n", "b) 1 m. \n", "c) 2 m. \n", "d) 4 m.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "A pseudophakic patient with a refraction of +1.00 spherical diopters and -3.00 cylindrical diopters x 180° is likely to notice less blurry vision at: \n", "a) 0.5 m. \n", "b) 1 m. \n", "c) 2 m. \n", "d) 4 m.\n", "Test #0: \n", "{'response': 'c'}\n", "**************************************************\n", "**************************************************\n", "Question 81: \n", "Language: spanish\n", "Question: \n", "El paciente regresa quejándose de diplopía después de fabricar sus gafas. Tiene anisometropía, pero anteriormente usaba gafas sin problemas. No hubo cambios en la prescripción. Los centros ópticos están correctamente montados. La explicación más probable es:\n", "a) Cambio en la curva base de una de las lentes.\n", "b) Cambio en la forma del marco.\n", "c) Desaparición del escotoma de supresión central.\n", "d) Pérdida de la capacidad cerebral de compensación por la diferencia de aniseiconía.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Bumalik ang isang pasyente dahil inirereklamo nag nagdodobleng bisyon dulot ng kanyang bagong salamin. Mayroon siyang anisometropia at dati nang nagsusuot ng salamin nang walang problema Walang nagbago sa kanyang preskripsyon at ang mga optical centers ay maayos na nailagay. Ang nararanasan ng pasyente ay maipapaliwanag ng: \n", "a) Pagbabago sa base curve ng isa sa mga lente.\n", "b) Pagbabago sa frame format.\n", "c) Pagkawala ng sentral ng central suppression scotoma.\n", "d) Pagkawala ng cerebral compensation capacity para sa pagkakaiba sa aniseikonia.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: portuguese\n", "Question: \n", "Paciente retorna com queixa de diplopia após confeccionar óculos. Tem anisometropia, mas usava óculos anteriormente sem problemas. Não houve modificação na prescrição. Os centros ópticos estão montados adequadamente. A explicação mais provável é: \n", "a) Mudança na curva base de uma das lentes. \n", "b) Mudança no formato da armação. \n", "c) Desaparecimento do escotoma central de supressão. \n", "d) Perda da capacidade de compensação cerebral da diferença da aniseiconia.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "Patient returns complaining of diplopia after making eyeglasses. Has anisometropia, but previously wore glasses without problems. There was no change in the prescription. Optical centers are properly mounted. The most likely explanation is: \n", "a) Change in the base curve of one of the lenses. \n", "b) Change in frame format. \n", "c) Disappearance of the central suppression scotoma. \n", "d) Loss of cerebral compensation capacity for the difference in aniseikonia.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 82: \n", "Language: spanish\n", "Question: \n", "La mejor alternativa para incluir prismas basados ​​en el tiempo en lentes de gafas para un paciente miope de -4,00 dioptrías esféricas con diplopía binocular de 4 dioptrías prismáticas es:\n", "a) Prescripción de una lente con filtro neutro en un ojo.\n", "b) Prescripción de lentes con filtros polarizados en ambos ojos.\n", "c) Reducción de la distancia entre los centros ópticos de las lentes.\n", "d) No prescribir refracción en uno de los ojos para promover la supresión de ese ojo.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ang pinakaangkop na gawin para maisama ang time-based prism sa salamin para sa -4.00 spherical diopters myopic pasyente na may 4 na prism diopters binocular diplopia ay:\n", "a) Preskripsyon ng isang lens na may isang neutral na filter sa isang mata.\n", "b) Preskripsyon ng mga lente na may polarized filter sa parehong mga mata.\n", "c) Pagbawas ng distansya sa pagitan ng mga optical center at ng mga lente.\n", "d) Huwag magbigay ng salamin na may refraction sa isang mata upang painamin ang suppression ng nasabing mata\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "A melhor alternativa à inclusão de prismas de base temporal nas lentes dos óculos para paciente míope de -4,00 dioptrias esfericas com diplopia binocular de 4 dioptrias prismaticas é: \n", "a) Prescrição de lente com filtro neutro em um dos olhos. \n", "b) Prescrição de lentes com filtros polarizados em ambos os olhos. \n", "c) Redução da distância entre os centros ópticos das lentes. \n", "d) Não prescrever a refração em um dos olhos para promover a supressão deste olho.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "The best alternative to including time-based prisms in eyeglass lenses for a -4.00 spherical diopters myopic patient with 4 prism diopters binocular diplopia is: \n", "a) Prescription of a lens with a neutral filter in one eye. \n", "b) Prescription of lenses with polarized filters in both eyes. \n", "c) Reduction of the distance between the optical centers of the lenses. \n", "d) Do not prescribe refraction in one eye to promote suppression of that eye.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 83: \n", "Language: spanish\n", "Question: \n", "¿Cuál de las siguientes condiciones se asocia más típicamente con el hallazgo de una silla turca \"parcialmente vacía\" en la resonancia magnética?\n", "a) Glioma del nervio óptico.\n", "b) Macroadenoma hipofisario.\n", "c) Pseudotumor cerebral.\n", "d) Síndrome de Tolosa-Hunt.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga kondisyon ang pinaka-karaniwang nauugnay sa paghahanap ng isang \"partially empty\" na sella turcica sa Magnetic Resonance Imaging?\n", "a) Optic nerve glioma.\n", "b) Pituitary MacRoadenoma.\n", "c) Cerebral pseudotumor.\n", "d) Tolosa-hunt syndrome.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Qual das condições abaixo está mais tipicamente associada ao achado de sela túrcica \"parcialmente vazia\" em um exame de imagem por ressonância nuclear magnética? \n", "a) Glioma de nervo óptico. \n", "b) Macroadenoma de hipófise. \n", "c) Pseudotumor cerebral. \n", "d) Síndrome de Tolosa-Hunt.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Which of the conditions below is most typically associated with finding a \"partially empty\" sella turcica on magnetic resonance imaging? \n", "a) Optic nerve glioma. \n", "b) Pituitary macroadenoma. \n", "c) Cerebral pseudotumor. \n", "d) Tolosa-Hunt syndrome.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 84: \n", "Language: spanish\n", "Question: \n", "Respecto a la parálisis del cuarto par craneal, es correcto decir:\n", "a) Frecuentemente hay parálisis del nervio facial asociada.\n", "b) En el examen de la motricidad ocular se observa un aumento de la excursión del ojo paralizado al mirar hacia abajo.\n", "c) El paciente desarrolla diplopía vertical, posición viciosa de la cabeza e hipotropía del ojo paralizado.\n", "d) La afectación nuclear o infranuclear del IV nervio puede tener el mismo cuadro clínico.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag ang nagsasaad ng katotohanan paungkol sa fourth cranial nerve palsy:\n", "a) Kadalasan ay may kasama itong sa facial nerve palsy.\n", "b) Sa pagsusuri ng ocular motricity, mayroong isang pagtaas sa ekskursiyon ng paralisadong mata kapag lumilingon pababa.\n", "c) Ang pasyente ay nagkakaroon ng vertical diplopia, vicious head position at hypotropia ng paralisadong mata.\n", "d) Pareho ng klinikal na manipestasyon nito sa nuclear o infranculear involvement ng IV nerve\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Sobre a paralisia do IV nervo craniano, é correto afirmar: \n", "a) Frequentemente, apresenta-se paralisia de nervo facial associada. \n", "b) No exame da motricidade ocular, existe um aumento da excursão do olho paralisado no olhar para baixo. \n", "c) O paciente evolui com diplopia vertical, posição viciosa de cabeça e hipotropia do olho paralisado. \n", "d) O acometimento nuclear ou infranuclear do IV nervo pode ter o mesmo quadro clínico.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "About fourth cranial nerve palsy, it is correct to state: \n", "a) Associated facial nerve palsy is often present. \n", "b) In the examination of ocular motricity, there is an increase in the excursion of the paralyzed eye when looking down. \n", "c) The patient evolves with vertical diplopia, vicious head position and hypotropia of the paralyzed eye. \n", "d) Nuclear or infranuclear involvement of the IV nerve may have the same clinical picture.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 85: \n", "Language: spanish\n", "Question: \n", "Niño de ocho años con síntomas bilaterales subagudos de parálisis de la mirada vertical, papiledema y disociación de la luz cercana. Es correcto decir:\n", "a) Deben investigarse las lesiones mesencefálicas, como los tumores.\n", "b) Este es un caso clásico de sífilis neurológica de transmisión vertical.\n", "c) Lo más probable es que se trate de una lesión del quiasma óptico.\n", "d) La lesión del lóbulo frontal es la principal hipótesis diagnóstica.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang walong taong gulang na bata na may subacute bilateral vertical gaze palsy, papilledema at light-near dissociation. Ipinapahiwatig nito na: \n", "a) Ang mga mesencephalic lesion, tulad ng mga tumor, ay dapat na imbestigahan.\n", "b) Ito ay isang kaso ng vertically transmitted neurological syphilis.\n", "c) Ito ay isang problema sa optic chiasm.\n", "d) Ang frontal lobe lesion ay ang pangunahing diagnostic hypothesis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Criança de oito anos de idade com quadro bilateral subagudo de paralisia do olhar vertical, papiledema e dissociação luz-perto. É correto afirmar: \n", "a) Lesões mesencefálicas, como tumores, devem ser investigadas. \n", "b) Trata-se de um caso clássico de sífilis neurológica de transmissão vertical. \n", "c) Trata-se, mais provavelmente, de uma lesão de quiasma óptico. \n", "d) Lesão do lobo frontal é a principal hipótese diagnóstica.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Eight-year-old child with subacute bilateral vertical gaze palsy, papilledema and light-near dissociation. It is correct to state: \n", "a) Mesencephalic lesions, such as tumors, should be investigated. \n", "b) This is a classic case of vertically transmitted neurological syphilis. \n", "c) It is most likely a lesion of the optic chiasm. \n", "d) Frontal lobe lesion is the main diagnostic hypothesis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 86: \n", "Language: spanish\n", "Question: \n", "Paciente femenina de 35 años, tras pérdida sensitiva en miembro superior derecho, desarrolló diplopía. Entre las hipótesis diagnósticas la más probable es:\n", "a) Adenoma hipofisario.\n", "b) Esclerosis múltiple.\n", "c) Hipertensión intracraneal idiopática.\n", "d) Meningioma del nervio óptico.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Isang 35-taong-gulang na babaeng pasyente ang nawalan ng pandama sa kanang braso na may diplopia. Sa lahat ng maaaring mga diagnostic hypothesis, ang pinakamaaari ay:\n", "a) Pituitary adenoma. \n", "b) Multiple sclerosis. \n", "c) Idiopathic intracranial hypertension. \n", "d) Meningioma of the optic nerve.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Paciente de 35 anos, sexo feminino, após quadro de perda sensitiva no membro superior direito, evoluiu com diplopia. Dentre as hipóteses diagnósticas a mais provável é: \n", "a) Adenoma hipofisário. \n", "b) Esclerose múltipla. \n", "c) Hipertensão intracraniana idiopática. \n", "d) Meningeoma do nervo óptico.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "\n", "A 35-year-old female patient, after sensory loss in the right upper limb, evolved with diplopia. Among the diagnostic hypotheses, the most likely is: \n", "a) Pituitary adenoma. \n", "b) Multiple sclerosis. \n", "c) Idiopathic intracranial hypertension. \n", "d) Meningioma of the optic nerve.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 87: \n", "Language: spanish\n", "Question: \n", "El paciente presenta parálisis unilateral del tercer, cuarto y sexto par craneal. Es correcto decir:\n", "a) Cuando es indoloro se denomina síndrome de Tolosa-Hunt.\n", "b) La afectación del nervio olfatorio sugiere afectación del seno cavernoso.\n", "c) Una forma de localizar si hay daño en el seno cavernoso es realizar una prueba de sensibilidad del trigémino.\n", "d) Si la visión es normal, pero las tres ramas del trigémino están afectadas, la lesión posiblemente esté restringida al vértice de la órbita.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ang pasyente ay may unilateral na pagkaparalisa sa ikatlo, ikaapat, at ikaanim na cranial nerves. Maaring sabihin na:\n", "a) Kung walang kirot, tinatawag itong Tolosa-Hunt Syndrome.\n", "b) Ang pagkakasangkot ng olfactory nerve ay nagmumungkahi din ng problema sa cavernous sinus.\n", "c) Isang paraan upang malaman kung mayroong problema sa cavernous sinus ay ang pagsusuri sa ang pagiging sensitibo ng trigeminal nerve\n", "d) Kung ang paningin ay normal, ngunit ang tatlong sanga ng trigeminal nerve ay apektado, marahil ang problema ay makikita lamang sa tuktok ng orbit. \n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Paciente apresenta paralisia unilateral do terceiro, quarto e sexto nervos cranianos. É correto afirmar: \n", "a) Quando indolor, denomina-se síndrome de Tolosa-Hunt. \n", "b) O envolvimento do nervo olfatório sugere acometimento do seio cavernoso. \n", "c) Uma maneira de localizar se há lesão no seio cavernoso é testar a sensibilidade trigeminal. \n", "d) Se a visão está normal, mas os três ramos do trigêmeo estiverem afetados, possivelmente a lesão está restrita ao ápice da órbita.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "The patient has unilateral paralysis of the third, fourth and sixth cranial nerves. It is correct to state: \n", "a) When painless, it is called Tolosa-Hunt syndrome. \n", "b) Involvement of the olfactory nerve suggests involvement of the cavernous sinus. \n", "c) One way to find out if there is a lesion in the cavernous sinus is to test the trigeminal sensitivity. \n", "d) If the vision is normal, but the three branches of the trigeminal are affected, possibly the lesion is restricted to the apex of the orbit.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 88: \n", "Language: spanish\n", "Question: \n", "Después de la cirugía bariátrica, el paciente desarrolló niveles séricos bajos de vitamina B12. En este caso, es correcto afirmar que:\n", "a) La discromatopsia es un hallazgo atípico.\n", "b) La mejora visual no es posible ni siquiera con la reposición de vitaminas.\n", "c) En la perimetría son típicos los escotomas periféricos y la preservación del área foveal.\n", "d) La anemia perniciosa se asocia con pérdida visual bilateral, simétrica, indolora y progresiva.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Matapos ang operasyon ng bariatric, ang pasyente ay mayroong mababang serum levels ng vitamin B12. Gamit ang impormasyong ito, maaring sabihan na:\n", "a) Ang dyschromatopsia ay hindi kadalasang nahahanap\n", "b) Hindi lilinaw ang paningin kahit pa hanapan ng pamalit na bitamina\n", "c) Ang peripheral scotomas at pangangalaga ng foveal area ay karaniwan sa perimetry.\n", "d) Ang pernicious anemia ay may kaugnayan sa bilateral, symmetrical, painless, at progresibong pagkawala ng paningin.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: portuguese\n", "Question: \n", "Após cirurgia bariátrica, paciente evoluiu com níveis séricos baixos de vitamina B12. Nesse caso, é correto afirmar que: \n", "a) A discromatopsia é um achado atípico. \n", "b) Não é possível a melhora visual mesmo com a reposição da vitamina. \n", "c) Escotomas periféricos e preservação da área foveal são típicos nas campimetrias. \n", "d) A anemia perniciosa está associada a perda visual bilateral, simétrica, indolor e progressiva.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "After bariatric surgery, the patient evolved with low serum levels of vitamin B12. In this case, it is correct to state that: \n", "a) Dyschromatopsia is an atypical finding. \n", "b) Visual improvement is not possible even with vitamin replacement. \n", "c) Peripheral scotomas and preservation of the foveal area are typical in perimetry. \n", "d) Pernicious anemia is associated with bilateral, symmetrical, painless and progressive visual loss.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 89: \n", "Language: spanish\n", "Question: \n", "Tras un accidente vascular que afectó la porción lateral de la médula cervical (síndrome de Wallenberg), el paciente desarrolló anisocoria. Es correcto afirmar que:\n", "a) La anisocoria empeorará en la oscuridad.\n", "b) Habrá empeoramiento de la anisocoria a la luz.\n", "c) No responderá a la instilación de colirios simpaticomiméticos.\n", "d) La afectación del ganglio estrellado es el diagnóstico más probable.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Matapos magkaroon ng sira sa ugat sa lateral na bahagi ng cervical spinal cord dulot ng Wallenberg syndrome, nagkaroon ng aniscoria ang pasdyente. Maaaring sabihin na:\n", "a) Ang anisocoria ay mas lalala sa dilim\n", "b) Magkakaroon ng paglala ng anisocoria kapag maliwanag \n", "c) Hindi siya makatugon sa tuwing gagamit ng sympathomimetic eye drops.\n", "d) May problema sa stellate ganglion ang marahil na diagnosis\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Após acidente vascular acometendo a porção lateral da medula cervical (síndrome de Wallenberg), o paciente desenvolveu anisocoria. É correto afirmar que: \n", "a) Haverá piora da anisocoria no escuro. \n", "b) Haverá piora da anisocoria no claro. \n", "c) Será não responsivo à instilação de colírios simpatomiméticos. \n", "d) O acometimento do gânglio estrelado é o diagnóstico mais provável.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "After a vascular accident affecting the lateral portion of the cervical spinal cord (Wallenberg syndrome), the patient developed anisocoria. It is correct to state that: \n", "a) Anisocoria will worsen in the dark. \n", "b) There will be worsening of anisocoria in light. \n", "c) Will be unresponsive to the instillation of sympathomimetic eye drops. \n", "d) Involvement of the stellate ganglion is the most likely diagnosis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 90: \n", "Language: spanish\n", "Question: \n", "El paciente llega a urgencias quejándose de dolor, visión reducida e hiperemia en el ojo derecho desde hace dos días. A la exploración presenta agudeza visual de 0,1, reacción de cámara anterior de dos cruces de cuatro, precipitados queráticos granulomatosos y lesión blanco amarillenta de límites mal definidos en la periferia de la retina en ojo derecho. El ojo izquierdo no ha cambiado. ¿Cuál es el curso de acción inicial más apropiado?\n", "a) Ecografía ocular.\n", "b) Uso de corticoides tópicos y ciclopléjicos.\n", "c) Uso de corticoides orales.\n", "d) Serología para toxoplasmosis.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Isang pasyento emergency room na nagrereklamo ng sakit sa mata, malabong paningin at hyperemia sa kanang mata sa loob ng dalawang araw. Nasiyasat na mayroon siyang visual acuity na 0.1, dalawa sa apat na anterior chamber reaction, granulomatous keratic precipitates at isang mamuti-muting dilaw na sugat na hindi matukoy ang hangganan sa retina ng kanang kamay. Walang pagbabago ang nakita sa kaliwang mata. Ano ang pinaka-angkop na unang gawin:\n", "a) Ultrasound ng mata.\n", "b) Paggamit ng mga topical corticosteroids at cycloplegic.\n", "c) Paggamit ng oral corticosteroids.\n", "d) Serology para sa toxoplasmosis.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Paciente chega ao pronto-socorro com queixa de dor, redução da visão e hiperemia do olho direito há dois dias. Ao exame, apresenta acuidade visual 0,1, reação de câmara anterior duas cruzes em quatro, precipitados ceráticos granulomatosos e lesão branco-amarelada de limites pouco definidos na periferia da retina no olho direito. O olho esquerdo não tem alterações. Qual a conduta inicial mais apropriada? \n", "a) Ultrassonografia ocular. \n", "b) Uso de corticoide e cicloplégico tópicos. \n", "c) Uso de corticoide oral. \n", "d) Sorologia para toxoplasmose.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "A patient arrives at the emergency room complaining of pain, reduced vision and hyperemia in the right eye for two days. On examination, he has a visual acuity of 0.1, anterior chamber reaction two crosses out of four, granulomatous keratic precipitates and a white-yellowish lesion with poorly defined limits on the periphery of the retina in the right eye. The left eye has no changes. What is the most appropriate initial course of action? \n", "a) Eye ultrasound. \n", "b) Use of topical corticosteroids and cycloplegic. \n", "c) Use of oral corticosteroids. \n", "d) Serology for toxoplasmosis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 91: \n", "Language: spanish\n", "Question: \n", "Paciente de 8 años diagnosticado de artritis juvenil idiopática, sin otras comorbilidades, aún sin tratamiento, presenta uveítis anterior recurrente asociada a sinequias posteriores, queratopatía en banda y cataratas. ¿Cuál es el curso de acción más apropiado en este momento entre las alternativas siguientes?\n", "a) Faceectomía con implante de lente intraocular acrílica.\n", "b) Uso de inmunomodulador sistémico.\n", "c) Uso de corticoides orales.\n", "d) Uso de EDTA tópico.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Isang 8 taong gulang na pasyente na may diagnosis ng juvenile idiopathic arthritis, walang ibang mga comorbidities, ngunit hindi pa nabibigyan ng lunas, ay nagpunta sa ospital at napag-alaman na mayroon siyang recurrent anterior uveitis associated with posterior synechiae, band keratopathy and cataract. Ano ang pinakaakmang gawin? \n", "a) Facectomy na may acrylic intraocular lens implantation.\n", "b) Paggamit ng Systemic Immunomodulator.\n", "c) Paggamit ng Oral Corticosteroids.\n", "d) Paggamit ng topical na EDTA.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Paciente de 8 anos com diagnóstico de artrite juvenil idiopática, sem outras comorbidades, ainda sem tratamento, apresenta quadro recidivante de uveíte anterior associada a sinéquias posteriores, ceratopatia em faixa e catarata. Qual conduta mais apropriada neste momento dentre as alternativas abaixo? \n", "a) Facectomia com implante de lente intraocular acrílica. \n", "b) Uso de imunomodulador sistêmico. \n", "c) Uso de corticoide oral. \n", "d) Uso de EDTA tópico.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "An 8-year-old patient with a diagnosis of juvenile idiopathic arthritis, without other comorbidities, still untreated, presents with recurrent anterior uveitis associated with posterior synechiae, band keratopathy and cataract. What is the most appropriate conduct at this time among the alternatives below? \n", "a) Facectomy with acrylic intraocular lens implantation. \n", "b) Use of systemic immunomodulator. \n", "c) Use of oral corticosteroids. \n", "d) Use of topical EDTA.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 92: \n", "Language: spanish\n", "Question: \n", "¿Cuál es el inmunosupresor de elección en niños con uveítis anterior secundaria a artritis idiopática juvenil?\n", "a) Azatioprina.\n", "b) Tacrolimús.\n", "c) Ciclofosfamida.\n", "d) Metotrexato.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Aling immunosuppressant ang pwede gamitin para sa mga bata na may anterior uveitis dala ng juvenile idiopathic arthritis?\n", "a) Azathioprine.\n", "b) Tacrolimus.\n", "c) Cyclophosphamide.\n", "d) Methotrexate.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Qual é o imunossupressor de escolha para crianças com uveíte anterior secundária à artrite juvenil idiopática? \n", "a) Azatioprina. \n", "b) Tacrolimus. \n", "c) Ciclofosfamida. \n", "d) Metotrexato.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "What is the immunosuppressant of choice for children with anterior uveitis secondary to juvenile idiopathic arthritis? \n", "a) Azathioprine. \n", "b) Tacrolimus. \n", "c) Cyclophosphamide. \n", "d) Methotrexate.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 93: \n", "Language: spanish\n", "Question: \n", "Entre las alternativas siguientes, ¿cuál prueba es la más adecuada para el seguimiento de un paciente con panuveítis secundaria a enfermedad de Behçet, utilizando ciclosporina?\n", "a) Creatinina.\n", "b) Ferritina.\n", "c) Glicemia en ayunas.\n", "d) HLA-B51.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Aling test ang pinaka-angkop para sa pag-follow-up ng pasyente na may panuveitis dala ng sa sakit na Behçet, gamit ang cyclosporine?\n", "a) Creatinine.\n", "b) Ferritin.\n", "c) Fasting Blood Glucose\n", "d) HLA-B51.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Dentre as alternativas abaixo, qual exame é o mais apropriado para o seguimento de um paciente com panuveite secundária à doença de Behçet, em uso de ciclosporina? \n", "a) Creatinina. \n", "b) Ferritina. \n", "c) Glicemia de jejum. \n", "d) HLA-B51.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "\n", "Among the alternatives below, which exam is the most appropriate for the follow-up of a patient with panuveitis secondary to Behçet's disease, using cyclosporine? \n", "a) Creatinine. \n", "b) Ferritin. \n", "c) Fasting blood glucose. \n", "d) HLA-B51.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 94: \n", "Language: spanish\n", "Question: \n", "Paciente de sexo femenino de 25 años refiere desde hace unos días una reducción de la agudeza visual, precedida de fiebre, dolor de cabeza y malestar general. Al examen presenta reacción de dos cruces en cámara anterior, vitriitis de uno en cuatro y desprendimiento de retina en polo posterior comprometiendo la mácula, sin lagrimas en ambos ojos. ¿Cuál es el tratamiento más adecuado para el desprendimiento de retina?\n", "a) Vitrectomía posterior con infusión de SF6 y posición de la cabeza.\n", "b) Corticoides orales.\n", "c) Retinopexia neumática.\n", "d) Introflexión escleral con explante macular.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Isang 25-taong-gulang na babaeng pasyente ay nakapansin na lumalabong mata sa loob ng ilang araw pagkatapos niyang lagnatin, makaranas ng sakit sa ulo at kawalan ng ginhawa. Sa pagsusuri, mayroon siyang two-cross anterior chamber reaction, vitreitis, a four-cross, and retinal detachment sa likurang bahagi ng pole na binubuo ng macula, nang walang butas sa parehong mata. Ano ang pinakaakmang gamot ang maaaring ibigay para sa retinal detachment?\n", "a) Posterior vitrectomy na may SF6 at akmang posisyon ng ulo.\n", "b) Oral corticosteroid.\n", "c) Pneumatic retinopexy.\n", "d) Scleral introflexion na may macular explant.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Paciente de 25 anos, sexo feminino, refere redução da acuidade visual há poucos dias, precedida de febre, cefaleia e mal-estar. Ao exame, apresenta reação de câmara anterior duas cruzes, vitreíte uma cruz em quatro e descolamento da retina no polo posterior comprometendo a mácula, sem roturas em ambos os olhos. Qual o tratamento mais apropriado para o descolamento de retina? \n", "a) Vitrectomia posterior com infusão de SF6 e posição de cabeça. \n", "b) Corticoide oral. \n", "c) Retinopexia pneumática. \n", "d) Introflexão escleral com explante macular.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "A 25-year-old female patient reported reduced visual acuity for a few days, preceded by fever, headache and malaise. On examination, she has a two-cross anterior chamber reaction, vitreitis, a four-cross, and retinal detachment at the posterior pole, compromising the macula, without holes in both eyes. What is the most appropriate treatment for retinal detachment? \n", "a) Posterior vitrectomy with SF6 infusion and head position. \n", "b) oral corticosteroid. \n", "c) Pneumatic retinopexy. \n", "d) Scleral introflexion with macular explant.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 95: \n", "Language: spanish\n", "Question: \n", "Un paciente con antecedentes de traumatismo ocular abierto en el ojo derecho hace un año presenta una reacción cruzada en la cámara anterior, cambio de color del iris, opacidad vítrea leve y retina pegada. El electrorretinograma muestra respuestas extinguidas en las fases fotópica y escotópica. El ojo izquierdo no muestra cambios. ¿Cuál es la causa más probable?\n", "a) Endoftalmitis bacteriana.\n", "b) Endoftalmitis fúngica.\n", "c) Oftalmía simpática.\n", "d) Retención de cuerpo extraño intraocular metálico.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Isang pasyente na may kasaysayan ng bukas na ocular trauma sa kanang mata isang taon na ang nakalilipas, ay nagpapakita ng anterior chamber reaction sa cross, pagbabago sa kulay ng iris, katamtamang vitrous clouding, at glued retina. Ipinapakita ng electroetinogram na mayroong extinguished responses sa photopic at scopotic phases. Wala namang pagbabago sa kanyang kaliwang mata.Ano ang malamang na sanhi?\n", "a) Bacterial endophthalmitis. \n", "b) Fungal endophthalmitis. \n", "c) Sympathetic ophthalmia. \n", "d) Pananatili ng metallic intraocular na bagay\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Paciente com história de trauma ocular aberto no olho direito há um ano apresenta reação de câmara anterior uma cruz, alteração da cor da íris, turvação vítrea leve e retina colada. O eletrorretinograma apresenta respostas extintas nas fases fotópica e escotópica. O olho esquerdo não apresenta alterações. Qual a causa mais provável? \n", "a) Endoftalmite bacteriana. \n", "b) Endoftalmite fúngica. \n", "c) Oftalmia simpática. \n", "d) Retenção de corpo estranho intraocular metálico.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Patient with a history of open ocular trauma in the right eye one year ago, presents anterior chamber reaction to a cross, iris color change, mild vitreous clouding and glued retina. The electroretinogram shows extinguished responses in the photopic and scotopic phases. The left eye shows no alterations. What is the most likely cause? \n", "a) Bacterial endophthalmitis. \n", "b) Fungal endophthalmitis. \n", "c) Sympathetic ophthalmia. \n", "d) Retention of metallic intraocular foreign body.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 96: \n", "Language: spanish\n", "Question: \n", "Entre las alternativas siguientes, ¿qué microorganismo está asociado con la enfermedad de Eales?\n", "a) Bartonella henselae.\n", "b) Micobacteria tuberculosis.\n", "c) Toxoplasma gondii.\n", "d) Virus de Epstein-Barr.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na microorganism ang nauugnay sa Eales disease?\n", "a) Bartonella Henselae.\n", "b) Mycobacterium tuberculosis.\n", "c) Toxoplasma gondii.\n", "d) Virus ng Epstein-Barr.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Dentre as alternativas abaixo, qual microorganismo está associado à doença de Eales? \n", "a)Bartonella henselae. \n", "b)Mycobacterium tuberculosis. \n", "c)Toxoplasma gondii. \n", "d) Vírus Epstein-Barr.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "\n", "Among the alternatives below, which microorganism is associated with Eales disease? \n", "a) Bartonella henselae. \n", "b) Mycobacterium tuberculosis. \n", "c) Toxoplasma gondii. \n", "d) Epstein-Barr virus.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 97: \n", "Language: spanish\n", "Question: \n", "Respecto a la afectación ocular en la espondilitis anquilosante, es correcto afirmar:\n", "a) Es bilateral, no simultánea, en la mayoría de los casos.\n", "b) El cuadro más característico corresponde a episodios de uveítis intermedia.\n", "c) La sinequia posterior del iris es una complicación rara.\n", "d) Es un proceso inflamatorio granulomatoso.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang nagpapahayag ng katotohanan tungkol sa pagkakasangkot sa ocular sa ankylosing spondylitis?\n", "a) Ito ay bilateral, hindi magkakasabay, sa karamihan ng mga kaso.\n", "b) Ang pinakamadalas na katangian nito ay may kinalaman sa paulit-ulit na intermediate uveitis.\n", "c) Ang likurang bahagi ng synechiae ng Iris ay isang bihirang komoplikasyon\n", "d) Ito ay isang granulomatous inflammatory process\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Sobre o acometimento ocular na espondilite ancilosante, é correto afirmar: \n", "a) É bilateral, não simultâneo, na maioria dos casos. \n", "b) O quadro mais característico corresponde a episódios de uveíte intermediária. \n", "c) Sinéquia posterior da íris é complicação rara. \n", "d) Trata-se de processo inflamatório granulomatoso.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Regarding ocular involvement in ankylosing spondylitis, it is correct to state: \n", "a) It is bilateral, not simultaneous, in most cases. \n", "b) The most characteristic picture corresponds to episodes of intermediate uveitis. \n", "c) Posterior synechiae of the iris is a rare complication. \n", "d) It is a granulomatous inflammatory process.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 98: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes hallazgos, en el examen de tomografía de coherencia óptica, representa un mayor riesgo de rotura del epitelio pigmentado de la retina en el tratamiento antiangiogénico de las membranas neovasculares?\n", "a) Anastomosis retinocoroidea con hemorragia retiniana.\n", "b) Alto desprendimiento del epitelio pigmentado de la retina.\n", "c) Aumento marcado y difuso del espesor de la coroides y coriocapilares.\n", "d) Gran cantidad de líquido subretiniano con pocos quistes intrarretinianos.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na impormasyon na mula sa optical coherence tomography ay maaring maging isang malaking panganib ng retinal pigment epithelium rupture sa antiangiogenic treatment ng mga neovascular membrane?\n", "a) retinochoroidal anastomosis na may retinal hemorrhage.\n", "b) nakataas na detatsment ng retinal pigment epithelium.\n", "c) minarkahan at nagkakalat ng pagtaas sa kapal ng choroid at choriocapillaries.\n", "d) malaking halaga ng subretinal fluid na may kaunting mga cyst ng intraretinal.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Qual dos achados abaixo, ao exame de tomografia de coerência óptica, representa maior risco de ruptura do epitélio pigmentado da retina no tratamento com antiangiogênico de membranas neovasculares? \n", "a) Anastomose retinocoroidal com hemorragia retiniana. \n", "b) Descolamento elevado do epitélio pigmentado da retina. \n", "c) Aumento acentuado e difuso da espessura da coroide e coriocapilares. \n", "d) Grande quantidade de líquido subretiniano com poucos cistos intraretinianos.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Which of the following findings, on optical coherence tomography, represents a greater risk of retinal pigment epithelium rupture in antiangiogenic treatment of neovascular membranes? \n", "a) Retinochoroidal anastomosis with retinal hemorrhage. \n", "b) Elevated detachment of the retinal pigment epithelium. \n", "c) Marked and diffuse increase in the thickness of the choroid and choriocapillaries. \n", "d) Large amount of subretinal fluid with few intraretinal cysts.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 99: \n", "Language: spanish\n", "Question: \n", "La fase aguda de algunas enfermedades de la retina típicamente se presenta sólo con borrado reversible de la zona elipsoide en el examen de la mácula con tomografía de coherencia óptica. Seleccione la alternativa que mejor ejemplifique una de estas condiciones.\n", "a) Maculopatía medial aguda paracentral.\n", "b) Oclusión de la arteria central de la retina.\n", "c) Neurorretinopatía macular aguda.\n", "d) Oclusión venosa de la retina.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Sa acute phase ng ilang mga sakit sa retina ay madalas nakikita lamang na mayroong reversible glare of the ellipsoid zone sa optical coherence tomography ng macula. Alin sa mga sumusunod na sakit ang kumakatawan dito?\n", "a) Paracentral acute medium maculopathy. \n", "b) Pagbabara sa central retinal artery. \n", "c) Acute macular neuroretinopathy. \n", "d) Retinal venous na pagbabara\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "A fase aguda de algumas doenças da retina apresenta-se tipicamente, apenas, com apagamento reversível da zona elipsoide ao exame de tomografia de coerência óptica da mácula. Assinale a alternativa que melhor exemplifica uma destas condições. \n", "a) Maculopatia média aguda paracentral. \n", "b) Oclusão da artéria central da retina. \n", "c) Neurorretinopatia macular aguda. \n", "d) Oclusão venosa retiniana.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "The acute phase of some retinal diseases typically presents only with reversible glare of the ellipsoid zone on optical coherence tomography of the macula. Mark the alternative that best exemplifies one of these conditions. \n", "a) Paracentral acute medium maculopathy. \n", "b) Occlusion of the central retinal artery. \n", "c) Acute macular neuroretinopathy. \n", "d) Retinal venous occlusion.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 100: \n", "Language: spanish\n", "Question: \n", "¿Cuál de las siguientes distrofias retinianas se asocia más típicamente con espacios cistoideos maculares centrales en un patrón radial?\n", "a) Coroideremia.\n", "b) Distrofia de conos.\n", "c) Fondo flavimaculato.\n", "d) Retinosquisis congénita ligada al cromosoma X.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na retinal dystrophies ang karaniwang naiuugnay sa central macular cystoid spaces sa anyong radiyal?\n", "a) Choroideremia.\n", "b) Cone Dystrophy.\n", "c) Fundus flavimaculatus.\n", "d) Congenital X-link na retinoschisis.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Qual das distrofias retinianas abaixo está mais tipicamente associada a espaços cistoides maculares centrais em padrão radial? \n", "a) Coroideremia. \n", "b) Distrofia de cones. \n", "c) Fundus flavimaculatus. \n", "d) Retinosquise congênita ligada ao X.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Which of the following retinal dystrophies is most typically associated with central macular cystoid spaces in a radial pattern? \n", "a) Choroideremia. \n", "b) Cone dystrophy. \n", "c) Fundus flavimaculatus. \n", "d) Congenital X-linked retinoschisis.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 101: \n", "Language: spanish\n", "Question: \n", "La proliferación melanocítica uveal difusa bilateral se clasifica mejor como:\n", "a) Trastorno paraneoplásico.\n", "b) Presentación grave de melanoma coroideo.\n", "c) Variante del síndrome de Vogt-Koyanagi-Harada.\n", "d) Trastorno secundario al tratamiento del desprendimiento de retina.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang bilateral diffuse uveal melanocytic proliferation ay isang uri ng:\n", "a) Paraneoplastic disorder.\n", "b) Malalang presentasyon ng choroidal melanoma.\n", "c) Variant ng Vogt-Koyanagi-Harada syndrome.\n", "d) Isang disorder dala ng retinal detachment treatment\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "A proliferação melanocítica uveal difusa bilateral é melhor classificada como: \n", "a) Desordem paraneoplásica. \n", "b) Apresentação grave do melanoma de coroide. \n", "c) Variante da síndrome de Vogt-Koyanagi-Harada. \n", "d) Desordem secundária a tratamento de descolamento de retina.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Bilateral diffuse uveal melanocytic proliferation is best classified as: \n", "a) Paraneoplastic disorder. \n", "b) Severe presentation of choroidal melanoma. \n", "c) Variant of Vogt-Koyanagi-Harada syndrome. \n", "d) Disorder secondary to retinal detachment treatment.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 102: \n", "Language: spanish\n", "Question: \n", "Al examinar la periferia de la retina, para evaluar una región específica:\n", "a) El paciente debe mirar al lado opuesto de la región a observar y el médico debe posicionarse del mismo lado.\n", "b) El paciente debe mirar hacia el lado de la región a observar y el médico debe posicionarse en el lado opuesto.\n", "c) El paciente debe mirar hacia el lado de la región a observar y el médico también debe posicionarse del mismo lado.\n", "d) El paciente debe mirar al lado opuesto de la región a observar y el médico también debe posicionarse en el lado opuesto.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Sa pagsusuri sa paligid ng retina, kung nais na siyasatin ang partikular na rehiyon, kinakailangan na: \n", "a) Ang pasyente ay dapat tumingin sa kabaligtaran ng rehiyon upang sundin at ang doktor ay dapat iposisyon ang kanyang sarili sa parehong panig.\n", "b) Ang pasyente ay dapat tumingin sa gilid ng rehiyon upang sundin at dapat na iposisyon ng doktor ang kanyang sarili baliktad sa posisyon ng pasyente.\n", "c) Ang pasyente ay dapat tumingin sa gilid ng rehiyon upang sundin at ang doktor ay nagpoposisyon din sa kanyang sarili sa parehong panig.\n", "d) Ang pasyente ay dapat tumingin sa kabaligtaran ng rehiyon upang sundin at dapat ding iposisyon ng doktor ang kanyang sarili baliktad sa posisyon ng pasyente.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "No exame da periferia da retina, para avaliar uma determinada região: \n", "a) O paciente deve olhar para o lado oposto da região que se deseja observar e o médico se posicionar no mesmo lado. \n", "b) O paciente deve olhar para o lado da região que se deseja observar e o médico se posicionar no lado oposto. \n", "c) O paciente deve olhar para o lado da região que se deseja observar e o médico se posicionar também no mesmo lado. \n", "d) O paciente deve olhar para o lado oposto da região que se deseja observar e o médico se posicionar também no lado oposto.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "In the examination of the periphery of the retina, in order to evaluate a certain region: \n", "a) The patient must look to the opposite side of the region to be observed and the doctor should position himself on the same side. \n", "b) The patient should look to the side of the region to be observed and the doctor should position himself on the opposite side. \n", "c) The patient must look to the side of the region to be observed and the doctor also position himself on the same side. \n", "d) The patient should look at the opposite side of the region to be observed and the doctor should also position himself on the opposite side.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 103: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa que correlacione correctamente la alteración en el examen de angiografía fluoresceínica y su descripción.\n", "a) Acumulación: aparición tardía, el área aumenta a lo largo del examen.\n", "b) Tinción: aparición temprana, el área aumenta a lo largo del examen.\n", "c) Defecto de ventana: aparición temprana, área mantenida durante todo el examen.\n", "d) Extravasación: aparición tardía, área mantenida durante todo el examen.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Piliin ang tamabng tambal na nagpapahayag ng ugnayan ng pagbabago sa luorescein angiography exam at deskripsyon nito. \n", "a) Accumulation (pooling): Huling nakikita, paglaki ng saklaw sa kabuuan ng eksamen\n", "b) Staining: Maagang nakikita, paglaki ng saklaw sa kabuuan ng eksamen.\n", "c) Window Defect: Maagang nakikita, nanatili sa orihinal na saklaw sa kabuuan ng eksamen\n", "d) Extravasation: Huling nakikita, nanatili sa orihinal na saklaw sa kabuuan ng eksamen\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que correlaciona corretamente a alteração no exame de angiofluoresceinografia e sua descrição. \n", "a) Acúmulo (pooling): aparecimento tardio, área aumenta ao longo do exame. \n", "b) Impregnação (staining): aparecimento precoce, área aumenta ao longo do exame. \n", "c) Defeito em janela: aparecimento precoce, área mantida ao longo do exame. \n", "d) Extravazamento: aparecimento tardio, área mantida ao longo do exame.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Check the alternative that correctly correlates the change in the fluorescein angiography exam and its description. \n", "a) Accumulation (pooling): late appearance, area increases throughout the exam. \n", "b) Staining: early appearance, area increases throughout the exam. \n", "c) Window defect: early appearance, area maintained throughout the exam. \n", "d) Extravasation: late appearance, area maintained throughout the examination.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 104: \n", "Language: spanish\n", "Question: \n", "Considerando la clasificación de la retinopatía diabética en función de los hallazgos funduscópicos y su importancia pronóstica, podemos afirmar:\n", "a) Si no hay neovasos en el examen del fondo de ojo, el riesgo de desarrollar retinopatía diabética proliferativa en un año es inferior al 20%.\n", "b) La presencia únicamente de microhemorragias y microaneurismas en tres cuadrantes permite afirmar que este paciente no desarrollará retinopatía diabética proliferativa dentro de un año.\n", "c) La presencia de venas congestionadas asociadas con microaneurismas y microhemorragias en todos los cuadrantes se considera un hallazgo normal en la retinopatía diabética y sugiere un riesgo inferior al 10% de desarrollar retinopatía diabética proliferativa dentro de un año.\n", "d) La presencia de cambios microvasculares intrarretinianos moderados (IRMA) en dos cuadrantes indica que más de la mitad de los pacientes desarrollarán retinopatía diabética proliferativa en un plazo de cinco años.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Sa pagsasaalang-alang ng mga kalsipikasyon ng diabetic retinopathy ayon sa mga funduscopic findings at kahalagahang prognostiko nito, maari nating sabihin na: \n", "a) Kung walang bagong ugat ang nakita sa fundus eksamen, ang posibilidad na magkaroon ng proliferative diabetic retinopathy sa loob ng isang taon ay mas mababa sa 20%. \n", "b) Ang tanging pagkakaroon ng microhemorrhage at microaneurysms sa tatlong quadrants ay pangitain na hindi magkakaroon ng proliferative diabetic retinopathy ang pasyente sa loob ng isang taon. \n", "c) Ang pagkakaroon ng mga lumaking ugat na nauugnay sa microaneurysms at microhemorrhages sa lahat ng quadrant ay nangangahulugang, normal para sa mga may diabetic retinopathy at mababa rin (10%) ang posibilidad na magkakaroon ng proliferative diabetic retinopathy ang pasyente sa loob ng isang taon. \n", "d) Ang pagkakaroon ng intraretinal microvascular alterations (IRMA), makikita sa dalawang quadrants, ay nangangahulugang higit sa kalahati ng mga pasyente ay magkakaroon ng proliferative diabetic retinopathy in five years.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Considerando a classificação da retinopatia diabética a partir dos achados fundoscópicos e seu significado prognóstico, podemos afirmar: \n", "a) Se não existem neovasos no exame de fundo de olho, o risco de desenvolver retinopatia diabética proliferativa em um ano é menor que 20%. \n", "b) A presença apenas de microhemorragias e microaneurismas em três quadrantes permite afirmar que este paciente não desenvolverá retinopatia diabética proliferativa em um ano. \n", "c) A presença de veias ingurgitadas associada a microaneurismas e microhemorragias em todos os quadrantes é considerada achado normal na retinopatia diabética e sugere um risco abaixo de 10% de desenvolver retinopatia diabética proliferativa em um ano. \n", "d) A presença de alterações microvasculares intrarretinianas (IRMA), moderadas, em dois quadrantes, indica que mais da metade dos pacientes desenvolverá retinopatia diabética proliferativa em cinco anos.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Considering the classification of diabetic retinopathy based on funduscopic findings and its prognostic significance, we can state: \n", "a) If there are no new vessels in the fundus examination, the risk of developing proliferative diabetic retinopathy in one year is less than 20%. \n", "b) The presence of only microhemorrhages and microaneurysms in three quadrants allows us to state that this patient will not develop proliferative diabetic retinopathy in one year. \n", "c) The presence of engorged veins associated with microaneurysms and microhemorrhages in all quadrants is considered a normal finding in diabetic retinopathy and suggests a risk below 10% of developing proliferative diabetic retinopathy in one year. \n", "d) The presence of intraretinal microvascular alterations (IRMA), moderate, in two quadrants, indicates that more than half of the patients will develop proliferative diabetic retinopathy in five years.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 105: \n", "Language: spanish\n", "Question: \n", "En un examen de tomografía de coherencia óptica ¿cuál es la correlación correcta entre la clasificación y descripción de las membranas neovasculares?\n", "a) Las membranas situadas debajo del epitelio pigmentado de la retina se denominan tipo 1.\n", "b) Las membranas de tipo 2 se encuentran debajo del epitelio pigmentado de la retina, pero se extienden hacia la región entre el epitelio pigmentado de la retina y la retina neurosensorial.\n", "c) Las membranas situadas debajo del epitelio pigmentado de la retina se denominan tipo 3.\n", "d) Las membranas que crecen bien definidas en el espacio entre la retina neurosensorial y el epitelio pigmentado de la retina se denominan tipo 3.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Sa isang optical coherence tomography exam, ano ang tamang ugnayan sa pagitan ng pag-uuri at ang paglalarawan ng mga neovascular membranes?\n", "a) Ang mga membrane na matatagpuan sa ilalim ng retinal pigment epithelium ay tinatawag na Type 1.\n", "b) Type 2 membane ay makikita sa ilalim ng retinal pigment epithelium, ngunit ito ay lumalagpas sa rehiyon sa pagitan ng retinal pigment epithelium at sensorineural retina\n", "c) Ang mga membrane na makikita sa ilalim ng retinal pigment epithelium ay tinatawag na Type 3.\n", "d) Ang mga membranes na nabubuo sa espasyo sa pagitan ng sensorineural retina at ng retinal pigment epithelium ay tinatawag na Type 3\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Num exame de tomografia de coerência óptica, qual a correlação correta entre a classificação e a descrição das membranas neovasculares? \n", "a) As membranas localizadas abaixo do epitélio pigmentado da retina são denominadas tipo 1. \n", "b) As membranas do tipo 2 localizam-se abaixo do epitélio pigmentado da retina, mas se estendem para a região entre o epitélio pigmentado da retina e a retina neurossensorial. \n", "c) As membranas localizadas abaixo do epitélio pigmentado da retina são denominadas tipo 3. \n", "d) As membranas que crescem bem delimitadas no espaço entre a retina neurossensorial e o epitélio pigmentado da retina são denominadas tipo 3.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "In an optical coherence tomography exam, what is the correct correlation between the classification and the description of neovascular membranes? \n", "a) Membranes located below the retinal pigment epithelium are called type 1. \n", "b) Type 2 membranes are located below the retinal pigment epithelium, but extend into the region between the retinal pigment epithelium and the sensorineural retina. \n", "c) The membranes located below the retinal pigment epithelium are called type 3. \n", "d) The membranes that grow well delimited in the space between the sensorineural retina and the retinal pigment epithelium are called type 3.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 106: \n", "Language: spanish\n", "Question: \n", "Al considerar el tratamiento de un paciente con degeneración macular relacionada con la edad, el mejor enfoque basado en los hallazgos de los estudios AREDS es:\n", "a) La suplementación con vitaminas y antioxidantes está indicada en pacientes con antecedentes familiares, incluso antes de que aparezcan cambios retinianos.\n", "b) La presencia de drusas intermedias y grandes es indicación de suplementación vitamínica y antioxidante.\n", "c) La suplementación en pacientes fumadores debe incluir betacaroteno.\n", "d) Cuando hay daño avanzado en alguno de los ojos no se recomienda la suplementación con vitaminas y antioxidantes.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Sa pagsasaalang-alang ng mga pangagagamot sa mga pasyenteng mayroong age-related macular degeneration (ARMD), ang pinakamainam na lapit ng pangagagamot batay sa mga pag-aaral ng AREDS:\n", "a) Ang pagdaragdag ng vmga bitamina at antioxidant ay mainam para sa mga pasyenteng may kasaysayan ng ARMD sa pamilya, bago pa makita ang mga pagbabago sa retina.\n", "b) Ang pagkakaroon ng mga intermediate at large drusen ay isang indikasyon para gumamit ng mga bitamina at antioxidants\n", "c) Dapat na bigyan ng mga supplements na mmayaman sa beta-carotene ang mga naninigarilyo.\n", "d) Kapagh mayroong malalang lesyon sa isa sa mga mata, hindi inirerekomendang magbigay ng bitamina at antioxidant.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Quando consideramos o tratamento de um paciente com degeneração macular relacionada à idade, a melhor conduta baseada nos achados dos estudos AREDS é: \n", "a) A suplementação de vitaminas e antioxidantes está indicada em pacientes com histórico familiar, mesmo antes de aparecerem alterações retinianas. \n", "b) A presença de drusas intermediárias e grandes é indicação de suplementação de vitaminas e antioxidantes. \n", "c) A suplementação em pacientes fumantes deve incluir betacaroteno. \n", "d) Quando há lesão avançada em um dos olhos, não se recomenda a suplementação de vitaminas e antioxidantes.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "When considering the treatment of a patient with age-related macular degeneration, the best approach based on the findings of the AREDS studies is: \n", "a) Vitamin and antioxidant supplementation is indicated in patients with a family history, even before retinal changes appear. \n", "b) The presence of intermediate and large drusen is an indication of vitamin and antioxidant supplementation.\n", "c) Supplementation in smokers should include beta-carotene. \n", "d) When there is an advanced lesion in one of the eyes, vitamin and antioxidant supplementation is not recommended.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 107: \n", "Language: spanish\n", "Question: \n", "La respuesta eléctrica de la celda de Müller se representa mejor por:\n", "a) Onda \"a\" del electrorretinograma.\n", "b) Onda \"b\" del electrorretinograma.\n", "c) Onda \"c\" del electrorretinograma.\n", "d) Relación de Arden en el electrooculograma.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Ang elektrikal na manipestasyon ng cell ng Müller ay naipapakita ng:\n", "a) \"isang\" alon ng electroretinogram.\n", "b) Wave \"b\" ng electroretinogram.\n", "c) Wave \"c\" ng electroretinogram.\n", "d) Ratio ng Arden sa electro-oculogram.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "A resposta elétrica da célula de Müller está melhor representada pela: \n", "a) Onda \"a\" do eletrorretinograma. \n", "b) Onda \"b\" do eletrorretinograma. \n", "c) Onda \"c\" do eletrorretinograma. \n", "d) Relação de Arden no eletro-oculograma.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "The electrical response of the Müller cell is best represented by: \n", "a) \"a\" wave of the electroretinogram. \n", "b) Wave \"b\" of the electroretinogram. \n", "c) Wave \"c\" of the electroretinogram. \n", "d) Arden ratio on the electro-oculogram.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 108: \n", "Language: spanish\n", "Question: \n", "¿Cuál es el mejor tratamiento, entre los siguientes, para un paciente de 65 años con desprendimiento total de retina resultante de un desgarro periférico arqueado de retina a 155 grados superior, con un borde posterior enrollado?\n", "a) Fotocoagulación con láser seguida de introflexión escleral, con explante colocado superiormente.\n", "b) Introflexión escleral, con explante posicionado superiormente y uso de gas SF6 al final de la cirugía.\n", "c) Retinopexia neumática seguida de crioterapia o fotocoagulación con láser.\n", "d) Vitrectomía posterior mediante perfluorocarbono y fotocoagulación con láser.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag ang dapat tunguhin kung ang isang 65 taong gulang na pasyente na may total retinal detachment dahil sa 155-degree arcuate peripheral retinal tear na may rolled-up posterior edge? \n", "a) Laser photocoagulation na susundan ng scleral introflexion, na may explant na nakaposisyon sa itaas\n", "b) Scleral introflexion na may explant na nakaposisyon sa itaas, at paggamit ng SF6 gas sa pagtatapos ng operasyon.\n", "c) Pneumatic retinopexy na susundan ng cryotherapy o laser photocoagulation.\n", "d) Posterior vitrectomy gamit ang perfluorocarbon at laser photocoagulation.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Qual a melhor conduta, entre as abaixo, para um paciente de 65 anos com descolamento de retina total decorrente de rasgadura retiniana periférica arqueada em 155 graus superiores, com borda posterior enrolada? \n", "a) Fotocoagulação a laser seguido de introflexão escleral, com explante posicionado superiormente. \n", "b) Introflexão escleral, com explante posicionado superiormente e uso de gás SF6 ao final da cirurgia. \n", "c) Retinopexia pneumática seguida de crioterapia ou fotocoagulação a laser. \n", "d) Vitrectomia posterior com uso de perfluorcarbono e fotocoagulação laser.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Which of the following is the best course of action for a 65-year-old patient with total retinal detachment due to a superior 155-degree arcuate peripheral retinal tear with a rolled-up posterior edge? \n", "a) Laser photocoagulation followed by scleral introflexion, with explant positioned superiorly. \n", "b) Scleral introflexion, with explant positioned superiorly and use of SF6 gas at the end of surgery. \n", "c) Pneumatic retinopexy followed by cryotherapy or laser photocoagulation. \n", "d) Posterior vitrectomy using perfluorocarbon and laser photocoagulation.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 109: \n", "Language: spanish\n", "Question: \n", "¿Cuál de las enfermedades sistémicas siguientes se asocia con mayor frecuencia con estrías angioides?\n", "a) Anemia falciforme.\n", "b) Anemia megaloblástica\n", "c) Artritis reumatoide.\n", "d) Poliarteritis nudosa.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sakit sa ibaba ang madalas na nauugnay sa angioid striae?\n", "a) Sickle cell anemia.\n", "b) Megaloblastic anemia\n", "c) Rheumatoid arthritis.\n", "d) Polyarteritis nodosa.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual das doenças sistêmicas abaixo está mais frequentemente associada a um quadro de estrias angioides? \n", "a) Anemia falciforme. \n", "b) Anemia megaloblástica \n", "c) Artrite reumatoide.\n", "d) Poliarterite nodosa.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "\n", "Which of the systemic diseases below is most often associated with angioid striae? \n", "a) Sickle cell anemia. \n", "b) Megaloblastic anemia \n", "c) Rheumatoid arthritis. \n", "d) Polyarteritis nodosa.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 110: \n", "Language: spanish\n", "Question: \n", "Además de la tríada clásica de blefaroptosis, epicanto inverso y telecanto, ¿cuál de los siguientes hallazgos aparece con frecuencia en el síndrome de blefarofimosis?\n", "a) Triquiasis mayor.\n", "b) Ectropión lateral del párpado inferior.\n", "c) Obstrucción lagrimal por imperforación de la válvula de Hasner.\n", "d) Acortamiento del fondo de saco conjuntival superior.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Bilang karagdagan sa klasikong triad ng blepharoptosis, epicanthus inversus, at telecanthus, alin sa mga natuklasan sa mga pahayag sa ibaba ang madalas na lumitaw sa Blepharophimosis syndrome?\n", "a) Trichiasis major.\n", "b) Lateral ectropion ng ilalim na talukap ng mata\n", "c) Lacrimal obstruction dahil sa imperforation ng Hasner valve\n", "d) Pag-ikli o pag-urong ng itaas na bahagi ng conjuctival cul-de-sac\n", "Test #0: \n", "{'response': 'd'}\n", "Language: portuguese\n", "Question: \n", "Além da tríade clássica de blefaroptose, epicanto inverso e telecanto, qual dos achados abaixo aparece com frequência na síndrome da blefarofimose? \n", "a) Triquíase maior. \n", "b) Ectrópio lateral da pálpebra inferior. \n", "c) Obstrução lacrimal por imperfuração da válvula de Hasner. \n", "d) Encurtamento do fundo de saco conjuntival superior.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "In addition to the classic triad of blepharoptosis, epicanthus inversus, and telecanthus, which of the findings below appears frequently in blepharophimosis syndrome? \n", "a) Trichiasis major. \n", "b) Lateral ectropion of the lower eyelid. \n", "c) Lacrimal obstruction due to imperforation of the Hasner valve. \n", "d) Shortening of the superior conjunctival cul-de-sac.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 111: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa correcta en cuanto a cirugía de blefaroplastia inferior con fines estéticos.\n", "a) La extirpación de la bolsa grasa lateral tiene como principal complicación la diplopía postoperatoria por lesión del oblicuo inferior.\n", "b) Cuando se realiza por vía transconjuntival, existe mayor riesgo de retracción palpebral.\n", "c) Mayor flacidez horizontal del párpado en la valoración preoperatoria indica la necesidad de asociación con cantoplastia lateral.\n", "d) En pacientes jóvenes, que tienen una mayor respuesta curativa, la vía preferida es la transcutánea.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga pahayag sa ibaba ang naglalahad ng katotohanan patungkol sa lower blepharoplasty surgery na may layong makapagpaganda? \n", "a) Pagtanggal sa lateral fat pad ay nagdulot ng post-operative diplopia dulot ng pinsala sa inferior oblique\n", "b) Kung gagawin ang operasyon sa pamamagitan ng transconjunctival route, may mas malaking panganib para sa eyelid retraction\n", "c) Ang labis na horizontal flaccidity ng ulo sa pre-surgical evaluation ay nagpapahiwatig na mayroong pangangailan para sa lateral canthoplasty\n", "d) Sa mga batang pasyente, dahil mas mabilis maghilom ang sugat, mas mainam gumamait ng transcutaneous na ruta\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa correta quanto a cirurgia de blefaroplastia inferior para fins estéticos. \n", "a) Remoção da bolsa de gordura lateral tem como principal complicação a diplopia pós-operatória por lesão no obliquo inferior. \n", "b) Quando realizada por via transconjuntival há maior risco de retração palpebral. \n", "c) Maior flacidez horizontal da pálpebra na avaliação pré-operatória indica a necessidade de associação de cantoplastia lateral. \n", "d) Em pacientes jovens, que possuem maior resposta cicatricial, a via preferencial é a transcutânea.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Check the correct alternative regarding lower blepharoplasty surgery for aesthetic purposes. \n", "a) Removal of the lateral fat pad mainly suffered postoperative diplopia due to an injury to the inferior oblique. \n", "b) When performed via the transconjunctival route, there is a greater risk of eyelid retraction. \n", "c) Greater horizontal flaccidity of the head in the pre-surgical evaluation indicates the need for a lateral canthoplasty. \n", "d) In young patients, who have a greater healing response, the preferred route is transcutaneous.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 112: \n", "Language: spanish\n", "Question: \n", "Seleccione la alternativa correcta.\n", "a) Se pueden considerar efectos secundarios de la aplicación de toxina botulínica periocular: blefaroptosis aponeurótica, entropión espástico y estrabismo restrictivo.\n", "b) A diferencia del blefaroespasmo esencial, el tratamiento con fármacos miorrelajantes orales proporciona una buena respuesta al espasmo hemifacial.\n", "c) La aplicación de toxina botulínica tipo B es el tratamiento más utilizado para el blefaroespasmo esencial.\n", "d) La aplicación coadyuvante de toxina botulínica en casos de parálisis facial periférica se realiza en el lado no afectado.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga pahayag ang totoo?\n", "a) Ang mga sumusunod na salang-epekto ng paglalagay ng botulinum toxin ay: aponeurotic blepharoptosis, spastic entropion, at restrictive strasbismus\n", "b) Di gaya ng essential blepharospasm, ang paggamit ng oral myorelaxant na gamot ay mainam para sa hemifacial spasm\n", "c) Ang paglalagay ng botulinum toxis type B ang pinaka madalas na ibinibigay para sa essential blepharospasm\n", "d) Ang paglalagay ng pinalakas na botulinum toxin para sa mga pasyenteng may peripheral facial paralysis ay inilalagay sa parte ng mukha na hindi apektado\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Escolha a alternativa correta. \n", "a) Podem ser considerados efeitos colaterais da aplicação da toxina botulínica periocular: blefaroptose aponeurótica, entrópio espástico e estrabismo restritivo. \n", "b) Diferentemente do blefaroespasmo essencial, o tratamento com drogas miorrelaxantes orais apresenta boa resposta para o espasmo hemifacial. \n", "c) A aplicação de toxina botulínica tipo B é o tratamento mais realizado para blefaroespasmo essencial. \n", "d) A aplicação adjuvante de toxina botulínica em caso de paralisia facial periférica é realizada no lado não acometido.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Choose the correct alternative. \n", "a) The following side effects of the application of periocular botulinum toxin can be considered: aponeurotic blepharoptosis, spastic entropion and restrictive strabismus. \n", "b) Unlike essential blepharospasm, treatment with oral myorelaxant drugs shows a good response to hemifacial spasm. \n", "c) The application of botulinum toxin type B is the most common treatment for essential blepharospasm. \n", "d) The adjuvant application of botulinum toxin in case of peripheral facial paralysis is performed on the unaffected side.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 113: \n", "Language: spanish\n", "Question: \n", "¿Qué hilo de sutura utilizado en la cirugía de párpados tiene el mayor potencial de reacción inflamatoria del tejido?\n", "a) La seda, por ser orgánica.\n", "b) Poliéster (Mersilene®), por ser absorbible.\n", "c) Poliamida (Nylon®), al ser monofilamento.\n", "d) Polipropileno (Prolene®), al ser multifilamento trenzado.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Anong suture thread ang ginagamit sa mga operasyon ng talukap na maaring makapagbigay ng malaking panganib para sa tissue inflammatory reaction?\n", "a) Sutla, dahil ito ay organic.\n", "b) Polyester (Mersilene®), dahil ito ay absorbable\n", "c) Polyamide (Nylon®), dahil ito ay monofilament.\n", "d) polypropylene (Prolene®), dahil ito ay multifilament braided\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual fio de sutura utilizado em cirurgias palpebrais tem maior potencial de reação inflamatória tecidual? \n", "a) Seda, por ser orgânico. \n", "b) Poliester (Mersilene®), por ser absorvível. \n", "c) Poliamida (Nylon®), por ser monofilamentar. \n", "d) Polipropilene (Prolene®), por ser multifilamentar trançado.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "\n", "Which suture thread used in eyelid surgeries has the greatest potential for tissue inflammatory reaction? \n", "a) Silk, as it is organic. \n", "b) Polyester (Mersilene®), as it is absorbable. \n", "c) Polyamide (Nylon®), as it is monofilament. \n", "d) Polypropylene (Prolene®), as it is multifilament braided.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 114: \n", "Language: spanish\n", "Question: \n", "Seleccione la respuesta correcta con respecto al chalazión.\n", "a) En pacientes de edad avanzada es frecuente la transformación maligna a carcinoma sebáceo.\n", "b) Histológicamente se caracteriza por inflamación lipogranulomatosa crónica.\n", "c) La mayoría de las veces se origina en una glándula apocrina adherida a las pestañas.\n", "d) El uso de pomada tópica de ivermectina es el tratamiento clínico preferido debido a la asociación demostrada con el ácaro Demodex folliculorum.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag ang tama patungkol sa chalazion?\n", "a) Sa mga matatandang pasyente, pangkaraniwan ang pagbabagong-anyo ng sebaceious carcinoma bilang mapaminsala\n", "b) Sa histolohikal na aspeto, mailalarawan ito sa pamamagitan ng matagalang lipogranulomatous inflammation\n", "c) Kadalasan, ito ay nagmumula sa apocrine gland na nakadikit sa mga pilikmata\n", "d) Ang paggamit ng ivermectin bilang pamahid ang inirerekomentang pamamahala dahil sa kaugnauyan nito sa Demodex folluculorum mite\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa correta quanto ao calázio. \n", "a) Em pacientes idosos é comum a transformação maligna para carcinoma sebáceo. \n", "b) Histologicamente caracteriza-se por inflamação crônica lipogranulomatosa. \n", "c) Na maioria das vezes origina-se de glândula apócrina atrelada aos cílios. \n", "d) Uso de ivermectina tópica em pomada é o tratamento clínico preferido devido a associação demonstrada com o ácaro Demodex foliculorum.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Mark the correct alternative regarding the chalazion. \n", "a) In elderly patients, malignant transformation to sebaceous carcinoma is common. \n", "b) Histologically, it is characterized by chronic lipogranulomatous inflammation. \n", "c) In most cases, it originates from the apocrine gland attached to the eyelashes. \n", "d) Use of topical ivermectin in ointment is the preferred clinical treatment due to the demonstrated association with the Demodex folliculorum mite.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 115: \n", "Language: spanish\n", "Question: \n", "Mujer de 60 años con contracciones tónico-clónicas que iniciaron en músculos perioculares derechos y en tres meses progresaron a todo el hemifacial. Aunque las contracciones varían durante el día, generalmente no dejan dormir, ya que “no cesan por la noche”. Seleccione la alternativa correcta.\n", "a) Se trata de un caso de blefaroespasmo esencial benigno.\n", "b) Las contracciones tienden a afectar progresivamente al lado contralateral y volverse bilaterales y simétricas.\n", "c) Una posible causa es la compresión vascular intracraneal del nervio facial ipsilateral.\n", "d) Los medicamentos que modulan la producción de serotonina en los ganglios basales, aunque no del todo eficaces, ayudan a controlar las contracciones.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: tagalog\n", "Question: \n", "Isang 60-taong-gulang na babae na may tonic-clonic contractions na nagsimula sa mga kanang periocular muscles na kumalat sa buong kalahati ng mukha sa loob ng tatlong buwan. Bagaman nag-iiba ang contractions sa umaga, hindi nito pinapapatulog ang pasyente sa gabi. Alin sa mga pahayag ang tama. \n", "a) Ito ay isang kaso ng benign essential blepharospasm.\n", "b) Ang mga contractions ay may posibilidad na progresibong kumalat sa kabilang bahagi at maging bilateral at simetriko.\n", "c) Ang isang posibleng sanhi ay intracranial vascular compression ng ipsilateral facial nerve.\n", "d) Ang mga gamot na siyang nag-momodulate sa produksyon ng serotonin sa basal nuclei, bagaman hindi mainam, ay nakakatulong upang kontrolin ang mga contractions\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "Mulher de 60 anos com contrações tônico-clônicas que se iniciaram na musculatura periocular à direita e em três meses evoluiram para toda a hemiface. Embora as contrações variem durante o dia, geralmente não a deixam dormir, pois \"não param a noite\". Assinale a alternativa correta. \n", "a) Trata-se de um caso de blefaroespasmo essencial benigno. \n", "b) As contrações tendem a acometer progressivamente o lado contralateral e tornarem-se bilaterais e simétricas. \n", "c) Uma possível causa é compressão intracraniana vascular do nervo facial ipsolateral. \n", "d) Medicações que modulam produção de serotonina nos núcleos da base, embora não sejam completamente efetivas, auxiliam no controle das contrações.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: english\n", "Question: \n", "A 60-year-old woman with tonic-clonic contractions that started in the periocular muscles on the right and in three months progressed to the entire hemiface. Although the contractions vary during the day, they usually don't let her sleep, as they \"don't stop at night\". Tick ​​the correct alternative. \n", "a) This is a case of benign essential blepharospasm. \n", "b) Contractions tend to progressively affect the contralateral side and become bilateral and symmetrical. \n", "c) A possible cause is intracranial vascular compression of the ipsilateral facial nerve. \n", "d) Medications that modulate serotonin production in the basal nuclei, although not completely effective, help control contractions.\n", "Test #0: \n", "{'response': 'a'}\n", "**************************************************\n", "**************************************************\n", "Question 116: \n", "Language: spanish\n", "Question: \n", "¿Para qué tipo de entropión palpebral, entre los siguientes, está más indicada la técnica de fractura del tarso con rotación marginal?\n", "a) Involucional (senil).\n", "b) Espástico.\n", "c) Congénito.\n", "d) Cicatricial.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Ang technique sa tarsal fracture na mayroong marginal rotation ay inirerekomendang pamamaraan para sa anong klase ng eyelid entropion?\n", "a) Involutional (Senile).\n", "b) Spastic.\n", "c) congenital.\n", "d) pagkakapilat.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "A técnica de fratura tarsal com rotação marginal é mais indicada para tratamento de qual tipo de entrópio palpebral, dentre os abaixo? \n", "a) Involucional (senil). \n", "b) Espástico. \n", "c) Congênito. \n", "d) Cicatricial.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: english\n", "Question: \n", "The technique of tarsal fracture with marginal rotation is most indicated for the treatment of which type of eyelid entropion, among the following? \n", "a) Involutional (senile). \n", "b) Spastic. \n", "c) Congenital. \n", "d) Scarring.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 117: \n", "Language: spanish\n", "Question: \n", "¿Cuál de las opciones se correlaciona mejor con las mediciones de la siguiente tabla? Fisura palpebral 09 mm Distancia de reflexión margen superior 01 mm Distancia de reflexión margen inferior 08 mm Función del músculo elevador del párpado 14 mm Altura del pliegue palpebral superior 16 mm\n", "a) Posible caso de blefaroptosis senil asociada a ectropión senil.\n", "b) Posible caso de ptosis palpebral inversa congénita.\n", "c) Caso probable de retracción palpebral por orbitopatía inflamatoria de Graves\n", "d) Si el paciente es caucásico, estas mediciones pueden considerarse normales.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga pahayag ang pinakaangkop sa mga sukat na sumusunod: \n", "Palpebral fissure 09 mm\n", "Upper margin-reflex distance 01 mm\n", "Lower margin-reflex distance 08 mm\n", "Function of the eyelid levator muscl: 14 mm\n", "Upper eyelid crease height: 16 mm\n", "\n", "a) Posibleng kaso ng senile blepharoptosis na konektado sa senile ectropion.\n", "b) Posibleng kaso ng congenital reverse eyelid ptosis.\n", "c) Posibleng kaso ng pag-urong ng eyelid dahil sa Graves' inflammatory orbitopathy\n", "d) Kung ang pasyente ay Caucasian, ang mga sukat na ito ay maaaring ituring na normal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual das alternativas melhor se correlaciona com as medidas da tabela abaixo? Fenda palpebral 09 mm Distância margem-reflexo superior 01 mm Distância margem-reflexo inferior 08 mm Função do músculo levantador da pálpebra 14 mm Altura da prega palpebral superior 16 mm \n", "a) Possível caso de blefaroptose senil associada a ectrópio senil. \n", "b) Possível caso de ptose palpebral reversa congênita. \n", "c) Provável caso de retração palpebral por orbitopatia inflamatória de Graves \n", "d) Caso o paciente seja caucasiano, essas medidas podem ser consideradas normais.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Which of the alternatives best correlates with the measurements in the table below? Palpebral fissure09 mm Upper margin-reflex distance 01 mm Lower margin-reflex distance 08 mm Function of the eyelid levator muscle 14 mm Upper eyelid crease height 16 mm \n", "a) Possible case of senile blepharoptosis associated with senile ectropion. \n", "b) Possible case of congenital reverse eyelid ptosis. \n", "c) Probable case of eyelid retraction due to Graves' inflammatory orbitopathy \n", "d) If the patient is Caucasian, these measurements can be considered normal.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 118: \n", "Language: spanish\n", "Question: \n", "Marque la respuesta correcta respecto al sistema lagrimal.\n", "a) Aproximadamente el 50% de los recién nacidos mantienen obstrucción de la válvula de Hasner hasta el sexto mes de vida, requiriendo el 90% de ellos cateterismo.\n", "b) En la mayoría de los recién nacidos la secreción lagrimal es menor que la de un adulto sano.\n", "c) La canalización completa del conducto nasolagrimal generalmente ocurre alrededor de la sexta semana de vida extrauterina.\n", "d) El recién nacido generalmente presenta canalización completa del saco y conducto nasolagrimal; sin embargo, los canalículos se abren alrededor de la sexta semana de vida extrauterina.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag ang nagsasaad ng katotohanan tungkol sa lacrimal system?\n", "a) Tinatayang 50% ng mga bagong panganak na sanggol ay nanatiling mayroong harang sa kanilang Hasner valve hanggang sa ikaanim na buwan ng kanlang buhay at 90% sa kanila ay nangangailangan ng karagdagang pag-uusisa\n", "b) Karamihan sa mga bagong silang na sanggol ay mayroong madalang na sekresyon ng luha kumpara sa mga matatanda\n", "c) Ang complete canalization ng lacrimal duct ay nangyayari anim na linggo pagkatapos isilang ang sanggol.\n", "d) Pagkasilang, nagkaroon ng complete canalization ng nasolacrimal sac at duct ang sanggol, subalit ang canaliculi ay nagbubukas lamang anim na linggo pagkatapos isilang ang sanggol.\n", "\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa correta quanto ao sistema lacrimal. \n", "a) Aproximadamente 50% dos recém-nascidos mantém obstrução da valva de Hasner até o sexto mês de vida, sendo que 90% deles necessitam de sondagem. \n", "b) Na maioria dos recém-nascidos a secreção lacrimal é menor que a do adulto saudável. \n", "c) A canalização completa do ducto nasolacrimal geralmente ocorre por volta da sexta semana de vida extrauterina. \n", "d) O recém-nascido geralmente apresenta canalização completa do saco e ducto nasolacrimal; no entanto os canalículos abrem-se por volta da sexta semana de vida extrauterina.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Mark the correct alternative regarding the lacrimal system. \n", "a) Approximately 50% of newborns maintain obstruction of the Hasner valve until the sixth month of life, and 90% of them require probing. \n", "b) In most newborns, tear secretion is less than in healthy adults. \n", "c) Complete canalization of the nasolacrimal duct usually occurs around the sixth week of extrauterine life. \n", "d) The newborn generally presents complete canalization of the nasolacrimal sac and duct; however, the canaliculi open around the sixth week of extrauterine life.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 119: \n", "Language: spanish\n", "Question: \n", "Escoja la opción que mejor llene el vacío: En adultos, __________ sólo se realiza para el diagnóstico, mientras que para el tratamiento es potencialmente traumático y rara vez es eficaz para aliviar permanentemente la obstrucción lagrimal.\n", "a) Intubación con sonda de silicona.\n", "b) Irrigación con solución mucolítica.\n", "c) Sondeo con una varilla metálica.\n", "d) Uso de una sonda láser de argón.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Punan ang patlang: Sa mga matatanda, ginagawa lamang ang ___________ upang mabuo ang dayagnosis. Hindi ito ginagawa bilang panlunas sapagkat ito ay traumatic at bihirang mainam upang permanenteng paginhawain ang lacrimal obstruction.\n", "a) Intubation gamit ang isang silicone probe.\n", "b) Irigasyon na may mucolytic na solusyon.\n", "c) Pageeksamen gamit ang metal na baras.\n", "d) Paggamit ng argon laser probe.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Escolha a alternativa que melhor preencha a lacuna: Em adultos, a __________ é apenas realizada para diagnóstico, pois para tratamento é potencialmente traumática e raramente efetiva para aliviar permanentemente a obstrução lacrimal. \n", "a) Intubação com sonda de silicone. \n", "b) Irrigação com solução mucolítica. \n", "c) Sondagem com haste metálica. \n", "d) Utilização de sonda de laser de argônio.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Choose the best choice that best fills the gap: In adults, __________ is only performed for diagnosis, as for treatment it is potentially traumatic and rarely effective in permanently relieving lacrimal obstruction. \n", "a) Intubation with a silicone probe. \n", "b) Irrigation with mucolytic solution. \n", "c) Probing with metallic rod. \n", "d) Use of argon laser probe.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 120: \n", "Language: spanish\n", "Question: \n", "En la semiótica de las obstrucciones del tracto de drenaje lagrimal, la prueba que utiliza la instilación de tecnecio-99m en el fondo de saco lagrimal es:\n", "a) Zapata-Milder.\n", "b) Jones II modificado.\n", "c) Dacriocistografía.\n", "d) Dacrioscintigrafía.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Sa semyotiko ng mga obstruksyon sa lacrimal drainage pathways, aling panuri ang gumagamit ng technetium 99-m na inilalagay sa lacrimal cul-de-sac?\n", "a) Zapata-milder.\n", "b) Binago ni Jones II.\n", "c) Dacryocystography.\n", "d) Dacryocintigraphy.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Na semiótica das obstruções das vias lacrimais de drenagem, o teste que usa a instilação de tecnécio-99m no fundo de saco lacrimal é de: \n", "a) Zapata-Milder. \n", "b) Jones II modificado. \n", "c) Dacriocistografia. \n", "d) Dacriocintilografia.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "In the semiotics of obstructions of the lacrimal drainage pathways, the test that uses technetium-99m instillation in the lacrimal cul-de-sac is: \n", "a) Zapata-Milder. \n", "b) Jones II modified. \n", "c) Dacryocystography. \n", "d) Dacryocintigraphy.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 121: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa que contenga un tratamiento para la obstrucción adquirida de la vía nasal lagrimal.\n", "a) Dacriorrinostomía transnasal.\n", "b) Implantación de tubo Pyrex.\n", "c) Ampliación del punto de desgarro.\n", "d) Masaje hidrostático Crigler.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Piliin ang angkop na panlunas sa acquired obstruction ng nasolacrimal duct.\n", "a) Transnasal dacrhinostomy.\n", "b) Pyrex tube implant.\n", "c) Pagpapalaki ng lacrimal point.\n", "d) Crigler hydrostatic massage.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que contenha um tratamento para obstrução adquirida do ducto lacrimonasal. \n", "a) Dacriorrinostomia transnasal. \n", "b) Implante de tubo de pirex. \n", "c) Ampliação do ponto lacrimal. \n", "d) Massagem hidrostática de Crigler.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Which choice contains a treatment for acquired obstruction of the nasolacrimal duct?\n", "a) Transnasal dacrhinostomy. \n", "b) Pyrex tube implant. \n", "c) Enlargement of the lacrimal point. \n", "d) Crigler hydrostatic massage.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 122: \n", "Language: spanish\n", "Question: \n", "La celulitis orbitaria preseptal en adultos en general:\n", "a) Se produce por la extensión continua de la sinusitis etmoidal.\n", "b) No provoca estrabismo ni edema del disco óptico.\n", "c) Debe tratarse con antibioterapia intravenosa durante la estancia hospitalaria.\n", "d) Su etiología son gérmenes Gram negativos y anaerobios.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Ang preseptal orbital cellulitis sa mga matatanda ay karaniwang:\n", "a) Sanhi ng pagpapakalat sa pamamagitan ng continuity ng etmoidal sinusitis.\n", "b) Hindi nagsasanhi ng strabismus o optic disc edema.\n", "c) Dapat gamitan ng intravenous antibiotic therapy habang nasa ospital\n", "d) Nagmula ito sa mga gramo-negatibo at anaerobikong mikrobyo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "A celulite orbitaria pré-septal no adulto geralmente: \n", "a) É causada por disseminação por continuidade de sinusite etmoidal. \n", "b) Não causa estrabismo ou edema de disco óptico. \n", "c) Deve ser tratada com antibioticoterapia endovenosa durante internação hospitalar. \n", "d) Tem como etiologia germes Gram-negativos e anaeróbios.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: english\n", "Question: \n", "Preseptal orbital cellulitis in adults is usually: \n", "a) Caused by dissemination by continuity of ethmoidal sinusitis. \n", "b) Does not cause strabismus or optic disc edema. \n", "c) Should be treated with intravenous antibiotic therapy during hospitalization. \n", "d) Its etiology is Gram-negative and anaerobic germs.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 123: \n", "Language: spanish\n", "Question: \n", "La aplicación tópica o sistémica de betabloqueantes presenta resultados terapéuticos positivos en las enfermedades orbitarias, entre las siguientes:\n", "a) Fístula carotídeo-cavernosa de bajo gasto.\n", "b) Linfoma asociado al tejido de las mucosas (MALT).\n", "c) Hemangioma capilar infantil.\n", "d) Orbitopatía de Graves en fase aguda.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Ang paggamit ng mga beta blockers ay mainam para sa anong karamdaman sa mata:\n", "a) Mababang output ng carotid-cavernous fistula.\n", "b) Lymphoma na nauugnay sa mucosal tissue (MALT).\n", "c) Capillary hemangioma sa pagkabata.\n", "d) Graves orbitopathy in the acute phase\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Aplicação tópica ou sistêmica de betabloqueadores apresenta resultados terapêuticos positivos em qual doença orbitária, entre as abaixo: \n", "a) Fístula carótido-cavernosa de baixo débito. \n", "b) Linfoma associado a tecido mucoso (MALT). \n", "c) Hemangioma capilar da infância. \n", "d) Orbitopatia de Graves na fase aguda.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Topical or systemic application of beta-blockers presents positive therapeutic results in which orbital disease, among the following: \n", "a) Low-output carotid-cavernous fistula. \n", "b) Lymphoma associated with mucosal tissue (MALT). \n", "c) Capillary hemangioma of childhood. \n", "d) Graves orbitopathy in the acute phase.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 124: \n", "Language: spanish\n", "Question: \n", "En la enfermedad inflamatoria orbitaria asociada a alteraciones tiroideas existe un signo oftalmológico típico, conocido como brote temporal, que corresponde a:\n", "a) Exotropía por fibrosis del recto lateral.\n", "b) Quemosis y conjuntivocalasia en la región lateral de la conjuntiva bulbar inferior.\n", "c) Exoftalmos marcado que causa distopía lateral del ojo.\n", "d) Patrón de retracción del párpado con la región lateral del párpado más retraída que la región medial.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Sa inflammatory orbital disease na may kinalaman sa sakit sa teroydeo, isa sa mga ginagamit na tanda ay ang temporal flare. Alin sa mga sumusunod na pahayag ang tugma sa nasabing tanda?\n", "a) Exotropia dala ng lateral rectus fibrosis.\n", "b) Chemosis at conjunctivochalasis sa lateral ng rehiyon ng ibabang bahagi ng bulbar conjunctiva.\n", "c) Marked exophthalmos na nagdudulot ng lateral na dystopia ng mata.\n", "d) Pattern ng eyelid retraction kung saan mas umuurong ang lateral na bahagi kaysa sa medial na bahagi ng talukap ng mata\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Na doença orbitária inflamatória associada a distúrbios da tireoide existe um sinal oftalmológico típico, conhecido como flare temporal, que corresponde a: \n", "a) Exotropia por fibrose do reto lateral. \n", "b) Quemose e conjuntivocalase na região lateral da conjuntiva bulbar inferior. \n", "c) Exoftalmia acentuada causando distopia lateral do olho. \n", "d) Padrão de retração palpebral com a região lateral da pálpebra mais retraída que a medial.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "In inflammatory orbital disease associated with thyroid disorders, there is a typical ophthalmological sign, known as temporal flare, which corresponds to: \n", "a) Exotropia due to lateral rectus fibrosis. \n", "b) Chemosis and conjunctivochalasis in the lateral region of the inferior bulbar conjunctiva. \n", "c) Marked exophthalmos causing lateral dystopia of the eye. \n", "d) Pattern of eyelid retraction with the lateral region of the eyelid more retracted than the medial.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 125: \n", "Language: spanish\n", "Question: \n", "Escoja la opción que mejor llene el vacío: En __________, la sinusitis maxilar crónica causa enoftalmos debido al colapso del piso orbitario.\n", "a) Síndrome del seno silencioso.\n", "b) Síndrome de Tolosa-Hunt.\n", "c) Mucocele.\n", "d) Displasia fibrosa.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Punan ang patlang. Sa __________, ang chronic na maxillary sinusitis ay nagdudulot ng enophthalmos dala ng pagbagsak ng orbital floor.\n", "a) Silent sinus syndrome\n", "b) Tolosa-hunt syndrome\n", "c) Mucocele\n", "d) Fibrous dysplasia\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Escolha a alternativa que melhor preencha a lacuna: Na __________ , uma sinusite maxilar crônica causa enoftalmo pelo colapso do assoalho da órbita. \n", "a) Síndrome do seio silencioso. \n", "b) Síndrome de Tolosa-Hunt. \n", "c) Mucocele. \n", "d) Displasia fibrosa.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Choose the alternative that best fills in the blank: In __________ , chronic maxillary sinusitis causes enophthalmos by collapsing the orbital floor. \n", "a) Silent sinus syndrome. \n", "b) Tolosa-Hunt syndrome. \n", "c) Mucocele. \n", "d) Fibrous dysplasia.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 126: \n", "Language: spanish\n", "Question: \n", "Durante la refracción subjetiva del paciente con baja visión, la mejor agudeza visual se obtuvo utilizando lentes -5,00 dioptrías esféricas -2,00 dioptrías cilíndricas x 180° en el marco de prueba con la mesa de agudeza visual colocada a 1 m del paciente. ¿Cuál de las siguientes alternativas representa la prescripción más adecuada para la corrección de distancia?\n", "a) -3,00 dioptrías esféricas -2,00 dioptrías cilíndricas x 180°.\n", "b) -4,00 dioptrías esféricas -2,00 dioptrías cilíndricas x 180°.\n", "c) -2,00 dioptrías cilíndricas x 180°.\n", "d) -6,00 dioptrías esféricas -2,00 dioptrías cilíndricas x 180°.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Sa subjective refraction ng pasyenteng may malabong paningin, ang pinakamainam na visual acuity ay nakuha gamit ang isang -5.00 spherical diopter -2.00 cylindrical diopter x 180 ° lens sa trial frame gamit ang visual acuity table na isang metro ang layo sa pasyente. Alin sa mga sumusunod ang pinakamainam na preskripsyon para sa pagwawasto ng distansya?\n", "a) -3.00 spherical diopter -2.00 cylindrical diopter x 180 °.\n", "b) -4.00 spherical diopter -2.00 cylindrical diopter x 180 °.\n", "c) -2.00 cylindrical diopter x 180 °.\n", "d) -6.00 spherical diopter -2.00 cylindrical diopter x 180 °.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Durante a refração subjetiva do paciente com baixa visão, obteve-se a melhor acuidade visual utilizando-se lentes -5,00 dioptria esferica -2,00 dioptria cilindrica x 180° na armação de prova com a tabela de acuidade visual posicionada a 1 m do paciente. Qual dentre as alternativas abaixo representa a prescrição mais adequada da correção para longe? \n", "a) -3,00 dioptria esferica -2,00 dioptria cilindrica x 180°. \n", "b) -4,00 dioptria esferica -2,00 dioptria cilindrica x 180°. \n", "c) -2,00 dioptria cilindrica x 180°. \n", "d) -6,00 dioptria esferica -2,00 dioptria cilindrica x 180°.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "During the subjective refraction of the patient with low vision, the best visual acuity was obtained using a -5.00 spherical diopter -2.00 cylindrical diopter x 180° lens in the trial frame with the visual acuity table positioned at 1 m of the patient. Which of the alternatives below represents the most appropriate prescription for correction for distance? \n", "a) -3.00 spherical diopter -2.00 cylindrical diopter x 180°. \n", "b) -4.00 spherical diopter -2.00 cylindrical diopter x 180°. \n", "c) -2.00 cylindrical diopter x 180°. \n", "d) -6.00 spherical diopter -2.00 cylindrical diopter x 180°.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 127: \n", "Language: spanish\n", "Question: \n", "Respecto a las ayudas no ópticas, evalúe las siguientes afirmaciones como verdaderas (V) o falsas (F) y seleccione la alternativa correcta:\n", "I. También llamadas ayudas funcionales de adaptación, son aquellas que modifican materiales y condiciones ambientales.\n", "II. Ampliar letras es la ayuda más común y reduce la frecuencia espacial de la imagen.\n", "III. El tiposcopio es una guía de lectura cuya función es reducir la luz reflejada sobre el papel blanco y así reducir los reflejos y aumentar el contraste de la línea del texto con el fondo.\n", "IV. Un paciente de 65 años prefiere aproximadamente tres veces menos iluminación que una persona de 20 años para realizar las mismas tareas.\n", "\n", "a) I: Verdadero; II: Falso; III: Verdadero; IV: Falso. \n", "b) I: Verdadero; II: Verdadero; III: Falso; IV: Verdadero. \n", "c) I: Verdadero; II: Verdadero; III: Verdadero; IV: Falso. \n", "d) I: Falso; II: Falso; III: Falso; IV: Verdadero.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Patungkol sa mga non-optical na pantulong, suriin kung tama o mali ang mga sumusunod na pahayag:\n", "I. Tinatawag din bilang functional adaptation aids, ang mga ito ay nababago ayon sa materyal at kondisyon ng kapaligiran.\n", "II. Ang pagpapalaki ng mga letra ang pinakakaraniwang pantulong at binabawasan nito ang spatial frequency ng imahe.\n", "III. Ang typoscope ay isang gabay para sa pagbabasa na siyang nagbabawas ng liwanag na narereplekta sa puting papel kaya\n", "nababawasan nito ang glare at gumaganda ang contrast ng teksto sa background,\n", "IV. Ang isang 65 taong gulang na pasyente ay mas pinipili ang halos na tatlong beses na mas madilim na kapaligiran kaysa sa isang 20 taong gulang kapag magsasagawa ng parehong mga gawain.\n", "\n", "a) I: Tama; II: Mali; III: Tama; IV: Mali. \n", "b) I: Tama; II: Tama; III: Mali; IV: Tama. \n", "c) I: Tama; II: Tama; III: Tama; IV: Mali. \n", "d) I: Mali; II: Mali; III: Mali; IV: Tama.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: portuguese\n", "Question: \n", "Sobre os auxílios não-ópticos, avalie as assertivas a seguir como verdadeiras (V) ou falsas (F) e assinale a alternativa correta: \n", "I. Também denominados auxílios de adaptação funcional, são aqueles que modificam materiais e condições do ambiente. \n", "II. A ampliação de letras é o auxílio mais comum e reduz a frequência espacial da imagem. \n", "III. O tiposcópio é um guia para leitura cuja função é diminuir a luz refletida sobre o papel branco e assim diminuir o ofuscamento e aumentar o contraste da linha de texto com o fundo. \n", "IV. Um paciente com 65 anos prefere aproximadamente três vezes menos iluminação que uma pessoa com 20 anos para realizar as mesmas tarefas. \n", "\n", "a) I: Verdadeiro; II: Falso; III: Verdadeiro; IV: Falso. \n", "b) I: Verdadeiro; II: Verdadeiro; III: Falso; IV: Verdadeiro. \n", "c) I: Verdadeiro; II: Verdadeiro; III: Verdadeiro; IV: Falso. \n", "d) I: Falso; II: Falso; III: Falso; IV: Verdadeiro.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "\n", "Regarding non-optical aids, evaluate the following statements as true (T) or false (F) and mark the correct alternative:\n", "I. Also called functional adaptation aids, they are those that modify materials and environmental conditions. \n", "II. Enlarging letters is the most common aid and reduces the spatial frequency of the image. \n", "III. The typoscope is a guide for reading whose function is to reduce the light reflected on the white paper and thus reduce glare and increase the contrast of the line of text with the background. \n", "IV. A 65-year-old patient prefers approximately three times less lighting than a 20-year-old person to perform the same tasks. \n", "\n", "a) I: True; II: False; III: True; IV: False. \n", "b) I: True; II: True; III: False; IV: True. \n", "c) I: True; II: True; III: True; IV: False. \n", "d) I: False; II: False; III: False; IV: True.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 128: \n", "Language: spanish\n", "Question: \n", "La refracción subjetiva de un paciente con baja visión consigue la mejor agudeza binocular a distancia sin la interposición de lentes correctoras. A corta distancia, el mejor resultado se logra con la adición de +8,00 dioptrías esféricas en ambos ojos. Para mejorar la comodidad durante la lectura, se decidió prescribir lentes esferoprismáticas. ¿Cuál es el valor más apropiado para los prismas en cada ojo?\n", "a) Base de tiempo de 4 dioptrías prismáticas.\n", "b) 4 dioptrías prismáticas en la base nasal.\n", "c) Base de tiempo de 10 dioptrías prismáticas.\n", "d) 10 dioptrías prismáticas en la base nasal.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Ang subjective refraction ng isang pasyenteng may malabong paningin ay kayang magkamit ng pinakamainam na binocular acuity kahit na walang interposition ng corrective lenses. Sa malapitan, ang pinakamainam ay nakukuha sa pagdaragdag ng +8.00 spherical diopters sa parehong mga mata. Upang mas maginhawa ang pagbabasa, napagpasyahan na magbigay ng spheroprismatic lens. Ano ang pinaka-angkop na value ng prisms sa bawat mata?\n", "a) 4 prismatic diopters time base. \n", "b) 4 prismatic diopters sa nasal base. \n", "c) 10 prismatic diopters time base. \n", "d) 10 prismatic diopters sa nasal base.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "À refração subjetiva de um paciente com visão subnormal, atinge-se a melhor acuidade binocular para distância sem a interposição de lentes corretivas. Já para perto, o melhor resultado é atingido com adição de +8,00 Dioptrias esferiacs em ambos os olhos. Para melhorar o conforto durante a leitura, optou-se por prescrever lentes esferoprismáticas. Qual o valor mais adequado dos prismas em cada olho? \n", "a) 4 Dioptrias prismaticas base temporal. \n", "b) 4 Dioptrias prismaticas base nasal. \n", "c) 10 Dioptrias prismaticas base temporal. \n", "d) 10 Dioptrias prismaticas base nasal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "The subjective refraction of a patient with low vision achieves the best binocular acuity for distance without the interposition of corrective lenses. At close range, the best result is achieved with the addition of +8.00 spherical diopters in both eyes. To improve comfort while reading, it was decided to prescribe spheroprismatic lenses. What is the most appropriate value of the prisms in each eye? \n", "a) 4 prismatic diopters time base. \n", "b) 4 prismatic diopters at the nasal base. \n", "c) 10 prismatic diopters time basis. \n", "d) 10 prismatic diopters at the nasal base.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 129: \n", "Language: spanish\n", "Question: \n", "¿En qué concentración se utilizan colirios de nitrato de plata en el método Credé?\n", "a 1%.\n", "b) 5%.\n", "c) 10%.\n", "d) 20%.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: tagalog\n", "Question: \n", "Gumagamit ng Silver nitrate eyedrops ang Crede method, ano ang konsenstrasyon nito? \n", "\n", "a) 1%.\n", "b) 5%.\n", "c) 10%.\n", "d) 20%.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: portuguese\n", "Question: \n", "O método de Credé utiliza colírio de nitrato de prata em qual concentração? \n", "a) 1%. \n", "b) 5%. \n", "c) 10%. \n", "d) 20%.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: english\n", "Question: \n", "The Credé method uses silver nitrate eye drops at what concentration? \n", "a) 1%. \n", "b) 5%. \n", "c) 10%. \n", "d) 20%.\n", "Test #0: \n", "{'response': 'a'}\n", "**************************************************\n", "**************************************************\n", "Question 130: \n", "Language: spanish\n", "Question: \n", "¿Cuál de los siguientes fármacos tópicos es el más indicado para el tratamiento inicial de la queratitis fúngica causada por Fusarium?\n", "a) Terbinafina.\n", "b) Natamicina.\n", "c) Miconazol.\n", "d) Anfotericina B.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na gamot ang angkop at mainam sa paglunas ng fungal keratitis na dala ng Fusarium?\n", "a) Terbinafine\n", "b) Natamycin\n", "c) Miconazole\n", "d) Amphotericin B\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Qual das drogas de uso tópico, abaixo, é a mais indicada para o tratamento inicial de ceratite fúngica causada por Fusarium? \n", "a) Terbinafina. \n", "b) Natamicina. \n", "c) Miconazol. \n", "d) Anfotericina B.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Which of the topical drugs below is most indicated for the initial treatment of fungal keratitis caused by Fusarium? \n", "a) Terbinafine. \n", "b) Natamycin. \n", "c) Miconazole. \n", "d) Amphotericin B.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 131: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa correcta en relación al trasplante penetrante de córnea realizado en niños menores de dos años.\n", "a) Normalmente, la curación entre el lecho y el injerto se produce más lentamente que en los adultos.\n", "b) La incidencia de rechazo es significativamente menor que la observada en trasplantes de adultos.\n", "c) En un postoperatorio sin complicaciones, las suturas deben retirarse antes que en adultos.\n", "d) Generalmente se utilizan injertos de gran tamaño, de más de 10 mm de diámetro.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Piliin ang angkop na pahayag patungkol sa penetrating corneal transplantation na ginagawa sa mga batang may edad na hindi lalagpas sa 2 taong gulang.\n", "a) Kadalasan, ang paggaling sa pagitan ng bed at ng graft ay mas mabagal sa mga batang edad 2 pababa, kaysa sa mga matatanda.\n", "b) Ang incidence ng rejection ay. mas mababa kumapara sa mga transplants na ginagawa sa matatanda\n", "c) Sa uneventful postoperative period, ang pagtanggal ng suture ay dapat na sa mabilis kumpara sa mga matatanda\n", "d) Kadalasan, gumagamit ng mga large graft na may lapad na higit sa 10 mm.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa correta com relação ao transplante penetrante de córnea realizado em crianças abaixo de dois anos de idade. \n", "a) Tipicamente, a cicatrização entre o leito e o enxerto ocorre mais lentamente do que no adulto. \n", "b) A incidência de rejeição é significativamente menor que a observada nos transplantes de adultos. \n", "c) Em um pós-operatório sem intercorrências, a remoção das suturas deve ocorrer mais precocemente do que nos adultos. \n", "d) Geralmente são utilizados enxertos grandes, com mais de 10 mm de diâmetro.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Mark the correct alternative regarding penetrating corneal transplantation performed in children under two years of age. \n", "a) Typically, healing between the bed and the graft occurs more slowly than in adults. \n", "b) The incidence of rejection is significantly lower than that observed in adult transplants. \n", "c) In an uneventful postoperative period, suture removal should occur earlier than in adults. \n", "d) Generally, large grafts with more than 10 mm in diameter are used.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 132: \n", "Language: spanish\n", "Question: \n", "Seleccione la alternativa correcta respecto al trasplante de córnea lamelar posterior mediante la técnica \"DSEK\" (Descemet Stripping Endothelial Keratoplasty):\n", "a) Inmediatamente después de la cirugía, el paciente debe permanecer en decúbito prono durante aproximadamente veinte a treinta minutos.\n", "b) En el ojo receptor sólo se injertan endotelio y membrana de Descemet.\n", "c) La queratitis lamelar difusa (también conocida como “síndrome de la arena sahariana”), es una complicación de este procedimiento.\n", "d) La presencia de la laminilla correctamente posicionada probablemente inducirá un grado esférico positivo que se sumará a la refracción previa del paciente (\"desplazamiento hiperópico\").\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Piliin ang angkop na pahayag patungkol sa posterior lamellar corneal transplantation gamit ang pamamaraang DSEK (Descemet Stripping Endothelial Keratoplasty)\n", "a) Kagyat na pagkatapos ng operasyon, dapat manatili ang pasyente sa posisyong prone nang 20 hanggang 30 minuto\n", "b) Tanging ang endothelium at Descemet's membrane lamang ang iginagraft sa pasyenteng tatanggap ng mata. \n", "c) Diffuse lamellar keratitis ay isang komplikasyon ng operasyon at pamamaraang ito.\n", "d) Ang mahusay na pagkakaposisyon ng lamella ay maaaring magdala ng positibong spherical degree na idaragdag sa dating refraction ng pasyente (\"hypermetropic shift\").\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa correta com relação ao transplante de córnea lamelar posterior pela técnica \"DSEK\" (Descemet Stripping Endothelial Keratoplasty): \n", "a) Imediatamente após a cirurgia o paciente deve permanecer em decúbito ventral por cerca de vinte a trinta minutos. \n", "b) Apenas endotélio e membrana de Descemet são enxertados no olho receptor. \n", "c) Ceratite lamelar difusa (também conhecida como \"síndrome das areias do Saara\"), é uma complicação desse procedimento. \n", "d) A presença da lamela corretamente posicionada provavelmente induzirá grau esférico positivo que se somará à refração prévia do paciente (\"shift hipermetrópico\").\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Mark the correct alternative regarding posterior lamellar corneal transplantation using the \"DSEK\" technique (Descemet Stripping Endothelial Keratoplasty): \n", "a) Immediately after the surgery, the patient must remain in the prone position for about twenty to thirty minutes. \n", "b) Only endothelium and Descemet's membrane are grafted into the recipient eye. \n", "c) Diffuse lamellar keratitis (also known as \"sands of the Sahara syndrome\"), is a complication of this procedure. \n", "d) The presence of a correctly positioned lamella will probably induce a positive spherical degree that will be added to the patient's previous refraction (\"hypermetropic shift\").\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 133: \n", "Language: spanish\n", "Question: \n", "La parálisis del quinto par craneal puede desencadenar la córnea, más comúnmente:\n", "a) Úlcera neurotrófica.\n", "b) Endotelitis disciforme.\n", "c) Queratitis por exposición.\n", "d) Queratitis intersticial.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Ang paralisis ng ikalimang cranial nerve ay maaaring maka-trigger sa cornea, na kadalasang:\n", "a) Neurotrophic ulcer.\n", "b) Disciform endothelitis.\n", "c) Exposure keratitis.\n", "d) Interstitial keratitis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Paralisia do quinto nervo craniano pode desencadear na córnea, mais comumente: \n", "a) Úlcera neurotrófica. \n", "b) Endotelite disciforme. \n", "c) Ceratite de exposição. \n", "d) Ceratite intersticial.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Paralysis of the fifth cranial nerve can trigger in the cornea, most commonly: \n", "a) Neurotrophic ulcer. \n", "b) Disciform endothelitis. \n", "c) Exposure keratitis. \n", "d) Interstitial keratitis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 134: \n", "Language: spanish\n", "Question: \n", "Respecto a la distrofia endotelial de la córnea congénita y hereditaria, es correcto afirmar:\n", "a) El patrón de transmisión más común es autosómico dominante.\n", "b) La mayoría de los pacientes presentan nistagmo asociado y, raramente, glaucoma.\n", "c) Los pacientes suelen presentar fotofobia intensa y epífora inmediatamente después del nacimiento.\n", "d) Suele ser unilateral, con un aumento progresivo de la opacidad corneal desde el nacimiento.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag ang totoo patungkol sa konhenital at namamanag coreneal endothelial dystrophy?\n", "a) Ang pinakakaraniwang pattern ng transmisyon ay dominant autosomal\n", "b) Karamihan sa mga pasyente ay mayroon ding nystagmus at minsan ay glaucoma\n", "c) Ang mga pasyente ay kadalasang mayroong matinding photophobia at epiphora pagkatapos ng kapanganakan.\n", "d) Karaniwan itong unilateral, na may progresibong pagtaas sa opacity ng cornea mula sa kapanganakan.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Com relação à distrofia endotelial congênita e hereditária da córnea, é correto afirmar: \n", "a) O padrão de transmissão mais comum é o autossômico dominante. \n", "b) A maioria dos pacientes apresenta nistagmo associado e, raramente, glaucoma. \n", "c) Os pacientes costumam apresentar intensa fotofobia e epífora imediatamente após o nascimento. \n", "d) Geralmente é unilateral, com aumento progressivo da opacidade da córnea a partir do nascimento.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Regarding congenital and hereditary corneal endothelial dystrophy, it is correct to state: \n", "a) The most common pattern of transmission is the dominant autosomal one. \n", "b) Most patients have associated nystagmus and, rarely, glaucoma. \n", "c) Patients usually present with intense photophobia and epiphora immediately after birth. \n", "d) It is usually unilateral, with progressive increase in corneal opacity from birth onwards.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 135: \n", "Language: spanish\n", "Question: \n", "En un paciente con queratopatía ampollosa y edema corneal secundario a insuficiencia endotelial, ¿cuál de los siguientes productos tópicos debe evitarse?\n", "a) hialuronato de sodio.\n", "b) cloruro de sodio.\n", "c) Inhibidores de la anhidasa carbónica.\n", "d) ciclopentolato.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Sa pasyenteng may bullous keratopathy at pamamaga ng cornea dala ng endothelial insufficiency, alin sa mga sumusunod na produkto ang dapat iwasan?\n", "a) Sodium hyaluronate\n", "b) Sodium chloride\n", "c) Mga inhibitor ng Carbonic anhydrase\n", "d) Cyclopentolate\n", "Test #0: \n", "{'response': 'c'}\n", "Language: portuguese\n", "Question: \n", "Em paciente com ceratopatia bolhosa e edema de córnea secundário à insuficiência endotelial, qual dos produtos de uso tópico, dentre os abaixo, deve ser evitado?\n", "a)Hialuronato de sódio.\n", "b)Cloreto de sódio.\n", "c)Inibidores da anidrase carbônica.\n", "d)Ciclopentolato.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "In a patient with bullous keratopathy and corneal edema secondary to endothelial insufficiency, which of the following topical products should be avoided?\n", "a) Sodium hyaluronate.\n", "b) Sodium chloride.\n", "c) Inhibitors of carbonic anhydrase.\n", "d) Cyclopentolate.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 136: \n", "Language: spanish\n", "Question: \n", "La infestación de párpados por Phtirus pubis se puede tratar, preferiblemente, ¿con cuál de las siguientes opciones?\n", "\n", "a) Doxiciclina oral.\n", "b) Champú a base de aceite de árbol de té.\n", "c) Múltiples sesiones de aplicación de luz pulsada regulada de alta intensidad (IRPL) en la región periocular.\n", "d) Ivermectina por vía oral.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Ang Palpebral infestation ng Phtirus pubi ay mainam na gamitan ng alin sa mga sumusunod?\n", "a) Doxycycline orally.\n", "b) Tea tree oil-based shampoo.\n", "c) Makaulit na paglalagay ng high-intensity regulated pulsed light (IRPL) sa periocular region.\n", "d) Ivermectin orally. \n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Infestação palpebral pelo Phtirus pubis, pode ser tratada, preferencialmente, com qual das opções abaixo?\n", "\n", "a)Doxiciclina via oral.\n", "b)Xampu a base de óleo de melaleuca (tea tree oil).\n", "c)Múltiplas sessões de aplicação de luz pulsada regulada, de alta intensidade (IRPL), na região periocular.\n", "d)Ivermectina via oral.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Palpebral infestation by Phtirus pubis, is preferably treated with which of the options below?\n", "\n", "a) Doxycycline orally.\n", "b) Tea tree oil-based shampoo.\n", "c) Multiple sessions of application of high-intensity regulated pulsed light (IRPL) in the periocular region.\n", "d) Ivermectin orally. \n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 137: \n", "Language: spanish\n", "Question: \n", "Respecto a las manifestaciones de la conjuntivitis, es correcto afirmar:\n", "a) En la queratoconjuntivitis vernal la hipertrofia papilar se produce con frecuencia tanto en la conjuntiva tarsal superior como en la inferior, con apariencia e intensidad similares.\n", "b) En la conjuntivitis papilar gigante secundaria al uso de prótesis oculares, lentes de contacto y suturas, la conjuntiva tarsal inferior rara vez presenta hipertrofia papilar.\n", "c) En la dermatoqueratoconjuntivitis atópica, la hipertrofia papilar se produce característicamente en la conjuntiva tarsal superior.\n", "d) La conjuntivitis alérgica perenne suele desarrollar papilas, generalmente situadas en la conjuntiva tarsal superior, con un diámetro superior a un milímetro.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Patungkol sa mga sintomas ng conjunctivitis, alin sa mga sumusunod ang tama?\n", "a) Sa vernal keratoconjunctivits, madalas nangyayari ang papillary hypertrophy sa parehong itaas at ibabang tarsal conjunctiva na may parehong hitsura at sidhi\n", "b) Sa malalaking papillary conjunctivitis dala ng paggamit ng ocular prostheses, contact lenses, at suture threads, madalang magkaroon ng papillary hypoertrophy ang ilalim na tarsal conjunctiva\n", "c) Sa atopic dermatokeratoconjunctivitis, nagkakaroon ng papillary hypertrophy sa itaas na tarsal conjunctiva\n", "d) Nagdudulot ang perrenial allergic conjunctivitis ng pagkakaroon ng papillae na makikita sa itaas na tarsal conjunctiva na may lapad na higit sa 1 mm \n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Com relação às manifestações das conjuntivites, é correto afirmar:\n", "a)Na ceratoconjuntivite vernal, a hipertrofia papilar ocorre frequentemente tanto na conjuntiva tarsal superior quanto na inferior, com aspecto e intensidade semelhantes.\n", "b)Na conjuntivite papilar gigante secundária ao uso de próteses oculares, lentes de contato e fios de sutura, raramente a conjuntiva tarsal inferior apresenta hipertrofia papilar.\n", "c)Na dermatoceratoconjuntivite atópica a hipertrofia papilar ocorre caracteristicamente na conjuntiva tarsal superior.\n", "d)Conjuntivite alérgica perene frequentemente desenvolve papilas, localizadas geralmente na conjuntiva tarsal superior, com diâmetro superior a um milímetro.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the manifestations of conjunctivitis, it is correct to state:\n", "a) In vernal keratoconjunctivitis, papillary hypertrophy often occurs in both the upper and lower tarsal conjunctiva, with similar appearance and intensity.\n", "b) In giant papillary conjunctivitis secondary to the use of ocular prostheses, contact lenses and suture threads, the lower tarsal conjunctiva rarely presents papillary hypertrophy.\n", "c) In atopic dermatokeratoconjunctivitis, papillary hypertrophy characteristically occurs in the upper tarsal conjunctiva.\n", "d) Perennial allergic conjunctivitis often develops papillae, usually located in the upper tarsal conjunctiva, with a diameter greater than one millimeter.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 138: \n", "Language: spanish\n", "Question: \n", "Respecto a la conjuntivitis adenoviral, es correcto afirmar:\n", "a) La eliminación de pseudomembranas se asocia con un mayor riesgo de formación de simbléfaron y, por tanto, debe evitarse.\n", "b) El uso de corticoides tópicos de baja concentración está indicado para prevenir la aparición de pseudomembranas, por lo que se prescriben poco después del inicio de los síntomas.\n", "c) Los corticoides tópicos, utilizados en la fase aguda, favorecen la replicación viral con un aumento de la carga viral en la superficie ocular.\n", "d) Estudios controlados han demostrado la eficacia del uso de ketorolaco al 0,5% en la fase aguda de la conjuntivitis para aliviar los síntomas, con una reducción de la duración del período de contagio, en comparación con el uso de colirios lubricantes.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Patungkol sa mga sintomas ng conjunctivitis, alin sa mga sumusunod ang tama:\n", "a) Ang pagtanggal ng pseudomembranes ay nauugnay sa mas mas malaking posibilidad ng symblepharon formation kaya dapat itong iwasan.\n", "b) Ang paggamit ng mga topical corticosteroids na may mababang konsentrasyon ay ginagamit upang mapigilan ang pagkakaroon ng pseudomembranes, kaya dapat ito ibigay kagyat na pagkatapos makita ang sintomas. \n", "c) Ang paggamit ng topical corticosteroids ay nagpapaibayo ng viral replication dala ng mas pinaraming viral load sa ocular surface\n", "d) Ayon sa mga pag-aaral, epektibo ang paggamit ng ketorolac 0.5% sa bilang panlunas sa sintomas ng conjunctivitis at pagpapaikli ng contagion period nito kumpara sa paggamit lamang ng lubricating eye drops.\n", "\n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Com relação às conjuntivites adenovirais, é correto afirmar:\n", "a)A remoção de pseudomembranas está associada a maior risco de formação de simbléfaro e por isso deve ser evitada.\n", "b)Uso de corticosteroides tópicos de baixa concentração está indicado para prevenção do aparecimento de pseudomembranas, e por isso, eles são prescritos logo após o início dos sintomas.\n", "c)Corticosteroides tópicos, utilizados na fase aguda, favorecem replicação viral com aumento da carga viral na superfície ocular.\n", "d)Estudos controlados demonstraram eficácia do uso do cetorolaco 0,5% na fase aguda da conjuntivite para alívio dos sintomas, com redução da duração do período de contágio, em comparação ao uso de colírios lubrificantes.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding adenoviral conjunctivitis, it is correct to state:\n", "a) The removal of pseudomembranes is associated with a higher risk of symblepharon formation and therefore should be avoided.\n", "b) Use of low-concentration topical corticosteroids is indicated to prevent the appearance of pseudomembranes, and therefore, they are prescribed soon after the onset of symptoms.\n", "c) Topical corticosteroids, used in the acute phase, favor viral replication with increased viral load on the ocular surface.\n", "d) Controlled studies have shown the effectiveness of using ketorolac 0.5% in the acute phase of conjunctivitis to relieve symptoms, with a reduction in the duration of the contagion period, compared to the use of lubricating eye drops.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 139: \n", "Language: spanish\n", "Question: \n", "Teniendo en cuenta los trasplantes corneales realizados con fines ópticos, ¿cuál es la asociación más apropiada?\n", "\n", "I. Distrofia Fuchs.\n", "II.Distrofia granular.\n", "Iii.Opacidad después de la hidropiedad.\n", "IV.queratopatía ampollosa.\n", "\n", "A- Indicación para el trasplante lamelar posterior.\n", "B- Contraindicación para realizar un trasplante lamelar anterior profundo.\n", "C-contraindicación para realizar un trasplante lamelar anterior superficial.\n", "D-indicación para un trasplante lamelar anterior profundo.\n", "\n", "a) I: A, II: B, III: D, IV: C.\n", "b) I: B, II: D, III: C, IV: A.\n", "c) I: C, II: A, III: D, IV: B.\n", "d) I: D, II: C, III: A, IV: B.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Pagtambalin ang mga kondisyon sa mata sa Hanay A at ang mga angkop na pahayag sa Hanay B\n", "\n", "I. Fuchs Dystrophy.\n", "II. Granular Dystrophy.\n", "III. Opacity pagkatapos ng hydrops.\n", "IV. Bullous keratopathy.\n", "\n", "A- Indikasyon para sa posterior lamellar transplantation\n", "B- Kontraindikasyon para sa pagsasagawa ng deep anterior lamellar transplant\n", "C- Kontraindikasyon para sa pagsasagawa ng superficial anterior lamellar transplant\n", "D- Indikasyon para sa deep anterior lamellar transplant\n", "\n", "a) I: A, II: B, III: D, IV: C.\n", "b) I: B, II: D, III: C, IV: A.\n", "c) I: C, II: A, III: D, IV: B.\n", "d) I: D, II: C, III: A, IV: B.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Considerando os transplantes de córnea realizados com finalidade óptica, qual a associação mais adequada?\n", "\n", "I. Distrofia de Fuchs.\n", "II. Distrofia granular.\n", "III. Opacidade após hidrópsia.\n", "IV. Ceratopatia bolhosa.\n", "\n", "A- Indicação para realização de transplante lamelar posterior.\n", "B- Contraindicação para a realização de transplante lamelar anterior profundo.\n", "C- Contraindicação para realização de transplante lamelar anterior superficial.\n", "D- Indicação para a realização de transplante lamelar anterior profundo.\n", "\n", "a)I: A, II: B, III: D, IV: C.\n", "b)I: B, II: D, III: C, IV: A.\n", "c)I: C, II: A, III: D, IV: B.\n", "d)I: D, II: C, III: A, IV: B.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Considering corneal transplants performed for optical purposes, what is the most appropriate association?\n", "\n", "I. Fuchs dystrophy.\n", "II. granular dystrophy.\n", "III. Opacity after hydrops.\n", "IV. bullous keratopathy.\n", "\n", "A- Indication for posterior lamellar transplantation.\n", "B- Contraindication for performing a deep anterior lamellar transplant.\n", "C- Contraindication for performing a superficial anterior lamellar transplant.\n", "D- Indication for deep anterior lamellar transplantation.\n", "\n", "a) I: A, II: B, III: D, IV: C.\n", "b) I: B, II: D, III: C, IV: A.\n", "c) I: C, II: A, III: D, IV: B.\n", "d) I: D, II: C, III: A, IV: B.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 140: \n", "Language: spanish\n", "Question: \n", "Respecto al herpes zoster oftálmico es correcto afirmar:\n", "a) En el tratamiento de pacientes adultos inmunocompetentes cuando se realiza con valaciclovir se utiliza una dosis total diaria de 3 g.\n", "b) La endotelitis disciforme, seguida de las úlceras neurotróficas, son las dos manifestaciones clínicas más frecuentes de afectación corneal, considerando los dos primeros meses del inicio de la infección.\n", "c) El signo de Hutchinson indica afectación de las ramas maxilar y mandibular del nervio trigémino y señala una mayor probabilidad de afectación ocular durante la infección.\n", "d) Un solo dermatoma se verá afectado en la misma aparición de infección.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag tungkol sa ophthalmic herpes zoster ang totoo?\n", "a) Sa paggamot ng immunocompetent na pasyente gamit ang valaciclovir, 3 g ang inirerekomendang pang-araw-araw na dosage.\n", "b) Ang disciform endothelitis na susundan ng neurotrophic ulcer, ang dalawang madalas na klinikal na manipestasyon ng corneal involvement, sa loob ng dalawang buwan pagkatapos ng onset ng impeksyon\n", "c) Ipinapahiwatig ng Hutchinson sign ang kinalaman ng maxillary at mandibular na mga sanga ng trigeminal nerve at nagpapahiwatig din ito pagtaas ng posibilidad ng oculae involvement habang nagkakaimpeksyon.\n", "d) Isang single dermatome ang maaapektuhan kasabay ng manipestasyon ng impeksyon\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao herpes zoster oftálmico, é correto afirmar:\n", "a)No tratamento de pacientes adultos imunocompetentes quando realizado com o valaciclovir, é utilizada a dose total diária de 3 g.\n", "b)A endotelite disciforme, seguida da úlcera neurotrófica, são as duas manifestações clínicas mais frequentes do comprometimento da córnea, considerando os dois primeiros meses após o início da infecção.\n", "c)O sinal de Hutchinson indica comprometimento dos ramos maxilar e mandibular do nervo trigêmeo e sinaliza aumento de probabilidade do acometimento ocular durante a infecção.\n", "d)Um único dermátomo será acometido numa mesma ocorrência da infecção.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Regarding ophthalmic herpes zoster, it is correct to state:\n", "a) In the treatment of immunocompetent adult patients when performed with valaciclovir, a total daily dose of 3 g is used.\n", "b) Disciform endothelitis, followed by neurotrophic ulcer, are the two most frequent clinical manifestations of corneal involvement, considering the first two months after the onset of infection.\n", "c) Hutchinson's sign indicates involvement of the maxillary and mandibular branches of the trigeminal nerve and indicates an increased probability of ocular involvement during infection.\n", "d) A single dermatome will be affected in the same occurrence of the infection.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 141: \n", "Language: spanish\n", "Question: \n", "Respecto a los exámenes preoperatorios en cirugía refractiva, seleccionar la alternativa correcta.\n", "a) La topografía del disco de Plácido genera el mapa paquimétrico o de espesor corneal.\n", "b) La topografía del disco de Plácido y el sistema de Scheimpflug son capaces de generar mapas tanto axiales como tangenciales de la córnea.\n", "c) Los mapas generados por la topografía del disco de Plácido se derivan del reflejo de la superficie anterior y posterior de la córnea.\n", "d) El sistema Scheimpflug evalúa la curvatura anterior, el mapa de espesor, pero no la cara posterior.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa preoperative exams sa refractive surgery ang totoo?\n", "a) Ang topograpikong disc ng Placido ay lumilikha ng mapa ng pachymetric o kapal ng cornea\n", "b) Ang topograpiya ng disc ng Placido at ang Scheimpflug system ay may kakayahang makabuo ng parehong mga axial at tangential na mga mapa ng cornea.\n", "c) Ang mga mapa na nabuo ng topograpikong disk ng plácido ay nagmula sa repleksyin ng anterior at posterior surface ng cornea\n", "d) Sinusuri ng Scheimpflug system ang anterior curvature, ang kapal ng namapa, ngunit hindi ang posterior face.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Em relação aos exames pré-operatórios em cirurgia refrativa, assinale a alternativa correta.\n", "a)A topografia de disco de Plácido gera o mapa paquimétrico ou de espessura corneana.\n", "b)A topografia de disco de Plácido e o sistema de Scheimpflug são capazes de gerar tanto os mapas axiais como os tangenciais da córnea.\n", "c)Os mapas gerados pela topografia de disco de Plácido são derivados da reflexão da face anterior e posterior da córnea.\n", "d)O sistema de Scheimpflug avalia a curvatura anterior, o mapa de espessura, mas não a face posterior.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding preoperative exams in refractive surgery, mark the correct alternative.\n", "a) Placido disc topography generates the pachymetric or corneal thickness map.\n", "b) Placido's disc topography and the Scheimpflug system are capable of generating both axial and tangential maps of the cornea.\n", "c) The maps generated by Plácido's disk topography are derived from the reflection of the anterior and posterior surface of the cornea.\n", "d) The Scheimpflug system evaluates the anterior curvature, the thickness map, but not the posterior face.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 142: \n", "Language: spanish\n", "Question: \n", "¿Cuál de las condiciones a continuación tiene un mayor riesgo después de la cirugía LASIK?\n", "a) catarata.\n", "b) Glaucoma.\n", "c) ojo seco.\n", "d) Detapa de la retina.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga kundisyon sa ibaba ang puwedeng maging komplikasyon pagkatapos ng isang LASIK na operasyon?\n", "a) Katarata\n", "b) Glaucoma\n", "c) Nanunuyong mata\n", "d) Retinal detachment\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Qual das condições abaixo tem seu risco aumentado após cirurgia de LASIK?\n", "a)Catarata.\n", "b)Glaucoma.\n", "c)Olho seco.\n", "d)Descolamento de retina.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: english\n", "Question: \n", "Which of the conditions below is at increased risk after LASIK surgery?\n", "a) Cataract.\n", "b) Glaucoma.\n", "c) Dry eye.\n", "d) retinal detachment.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 143: \n", "Language: spanish\n", "Question: \n", "Respecto al uso de lentes de contacto terapéuticos, seleccionar la alternativa correcta.\n", "a) Las lentes de hidrogel de silicona mejoran la acción de los medicamentos.\n", "b) En caso de perforación ocular, la lente no debe usarse sin asociación con adhesivo tisular o sutura.\n", "c) En los casos de defectos epiteliales, el intercambio es diario.\n", "d) Su adaptación se realiza con cambios mayores que los habituales.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Kaugnay sa paggamit ng mga therapeutic contact lens, alin sa mga sumusunod na pahayag ang tama:\n", "a) Ang mga lente ng silicone-hydrogel ay nagpapalakas ng bisa ng mga gamot\n", "b) Sa kaso ng ocular perforation, ang lens ay hindi dapat gamitin nang walang kaugnayan sa tissue adhesive o suture.\n", "c) Sa mga kaso ng mga epithelial defects, araw-araw dapat palitan ang lente\n", "d) Malaki ang pagbabago sa adaptasyon nito\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Em relação ao uso de lente de contato terapêutica, assinale a alternativa correta.\n", "a)As lentes de silicone-hidrogel potencializam a ação de medicamentos.\n", "b)No caso de perfuração ocular a lente não deve ser utilizada sem a associação com adesivo tecidual ou sutura.\n", "c)Nos casos de defeitos epiteliais a troca é diária.\n", "d)Sua adaptação é realizada com maiores trocas que a habitual.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding the use of therapeutic contact lenses, mark the correct alternative.\n", "a) Silicone-hydrogel lenses potentiate the action of medications.\n", "b) In the case of ocular perforation, the lens must not be used without association with tissue adhesive or suture.\n", "c) In cases of epithelial defects, the change is daily.\n", "d) Its adaptation is carried out with greater changes than usual.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 144: \n", "Language: spanish\n", "Question: \n", "Un paciente con queratometría de 44,00/48,00 optó por la adaptación de lentes de contacto. Se adaptó uno con una curva base de 45.00. Es correcto afirmar que:\n", "a) La lente lagrimal formada será de +3,00 dioptrías, ya que a este valor corresponde la diferencia entre el meridiano más curvo de la lente y la curva base.\n", "b) El concepto de K se aplica al meridiano más plano, y su diferencia con la curva base da como resultado una lente positiva de +1,00 dioptría.\n", "c) El paciente con este valor de queratometría no podría utilizar lentes de contacto, ya que presenta una ectasia corneal muy importante.\n", "d) El valor del meridiano más curvado del cristalino corneal se denomina K, y las lentes adaptadas con una curva de base más curvada que K forman una lente lagrimal con poder dióptrico de -1,00 Dioptría.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Isang pasyente na may keratometry na 44.00/48.00 ang dumulog para magpasukat ng contact lens. Ang isa na may base curve na 45.00 ay ginamit. Kaugnay nito, alin sa mga sumusunod na pahayag ang angkop na sabihin:\n", "a) Ang lacrimal lens na mabubuo ay +3.00 diopters, dahil ang pagkakaiba sa pagitan ng pinakamakurbang meridian ng lente at ng base curve ay tugma sa sukat na ito.\n", "b) Ang konsepto ng K ay para sa patag na meridian, at ang pagkakaiba nito sa base curve ay nagreresulta sa isang positibong lens na +1.00 diopter.\n", "c) Ang pasyente na may kapantay na keratometry ay hindi maaaring magsuot ng mga contact lens, dahil sa corneal ectasia.\n", "d) Ang sukat ng pinakamakurbang meridian ng contact lens ay tinatawag na K, at ang adapted na mga lente na mas makurba kaysa sa K ay bumubuonng lacrimal na lente na may dioptric power na -1.00 diopter\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um paciente com a ceratometria de 44,00/48,00 optou por adaptação de lente de contato. Foi adaptada uma de curva base 45,00. É correto afirmar que:\n", "a)A lente lacrimal formada será de +3,00 dioptrias, uma vez que a diferença entre o meridiano mais curvo da lente e a curva base corresponde a esse valor.\n", "b)O conceito de K se aplica ao meridiano mais plano, e sua diferença com a curva base resulta em uma lente positiva de +1,00 dioptria.\n", "c)O paciente com esse valor de ceratometria não poderia usar lentes de contato, uma vez que há ectasia corneana muito importante.\n", "d)O valor do meridiano mais curvo da lente da córnea é chamado de K, e lentes adaptadas com curva base mais curva que K formam uma lente lacrimal com poder dióptrico de -1,00 Dioptria.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "One patient with a keratometry of 44.00/48.00 opted for contact lens fitting. One with a base curve of 45.00 was adapted. It is correct to say that:\n", "a) The lacrimal lens formed will be +3.00 diopters, since the difference between the most curved meridian of the lens and the base curve corresponds to this value.\n", "b) The concept of K applies to the flattest meridian, and its difference with the base curve results in a positive lens of +1.00 diopter.\n", "c) The patient with this keratometry value could not wear contact lenses, since there is very important corneal ectasia.\n", "d) The value of the most curved meridian of the corneal lens is called K, and adapted lenses with a base curve more curved than K form a lacrimal lens with a dioptric power of -1.00 Diopter.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 145: \n", "Language: spanish\n", "Question: \n", "Un paciente tiene una refracción estática de -8,00 dioptrías esféricas en ambos ojos y tiene intención de utilizar lentes de contacto. Respecto a las gafas, la graduación de tus lentes de contacto será:\n", "a)-7,50 Dioptrías.\n", "b)-8,00 Dioptrías.\n", "c)-8,50 Dioptrías.\n", "d) No es posible determinar la prescripción del cristalino sin realizar una topografía corneal.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Ang isang pasyente ay may isang static na refraction na -8.00 spherical dioptry sa parehong mga mata ay nagbabalak na magsuot ng mga contact lens. Ang sukat ng salamin na akma para sa kanya ay: \n", "a) -7.50 dioptres.\n", "b) -8.00 dioptres.\n", "c) -8.50 dioptres.\n", "d) Hindi posible na matukoy ang grado ng lente nang hindi nagsasagawa ng corneal topography\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Um paciente apresenta na refração estática -8,00 dioptria esferica em ambos os olhos e pretende utilizar lentes de contato. Com relação aos óculos, o grau da sua lente de contato será:\n", "a)-7,50 Dioptrias.\n", "b)-8,00 Dioptrias.\n", "c)-8,50 Dioptrias.\n", "d)Não é possível determinar a graduação da lente sem a realização da topografia de córnea.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "A patient has a static refraction of -8.00 spherical dioptry in both eyes and intends to wear contact lenses. With regard to glasses, your contact lens prescription will be:\n", "a)-7.50 Dioptres.\n", "b)-8.00 Dioptres.\n", "c)-8.50 Dioptres.\n", "d) It is not possible to determine lens graduation without performing corneal topography.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 146: \n", "Language: spanish\n", "Question: \n", "En cuanto a la exotropía intermitente, seleccione la alternativa correcta.\n", "a) Los ejercicios ortópticos están contraindicados si la convergencia es insuficiente.\n", "b) Se resuelve espontáneamente en la gran mayoría de los casos.\n", "c) El tratamiento con oclusión está contraindicado si no hay ambliopía.\n", "d) El uso de lentes negativas (o hiperopización) proporciona mejores resultados si la relación convergencia/acomodación acomodativa es alta.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Patungkol sa panaka-nakang exotropia, alin sa mga sumusunod na pahayag ang may katotohanan?\n", "a) Hindi inirerekomenda ang mga orthoptic exercises kung hindi sapat ang convergence\n", "b) Sa karamihan ng mga kaso, ito ay kadalasang kusang nalulutas.\n", "c) Ang pagbibigay-lunas gamit ang mga occlusion ay kontraindikado kung walang amblyopia.\n", "d) Ang paggamit ng mga negatibong lente (o farsightedness) ay nagbibigay ng mas mainam na mga resulta kung mataas ang accommodative convergence o accommodation ratio.\n", "Test #0: \n", "{'response': 'a'}\n", "Language: portuguese\n", "Question: \n", "Com relação à exotropia intermitente, assinale a alternativa correta.\n", "a)Exercícios ortópticos são contraindicados se houver insuficiência de convergência.\n", "b)Resolve-se espontaneamente na grande maioria dos casos.\n", "c)O tratamento com oclusão é contraindicado se não houver ambliopia.\n", "d)O uso de lentes negativas (ou hipermetropização), proporciona melhor resultado se a relação convergência acomodativa/acomodação for alta.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "\n", "Regarding intermittent exotropia, mark the correct alternative.\n", "a) Orthoptic exercises are contraindicated if there is insufficient convergence.\n", "b) It resolves spontaneously in the vast majority of cases.\n", "c) Treatment with occlusion is contraindicated if there is no amblyopia.\n", "d) The use of negative lenses (or farsightedness) provides better results if the accommodative convergence/accommodation ratio is high.\n", "Test #0: \n", "{'response': 'd'}\n", "**************************************************\n", "**************************************************\n", "Question 147: \n", "Language: spanish\n", "Question: \n", "Entre los hallazgos a continuación, el que está asociado con la función sensorial binocular se considera el más refinado:\n", "a) Estereopsis.\n", "b) Fusión binocular.\n", "c) Diplopía.\n", "d) Percepción macular simultánea.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod ang kaugnay ng sensory binocular function na kinokonsidera bilang pinaka-repinado?\n", "a) Stereopsis\n", "b) Binocular fusion\n", "c) Diplopia\n", "d) Simultaneous macular perception\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Entre os achados abaixo, qual está associado a função binocular sensorial considerada como a mais refinada:\n", "a)Estereopsia.\n", "b)Fusão binocular.\n", "c)Diplopia.\n", "d)Percepção macular simultânea.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Among the findings below, which one is associated with the sensory binocular function considered to be the most refined:\n", "a) Stereopsis.\n", "b) Binocular fusion.\n", "c) Diplopia.\n", "d) Simultaneous macular perception.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 148: \n", "Language: spanish\n", "Question: \n", "En caso de correspondencia retiniana anómala, seleccione la alternativa correcta.\n", "a) Es un fenómeno de adaptación sensorial monocular.\n", "b) Es más común en pequeñas desviaciones de ángulo.\n", "c) Se considera un factor protector frente a la diplopía en el postoperatorio de cirugía de estrabismo.\n", "d) Se considera un factor protector contra la recurrencia en el postoperatorio de cirugía de estrabismo.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa anomalous retinal correspondence ang nagsasaad ng katotohanan:\n", "a) Ito ay isang penomeno ng monocular sensory adaptation\n", "b) Ito ay madalas nangyayari sa mga kaso ng small angle deviations\n", "c) Ito ay itinuturing na isang protective factor para sa diplopia na dala ng post-operative period ng strabismus surgery.\n", "d) Ito ay itinuturing na isang prrotective factor laban sa recurrence sa post-operative period ng strabismus surgery\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Com relação à correspondência retiniana anômala, assinale a alternativa correta.\n", "a)É um fenômeno de adaptação sensorial monocular.\n", "b)É mais frequente nos desvios de pequeno ângulo.\n", "c)É considerada fator protetor de diplopia no pós-operatório de cirurgia de estrabismo.\n", "d)É considerada fator protetor de recidiva no pós-operatório de cirurgia de estrabismo.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding the anomalous retinal correspondence, mark the correct alternative.\n", "a) It is a phenomenon of monocular sensory adaptation.\n", "b) It is more frequent in small angle deviations.\n", "c) It is considered a protective factor for diplopia in the postoperative period of strabismus surgery.\n", "d) It is considered a protective factor against recurrence in the postoperative period of strabismus surgery.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 149: \n", "Language: spanish\n", "Question: \n", "¿Cuál de las siguientes complicaciones es más común después de la inyección de toxina botulínica en el músculo recto medial?\n", "a) Blefaroptosis.\n", "b) Hemorragia retrobulbar.\n", "c) Midriasis.\n", "d) Miosis.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na komplikasyon ang madalas na aasahan pagkatapos ng pagturok ng botulinum toxin sa medial rectus muscle?\n", "a) Blepharoptosis\n", "b) Retrobulbar hemorrhage\n", "c) Mydriasis\n", "d) Miosis\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Qual das complicações abaixo é mais frequente após injeção de toxina botulínica no músculo reto medial?\n", "a)Blefaroptose.\n", "b)Hemorragia retrobulbar.\n", "c)Midríase.\n", "d)Miose.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Which of the following complications is most frequent after injection of botulinum toxin into the medial rectus muscle?\n", "a) Blepharoptosis.\n", "b) Retrobulbar hemorrhage.\n", "c) Mydriasis.\n", "d) Miosis.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 150: \n", "Language: spanish\n", "Question: \n", "En cuanto a la exotropía causada por una baja agudeza visual monocular (sensorial), seleccione la alternativa correcta.\n", "a)Representa aproximadamente el 2% de todos los casos de exotropía en adultos.\n", "b)La prescripción de prismas es el tratamiento de elección.\n", "c) Generalmente se asocia con estereopsis normal.\n", "d) Es común que la desviación aumente con el tiempo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag tungkol sa exotropia na sanhi ng mababang monocular (sensory) visual acuity ang nagsasaad ng katotohanan:\n", "a) Ito ay kumakatawan sa halos 2% ng lahat ng mga kaso ng exotropia sa matatanda.\n", "b) Inirerekomenda ang paggamit ng prismo bilang preskriopsyon.\n", "c) Ito ay kadalasang naiuugnay sa normal stereopsis\n", "d) Karaniwan ang paglaki ng paglihis ng exotropia sa paglipas ng panahon. \n", "Test #0: \n", "{'response': 'D'}\n", "Language: portuguese\n", "Question: \n", "Com relação à exotropia causada por baixa acuidade visual monocular (sensorial), assinale a alternativa correta.\n", "a)Representa aproximadamente 2% de todos os casos de exotropia do adulto.\n", "b)Prescrição de prismas é o tratamento de escolha.\n", "c)Está associada, em geral, a estereopsia normal.\n", "d)É comum o aumento do desvio com o passar do tempo.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Regarding exotropia caused by low monocular (sensory) visual acuity, mark the correct alternative.\n", "a) It represents approximately 2% of all cases of adult exotropia.\n", "b) Prescription of prisms is the treatment of choice.\n", "c) It is usually associated with normal stereopsis.\n", "d) It is common for the deviation to increase over time.\n", "Test #0: \n", "{'response': 'D'}\n", "**************************************************\n", "**************************************************\n", "Question 151: \n", "Language: spanish\n", "Question: \n", "¿En cuál de las siguientes desviaciones se producen con mayor frecuencia posiciones bruscas de la cabeza para compensar el estrabismo?\n", "a) Parcialmente acomodaticia.\n", "b) Incomitantes.\n", "c) Exotropía intermitente.\n", "d) Comprometidos.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Sa anong uri ng paglihis ang karaniwang nangyayaring posisyon ng ulo bilang kompensasyon sa strabismus?\n", "a) Partially accommodative\n", "b) Incomitants\n", "c) Intermittent exotropia\n", "d) Commanders\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "As posições viciosas da cabeça para compensar os estrabismos ocorrem mais frequentemente em qual dos desvios abaixo?\n", "a)Parcialmente acomodativos.\n", "b)Incomitantes.\n", "c)Exotropia intermitente.\n", "d)Comitantes.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Vicious head positions to compensate for strabismus occur most frequently in which of the following deviations?\n", "a) Partially accommodative.\n", "b) Incomitants.\n", "c) Intermittent exotropia.\n", "d) Commanders.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 152: \n", "Language: spanish\n", "Question: \n", "Durante la prueba de Maddox, se colocaron cilindros de Maddox frente a los ojos del paciente, con el rojo frente al ojo derecho y el incoloro frente al ojo izquierdo, ambos orientados verticalmente. El paciente, al observar un foco de luz puntual, informó haber visto la línea roja inclinada en sentido antihorario (perspectiva del paciente). Lo más probable es que incluya:\n", "a) Inciclotorsión del ojo derecho.\n", "b) Exciclotorsión del ojo derecho.\n", "c) Inciclotorsión del ojo izquierdo.\n", "d) Hiperfunción del músculo oblicuo superior izquierdo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Sa pagsasagawa ng Maddox test, ang mga Maddox cylinders ay inilagay sa harap ng mga mata ng pasyente, ang pula sa harap ng kanang mata at ang walang kulay sa harap ng kaliwang mata, parehong patayo ang tuon. Habang inoobserbahan ng pasyente ang ilaw, sinabi niyang nakikita niya ang pulang lina na nakalihis sa direksyong counterclockwise (perspektibo ng pasyente). Ano ang ipinapahiwatig nito?\n", "a) Inciclotorsion ng kanang mata.\n", "b) Excyclotorsion ng kanang mata.\n", "c) Inciclotorsion ng kaliwang mata.\n", "d) Hyperfunction ng kaliwang superior oblique muscle.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Durante o teste de Maddox, colocou-se cilindros de Maddox diante dos olhos do paciente, sendo o vermelho diante do olho direito e o incolor diante do olho esquerdo, ambos orientados verticalmente. O paciente, ao observar um foco de luz puntiforme, informou ver a linha vermelha inclinada no sentido anti-horário (perspectiva do paciente). Ele apresenta mais provavelmente:\n", "a)Inciclotorção do olho direito.\n", "b)Exciclotorção do olho direito.\n", "c)Inciclotorção do olho esquerdo.\n", "d)Hiperfunção de músculo oblíquo superior esquerdo.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "During the Maddox test, Maddox cylinders were placed in front of the patient's eyes, the red one in front of the right eye and the colorless one in front of the left eye, both vertically oriented. The patient, upon observing a point of light, reported seeing the red line tilted counterclockwise (patient's perspective). It most likely features:\n", "a) Inciclotorsion of the right eye.\n", "b) Excyclotorsion of the right eye.\n", "c) Inciclotorsion of the left eye.\n", "d) Hyperfunction of the left superior oblique muscle.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 153: \n", "Language: spanish\n", "Question: \n", "Respecto al adenoma pleomórfico de la glándula lagrimal, seleccione la alternativa correcta.\n", "a) El examen de tomografía computarizada muestra una lesión heterogénea y mal definida.\n", "b) La condición más común es una masa rápidamente progresiva.\n", "c) A la palpación el tumor es, en general, indoloro.\n", "d) Es más común en mujeres.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa pleomorphic adenoma ng lacrimal gland ang nagsasaad ng katotohanan?\n", "a) Ang computed tomography scan ay nagpapakita ng heterogenous at hindi mainam na delimited na lesyon\n", "b) Ang pinakakaraniwang kondisyon ay isang mabilis na progresibong paglaki ng bukol\n", "c) Kapag ito ay hinipo, walang kirot na nararamdaman ang pasyente.\n", "d) Ito ay mas karaniwan sa mga kababaihan.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao adenoma pleomórfico de glândula lacrimal, assinale a alternativa correta.\n", "a)O exame de tomografia computadorizada mostra lesão heterogênea e mal delimitada.\n", "b)O quadro mais comum é de massa de crescimento rapidamente progressivo.\n", "c)À palpação, a tumoração é, em geral, indolor.\n", "d)É mais frequente em mulheres.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Regarding pleomorphic adenoma of the lacrimal gland, mark the correct alternative.\n", "a) Computed tomography scan shows heterogeneous and poorly delimited lesion.\n", "b) The most common condition is a rapidly progressive growth mass.\n", "c) On palpation, the tumor is generally painless.\n", "d) It is more common in women.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 154: \n", "Language: spanish\n", "Question: \n", "En cuanto a la afectación orbitaria en la leucemia, seleccione la alternativa correcta.\n", "a) El tratamiento generalmente no es sensible a la radioterapia.\n", "b) El tratamiento generalmente no es sensible a la quimioterapia.\n", "c) El sarcoma granulocítico es la infiltración orbitaria más frecuentemente asociada a la leucemia linfoide.\n", "d) Los exámenes de imagen muestran una masa orbitaria que generalmente compromete la estructura ósea.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa orbital involvement sa leukemia ang nagsasaad ng katotohanan?\n", "a) Ang paggamot ay kadalasang hindi sensitibo sa radiotherapy.\n", "b) Ang paggamot ay kadalasang hindi sensitibo sa chemotherapy.\n", "c) Ang granulocytic sarcoma ay isang orbital infiltration na madalas na nauugnay sa lymphoid leukemia.\n", "d) Ang mga resulta ng eksamen sa imaging ay nagpapakita ng isang orbital mass na karaniwang kumukumpromiso sa istraktura ng buto.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao comprometimento orbitário na leucemia, assinale a alternativa correta.\n", "a)O tratamento geralmente não é sensível à radioterapia.\n", "b)O tratamento geralmente não é sensível à quimioterapia.\n", "c)O sarcoma granulocítico é a infiltração orbitária mais frequentemente associada a leucemia linfoide.\n", "d)Exames de imagem mostram massa orbitária que geralmente compromete a estrutura óssea.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: english\n", "Question: \n", "Regarding orbital involvement in leukemia, mark the correct alternative.\n", "a) The treatment is generally not sensitive to radiotherapy.\n", "b) The treatment is generally not sensitive to chemotherapy.\n", "c) Granulocytic sarcoma is the orbital infiltration most frequently associated with lymphoid leukemia.\n", "d) Imaging exams show an orbital mass that usually compromises the bone structure.\n", "Test #0: \n", "{'response': 'd'}\n", "**************************************************\n", "**************************************************\n", "Question 155: \n", "Language: spanish\n", "Question: \n", "Respecto al neurofibroma orbitario plexiforme, seleccione la respuesta correcta:\n", "a) Su degeneración maligna es rara.\n", "b) Rara vez se observa en pacientes con neurofibromatosis.\n", "c) Tiene buen pronóstico, con baja tasa de recurrencia tras la cirugía.\n", "d) Es avascular y el sangrado del tumor durante la cirugía es raro.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa plexiform orbital neurofibroma ang nagsasaad ng katotohanan?\n", "a) Ang malignant degeneration nito ay bihira.\n", "b) Ito ay bihirang nakikita sa mga pasyente na may neurofibromatosis.\n", "c) Ito ay may magandang prognosis at mababang rate ng recurrence pagkatapos ng operasyon.\n", "d) Ito ay avascular, at ang pagdurugo mula sa tumor sa operasyon ay bihira.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Com relação ao neurofibroma da órbita tipo plexiforme, assinale a alternativa correta:\n", "a)Sua degenerarão maligna é rara.\n", "b)É raramente observado em pacientes com neurofibromatose.\n", "c)Tem bom prognóstico, com baixa taxa de recorrência após a cirurgia.\n", "d)É avascular, sendo raro o sangramento do tumor durante a cirurgia.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: english\n", "Question: \n", "Regarding plexiform orbital neurofibroma, mark the correct alternative:\n", "a) Its malignant degeneration is rare.\n", "b) It is rarely seen in patients with neurofibromatosis.\n", "c) It has a good prognosis, with a low rate of recurrence after surgery.\n", "d) It is avascular, and bleeding from the tumor during surgery is rare.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 156: \n", "Language: spanish\n", "Question: \n", "¿Qué tumor epitelial maligno de la conjuntiva, entre los siguientes, se presenta con mayor frecuencia en la región del limbo?\n", "a) Melanoma.\n", "b) sarcoma de Kaposi.\n", "c) Carcinoma de células escamosas.\n", "d) Carcinoma de células basales.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na malignant epithelial tumor ng conjunctiva ang kadalasang nangyayari sa limbal region?\n", "a) Melanoma.\n", "b) Kaposi's sarcoma\n", "c) Squamous cell carcinoma.\n", "d) Basal cell carcinoma.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Qual é o tumor epitelial maligno de conjuntiva, dentre os abaixo, que mais comumente ocorre na região do limbo?\n", "a)Melanoma.\n", "b)Sarcoma de Káposi.\n", "c)Carcinoma espinocelular.\n", "d)Carcinoma de células basais.\n", "Test #0: \n", "{'response': 'C'}\n", "Language: english\n", "Question: \n", "Which of the following malignant epithelial tumors of the conjunctiva most commonly occurs in the limbal region?\n", "a) Melanoma.\n", "b) Kaposi's sarcoma.\n", "c) squamous cell carcinoma.\n", "d) Basal cell carcinoma.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 157: \n", "Language: spanish\n", "Question: \n", "Seleccione la alternativa que contiene tres factores asociados al desarrollo de cataratas.\n", "a)Alta miopía, uso prolongado de vitamina C y consumo de alcohol.\n", "b) Radiaciones de baja energía, uso prolongado de corticoides y exposición a luz azul.\n", "c) Tabaquismo, exposición a luz ultravioleta y vitrectomía previa.\n", "d) Traumatismo ocular, diabetes mellitus e hipermetropía elevada.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag ang naglalaman ng tatlong mga salik na may kaugnayan sa pagbubuo ng katarata?\n", "a) Mataas na myopia, matagalang paggamit ng vitamin C at pagkonsumo ng alkohol.\n", "b) Low-energy na radyasyon, matagalang paggamit ng corticosteroids, at eksposyur sa blue light\n", "c) Paninigarilyo, eksposyur sa UV light, at kasaysayan ng vitrectomy.\n", "d) Trauma sa mata, dyabetis, at mataas na hyperopia\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que contém três fatores associados ao desenvolvimento de catarata.\n", "a)Alta miopia, uso prolongado de vitamina C e consumo de álcool.\n", "b)Radiação de baixa energia, uso prolongado de corticoide e exposição à luz azul.\n", "c)Tabagismo, exposição à luz ultravioleta e vitrectomia prévia.\n", "d)Traumatismo ocular, diabetes melito e alta hipermetropia.\n", "Test #0: \n", "{'response': 'b'}\n", "Language: english\n", "Question: \n", "Check the alternative that contains three factors associated with the development of cataracts.\n", "a) High myopia, prolonged use of vitamin C and alcohol consumption.\n", "b) Low-energy radiation, prolonged use of corticosteroids and exposure to blue light.\n", "c) Smoking, exposure to ultraviolet light and previous vitrectomy.\n", "d) Eye trauma, diabetes mellitus and high hyperopia.\n", "Test #0: \n", "{'response': 'b'}\n", "**************************************************\n", "**************************************************\n", "Question 158: \n", "Language: spanish\n", "Question: \n", "Respecto a las cataratas congénitas e infantiles, juzgue las siguientes afirmaciones como verdaderas (V) o falsas (F) y seleccione la alternativa correcta.\n", "\n", " I - Cuando la opacidad es bilateral y severa, el intervalo entre la cirugía del primer y segundo ojo debe ser mínimo y generalmente no excede una semana.\n", " II - En caso de opacidades totales, la cirugía debe realizarse lo más temprano posible, preferiblemente entre los tres y cuatro meses de edad.\n", " III - La catarata congénita es la causa más común de alteraciones de la prueba del reflejo rojo en las maternidades.\n", " IV - El reflejo rojo normal al nacer es suficiente para la detección precoz de anomalías congénitas durante el seguimiento hasta los dos años de edad.\n", "\n", "a)I: Verdadero; II: Falso; III: Verdadero; IV: Falso.\n", "b)I: Falso; II: Verdadero; III: Falso; IV: Cierto.\n", "c)I: Falso; II: Falso; III: Verdadero; IV: Falso.\n", "d)I: Verdadero; lI: Verdadero; III: Verdadero; IV: Cierto.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Suriin ang katotohanan ng mga pahayag patungkol sa konhenital at infantile na katarata:\n", "\n", " I - Kapag ang opacity ay bilateral at malubha, ang agwat sa pagitan ng operasyon sa una at pangalawang mata ay dapat na minimal at hindi lalampas sa isang linggo.\n", " II - Sa kaso ng total opacities, ang operasyon ay dapat gawin nang maaga hangga't maaari, mas mainam na ito ay isagawa sa pagitan ng tatlo at apat na buwan pagkapanganak\n", " III - Ang konhenital na katarata ay ang pinaka -karaniwang sanhi ng pagbabago ng pulang reflex test sa mga paanakan.\n", " IV - Ang normal red reflex pagkapanganak ay sapat na mekanismo upang maagang malamann ang mga konhenital na anomalya hanggang mag-dalawang taong gulang ang bata.\n", "\n", "a) I: Tama; II: Mali; III: Tama; IV: Mali.\n", "b) I: Mali; II: Tama; III: Mali; IV: Tama.\n", "c) I: Mali; II: Mali; III: Tama; IV: Tama.\n", "d) I: Tama; II: Tama; III: Tama; IV: Tama.\n", "Test #0: \n", "{'response': 'd'}\n", "Language: portuguese\n", "Question: \n", "Sobre as cataratas congênitas e infantis, julgue as assertivas abaixo como verdadeiras (V) ou falsas (F) e assinale a alternativa correta.\n", "\n", " I - Quando a opacidade é bilateral e grave, o intervalo entre a cirurgia do primeiro e do segundo olho deve ser apenas o mínimo e geralmente não ultrapassa uma semana.\n", " II - No caso de opacidades totais deve-se realizar a cirurgia o mais precocemente possível, de preferência entre os três e os quatro meses de idade.\n", " III - A catarata congênita é a causa mais comum de alteração do teste do reflexo vermelho em maternidades.\n", " IV - O reflexo vermelho normal ao nascimento é suficiente para a detecção precoce das anomalias congênitas no acompanhamento até os dois anos de idade.\n", "\n", "a)I: Verdadeiro; II: Falso; III: Verdadeiro; IV: Falso.\n", "b)I: Falso; II: Verdadeiro; III: Falso; IV: Verdadeiro.\n", "c)I: Falso; II: Falso; III: Verdadeiro; IV: Falso.\n", "d)I: Verdadeiro; lI: Verdadeiro; III: Verdadeiro; IV: Verdadeiro.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "About congenital and infantile cataracts, judge the statements below as true (T) or false (F) and mark the correct alternative.\n", "\n", " I - When the opacity is bilateral and severe, the interval between surgery on the first and second eye should be minimal and generally does not exceed one week.\n", " II - In the case of total opacities, surgery should be performed as early as possible, preferably between three and four months of age.\n", " III - Congenital cataract is the most common cause of alteration of the red reflex test in maternity hospitals.\n", " IV - The normal red reflex at birth is sufficient for the early detection of congenital anomalies in the follow-up up to two years of age.\n", "\n", "a) I: True; II: False; III: True; IV: False.\n", "b) I: False; II: True; III: False; IV: True.\n", "c) I: False; II: False; III: True; IV: False.\n", "d) I: True; II: True; III: True; IV: True.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 159: \n", "Language: spanish\n", "Question: \n", "En caso de anomalías congénitas y fallos en el desarrollo del cristalino, seleccionar la alternativa correcta.\n", "a) El bloqueo pupilar intermitente observado en la microesferofaquia se produce debido a que el iris toca la periferia media del cristalino debido al aumento del diámetro de lado a lado.\n", "b) La subluxación del cristalino en el síndrome de Marfan es más comúnmente superior y temporal y puede inducir ambliopía causada por asimetría refractiva.\n", "c) En la galactosemia se puede observar en la prueba del reflejo rojo una sombra central similar a una “gota de aceite”, lo que no ocurre en otras enfermedades.\n", "d) En la homocistinuria, el desplazamiento del cristalino es generalmente bilateral, simétrico y está presente desde el nacimiento.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa konhenital na anomalya at kakulangan sa pag-develop ng mga lente ang nagsasaad ng katotohanan?\n", "a) Ang panaka-nakang pupillary block na nakikita sa microspherophacy ay nangyayari dala ng pagtama ng iris sa medium periphery ng crystalline lens na dulot naman ng side-to-side na paglapad nito\n", "b) Ang lens subluxation sa Marfan Syndome ay kadalasang makikita sa superior at temporal na bahagi at maaaring magdulot ng amblyopia na dala ng refractive asymmetry. \n", "c) Sa galactosemia, ang isang central shadown na kawangis ng \"oil droop\" ang mamamataan sa red reflex test, na hindi makikitang manipestasyon sa ibang mga karamdaman\n", "d) Sa homocystinuria, ang lens displacement ay karaniwang bilateral, simetriko at makikita pagkapanganak.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Sobre as anomalias congênitas e falhas do desenvolvimento do cristalino, assinale a alternativa correta.\n", "a)O bloqueio pupilar intermitente observado na microesferofacia acontece devido ao toque da íris na média periferia do cristalino em razão do diâmetro látero-lateral aumentado.\n", "b)A subluxação do cristalino na síndrome de Marfan é mais comumente superior e temporal e pode induzir ambliopia causada pela assimetria refracional.\n", "c)Na galactosemia pode-se observar no teste do reflexo vermelho uma sombra central à semelhança de \"gota de óleo\", o que não ocorre em outras doenças.\n", "d)Na homocistinúria, o deslocamento do cristalino é geralmente bilateral, simétrico e presente ao nascimento.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding congenital anomalies and failures in the development of the lens, mark the correct alternative.\n", "a) The intermittent pupillary block observed in microspherophacy happens due to the touch of the iris in the medium periphery of the crystalline lens due to the increased side-to-side diameter.\n", "b) Lens subluxation in Marfan syndrome is most commonly superior and temporal and may induce amblyopia caused by refractive asymmetry.\n", "c) In galactosemia, a central shadow resembling an \"oil drop\" can be observed in the red reflex test, which does not occur in other diseases.\n", "d) In homocystinuria, lens displacement is usually bilateral, symmetrical and present at birth.\n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 160: \n", "Language: spanish\n", "Question: \n", "Tras el bloqueo retrobulbar para realizar la cirugía de facoemulsificación, el paciente desarrolla pérdida progresiva de conciencia, convulsiones y paro respiratorio cinco minutos después de la inyección del anestésico. Seleccione la alternativa que describa correctamente la complicación más probable en este caso y una posible medida preventiva.\n", "a) Inyección intraocular: observe el movimiento conjunto del globo ocular y la aguja antes de inyectar.\n", "b) Inyección intravascular: suspender los anticoagulantes o antiagregantes plaquetarios antes de la cirugía.\n", "c) Inyección en el espacio subaracnoideo: introduzca la aguja a menos de 30 mm de profundidad.\n", "d) Hemorragia retrobulbar: aspire y compruebe la presencia de contenido sanguíneo antes de inyectar.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Matapos ang retrobulbar block para sa phacoemulsification na operasyon, mabilis na nawalan ng malay ang pasyente, kinombulsyon, at nalagutan ng hininga matapos turukan ng anesthesia. Alin sa mga sumusunod na pahayag ang pinakanaglalarawan ng nasabing komplikasyon at ang posibleng pamamaraan para mapigilan ito?\n", "a) Intraocular na pagturok - obserbahan ang sabay na paggalaw ng eyeball maging ang karayom bago magturok.\n", "b) Intravascular na pagturok - suspindihin ang mga anticoagulant o antiplatelet na gamot bago operahan.\n", "c) Pagturok sa espasyo ng subarachnoid - ipasok ang karayom na may lalim na hindi lalampas sa 30mm.\n", "d) Retrobulbar hemorrhage - I-asperate at tignan kung mayroong mga nakapaligid na dugo bago magturok.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Após bloqueio retrobulbar para realização de cirurgia de facoemulsificação, o paciente evolui com perda progressiva de consciência, convulsões e parada respiratória após cinco minutos da injeção do anestésico. Assinale a alternativa que descreve corretamente a complicação mais provável neste caso e uma possível medida preventiva.\n", "a)Injeção intraocular - observar a movimentação conjunta do globo ocular e da agulha antes de injetar.\n", "b)Injeção intravascular - suspender anticoagulantes ou antiagregantes plaquetários antes da cirurgia.\n", "c)Injeção no espaço subaracnoide - inserir a agulha menos do que 30 mm em profundidade.\n", "d)Hemorragia retrobulbar - aspirar e verificar a presença de conteúdo hemático antes de injetar.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "After retrobulbar block for phacoemulsification surgery, the patient evolved with progressive loss of consciousness, seizures and respiratory arrest five minutes after anesthetic injection. Check the alternative that correctly describes the most likely complication in this case and a possible preventive measure.\n", "a) Intraocular injection - observe the joint movement of the eyeball and the needle before injecting.\n", "b) Intravascular injection - suspend anticoagulants or antiplatelet agents before surgery.\n", "c) Injection into the subarachnoid space - insert the needle less than 30 mm in depth.\n", "d) Retrobulbar hemorrhage - aspirate and check for the presence of hematic content before injecting.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 161: \n", "Language: spanish\n", "Question: \n", "Respecto a la biometría en ojos tamponados con aceite de silicona, es correcto decir:\n", "a) La longitud axial medida por ultrasonidos está falsamente reducida respecto al valor real.\n", "b) En esta situación no se puede utilizar la reflectometría de baja coherencia.\n", "c) La medición de la profundidad de la cámara anterior debe realizarse en decúbito supino.\n", "d) En estos casos es preferible la interferometría de coherencia parcial a la ecografía.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pahayag patungkol sa biometrics ng mata na nababalot ng silicone oil ang nagsasaad ng katotohanan?\n", "a) Ang axial na haba na nasusukat ng ultrasound ay maling nababawasan kumpara sa tunay na sukat nito.\n", "b) Ang low coherence reflectometry ay hindi maaaring gamitin sa sitwasyong ito\n", "c) Ang pagsukat ng anterior chamber depth ay dapat isagawa sa posisyon na supine.\n", "d) Ang bahagyang pagkakaugnay na interferometry ay mas kanais -nais sa ultrasonography sa mga kasong ito.\n", "Test #0: \n", "{'response': 'A'}\n", "Language: portuguese\n", "Question: \n", "Sobre a biometria em olhos tamponados por óleo de silicone é correto afirmar:\n", "a)O comprimento axial medido pelo ultrassom é falsamente reduzido em relação ao valor real.\n", "b)A reflectometria de baixa coerência não pode ser utilizada nessa situação.\n", "c)A medida da profundidade de câmara anterior deve ser realizada em posição supina.\n", "d)A interferometria de coerência parcial é preferível à ultrassonografia nesses casos.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Regarding biometrics in eyes covered with silicone oil, it is correct to state:\n", "a) The axial length measured by ultrasound is falsely reduced in relation to the real value.\n", "b)Low coherence reflectometry cannot be used in this situation.\n", "c) The anterior chamber depth measurement must be performed in the supine position.\n", "d) Partial coherence interferometry is preferable to ultrasonography in these cases.\n", "Test #0: \n", "{'response': 'A'}\n", "**************************************************\n", "**************************************************\n", "Question 162: \n", "Language: spanish\n", "Question: \n", "Seleccionar la alternativa que contenga, respectivamente, un medicamento asociado a la aparición del síndrome del iris flácido durante la operación y una intervención adecuada para restablecer la midriasis en estos casos.\n", "a) Clorpromazina - retractores del iris.\n", "b)Doxasozin - dilatador de Beehler.\n", "c) Tamsulosina - esfinterectomía.\n", "d)Atropina - anillo expansor del iris.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na tambalan patungkol sa gamot na may kinalaman sa pagkakaroon ng flaccid iris syndrome sa perioperative period at ang mainamna interbensyon upang maibalik ang mydriasis sa mga kasong ito.\n", "a) Chlorpromazine - Iris retractors\n", "b) Doxasozine - Beehler Dilator\n", "c) tamsulosin - Sphincterectomies\n", "d) Atropine - iIis expander ring\n", "Test #0: \n", "{'response': 'b'}\n", "Language: portuguese\n", "Question: \n", "Assinale a alternativa que contém, respectivamente, um medicamento associado à ocorrência da síndrome da íris flácida no peroperatório e uma intervenção adequada para restabelecimento da midríase nesses casos.\n", "a)Clorpromazina - retratores de íris.\n", "b)Doxasozina - dilatador de Beehler.\n", "c)Tamsulosina - esfincterectomias.\n", "d)Atropina - anel expansor de íris.\n", "Test #0: \n", "{'response': 'D'}\n", "Language: english\n", "Question: \n", "Check the alternative that contains, respectively, a drug associated with the occurrence of flaccid iris syndrome in the perioperative period and an adequate intervention to restore mydriasis in these cases.\n", "a) Chlorpromazine - iris retractors.\n", "b) Doxasozine - Beehler dilator.\n", "c) Tamsulosin - sphincterectomies.\n", "d) Atropine - iris expander ring.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n", "**************************************************\n", "Question 163: \n", "Language: spanish\n", "Question: \n", "En cuanto a la prevención de endoftalmitis en cirugía de cataratas, seleccionar la alternativa correcta.\n", "a) En casos de contraindicación para la povidona yodada, se debe utilizar colirio antibiótico tópico durante cinco días antes del procedimiento.\n", "b) Los principales factores de riesgo incluyen inmunosupresión, diabetes, blefaritis, conjuntivitis, rotura de la cápsula posterior y pérdida de vítreo.\n", "c) Se debe adoptar el uso intracameral de gentamicina, especialmente en los casos asociados a vitrectomía previa.\n", "d) Los agentes etiológicos más comunes son las bacterias resultantes de una esterilización inadecuada del material quirúrgico y de las lentes intraoculares.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: tagalog\n", "Question: \n", "Alin sa mga sumusunod na pamamaraan upang mapigilan ang endophthalmitis sa operasyon sa katarata ang nagsasaad ng katotohanan?\n", "a) Sa mga kaso ng mga kontraindikado sa povidone-iodine, ang mga karaniwang pamatak na antibiotic ay dapat gamitin sa loob ng limang araw bago mag-opera\n", "b) Ang pangunahing mga kadahilanan ng peligro ay kinabibilangan ng immunosuppression, diabetes, blepharitis, conjunctivitis, pagkawasak ng posterior capsule at pagkawala ng vitreous.\n", "c) Ang intracameral na paggamit ng gentamicin ay inirerekomendang gawin, lalo na sa mga kaso na nauugnay sa nakaraang vitrectomy.\n", "d) Ang madalas na mga etilolohikal na agents ay mga mikrobyo na mula sa kakulangan sa isterilisasyon ng mga gamit pang-opera at intraocular mga lens.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: portuguese\n", "Question: \n", "Sobre a prevenção de endoftalmite em cirurgia de catarata, assinale a alternativa correta.\n", "a)Em casos de contraindicação à iodopovidona, deve-se utilizar colírio de antibiótico tópico por cinco dias antes do procedimento.\n", "b)Os principais fatores de risco incluem imunossupressão, diabetes, blefarite, conjuntivite, rotura da cápsula posterior e perda vítrea.\n", "c)O uso intracameral de gentamicina deve ser adotado, principalmente nos casos associados a vitrectomia anterior.\n", "d)Os agentes etiológicos mais frequentes são bactérias provenientes da esterilização inadequada dos materiais cirúrgicos e lentes intraoculares.\n", "Test #0: \n", "{'response': 'B'}\n", "Language: english\n", "Question: \n", "Regarding the prevention of endophthalmitis in cataract surgery, mark the correct alternative.\n", "a) In cases of contraindication to povidone-iodine, topical antibiotic eye drops should be used for five days before the procedure.\n", "b) The main risk factors include immunosuppression, diabetes, blepharitis, conjunctivitis, rupture of the posterior capsule and vitreous loss.\n", "c) The intracameral use of gentamicin should be adopted, especially in cases associated with previous vitrectomy.\n", "d) The most frequent etiological agents are bacteria from inadequate sterilization of surgical materials and intraocular lenses. \n", "Test #0: \n", "{'response': 'B'}\n", "**************************************************\n", "**************************************************\n", "Question 164: \n", "Language: spanish\n", "Question: \n", "Después de realizar las fracturas del núcleo con la técnica de divide y vencerás, se nota una porción blanquecina y contracción del tejido en la porción lateral de la incisión corneal, goteando solución de irrigación por el espacio formado. Entre las alternativas siguientes, ¿cuál sería eficaz para prevenir la aparición de la complicación descrita?\n", "a) Reducir el caudal de aspiración y realizar una incisión más estrecha.\n", "b) Utilice puntas de mayor diámetro y manguitos de irrigación coaxiales de menor diámetro.\n", "c) Mantener la punta equidistante de las paredes de la incisión y utilizar ultrasonido pulsado.\n", "d) Llenar la cámara anterior con viscoelástico cohesivo y utilizar ultrasonido continuo.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: tagalog\n", "Question: \n", "Matapos isagawa ang core fractures gamit ang divide-and-conquer na teknik, may nakitang mamuti-mutlng bahagi at kontraksyon ng tissue sa lateral na bahagi ng corneal incision, at pagtagas ng irrigation solution sa puwang na nabuo. Alin sa mga sumusunod na pahayag ang naglalarawan ng epektibong pamamaraan upang maiwasan ang komplikasyong nabanggit?\n", "a) Bawasan ang aspiration flow rate at at gawing mas makitid ang paghiwa.\n", "b) Gumamit ng mas malapad na tipis at mas makitid na coaxial irrigation sleeves\n", "c) Panatilihin na equidistant ang tip mula sa incision walls at gumamit ng pulsed ultrasound.\n", "d) Punan ang anterior chamber ng cohesive viscoelastic na materyal at gumamit ng continuous ultrasound\n", "Test #0: \n", "{'response': 'C'}\n", "Language: portuguese\n", "Question: \n", "Após realizar as fraturas do núcleo com a técnica de dividir e conquistar, nota-se uma porção esbranquiçada e contração do tecido na porção lateral da incisão da córnea, com vazamento da solução de irrigação pelo vão formado. Entre as alternativas abaixo, qual seria eficaz em prevenir a ocorrência da complicação descrita?\n", "a)Reduzir a taxa de fluxo de aspiração e fazer incisão mais estreita.\n", "b)Usar ponteiras de maior diâmetro e luvas de irrigação coaxial de menor diâmetro.\n", "c)Manter a ponteira equidistante das paredes da incisão e utilizar ultrassom pulsado.\n", "d)Preencher a câmara anterior com viscoelástico coesivo e utilizar ultrassom contínuo.\n", "Test #0: \n", "{'response': 'c'}\n", "Language: english\n", "Question: \n", "After performing the core fractures with the divide-and-conquer technique, a whitish portion and contraction of the tissue can be seen on the lateral portion of the corneal incision, with leakage of the irrigation solution through the gap formed. Among the alternatives below, which would be effective in preventing the occurrence of the described complication?\n", "a) Reduce the aspiration flow rate and make the incision narrower.\n", "b)Use larger diameter tips and smaller diameter coaxial irrigation sleeves.\n", "c) Keep the tip equidistant from the incision walls and use pulsed ultrasound.\n", "d) Fill the anterior chamber with cohesive viscoelastic and use continuous ultrasound.\n", "Test #0: \n", "{'response': 'C'}\n", "**************************************************\n" ] } ], "source": [ "# Run evaluation:\n", "llm_language_evaluation(path=PATH, model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, reasoning=REASONING, languages=LANGUAGES)" ] }, { "cell_type": "markdown", "id": "079dcbc4", "metadata": {}, "source": [ "#### See the results" ] }, { "cell_type": "code", "execution_count": 4, "id": "a58184aa", "metadata": { "height": 30, "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IDyeartestthemesubthemeportuguesespanishenglishtagaloganswerresponses_spanishresponses_spanish_0responses_tagalogresponses_tagalog_0responses_portugueseresponses_portuguese_0responses_englishresponses_english_0
012022Teórica IAnatomiacorneaEm qual região ocular células caliciformes são...¿En qué región ocular se encuentran fisiológic...In which ocular region are caliciform cells ph...Aling bahagi ng mata ay kung saan matatagpuan ...DAAAAaaAA
122022Teórica IAnatomiaretinaAssinale a alternativa que melhor correlaciona...Marque la alternativa que mejor correlaciona l...Mark the alternative that best correlates the ...Ipagpares ang bahagi ng retina sa Hanay B sa t...Bb) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.b) I: B; II:A; III: D; IV: C.
232022Teórica IAnatomiacorneaOrdene as três denominações celulares encontra...Ordene los tres nombres de células que se encu...Order the three cell names found in the cornea...Ipagsunud-sunod ang mga cells ng corneal epith...AAAAAAAAA
342022Teórica IAnatomiacorneaSobre a membrana de Descemet da córnea, é corr...Con respecto a la membrana de la córnea de Des...Regarding Descemet's membrane of the cornea, i...Tama tungkol sa Descemet's membrane ng cornea:...CCCAAAACC
452022Teórica IAnatomiacorneaSobre a camada lipídica do filme lacrimal, ass...Respecto a la capa lipídica de la película lag...About the lipidic layer of the lacrimal film, ...Piliin ang tamang sagot tungkol sa lipid layer...BBBBBBBBB
.........................................................
1591612022Teórica IICristalino/CatarataNaNApós bloqueio retrobulbar para realização de c...Tras el bloqueo retrobulbar para realizar la c...After retrobulbar block for phacoemulsificatio...Matapos ang retrobulbar block para sa phacoemu...CBBBBBBCC
1601622022Teórica IICristalino/CatarataNaNSobre a biometria em olhos tamponados por óleo...Respecto a la biometría en ojos tamponados con...Regarding biometrics in eyes covered with sili...Alin sa mga sumusunod na pahayag patungkol sa ...DDDAADDAA
1611632022Teórica IICristalino/CatarataNaNAssinale a alternativa que contém, respectivam...Seleccionar la alternativa que contenga, respe...Check the alternative that contains, respectiv...Alin sa mga sumusunod na tambalan patungkol sa...ADDbbDDCC
1621642022Teórica IICristalino/CatarataNaNSobre a prevenção de endoftalmite em cirurgia ...En cuanto a la prevención de endoftalmitis en ...Regarding the prevention of endophthalmitis in...Alin sa mga sumusunod na pamamaraan upang mapi...BBBBBBBBB
1631652022Teórica IICristalino/CatarataNaNApós realizar as fraturas do núcleo com a técn...Después de realizar las fracturas del núcleo c...After performing the core fractures with the d...Matapos isagawa ang core fractures gamit ang d...CccCCccCC
\n", "

164 rows × 18 columns

\n", "
" ], "text/plain": [ " ID year test theme subtheme \\\n", "0 1 2022 Teórica I Anatomia cornea \n", "1 2 2022 Teórica I Anatomia retina \n", "2 3 2022 Teórica I Anatomia cornea \n", "3 4 2022 Teórica I Anatomia cornea \n", "4 5 2022 Teórica I Anatomia cornea \n", ".. ... ... ... ... ... \n", "159 161 2022 Teórica II Cristalino/Catarata NaN \n", "160 162 2022 Teórica II Cristalino/Catarata NaN \n", "161 163 2022 Teórica II Cristalino/Catarata NaN \n", "162 164 2022 Teórica II Cristalino/Catarata NaN \n", "163 165 2022 Teórica II Cristalino/Catarata NaN \n", "\n", " portuguese \\\n", "0 Em qual região ocular células caliciformes são... \n", "1 Assinale a alternativa que melhor correlaciona... \n", "2 Ordene as três denominações celulares encontra... \n", "3 Sobre a membrana de Descemet da córnea, é corr... \n", "4 Sobre a camada lipídica do filme lacrimal, ass... \n", ".. ... \n", "159 Após bloqueio retrobulbar para realização de c... \n", "160 Sobre a biometria em olhos tamponados por óleo... \n", "161 Assinale a alternativa que contém, respectivam... \n", "162 Sobre a prevenção de endoftalmite em cirurgia ... \n", "163 Após realizar as fraturas do núcleo com a técn... \n", "\n", " spanish \\\n", "0 ¿En qué región ocular se encuentran fisiológic... \n", "1 Marque la alternativa que mejor correlaciona l... \n", "2 Ordene los tres nombres de células que se encu... \n", "3 Con respecto a la membrana de la córnea de Des... \n", "4 Respecto a la capa lipídica de la película lag... \n", ".. ... \n", "159 Tras el bloqueo retrobulbar para realizar la c... \n", "160 Respecto a la biometría en ojos tamponados con... \n", "161 Seleccionar la alternativa que contenga, respe... \n", "162 En cuanto a la prevención de endoftalmitis en ... \n", "163 Después de realizar las fracturas del núcleo c... \n", "\n", " english \\\n", "0 In which ocular region are caliciform cells ph... \n", "1 Mark the alternative that best correlates the ... \n", "2 Order the three cell names found in the cornea... \n", "3 Regarding Descemet's membrane of the cornea, i... \n", "4 About the lipidic layer of the lacrimal film, ... \n", ".. ... \n", "159 After retrobulbar block for phacoemulsificatio... \n", "160 Regarding biometrics in eyes covered with sili... \n", "161 Check the alternative that contains, respectiv... \n", "162 Regarding the prevention of endophthalmitis in... \n", "163 After performing the core fractures with the d... \n", "\n", " tagalog answer \\\n", "0 Aling bahagi ng mata ay kung saan matatagpuan ... D \n", "1 Ipagpares ang bahagi ng retina sa Hanay B sa t... B \n", "2 Ipagsunud-sunod ang mga cells ng corneal epith... A \n", "3 Tama tungkol sa Descemet's membrane ng cornea:... C \n", "4 Piliin ang tamang sagot tungkol sa lipid layer... B \n", ".. ... ... \n", "159 Matapos ang retrobulbar block para sa phacoemu... C \n", "160 Alin sa mga sumusunod na pahayag patungkol sa ... D \n", "161 Alin sa mga sumusunod na tambalan patungkol sa... A \n", "162 Alin sa mga sumusunod na pamamaraan upang mapi... B \n", "163 Matapos isagawa ang core fractures gamit ang d... C \n", "\n", " responses_spanish responses_spanish_0 \\\n", "0 A A \n", "1 b) I: B; II:A; III: D; IV: C. b) I: B; II:A; III: D; IV: C. \n", "2 A A \n", "3 C C \n", "4 B B \n", ".. ... ... \n", "159 B B \n", "160 D D \n", "161 D D \n", "162 B B \n", "163 c c \n", "\n", " responses_tagalog responses_tagalog_0 \\\n", "0 A A \n", "1 b) I: B; II:A; III: D; IV: C. b) I: B; II:A; III: D; IV: C. \n", "2 A A \n", "3 A A \n", "4 B B \n", ".. ... ... \n", "159 B B \n", "160 A A \n", "161 b b \n", "162 B B \n", "163 C C \n", "\n", " responses_portuguese responses_portuguese_0 \\\n", "0 a a \n", "1 b) I: B; II:A; III: D; IV: C. b) I: B; II:A; III: D; IV: C. \n", "2 A A \n", "3 A A \n", "4 B B \n", ".. ... ... \n", "159 B B \n", "160 D D \n", "161 D D \n", "162 B B \n", "163 c c \n", "\n", " responses_english responses_english_0 \n", "0 A A \n", "1 b) I: B; II:A; III: D; IV: C. b) I: B; II:A; III: D; IV: C. \n", "2 A A \n", "3 C C \n", "4 B B \n", ".. ... ... \n", "159 C C \n", "160 A A \n", "161 C C \n", "162 B B \n", "163 C C \n", "\n", "[164 rows x 18 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "if N_REPETITIONS > 1:\n", " df = pd.read_csv(f\"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}_{N_REPETITIONS}Repetitions.csv\")\n", "else:\n", " df = pd.read_csv(f\"responses/{MODEL}_Temperature{str(TEMPERATURE).replace('.', '_')}.csv\")\n", "\n", "df" ] }, { "cell_type": "markdown", "id": "041dc525", "metadata": {}, "source": [ "### Data Analysis" ] }, { "cell_type": "code", "execution_count": 3, "id": "85f6bb97", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n_repetitions should be a positive integer, not 0\n", "n_repetitions will be set to 1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/datascience/NLP_Bias/Language_Bias/src/data_analysis.py:215: UserWarning: FixedFormatter should only be used together with FixedLocator\n", " ax.set_xticklabels(languages, fontsize=16)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAI7CAYAAAAH5OhZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ30lEQVR4nOzdd1hUx/s28HvpfWnSrNgbVhSxF+waCzG2GLEnsWs00W/sGqNJ7N2oxBjFbuxGUbGBBTViNMQuKmBBQXqb9w/ePT/W3YVlAZH1/lzXXsqZOTPPtrPPnp0zIxNCCBARERER6QmDog6AiIiIiKggMcElIiIiIr3CBJeIiIiI9AoTXCIiIiLSK0xwiYiIiEivMMElIiIiIr3CBJeIiIiI9AoTXCIiIiLSK0xwiYiIiEivMMGlD9bMmTMhk8kgk8mKOhQiKmQPHz6U3u/+/v5FHQ5Rgfriiy8gk8kwatSoIoth586dkMlkqFy5MtLS0oosjveFCW4xk/1DID+3j9Xt27cxa9YsNG/eHKVLl4a5uTmsrKxQtmxZdO3aFYsWLUJUVFRRh0lqDBo0SHr9VqlSpajDoY+c4rXYsmXLog6FPnCXLl3Cli1bYGJigu+++05tnevXr+OTTz6BnZ0dzM3NUa9ePaxfvz7XtpOSkuDu7g6ZTIbAwMAc6/r6+qJ69eq4c+cOli9frtN9KVYEFSsPHjwQAPJ908WmTZuk/R88eFCwd0yNGTNm5Cve7F69eiUGDBggDAwMcn1sjIyMxJdffilevXpVAPfi41CQz5U6CQkJwsrKSul5Cg4OLpS+qGhkP7Zt2rSpqMPJlSLWFi1aFHUo9IFr27atACC+/PJLteVnz54V5ubmaj+Pxo0bl2Pb//vf/wQA8dlnn2kVyx9//CEAiBIlSoj4+Pg835fixKgwkmYqPCVLlkRYWJjGcg8PDwCAp6cnNm3a9L7C+qDdv38fHTt2xH///QcAcHJyQr9+/dC8eXO4urpCJpPh2bNnOH36NHbv3o2nT59izZo1aN++Pbp37160wRMAYM+ePYiPjwcAWFpaIiEhAZs3b0ajRo2KODIiIs0uXbqE48ePAwAmTpyoUp6ZmYlBgwYhKSkJVapUwQ8//ABHR0f4+/tj06ZNWLJkCT799FM0adJEZd+7d+/i559/hpWVFRYtWqRVPL1798bkyZPx9OlTrF27FhMmTMjfHfyAMcEtZoyNjVGzZs1c61laWmpVT98lJiaia9euUnI7ZMgQLF68GNbW1ip1e/TogZ9++glr1qzB//73v/cdKuVg8+bNAID69evDy8sLq1atwvbt27FkyRKYmJgUcXREROotXboUAODl5YWKFSuqlJ8/fx53796FsbExjh07hrJlywIAmjdvjqdPn+Kvv/7Cpk2b1Ca4o0ePRkpKCmbPno2SJUtqFY+hoSF69+6NRYsWYcWKFRg3bhwMDPRztKp+3iui/2/KlCm4desWAGDo0KH49ddf1Sa3CiYmJhgzZgxCQkJQunTp9xUm5eDZs2fS2LL+/fvj888/BwDExMTg4MGDRRkaEZFGsbGx2L17N4CsY5c6169fBwA0btxYSm4V+vbtq1Qnuz179uDo0aOoWrUqxo8fn6e4FLE8ePAAp06dytO+xQkT3I9MZmYmtmzZgk6dOsHFxQUmJiYoUaIEWrVqhVWrViE1NVVln9OnT0Mmk2HQoEHSNsWg9uy306dPK+0XEhKC77//Hi1btpT6srGxQfXq1fHVV19JiWdhefHihTRI39XVFUuWLNF63xo1aqB+/fpqy+Lj4/Hjjz/C29sb9vb2MDU1RalSpfDpp5/mmnC1bNlS6cKUO3fuYNSoUahUqRIsLCwgk8nw8OHDPNdVSE5OxooVK9CmTRvpMXdycoKPjw82bNiA9PT0XO97SkoK1q1bh86dO6NkyZIwNTWFpaUlatSogaFDh+LYsWMQQgAA/P39IZPJMGvWLGl/dRc1vhtnXmzZsgWZmZkwNDRE37594e3tLZ0JUZzZzUm5cuUgk8ng5+cHAAgPD8ewYcNQrlw5mJqawtnZGT169EBISEiO7SQnJ2PZsmVo2bIlSpQoAWNjY9jb26NKlSro2LEjFi1apHQ/MzIyIJfLIZPJNF5Ykn2mEE3DYQICAqQ6//77r9o6sbGxmD9/Ppo0aYISJUrAxMQErq6u6Nq1K3bt2iU9X+oo2p45cyYA4OTJk+jVqxdKly4NY2NjlCtXTqn+s2fP8N1336FevXqQy+UwNjaGs7MzPDw80LdvX/j7+yMuLk5jf3mxc+dO+Pj4wMnJCebm5qhatSqmTJmCN2/eqNRNS0uDi4sLZDIZOnTokGvbN2/elO77woULCyRebWVmZuLkyZP45ptv0KRJEzg6OsLY2Bi2traoU6cOvvnmGzx+/DjHNt49Pjx9+hQTJkxAxYoVYW5uDgcHB7Rv3x5HjhzRKqbNmzejRYsWsLOzg5WVFTw8PDB79mzpuXz3dZKdn58fZDKZymvlXYrjhaZjQmpqKg4cOIBRo0ahQYMGsLOzg7GxMRwcHODl5YWZM2fi5cuXWt2fc+fOwdfXFy4uLjAzM0P58uXx5Zdf4u7duwBUHz9N7t69i/Hjx8PDwwNyuRzm5uYoX748/Pz8cOXKlRz3/fPPP5GSkgIg6wIvdWJjYwFkfUa9y8XFRamOQmJiopTUrlixAsbGxjnG8a569erB3d0dALBt27Y87VusFPUgYCpYyOHCh1evXokmTZrkeIFVtWrVxMOHD5X2O3XqlFYXrp06dUraJ/sFaZpuhoaGYuXKlRrvS34vXFq2bJm0/7Rp03Rq411Xr14Vbm5uOd6vnj17iqSkJLX7t2jRQnp+9u3bJywtLVX2V1zAl5e6Qghx/fp1UbZs2Rxja9CggYiKitJ4/65duybc3d1zfe4U/WrzPL8bZ17VrFlTABDt2rWTtileG8bGxuLly5c57q94TAYOHCj27NkjLCwsNL4eAwIC1Lbx7NkzUb169Vzv58SJE5X269SpkwAgvLy81LbbsmVLaV87OzuRkZGhUufLL78UAISzs7PaNk6cOCEcHBxyjKtTp07i7du3avdX1JkxY4aYOnWqyr5ly5aV6p45c0bY2Njk+jgcOHBAbV85efcis8GDB2ts383NTdy+fVuljUmTJgkAwsDAQDx58iTH/saPHy+ArItKIyMj8xxvTsfa3GQ/tmm6WVhYiD179mhsI/vx4dy5c8LR0VFjWz/99JPGdlJTU0W3bt007lupUiXx8OFDpdfJuwYOHKjyWlEntwuVFe3kdHNwcBDnzp3LsZ8ff/xRyGQytftbW1uLY8eOKT1+mvz000/C2NhYYywymSzHzxY/Pz8BQJQuXVpjHcXnVMuWLTU+XvXr11faPmXKFAFof2GZOn369BEARMmSJXVu40PHBFfPaDropqenC29vb6XynTt3iitXroj9+/eL7t27S2UVKlRQ+jCMj48XYWFhYu7cuVKdY8eOibCwMKVb9isy169fL+zs7ISfn5/YuHGjOHv2rLh69ao4ePCgmD17tnQwlslkIjAwUO19yW+C6+vrK+0fEhKiUxvZPXnyRNjZ2UlxDxo0SBw7dkxcuXJFbN68WdSuXVvqr3fv3mrbUBxU3d3dhZWVlShRooT48ccfxfnz50VISIhYvny5ePHiRZ7r3rlzR8jlcgFA2NjYiClTpoi9e/eKK1euiGPHjomRI0cKIyMjKdlKTU1Vie3WrVtKMxX06NFDbN++XVy+fFmEhISIzZs3i88//1xYWlpKH06vX78WYWFh4quvvpL2e/d1ERYWprY/bYSGhkrtbt68Wdp+584dafvy5ctzbEOR4NarV0+YmZkJd3d3sWLFChESEiKCg4PFzJkzhZmZmfTYPX/+XKWN7K+lzz//XOzZs0eEhISIy5cvi/3794vp06eL2rVrqyS4CxculJKodxPM5ORkqV/F7dq1ayp9V61aVeOH2blz56QPYGdnZzF37lxx4MABERoaKg4cOCA+//xzqe2ePXuqfXwU5R4eHtK/GzduFJcuXRJBQUFi6dKlUryKL3fW1tZi8uTJ4siRIyI0NFQEBweLrVu3ilGjRomSJUvmO8Ft0KCBACAaNmwotm3bJq5cuSIOHz4sPvvsM6lOmTJlRFxcnFIb4eHhUvkPP/ygsa/U1FRRokQJAUB07do1z7EKkb8E93//+59wdXUVX3/9tfj999/F+fPnRWhoqNi3b5+YPHmy9D40MzMTt27dUtuG4vhQuXJl4ejoKJycnMSPP/4ozp07Jy5duiQWLVokbG1tpdffzZs31baT/b1bo0YNsWnTJnH58mURGBgoRo0aJQwNDYWXl9d7SXD79+8vypcvLyZOnCi2b98ugoODxeXLl8WuXbvEl19+KUxMTASQNQNAdHS02j62b98u9WFvby8WLFggLly4IC5cuCAWLFgg7OzshJ2dnahcuXKOz5/ivQtA1KpVS6xevVqcOHFCXLlyRfzxxx9Kn6eK98i7KlSokON7TwghgoKCBABhYmKi8qWsffv2AoAYMmSItC08PFyYmJgIKysrERERobHd3CxatEiK/86dOzq38yFjgqtnNB10V6xYIZV98cUXIjMzU2Xf7GdvJk+erFKel2nCnjx5IhISEjSWv3nzRtSqVUsAEE2bNlVbJ78JbsWKFQWQdTYnOTlZpzay+/TTT6V4fv31V5Xy5ORk0apVK6nO4cOHVeooPpSArLNQjx490thfXuo2btxYABB169aVkt53HTlyRJombd26dSrl9erVkx6vbdu2aezr5cuXIjExUWlbYU0TNnbsWAFknc16N0FUfOg2aNAgxzayn9WuX7++iI2NVamzZcsWqc6iRYuUypKSkqQk8t0E9l3vTi138eJFqd0jR44olSk+2ORyuWjevLkAIBYvXqxUJyoqStp/1apVSmWpqamiXLlyAoDo0KGDxvfbunXrpDb++usvlfLsCXabNm00vlcCAwOlejklsGlpaWof49y8OwVip06dRFpamkq92bNnS3UmTZqkUt6sWTMp8dNkz549Uht79+7Nc6xC5C/BffDgQY5f+iIiIkTJkiWlL1TqZD8+lC1bVu0Z67Nnz0pnMseMGaNSfvXqVanc29tb5X0thBA7d+5Uel4KM8G9e/eu2s8mhRs3bkjJ//fff69SnpycLJydnQUA4ejoqDZxCw8PF/b29jk+f//884/0np8xY4bamDIyMqQvkFZWViImJkapPDo6Wupjzpw5Gu9TRkaG9KtZjRo1xN69e8WZM2fE0KFDpf3PnDkj1W/Xrp0AIBYsWKCxTW0ojj8ANP5yVdwxwdUzmt601apVk775vnvWQyEtLU06W2RnZ6fyQVfQ8+Du27dPak/dz8z5TZoUZ1vt7OzyG6p4+vSpMDQ0lJIJTR48eCCdKe3UqZNKefYPpexnJNXRtu6ZM2ekejdu3MixTcUZsMaNGyttP3bsmNRGbvMuqlMYCW5aWppwcnISAES/fv1UyrN/aVP3c7VC9gT377//VlsnMzNTOjvZo0cPpbKnT59K+//55595ug/p6enC2tpaABDffvutUtmsWbMEANG5c2fp/926dVOqk/1s1D///KNUtnnzZgFkneVTd9Y5u4YNG2p8HBXtGxgY5Pi+VsyfCUCnBDY32RNcU1NT8fTpU7X1MjIypGEr9vb2IiUlRan8t99+k9rR9FN2165dBQDh5OSkNonWRn4SXG0sWbJEAFm/KqhLsLIfH/bv36+xnUaNGklfft+lGP4CQOMZXiGE6NGjx3tJcLUxbtw4AUDUrFlTpSwgIEBqf8WKFRrbWLp0aY7Pn2J4jKenZ44J9+vXr4WpqanakwbZf31au3Ztjvfp5MmTUjvv3kaPHi3VU3zZqFq1qs6/iincvn1b6iOnXzuKM15k9hF49uwZbt++DQD47LPPNM4iYGRkJF1I9vr1a1y9erXAYkhISMDDhw/xzz//4ObNm7h586bSwPi///67wPpSePv2LYCsKdPy6/Tp08jIyACQNdWYJuXKlUPbtm1V9nmXiYkJevXqpVXfudXdv38/AKBKlSrSPMiaNG/eHABw+fJlpQvOsl8cN27cOK3iKmxHjx7F8+fPAUCaOSG73r17S6+h33//Pdf2PDw8UKtWLbVlMpkMdevWBZA1b3J2Dg4O0lRkv//+u1YX6ikYGhpK0/u8exFmUFAQgKyLXRQXupw5cwaZmZkqdZycnFC9enWl/RXPe4sWLVCiRIkc41A878HBwRrrNGnSJMeLhLJfBFPYc2y3a9cObm5uassMDAwwcOBAAFkzabx7nOrVqxfkcrnGOKOjo6ULrwYMGAAjo6KfLTMuLg4PHjxQOj5aWFgolWlia2uLzp07ayxXXCz77usaAE6cOAEAqFu3LmrUqKGxjS+++EKr+1HQXr9+jXv37ik9Lra2tgCAW7duqSw3q7g/BgYGGmctALKOJzmt6HngwAEAWReG5VTP1tZWOua++9568eKF9H87OzuNbQBAq1atcO7cOXTu3BlyuRympqaoXbs21qxZg2XLlgHI+gxVzFmb/cKy0NBQdOnSBba2trCwsEDDhg2xffv2HPsDAHt7e+n/+rp6JxPcj8DNmzel/3t5eeVYN3t59v108fLlS0ydOhVVqlSBtbU13N3dUbNmTXh4eMDDw0PpoKztlbF5oUjkExIS8t2WLo9hYmKi2g8VAKhUqRLMzMy06ju3uoorecPDw3NdolmxDnpaWhpiYmKkNq5duwYAKFOmjMpUNUXlt99+A5CV3Cm+NGTn6OiI9u3bA8iaaUHkMFMAAFStWjXHcsUBX/HFSMHU1BS9e/cGAOzatQsVK1bE5MmTcfjwYbVX879LkbyGhoZKi1WkpqZKH4gtW7aEl5cXzM3N8fr1a9y4cUPaV5EUKxLU7BTP+7Fjx3J93n/++WcAOX+QaUr+FZo2bYry5csDyPoS1LBhQ8yfPx/nz59XO/tKfjRo0CDH8oYNG0r/f3fhG3Nzc/Tr1w8AsGPHDiQmJiqVZ/+SMnjw4IIIVyePHj3C6NGjUa5cOcjlcpQvX17p+Dh8+HCpbk7Hx0qVKuU4j6mm13VycrI0o4CmGWMUPD09c70/BSUsLAyDBw+Gq6sr7O3tUbFiRaXHRTGLQ2ZmJl6/fq20r+I4Xb58eSkRVsfe3l56Lb/r0aNHUnI6ZcqUXN9bivfhu++t7MfX3BJcIOsxPnjwIN68eYPk5GRcv34dI0aMkMpnz56NiIgI9OrVC23atAGQ9QW4SZMmOHToEIyMjODi4oLLly+jT58+0ntek+wxFcRn5IeICe5HIPsbzcnJKce6imlJ3t0vr0JDQ1G1alXMnz8f//33X67JR1JSks59aeLg4AAga4oVxVQtuirox1CbA562dRVnOfMq+we/4gNU3VQ1ReHNmzfSWZQ+ffpoPMs2YMAAAMDjx49VzpC+S3FGTBNFkqDurPuKFSvQtWtXAFkfgD/99BM6d+4MBwcHNGjQAD/99JPKVD4KLVq0AACkp6fj3LlzALJWN0pKSoJcLkfdunVhamoqrcqmuB8vXryQptJTN5WRLs97Tu+z3F5nxsbGOHDgAKpVqwYg61eAqVOnomnTprC1tUWHDh2wdetWjb9a5EVu7zFnZ2fp/+reY0OHDgWQldTt2rVLqUxxVtfLy0vlrPj7cuTIEVSvXh0rVqzAo0ePcq2f0/Om7es6+y8DAJS+nOX2C0Bu5QVlw4YNqFevHjZt2qTVWcV3HxdFwqtNvJrqFMTxFIDSSYn8fr79+++/WLx4MSwtLaUVyzIzMzFkyBCkpKRgzJgxePHiBe7fv4/du3dDJpNh6tSpOZ75zx5TXqcZKy6Y4H5kcvq5paCkpqbis88+w6tXr2BsbIwJEyYgKCgIkZGRSE5Ohsga+4179+5J++SWAOuidu3aALIOBOomytZVQTyGhoaGBVZXkVDUrl0bYWFhWt+0XfmmKGzfvl36UrJs2TKNZ08UZ1YB7ebE1ZWNjQ3279+PixcvYuLEiahfvz4MDQ2RmZmJK1euYPLkyahcubLaIQCenp6wsrIC8H/Jq2LoQdOmTaXnV5EIK+qcOXNGakNRlp3iee/YsWOenndNtHlNVq9eHWFhYdi7dy8GDx4szUeclJSEY8eOoX///vDy8tI5SVDI73usXr160pCT7MMULl68KH1pKKqzty9fvkS/fv2QmJgIKysrzJw5E8HBwXj+/DlSUlKk46NicROgcI6PH5p///0XX375JdLT0+Hk5ISffvoJoaGhePXqFVJTU6XHZcOGDdI+hfG4ZP+CNn36dK3fV+8Oh8meQOfnZBEAjBo1CmlpaZg2bRpKlSoFIGsFtHv37qFEiRJYuHCh9J7p2bMnOnfujLS0NPzxxx8a28weU05nu4uzoh98RIUu+1ib6OjoHOtm/9acfb+8OHnypPTT/KpVq6SzKe/K75s+Ny1atJBWkTl06FCuQwty8u5jmNMqZwXxGOaF4kx1fHy8zsszOzo6AgAiIyMLLK780CVZ3b17N1auXJnrGa38aNiwofTz+Nu3b3H69Gn4+/tjz549eP78OXx9fXHv3j2Ym5tL+xgZGaFx48b466+/pORV8W/2M7PvjsNV1HF0dFQ7PtLBwQHPnj1Damrqe12W29DQEN27d5cWpoiMjMTRo0excuVKhIaGIjQ0FCNGjMDevXt17iO341T2ck3vsaFDh2LkyJEICgrCgwcP4O7uLiUhFhYW6NOnj87x5ceuXbuks6d79+6Fj4+P2nqFfXzMntRkHy+qTm7lms4Svyunn8L9/f2Rnp4OQ0NDBAUFaRxSlNPjovgVIrd4c6qjOJ4CWWc2dX1vZU9w3x1KkRfbt29HYGAgqlatKo3BBf5vdbP69evD1NRUaZ8mTZrg4MGDOZ7YyR5TmTJldI7vQ8YzuB+B7G/Qixcv5lj30qVLavcDtD+r8s8//0j/z36G7V25rQKTX3369JESjV9//TVf44x0eQwtLCw0jvMqSNkvjtL1YoF69eoByPqpX5ufTN9VkL8M3Lt3DxcuXACQ9Rxu27Ytx9u8efMAZCWc+Umq8sra2hpdu3bF7t27MWbMGABZyZ5iGEJ22cfhvn79Wrp/2RPcRo0awczMTBqHqzjL27x5c7WPr+J5v3LlSoGPgc0LV1dXDBo0CMHBwdLr6ODBg/n6Wfby5ctal2tKQPr37w9zc3MIIeDv74+kpCQEBAQAyLp4yMbGRuf48kNxfLS3t9eY3AKFf3w0MzNDhQoVAGS9LnOSWyyK6x1yG5P+33//aSxTPC61a9fOcbx8TrEovgjev38/x6QyJiZG4/UR5cuXly5SPH/+vMY2clO+fHnpy3ZO9zsn8fHxmDhxIgBg+fLlSkMJFEOiFLFmp/jyomnY1Lsx5XSBYXHGBPcj4ObmJo2b27Fjh3Shy7syMjLg7+8PIOubsOLDSiH7mKKcxrRmv8pcU1KZmZkpLaNbWEqUKIFhw4YByEo88jI7wK1bt5QO+i1btpR+wt24caPG/R4/fozjx4+r7FOYPvnkEwBZP9ctXbpUpzYU40sBYPHixXneX9vXhjayn7395ptv0KdPnxxvkydPls66FOYwhZwoLvoA1F8QlH0c7uLFi5GYmCiNv1XIPg539+7d0gUzmpYSVTzvsbGxhT6rgTaMjY2V7qc2F+Bp8tdff2n8NSEzM1O6AFHdcUpBLpfj008/BZB1weKuXbukD/yivLhMcXxMTk7WeMYzMTFRq5lB8kvxur127ZrSiYl35fa+Uiz7+vbtW4SHh6utk5qaKv2ipo7iccnpRERkZKQ0e4g6ivuTmZmJrVu3aqyX00WphoaG6NSpE4Cs16FiBqK8MjY2lt7PuX1h02TWrFl4+vQpevXqpfJlSJHYPnnyRGW/iIgIAMjxS5wiJmNjY43voeKOCe5HYuTIkQCyfpZRnG1616xZs6TxacOGDVP52SP7BUjZx8++q1KlStL/FQnzu6ZMmVKg05Bp8sMPP0jJ/a+//ophw4ZpTPCBrNkFVqxYAS8vL+kgAWR9SejRoweArAtEFB+w2aWmpmLw4MHS1DWKGQsKW7t27aSfzX/66Sfs2LEjx/phYWHSBVwKPj4+0pXUy5cvl850qfPq1SuVs3PavjZyI4TAli1bAGRNuZbb1d1A1hAAxc/lgYGBBT7M4v79+9LZVE3++usv6f+KD/vsGjRoIJ3NUUz7k338rYIiQVy+fLn0Aaxu/C0ADBw4UBoq88033yiN2VXn3Llzud6PnJw9e1a66l6d1NRUqX0rK6t8XZiUkpKCESNGqL1g7ccff5TGEg8ePFjlOJWdYnjUo0ePMHnyZABAhQoVND6m74Pi+JiYmKj2vZqRkYGhQ4fi2bNnhR7L8OHDpV8Hhg0bpvas++7du3P9ZST74/nLL7+orTNhwgQ8ffpUYxuKx+XOnTvSLxzZJSYmol+/fjn+MtCjRw/pAsWZM2eqPRbduXMHs2bN0tgGkPX5pBhj/+mnn6pNIhUyMjLwxx9/qK3TrFkzAMCNGzfy/MX/1q1bWLp0qdKFZdkprjEJCQlROhudkZEhTRNWp04dje0rfmn09vaWrhHQO+9/6l0qTNAwefW7S/W2bt1a7Nq1S4SGhoqDBw+Knj17SmXvLtWrEBcXJy0tWq9ePfHXX3+J8PBwcefOHXHnzh1pFZz4+Hhpgn5DQ0MxYsQIcfToUXHlyhUREBAg2rRpIwCIJk2aSH1u2rRJpb+CWjzg3r170rKM+P+Tu48fP17s27dPXLx4UYSEhIi9e/eK8ePHizJlykj13l3hKCIiQlo8wsDAQAwdOlQcP35cXLlyRWzZskXUqVNH2lfTGuHarH+uS927d+8qrc7TtWtXsWXLFnHx4kVpmdN58+ZJk76rW5Hr3aV6e/bsKXbs2CGuXLkiLl68KP744w8xcOBApaV6FbIvnduuXTsRFBQk/vvvP+m1oe1k+tkXrcht1bDsDh8+LO23cOFCpTLFQg8DBw7MsQ1Nk9WfOnVKABDVq1cX//vf/8TevXvFpUuXxKVLl8Tu3buVlo+tU6eOxonhfXx8lCZw/+mnn1TqKPpS3BwcHHKcaD44OFiaIN7Q0FD0799fWoL70qVL4s8//xTTp0+XluFVt6yxoi91E/hnN2PGDGFgYCBatGghFi5cKI4ePSpCQ0PFuXPnxMaNG6XFJACIsWPH5tiWOtkXevD09BRA1rLSAQEBIjQ0VBw5ckT06dNHqlOqVCnx5s2bXNvN/t4Hcl5VKi8U7VWpUkVs2rQp19vFixeFEFnHEcVzZmZmJr799ltx4sQJcfnyZeHv7y/q16+vcnw8deqUSv/aHh9yO44OHz5cKq9Ro4bw9/cXV65cESdPnpSW6s3+3M6cOVNtO9k/XwYOHChOnjwpQkNDRUBAgGjdurUAIK24CDULPVy6dEkqs7W1FfPmzRNBQUHi4sWLYtWqVaJSpUoqj4u6xSK2bt2q9P5ZuHChCA4OFsHBwWLBggXC3t5e2NraSu21bNlS7f1ZvHix1I5cLheTJk0SR44cEVevXhUXLlwQW7duFaNHjxaurq4CyFqi/F1Xr16V2jh+/HiOz9O7FKti/vjjj2rLMzIyRPny5QWQtWrfnj17RGBgoOjSpYsAspZnvnv3rtp9s3+Wv7t6oj5hgqtnNCW4QmQtI5r94KDuVq1aNfHw4UON7U+ePFnjvtkPwkePHpXeQOpuLVu2FDdv3nwvCa7ivg8YMEBaqjanm7GxsRgzZozaD8+rV69KK15puvXs2VMkJSWpjaOwElwhspagVKzwlNtt1qxZatu4cuWKKF26dK77q/tgyZ7oaVNfnezLUwYHB2u1jxBZy9ba2toKAMLDw0OprKAS3NxuVatWFffv39fY/ty5c5XqX758WaVOUlKS0opG3bt3z/W+BwcHa/WcARC//fabyv6KMm0SXG366Natm9olX3OTPcHdtGmT8PPz09iHq6uryspumixYsEDaz8DAQEREROQ5NnW0eSyy37In/Rs3bszxWNS7d29x4sQJtcdWhYJKcFNSUqSkSN3N3d1d3L17V/pbU8J1+/Zt6cSGuts333yT60pmihX9NN0mTpyo1Wpoc+fOlZYgfvdmYWEhDh06JC3pnNPKlOvWrRMWFha5PrcmJiZqlwUWQkhfWAYNGqSxn3cpkvQqVaqorNSX3enTpzWugKbpeRJCCH9/fwFkJcGRkZFax1XcMMHVM4oXt6aDXkZGhti8ebPo0KGDcHZ2FsbGxsLBwUG0bNlSrFixIsc3kxBZS5quX79eNGvWTNjb20vL16o7CN+8eVN8/vnnws3NTRgbG4sSJUqIFi1aiHXr1omMjAyVD7R3Fcbyr7du3RIzZswQTZs2FSVLlhSmpqbCwsJClClTRnTt2lUsXrxYREdH59jG27dvxfz584WXl5ewtbUVJiYmws3NTfTs2TPHJTOFKNwEV4isM/Vbt24Vvr6+okyZMsLc3FyYmJgIV1dX0bJlS/H999+L0NDQHNtITEwUy5YtE61btxZOTk7CyMhIWFlZCQ8PDzF8+HARGBiodr/U1FSxcOFC0bBhQyGXy5U+wLVJcJOSkoRcLhcARMmSJXM8c6nOgAEDpP6uXr0qbc9vgpueni5Onz4tpkyZIlq1aiUqVqworK2thbGxsXB2dhbt2rUTa9asUVna+l1nz56V4pPL5SI9PV1tvexLsC5ZskSr+56cnCzWrFkjOnfuLNzc3ISJiYkwMzMTpUuXFu3atRPz5s0T//77r9p9tU1w3759K3bv3i2++uor0ahRI1GmTBlhZmYmzMzMRLly5cRnn30mDh48qFW86qg7HmzdulW0bNlSODg4CFNTU1G5cmUxefJkERMTo3W7z549k9pt3769zvG9Kz8JrhBCnD9/XnTv3l2UKFFCGBsbC1dXV9GhQwexfft2IYTyF6vCTHCFyDqub9q0STRt2lTI5XJhYWEhqlWrJqZOnSpiYmLE69evpTZWr16tsZ0nT56Ir776SpQtW1aYmJiIEiVKiA4dOohDhw4JIbRbqvfQoUOiXbt2ws7OTpiYmIhSpUqJnj17ir/++kvrNoTI+jWoe/fuwsnJSZiamoqyZcuKwYMHi1u3bgkhhKhdu7b0ZSInUVFRYtasWaJJkybC0dFRGBkZCUtLS1G5cmXh6+sr1qxZI168eKFx/7Vr10rv+dyOEUJknV1VnETR5qzv5cuXRadOnYSNjY0wMzMTnp6eYuvWrTnu065dOwFA9OrVK9f2izOZEB/BBHtERPRROn78ONq1awcga8qlzz77rIgjKn7OnTsnjSc9ceKE0kWVxVFaWhrkcjmSkpLw/fffY86cOYXWV3x8PMqXL48XL15gy5YtOS4h/D48evQIFSpUQEZGBoKDg6UL4fQRLzIjIiK9pZj1xMHBAd26dSviaIqnbdu2Aci64l6bCz8/dPv27ZMuVivsBM/KygrTpk0DkHXRc25zBRe2H374ARkZGejQoYNeJ7cAE1wiItJT9+7dk5bqHTRoUI4zLnysXr58meOUbseOHcPatWsBZE1NVxxWvcppto+HDx9KCyY4Ozujffv2hR7Pl19+ifLly+PWrVsqS0e/TxEREfD394ehoSEWLlxYZHG8L1zJjIiI9MbTp0+RmJiI+/fv49tvv0V6ejrMzMwwfvz4og7tg3Tz5k1069ZNmmu1QoUKMDAwwKNHj7B//35s2bIFGRkZMDc3xw8//FDU4WqlatWq6NSpE7p06YIaNWrA0tISz58/x6lTp7BmzRopof/5559hZFT4aZCxsTH8/f0RGBioNE/8+xYREYEpU6agfPny8PDwKLI43heOwSUiIr3RsmVLlfl+f/rpJ3zzzTdFFNGH7fTp02jVqlWOdWxsbLBz505pLPOHLreVFQ0MDDB37lxMmTLlPUVERYFncImISO9YWFigcuXKGDduHAYOHFjU4XywPD094e/vj6NHj+Lvv//Gixcv8ObNG9jY2KBixYro0KEDRo0ala+FO963AwcO4MiRI7hw4QKio6Px6tUrmJqaomTJkmjZsiVGjhypcYln0h88g/uRSU1NxZo1a7Bjxw7cunULiYmJcHR0hIeHB/z8/NC7d2+p7syZM3Nd8eX27ds5rhv+rvDwcBw5cgR//fWXdDA1MzNDlSpV0LNnT4wePVrjqipLly7F8uXLERERgTJlymDcuHHSCm3vevr0KapXrw4vLy+lVaaIiIhI//EM7v8nhMDbt29hbW2d688bxdWTJ0/Qvn173Lp1C46OjmjSpAksLS0RERGBM2fOwNLSUinBVahdu7bGJf8U62Frq02bNnj69CnMzMzg6emJ5s2bIzo6GsHBwbhy5Qo2bNiAkydPokyZMkr7rVixAuPGjYOrqys6d+6M4OBgjBo1CsnJyZg4caJKP6NGjUJ6ejrWrFmTp/iIiIhIDxThHLwflNjYWAFAxMbGFnUohSIxMVFUrVpVAFlLLaampiqVJyQkiGvXriltU0wQntsE8HnRunVrsWHDBpWlgB88eCBq1KghAIhWrVoplaWnpwtHR0fh6OgoTagdHR0tLbn47n3Zs2ePAFSXbCUiIqKPA6cJ+0jMnz8f//77L4YPH44ZM2bA2NhYqdzCwkLjWdqCFBgYiMGDB6sMQyhXrpx0tvXUqVN48uSJVPbw4UO8fPkSPXr0gKOjIwDAyckJPXv2xJs3b3D79m2p7tu3bzF69GjUqVOHV00TERF9pJjgfgTS0tKwevVqAMCkSZOKOBrN6tatK/0/IiJC+v+rV68AAPb29kr1HRwcAGStFKMwZcoUREVFYf369e9l+hciIiL68DAD+AhcvXoVL1++hJubGypWrIiwsDDs2bMHz549g52dHZo1a4aOHTvCwED9952rV6/iu+++Q0xMDORyOerWrYuuXbvC2tq6QOO8c+eO9H9XV1fp/+XKlQMApTO12f8uWbIkACAkJASrV6/G2LFj4enpWaCxERERUfHBBPcjcOPGDQBAqVKl8N1332HhwoUQ2SbPWLBgAerWrYt9+/apXNwFZE25cuDAAaVtcrkcy5YtwxdffFFgcf74448AgHr16klJLZA1HMHb2xuHDh1CQEAAOnfujIMHD+LQoUOoVasWypYti7S0NAwfPhylS5cu1HXFiYiI6MPHIQofAcVP/NeuXcOCBQvw9ddfIzw8HLGxsTh+/DgqV66Ma9euoXPnzkhLS5P2q1ChAn744Qdcu3YNMTExiImJwblz59ClSxfExsZi4MCB+OOPPwokRn9/f2zfvh2GhoZYunSpSvmyZctgbm6Ovn37wsbGBv369YOlpSXWr18PIGtFmrCwMKxevRqWlpbSfklJSUrJPBEREX0Eivoqtw+FPs+i8MMPPwgAAoDo27evSvmjR4+EmZmZACA2b96sVZujR48WAESJEiVESkpKvuI7ceKEMDExEQDEL7/8orHew4cPxaxZs8SwYcPEnDlzxOPHj4UQQty9e1eYm5sr3bdly5aJUqVKCQBS2cuXL/MVJxERERUPTHD/P31OcJcvXy4luKdPn1Zbx9fXVwAQX3zxhVZtvnr1ShgaGgoA4syZMzrHdvbsWWFpaZmv6cjatGkj7O3tRXR0tBBCiKVLlwoAolu3bmLfvn3ihx9+ECYmJqJBgwYiIyND51iJiIioeOAY3I9A+fLl1f5fXZ3IyEit2rS3t4eTkxMiIyOVpvTKiwsXLqBTp05ISEjA//73P8ycOTPPbfz2228IDAzExo0b4eTkBCBrLG/ZsmWxa9cuGBkZoVu3boiNjcWCBQtw4sSJYrOeOhEREemGY3A/AvXq1ZNWZ3v58qXaOortmpbJfVdGRgZiY2MBQKfZFEJCQtChQwe8ffsWU6dOxdy5c/PcxsuXLzFx4kS0atUKgwYNAgBER0cjMjISDRo0UJomrGnTpgCA69ev57kfIiIiKl6Y4H4EXFxcpATvxIkTKuVpaWkICgoCADRs2FCrNvfv34/ExETIZLI8T8l16dIltG/fXkpu582bl6f9FSZMmICEhASsXbtW2qZI5BMSEpTqKv7W12WYiYhIVWpqKpYtW4amTZvC3t4eZmZmKFWqFDp27Ijt27cr1T1y5AiGDh0KT09PuLq6wtTUFNbW1qhTpw6mTp2q8QRRXh0+fBgymQwymQw+Pj5q66Snp2PatGkoXbo0TE1N4eHhgZ07d2ps8/r16zA2Nsbw4cMLJEa9UNRjJD4U+jwGV4isC7kACDs7OxEcHCxtT0tLky4Ys7a2FlFRUUKIrAvPfv/9d5GUlKTS1t69e4W9vb0AID7//HOV8osXL4oqVaqIKlWqqJRdvnxZyOVyAUBMnTpV5/tz/PhxAUDMmzdPpaxUqVLCzMxM3L17VwiRtdRvu3btBABx4sQJnfskIqLiIyIiQlSvXl0AEI6OjqJLly6id+/eonHjxsLCwkL4+voq1e/fv78AICpWrCh8fHxE3759Rbt27YStra0AIJycnMTNmzfzFVNMTIxwc3MTMplMABBt2rRRW2/ixIkCgChfvrzo0aOHFMPOnTtV6qanpwtPT0/h4uIiXr9+na/49AkT3P9P3xNcIYSYM2eOACCMjIxE48aNRc+ePUW5cuWkmQYOHjwo1b127ZoAIKysrESzZs1Enz59RLdu3USlSpWkC9ZatWol3r59q9LPqVOnpDrvsrOzEwCEra2tGDhwoMbb7du3Nd6PxMREUaFCBeHh4SFSU1NVyteuXSv10aNHD1GjRg0BQDRp0kRkZmbq+OgREVFxkZiYKKpWrSoAiJkzZ6p8ViQkJIhr164pbbt27ZqIjIxUaevt27eiV69eAoBo1KhRvuLq37+/MDQ0FF999ZXGBDc6OlqYmJiI6tWri4SEBCGEELdv3xbGxsaiRo0aKvUXLVokAIgdO3bkKzZ9wwT3//sYElwhhDh27Jjo2LGjsLe3F8bGxqJ06dLCz89PJaF8+fKl+Pbbb0Xr1q1FmTJlhKWlpTA2Nhaurq6iS5cuYuvWrRpnJMgpwVVsz+126tQpjffhu+++EwYGBiIkJERjnU2bNokaNWoIY2NjUaJECTFixAjx5s0b7R4kIiIq1qZNmyYAiOHDhxdIe48fP5Y+n3TNE/bs2SMAiEmTJolNmzZpTHAVv7i++wulj4+PSv+PHj0SlpaWokuXLjrFpM9kQnAWfACIi4uDXC5HbGwsbGxsijocIiIi0kFaWhrc3Nzw8uVL3LlzBxUrVsx3m5GRkXBzc4OBgQHi4+Nhbm6ep/1fvnyJGjVqwM7ODtevX0dAQAAGDRqENm3aqFwbs2PHDvTu3RurV6/Gl19+KW3v06cPtm/fjqdPn8LNzQ0A0LVrV5w+fRq3bt1C6dKl830/9QmnCSMiIiK9cfXqVbx8+RJubm6oWLEiwsLCsGfPHjx79gx2dnZo1qwZOnbsCAMD7a6zT0lJwdSpUwEAbdu2zXNyCwBfffUVXr58iT179sDMzCzHuoql6m/fvq20/fbt2zAxMYGjoyOArET44MGDWLp0KZNbNZjgEhERkd64ceMGAKBUqVL47rvvsHDhQqUl2xcsWIC6deti3759KFOmjMr+V69exbJlyyCEwIsXL3D58mW8fPkSDRo0wIYNG/IcT0BAAHbt2oWxY8eiSZMmudavU6cOypYti02bNqFz585o1KgRfv31V9y4cQOffPIJTExM8ObNG4wdOxYNGzbEqFGj8hzTx4AJLhEREemNV69eAQCuXbuGS5cuYeTIkRgzZgxcXFykv69du4bOnTvj6tWrMDY2Vtr/8ePH+O2335S2+fj4YO3atShZsmSeYomKisLIkSNRoUIF/PDDD1rtY2JiguXLl6Nnz55o3769tN3V1RWLFy8GAHz77bd4+fIl/vrrL6Uz0YmJibCwsMhTjPqK8+ASERGR3lCcrU1LS0Pfvn2xYsUKVK5cGTY2NvDx8cHx48dhZmaGmzdvIiAgQGX/7t27QwiB9PR0PHz4EL/++itu376NmjVrYteuXXmKZfjw4Xj9+jV+/fXXPCWeXbt2xfXr1zF16lQMGzYMP/30E27evIny5cvj3LlzWL9+PSZNmgQPDw9kZGRg+vTpKFGiBCwtLSGXyzFy5EgkJibmKVa9U5RXuH1IPpZZFIiIiPTZ8uXLpRkPTp8+rbaOr6+vACC++OILrdp88OCBsLCwEFZWVmqnElPH399fABBfffWVSllOsyjkJCUlRVSrVk1UrFhRmqd+/PjxAoAYMmSI2L9/v5g0aZKQyWSiZ8+eeWpb33CIAhEREemN8uXLq/2/ujqRkZFatVmuXDm0atUKhw4dwvHjxzFgwIBc99m7dy8A4PLly2jZsqVSWVRUFAAgNDRUKgsICICLi0uObc6fPx+3b99GYGAgzMzM8PbtW6xcuRKNGzfGr7/+CiDr7O/jx4+xfft2/Pfff6hcubJW91HfMMElIiIivVGvXj3IZDIIIfDy5Uu1Mwwolt21srLSul1LS0sAwPPnz/MUz5UrVzSWvXnzBkFBQQCA5OTkHNsJDw/H/Pnz4efnh9atWwMAbt26hdTUVDRu3FipbtOmTbF9+3Zcv36dCS69f3vCtfvmSMVPzyquRR0CUbGTmpqKNWvWYMeOHbh16xYSExPh6OgIDw8P+Pn5oXfv3lLdiIgIHD58GKGhoQgNDcXNmzeRmpqKIUOGSGey8uPPP//Ehg0bcOnSJcTExMDW1hYVK1ZEhw4dMH36dKW66enpmDVrFvz9/fH8+XNUrlwZ06dPR69evdS2ff36dTRo0ACDBg3CunXr8h0rKXNxcUHTpk1x9uxZnDhxAnXr1lUqT0tLk5LKhg0batVmSkoKzp07BwBaJ4z79u3TWObv769xHlx1hBAYMWIE5HI5fvnlF2m7TCYDACQkJCjVV/ytKP8Y8SIzIiIqck+ePEHdunUxduxYhIeHo0mTJujevTvKli2LM2fOYOfOnUr1d+/ejS+//BLr16/H1atXkZqaWiBxpKam4rPPPkP37t1x4sQJ1KhRA59++ilq1qyJe/fuYdmyZSr7fPfdd5g7dy5MTEzQuXNnPHnyBJ999pnaC5IyMjIwbNgwODo6YuHChQUSM6maMWMGgKyf9ENCQqTt6enpmDhxIu7fvw9ra2sMGjQIQNZZ2dWrVyMuLk6lradPn2LAgAF49uwZypUrh7Zt2yqV7927F1WrVkWbNm0K7f5s2LABQUFBWLx4Mezt7aXt1atXh6mpKfbu3YuYmBgAWTMpbNmyBQBUkvuPCc/gEhFRkUpKSkLbtm3x77//YubMmZg6darS1E2JiYn477//lPZxd3fH6NGjUa9ePdSrVw87duzAvHnz8h3LsGHDsHPnTnTv3h3r16+XJtUHgMzMTFy6dEmp/vPnz7F8+XJUr14dly9fhoWFBf7991/UqlULM2fOxKeffqpUf9myZbhy5Qp27NgBW1vbfMdL6rVp0wZz5szBtGnT0KxZMzRs2BAuLi64evUqHj58CHNzc2zbtg3Ozs4Asl5jX3/9NcaNG4c6deqgXLlyEEIgIiJC+gLl5uaGffv2qSzUEBsbi/Dw8FyHGOgqOjoakydPRocOHdCvXz+lMisrK0yYMAHz589HjRo10KRJE1y9ehUPHjxA3759C2QVt+KKCS4RERWp+fPn499//8Xw4cOlM2/ZWVhYoE6dOkrbunXrhm7dukl/79mzJ99xBAYGYvPmzahZsyZ27NihMj+qgYEBGjVqpLQtLCwMqamp6N+/vzQNVNWqVdGiRQucOHECcXFx0vLvjx8/xrRp09ClSxeNwxeo4Hz//fdo2LAhlixZgosXL+Ly5ctwcXGBn58fvv32W1StWlWq6+TkhF9++QVnzpzBzZs3cfv2bSQlJcHW1haNGjVC165dMXz4cOm5fJ/GjRuH1NRUrF69Wm35vHnzYGdnh7Vr1+LPP/+Es7Mzvv32W8yePfs9R/phYYJLRERFJi0tTfrgnjRpUpHGsnz5cgBZCcW7ya0mikUFsv9sDAAODg4AgPj4eCkpGjlyJGQyGVatWlVQIVMu2rVrh3bt2uVaz8LCAhMmTMCECRPy3Iefnx/8/PwKbZ9t27blWC6TyTBp0qQif/98aJjgEhFRkbl69SpevnwJNzc3VKxYEWFhYdizZw+ePXsGOzs7NGvWDB07dlRarakwZGRkIDAwEADQvHlzREVFISAgAOHh4TA1NUXdunXh6+urctV9uXLlAAC3b99W2n779m2YmJhIQxx27NiBgwcPYunSpWqv6ieigsUEl4iIisyNGzcAAKVKlcJ3332HhQsXSitRAcCCBQtQt25d7Nu3D2XKlCm0OO7fv4/4+HgAQEhICL7++mvpb4VJkyYhICBAmqIJAOrUqYOyZcti06ZN6Ny5Mxo1aoRff/0VN27cwCeffAITExO8efMGY8eORcOGDTFq1KhCuw9E9H84iwIRERUZxU/8165dw4IFC/D1118jPDwcsbGxOH78OCpXroxr166hc+fOSEtLK/Q4AGDIkCGoX78+Ll++jLdv3+L69evo1KkTXrx4gW7duuHOnTtSXRMTEyxfvhxJSUlo37495HI5Jk6cCFdXVyxevBgA8O233+Lly5f49ddflc5Ef/RLqRIVIia4RERUZBRna9PS0tC3b1+sWLEClStXho2NDXx8fHD8+HGYmZnh5s2bCAgIKPQ4AKBkyZI4duwYPD09YWVlhdq1a2P//v2oWbMm4uPj8eOPPyrt27VrV1y/fh1Tp07FsGHD8NNPP+HmzZsoX748zp07h/Xr12PSpEnw8PBARkYGpk+fjhIlSsDS0hJyuRwjR45ksktUwJjgEhFRkbG2tpb+P2LECJXyMmXKoHPnzgCg1YT4BRGHn58fTE1NlcoNDQ2l+NTFUaNGDcybNw/r1q3DN998A3t7e6SmpmL48OGoUKGCtDjEpEmTMGfOHHTr1g379+/HiBEjsHr1aq2WfiUi7XEMLhERFZny5cur/b+6OpGRhbf6Y7ly5aTlXQsqjvnz5+P27dsIDAyEmZkZ3r59i5UrV6Jx48bSamtdu3bF48ePsX37dvz3338f7bKqRAWNZ3CJiKjI1KtXT1pO9OXLl2rrKLa/O4NBQbKyskKVKlUKLI7w8HDMnz8ffn5+0kVpt27dQmpqKho3bqxUt2nTpgCylvAlooLBM7hERFRkXFxc0LRpU5w9exYnTpxQWVo0LS0NQUFBAICGDRsWaiy9evXCnDlzcOLECYwfP16l/Pjx41rFIYTAiBEjIJfL8csvv0jbFYl8QkKCUn3F34pyvbVVz+/fx6yfyL3Oe8YzuEREVKQUq5fNnz8fISEh0vb09HRMnDgR9+/fh7W1NQYNGpTvvvbu3YuqVauiTZs2KmVjxoyBnZ0dDh8+jLVr1yqVBQQE4I8//pDq5WTDhg0ICgrC4sWLlRaAqF69OkxNTbF3717ExMQAyJpJYcuWLQCgktwTke54BpeIiIpUmzZtMGfOHEybNg3NmjVDw4YN4eLigqtXr+Lhw4cwNzfHtm3b4OzsLO0TGRmJHj16SH8/efIEALB//36l5XRXrVqFevXqSX/HxsYiPDwcycnJKnE4Ojpi+/bt+OSTT/Dll19i+fLlqFatGu7du4dr164BAKZNm4ZOnTppvC/R0dGYPHkyOnTogH79+imVWVlZYcKECZg/fz5q1KiBJk2a4OrVq3jw4AH69u2LihUr5vGRIyJNmOASEVGR+/7779GwYUMsWbIEFy9exOXLl+Hi4gI/Pz98++23qFq1qlL9lJQUXLx4UaWdFy9e4MWLF9LfcXFxeYqjbdu2+Pvvv/HDDz/gxIkT+PPPP2FjY4NOnTph7NixuS77Om7cOKSmpkrLD79r3rx5sLOzw9q1a/Hnn3/C2dkZ3377LWbPnp2nOIkoZzKRffK/j1hcXBzkcjliY2OldcML257wwrsimIpWzyquRR0CEdGHhWNw9RfH4BIRERERFS4muERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFe4UIPRESkVu2f+xR1CFQI/v4moKhDICp0PINLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6ZVik+A+ffoUn3/+ORwcHGBubg4PDw9cuXJFKhdCYPr06XB1dYW5uTl8fHxw586dIoyYiIiIiIpCsUhwX79+jSZNmsDY2BhHjhzBrVu38Msvv8DOzk6qs3DhQixbtgxr1qzBxYsXYWlpifbt2yM5ObkIIyciIiKi961YLPSwYMEClC5dGps2bZK2ubu7S/8XQmDJkiX4/vvv0a1bNwDA5s2b4ezsjH379qFPH05WTkRERPSxKBZncPfv3w9PT0/06tULTk5OqFu3LtavXy+VP3jwAFFRUfDx8ZG2yeVyeHl5ITg4WG2bKSkpiIuLU7oRERERUfFXLBLc+/fvY/Xq1ahUqRKOHTuGr776CmPGjMFvv/0GAIiKigIAODs7K+3n7Owslb1r/vz5kMvl0q106dKFeyeIiIiI6L0oFgluZmYm6tWrhx9++AF169bF8OHDMWzYMKxZs0bnNqdMmYLY2FjpFhERUYARExEREVFRKRYJrqurK6pXr660rVq1anj8+DEAwMXFBQAQHR2tVCc6Oloqe5epqSlsbGyUbkRERERU/BWLBLdJkyYIDw9X2vbff/+hbNmyALIuOHNxcUFgYKBUHhcXh4sXL8Lb2/u9xkpERERERatYzKIwfvx4NG7cGD/88AM+++wzXLp0CevWrcO6desAADKZDOPGjcPcuXNRqVIluLu7Y9q0aXBzc0P37t2LNngiIiIieq+KRYLboEED7N27F1OmTMHs2bPh7u6OJUuWoH///lKdyZMnIyEhAcOHD8ebN2/QtGlTHD16FGZmZkUYORERERG9bzIhhCjqID4EcXFxkMvliI2NfW/jcfeER76Xfuj961nFtahDIMq32j9zDnF99Pc3AUXT8VZZ0fRLha/fh5dKFosxuERERERE2mKCS0RERER6hQkuEREREekVJrhEREREpFeY4BIRERGRXmGCS0RERER6hQkuEREREekVJrhEREREpFeY4BIRERGRXmGCS0RERER6hQkuEREREekVJrhEREREpFeY4BIRERGRXmGCS0RERER6hQkuEREREekVJrhEREREpFeY4BIRERGRXmGCS0RERER6hQkuEREREekVJrhEREREpFeY4BIRERGRXmGCS0RERER6hQkuEREREekVJrhEREREpFeY4BIRERGRXmGCS0R55ufnB5lMluMtOTlZaZ9Xr17B398fo0ePRuPGjWFhYQGZTAYfH598xZKeno5Vq1ahadOmsLOzg7GxMRwdHdGmTRv89ttvyMzMVLvf0qVLUbFiRZiamqJSpUpYuXKlxj6ePn0KuVyOdu3a5StWIiJ6P4yKOgAiKr6aNGmCihUrqi0zNDRU+vvs2bMYNGhQgfafkpKCdu3a4cyZMzAxMUHTpk1RokQJRERE4NSpUzh58iT27duHPXv2QCaTSfutWLEC48aNg6urKzp37ozg4GCMGjUKycnJmDhxoko/o0aNQnp6OtasWVOg8RMRUeFggktEOhs6dCj8/Py0quvs7IwRI0agXr16qFevHkJDQ/Hll1/mq/9Vq1bhzJkzKFu2LM6cOYMyZcpIZVeuXEHr1q2xb98+bN++HX369AEAZGRkYNasWXB0dMSNGzfg6OiI58+fo1q1apg7dy7GjBkDY2NjqZ29e/di3759WLhwIcqXL5+veImI6P3gEAUiei+8vb2xZs0aDB8+HJ6enjA1Nc13mydPngQAjBw5Uim5BQBPT08pqQ0ODpa2P3z4EC9fvkSPHj3g6OgIAHByckLPnj3x5s0b3L59W6r79u1bjB49GnXq1MH48ePzHS8REb0fPINLRMWWmZmZVvUUiSyQNRYYAOzt7ZXqODg4AADi4+OlbVOmTEFUVBT27dsHIyMeLomIigsesYlIZ6dOnUJYWBjevn0LBwcHNGzYEJ06dSqQs7Pa6NixI3bt2oWVK1eid+/eSmdxQ0NDERAQAHNzcwwYMEDaXq5cOQBQOlOb/e+SJUsCAEJCQrB69WqMHTsWnp6ehXxPiIioIDHBJSKdbd68WWWbq6srNm7ciA4dOhR6/35+fggKCsLmzZtRqVIlNG3aFE5OToiIiMCFCxfg4eGBNWvWSEktkDUcwdvbG4cOHUJAQAA6d+6MgwcP4tChQ6hVqxbKli2LtLQ0DB8+HKVLl8acOXMK/X4QEVHB4hhcIsqz2rVrY+nSpbh58ybi4uIQHR2Nv/76C40bN0ZkZCQ++eQTnD59utDjMDAwgL+/P37++WcIIXDy5EkEBATg/PnzMDc3h4+PDypUqKCy37Jly2Bubo6+ffvCxsYG/fr1g6WlJdavXw8A+PnnnxEWFobVq1fD0tJS2i8pKQlCiEK/X0RElD9McIkoz8aPH48xY8agRo0asLa2hpOTE9q2bYtz586hW7duSEtLw7hx4wo9jri4OHTp0gWTJk3CqFGj8N9//yEhIQFhYWHo3r07Fi1ahIYNGyIiIkJpP09PT9y8eROzZs3CsGHDMGfOHNy8eRMNGzbEvXv3MGfOHPTt2xcdO3YEACxfvhylS5eGhYUFLC0t0a9fP2ksLxERfXg4RIGICoxMJsOsWbPw559/4u+//0ZERARKly5daP1NnDgRhw8fxtdff41FixZJ22vWrIk//vgDr169wrFjx/D999/jt99+U9q3bNmymD59ukqbI0aMgLm5OZYsWQIg62zv2LFj0a1bN6xYsQK3bt3CzJkzcffuXYSEhMDAgOcJiIg+NDwyE1GBqlatmvT/J0+eFFo/GRkZ+P333wEAffv2VVunX79+AIATJ05o1eZvv/2GwMBA/Pzzz3BycgIA/Pjjjyhbtix27dqFbt26YcqUKRg/fjwuX76sdbtERPR+McElogKV/ad7a2vrQuvn+fPnSElJAQDY2NiorSOXywEAMTExubb38uVLTJw4Ea1atZJWXIuOjkZkZCQaNGigNE1Y06ZNAQDXr1/Pz10gIqJCwgSXiApUQEAAgKyks0qVKoXWj4ODgzQd2cWLF9XWCQkJAQC4u7vn2t6ECROQkJCAtWvXStsUy/smJCQo1VX8nX35XyIi+nAwwSWiPLl+/Tr279+P9PR0pe2ZmZnYsGEDpk6dCgAqS97q6tKlS6hatSqqVq2qtN3ExASffPIJAGDatGm4ceOGUnlgYKA0jlYxVEGTEydO4Pfff8e0adNQqVIlabuTkxNKlSqFU6dO4d69ewCyhkZs3LgRAFCvXr183TciIiocvMiMiPLk4cOH6NGjB+zs7FCvXj04OzvjzZs3uHnzJh4/fgwga0zsjBkzVPZt1KiR9P8XL14AAC5fvqy0fdq0aejcubP0d2JiIsLDw9XGsnjxYoSGhuL+/fuoV68eGjVqhJIlS+L+/fu4cuUKAKB169b45ptvNN6fpKQkfPnll/Dw8MCkSZNUyqdNm4YRI0bA09MTrVq1wn///Yd//vkHTZo0QevWrXN6qIiIqIgwwSWiPKlduzbGjRuHK1eu4N9//8X58+chhICzszM+/fRTDBo0CJ06dVK7r7qhBHFxcUrbFYmvNkqWLInr169j2bJl+PPPPxEWFoaQkBDI5XK0aNEC/fr1w5AhQ2BoaKixjdmzZ+PBgwe4cOGC2jPOw4cPh4mJCX7++WccPHgQtra2GDFiBBYsWMAhCkREHyiZ4KzlALI+ZOVyOWJjYzVesFLQ9oRHvpd+6P3rWcW1qEMgyrfaP/cp6hCoEPz9TUDRdLyVXwj1Vr8PL5XkGFwiIiIi0itMcImIiIhIrzDBJSIiIiK9wgSXiIiIiPQKE1wiIiIi0itMcImIiIhIr3AeXCI9kTZrYlGHQIXEeMYvRR0CEVGxwjO4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeqVYJLgzZ86ETCZTulWtWlUqT05OxsiRI+Hg4AArKyv4+voiOjq6CCMmIiIioqJSLBJcAKhRowYiIyOl27lz56Sy8ePH48CBA9i5cyeCgoLw7Nkz9OzZswijJSIiIqKiUmxWMjMyMoKLi4vK9tjYWGzYsAFbt25F69atAQCbNm1CtWrVEBISgkaNGr3vUImIiIioCBXIGdz09HRERkbixo0buHTpEu7du4e4uLiCaFpy584duLm5oXz58ujfvz8eP34MAAgNDUVaWhp8fHykulWrVkWZMmUQHByssb2UlBTExcUp3YiIiIio+NP5DG5QUBCOHj2KoKAghIaGIj09XaWOq6srmjdvjhYtWuDTTz+Fg4ODTn15eXnB398fVapUQWRkJGbNmoVmzZrh5s2biIqKgomJCWxtbZX2cXZ2RlRUlMY258+fj1mzZukUDxERERF9uPKU4MbFxeHXX3/FunXrcOfOHQCAEEJj/WfPniEgIADbt2/HuHHj0LNnT3z11Vdo2rRpnoLs2LGj9P9atWrBy8sLZcuWxY4dO2Bubp6nthSmTJmCCRMmSH/HxcWhdOnSOrVFRERERB8OrRLc9PR0rFy5EnPnzkVMTAyEELC2tkbDhg3h5eWFunXrwtHREfb29jA3N0dMTAxiYmLw4MEDXLx4ERcvXkR4eDi2bduGgIAAdOjQAT/99BOqV6+uU9C2traoXLky7t69i7Zt2yI1NRVv3rxROosbHR2tdsyugqmpKUxNTXXqn4iIiIg+XFoluNWrV8e9e/dgZGSETz75BJ9//jm6du0KExOTXPf96quvAGSNod2yZQu2bt2KI0eO4K+//sLGjRsxYMCAPAcdHx+Pe/fuYcCAAahfvz6MjY0RGBgIX19fAEB4eDgeP34Mb2/vPLdNRERERMWbVheZPXr0CMOHD8fdu3exd+9e+Pr6apXcZlepUiXMmjULd+7cwbZt21ClShU8ePBAq32/+eYbBAUF4eHDh7hw4QJ69OgBQ0ND9O3bF3K5HEOGDMGECRNw6tQphIaGYtCgQfD29uYMCkREREQfIa3O4N69e7dAx6f27t0bn332GZ49e6ZV/SdPnqBv37549eoVSpQogaZNmyIkJAQlSpQAACxevBgGBgbw9fVFSkoK2rdvj1WrVhVYvERERERUfGiV4BbGxVcymQwlS5bUqm5AQECO5WZmZli5ciVWrlxZEKERERERUTFWbFYyIyIiIiLSRqGsZPbq1Svcv38fAODu7g5HR8fC6IaIiIiISEWBnsG9evUqmjVrBicnJzRq1AiNGjWCs7MzmjVrhtDQ0ILsioiIiIhIrQI7gxsaGooWLVogMTERjo6OcHd3R1JSEu7evYvz58+jefPmOHPmDOrXr19QXRIRERERqSiwM7hTp05FSkoK1q9fj6ioKFy8eBE3btzAkydP0KdPHyQlJWHq1KkF1R0RERERkVpaJ7gRERE5ll+4cAHdu3fHkCFDYGDwf83a29tjw4YNMDY2RnBwsO6REhERERFpQesEt0aNGli2bBmEEGrLZTKZxjIAOZYRERERERUUrRNcNzc3jB8/Hl5eXrh+/bpKube3N/bv348tW7YobY+NjcWIESOQnp7OpXOJiIiIqNBpneDeuHED33//PW7cuIGGDRti0qRJSEpKksp/+OEHGBsbY+DAgXBxcYG3tzfq1KkDNzc3bNmyBWZmZpg7d26h3AkiIiIiIgWtE1wTExPMmjUL169fR6NGjfDLL7+gRo0aOHLkCACgfv36CAoKQqNGjfD8+XPpIrOkpCR4eXnh5MmTaNCgQaHdESIiIiIiQIdZFKpWrYozZ85g3bp1iI2NRZcuXdCnTx9ER0fD09MT58+fR3R0NIKDgxEcHIyoqCgEBwejUaNGhRE/EREREZESnacJGzp0KP7991/07t0bO3bsQLVq1bBu3ToAQIkSJeDl5QUvLy84OTkVWLBERERERLnJ1zy4JUqUwNatW3HkyBHY2triq6++QvPmzXH79u2Cio+IiIiIKE8KZKGH9u3b49atW5g0aRJCQkJQt25dTJ8+HampqQXRPBERERGR1vKU4GZkZGDz5s34/PPP0b59e3z++ef47bffkJ6eDjMzM/z4448IDQ1F3bp1MXfuXNSqVQunTp0qrNiJiIiIiFRoneAmJiaiZcuWGDRoELZu3Yrjx49j69atGDx4MFq0aIGEhAQAgIeHBy5cuIDly5cjKioKPj4+GDRoEGJiYgrtThARERERKWid4M6YMQPnz5+Hq6srli5disOHD2Pp0qUoWbIkQkJCMGPGDKmuTCbDyJEjcfv2bXTv3h2//fYbqlatit9//71Q7gQRERERkYLWCe7OnTshk8lw+PBhjB49Gh06dMDo0aNx6NAhCCGwc+dOlX1cXV2xe/du7Nu3D2ZmZvDz8yvI2ImIiIiIVGid4EZGRsLS0hK1atVS2u7h4QErKytERUVp3PeTTz7B7du3MWbMGN0jJSIiIiLSgtYJrouLCxISElSmALt16xbi4+Ph7Oyc4/6WlpZYvHixblESEREREWlJ6wS3Z8+eEEKgU6dOWLNmDf766y+sXr0anTt3hkwmg6+vb2HGSURERESkFSNtK86ZMwcXLlzA5cuXMXLkSGm7EAKenp6YPXt2oQRIRERERJQXWie4VlZWOHfuHLZs2YLjx4/j5cuXcHBwQNu2bfH555/DxMSkMOMkIiIiItKK1gkuABgbG2PQoEEYNGhQYcVDRERERJQvBbJULxERERHRh4IJLhERERHpFa0S3JEjRyIyMrJAO961axe2bdtWoG0SEREREWmV4K5evRoVKlTA2LFjVebBzYukpCRs2bIFtWrVQu/evXHnzh2d2yIiIiIiUkerBHfdunWQy+VYvnw5atasCU9PT/zyyy+4dOkS0tLSctz38ePH2LlzJwYMGABnZ2cMHDgQN2/ehK+vL5fuJSIiIqICp9UsCkOHDkXfvn2xcOFCLF++HFevXsW1a9cAZM2sUKVKFZQoUQL29vYwNTXF69evERMTgwcPHuD58+cAsubLBYBWrVph3rx5aNSoUSHdJSIiIiL6mGk9TZilpSVmzZqFKVOmICAgAOvXr8fFixeRmpqKsLAwqZ5MJpOSWQUnJyf07dsXI0aMQNWqVQsueiIiIiKid+RpHlwAMDMzg5+fH/z8/BAXF4dz587h4sWLePbsGV68eIHk5GQ4ODigRIkSqF69Opo3b86kloiIiIjemzwnuNnZ2NigU6dO6NSpU0HFQ0RERESUL5wHl4iIiIj0ChNcIiIiItIrTHCJiIiISK8wwSUiIiIivcIEl4iIiIj0ChNcIiIiItIrTHCJiIiISK8wwSUiIiIivcIEl4iIiIj0ChNcIiIiItIrOie4qampePz4MaKiolTK4uPj8c0336B27dqoW7cupk2bhqSkpHwFSkRERESkDSNdd/z1118xevRoDBw4EBs3blQq69y5M86dOwchBADgxo0bOHv2LE6dOgWZTJa/iImIiIiIcqDzGdxjx44BAPr166e0ff/+/Th79ixkMhn69++PoUOHwtjYGGfPnsXvv/+ev2iJiIiIiHKhc4J7+/ZtAED9+vWVtm/duhUymQzffvstfv/9d6xbtw5LliyBEAJbt27NX7RERERERLnQOcF98eIFLCwsYGdnp7T91KlTAIChQ4dK2wYMGAAA+Pvvv3XtjoiIiIhIKzonuAkJCTAwUN794cOHePHiBUqXLg13d3dpu6WlJWxtbRETE6N7pEREREREWtA5wbW3t0d8fDzevHkjbTt58iQAoHHjxir109PTYWVlpWt3RERERERa0TnBrVevHgBgw4YNAIDMzExs2LABMpkMrVq1Uqr74sULxMfHw8XFJR+hEhERERHlTucEd+DAgRBC4LvvvkPHjh3RsGFDBAcHw8rKCr169VKqe/bsWQBAtWrV8hctEREREVEudE5we/fuDT8/P2RkZODYsWO4evUqzMzMsGbNGtja2irV3b59u9ozu0REREREBU3nhR4AYOPGjRgyZAguXLgAW1tbtGnTBuXLl1eqk5qaCrlcji+++AKdOnXKV7BERERERLnJV4ILAE2aNEGTJk00lpuYmGDdunX57YaIiIiISCs6D1EgIiIiIvoQ5fsMLgDcuHEDx44dw6NHj5CUlCTNrAAAaWlpePHiBWQyGVxdXQuiOyIiIiIijfJ1Bjc2Nha+vr6oW7cuvvvuO6xatQr+/v5KddLS0lC7dm2ULl0a//zzT366AwD8+OOPkMlkGDdunLQtOTkZI0eOhIODA6ysrODr64vo6Oh890VERERExY/OCW5aWho6duyIffv2wcLCAp07d4aZmZlKPQsLCwwaNAiZmZnYtWtXvoK9fPky1q5di1q1ailtHz9+PA4cOICdO3ciKCgIz549Q8+ePfPVFxEREREVTzonuBs2bEBISAjKly+P8PBw7N+/H3K5XG1dX19fAMCZM2d07Q7x8fHo378/1q9fDzs7O2l7bGwsNmzYgEWLFqF169aoX78+Nm3ahAsXLiAkJETn/oiIiIioeNI5wd22bRtkMhkWL14MNze3HOvWrVsXBgYG+Pfff3XtDiNHjkTnzp3h4+OjtD00NBRpaWlK26tWrYoyZcogODhYY3spKSmIi4tTuhERERFR8afzRWZhYWGQyWRo165drnVNTEwgl8vx6tUrnfoKCAjA1atXcfnyZZWyqKgomJiYqCwu4ezsjKioKI1tzp8/H7NmzdIpHiIiIiL6cOl8BjcxMRHW1tYwMTHRqn5aWhqMjPKeT0dERGDs2LH4448/1I7x1dWUKVMQGxsr3SIiIgqsbSIiIiIqOjonuI6OjoiLi0N8fHyudR88eID4+PhchzKoExoaiufPn6NevXowMjKCkZERgoKCsGzZMhgZGcHZ2Rmpqal48+aN0n7R0dFwcXHR2K6pqSlsbGyUbkRERERU/Omc4Hp5eQEADh06lGvd5cuXAwCaNWuW537atGmDsLAwXL9+Xbp5enqif//+0v+NjY0RGBgo7RMeHo7Hjx/D29s7z/0RERERUfGm8xjcwYMHY+/evZg2bRqaNWum8ezs2rVrsXTpUshkMgwfPjzP/VhbW6NmzZpK2ywtLeHg4CBtHzJkCCZMmAB7e3vY2Nhg9OjR8Pb2RqNGjfJ+x4iIiIioWNM5we3cuTN8fX2xe/dueHp6ol+/fkhKSgIArFu3Do8ePcLBgwdx8+ZNCCEwbNgw6axvQVu8eDEMDAzg6+uLlJQUtG/fHqtWrSqUvoiIiIjow5avpXp///13mJmZ4Y8//sDixYul7V999RUAQAgBIOts78qVK/PTlZLTp08r/W1mZoaVK1cWaB9EREREVDzla6leMzMz/P777zhz5gwGDBiAChUqwNzcHCYmJihTpgz69euH06dP49dff9VpBgUiIiIiorwqkKyzadOmaNq0aUE0RURERESUL/k6g0tERERE9KFhgktEREREeqVAhigEBwfjxo0biImJQVpaWo51p0+fXhBdEhERERGpla8E98SJExg+fDgePXqk9T5McImIiIioMOmc4F66dAldunRBamoqAMDd3R1ubm6cLYGIiIiIipTO2eicOXOQmpqKqlWrYseOHSqrjRERERERFQWdLzILDg6GTCbD77//zuSWiIiIiD4YOie4iYmJsLCwQP369QsyHiIiIiKifNE5wS1btiwyMzMLMhYiIiIionzTOcH19fVFcnIyzpw5U5DxEBERERHli84J7nfffYfy5ctj5MiRePXqVUHGRERERESkM61mUdB0lnbOnDkYOXIkatSogeHDh8PLywvW1tY5ttW8efO8R0lEREREpCWtEtyWLVtCJpPlWGfevHm5tiOTyZCenq5dZEREREREOtB6HlwhRL47K4g2iIiIiIhyolWCy9kSiIiIiKi40PkiMyIiIiKiDxETXCIiIiLSKzonuKmpqbhx4wb+/fffXOv++++/uHHjBtLS0nTtjoiIiIhIKzonuNu3b0fdunWxZMmSXOvOmzcPdevWxa5du3TtjoiIiIhIKzonuLt37wYAfPHFF7nWHTJkCIQQTHCJiIiIqNDpnODevHkTRkZGaNiwYa51mzRpAiMjI4SFhenaHRERERGRVnROcJ89ewa5XA4jo9xnGjM2NoZcLkdkZKSu3RERERERaUXnBNfExARv377Vqq4QAvHx8bmuhkZERERElF86J7ju7u5ITU1FcHBwrnUvXLiAlJQUlC1bVtfuiIiIiIi0onOC27ZtWwgh8N133yE9PV1jvfT0dEyZMgUymQzt2rXTtTsiIiIiIq3onOCOGTMGZmZmOHfuHHx8fHDt2jWVOlevXkWbNm1w7tw5mJqaYuzYsfkKloiIiIgoN7lfIaZBqVKlsHbtWvj5+eHs2bPw9PSEi4uLNAzh0aNHiIqKghACMpkM69atQ5kyZQoscCIiIiIidXROcAFgwIABsLe3x+jRo/Hw4UNERkaqzJRQvnx5rFixAh06dMhXoERERERE2shXggsAnTt3RocOHXDq1ClcuHABUVFRkMlkcHFxQePGjdGqVSsYGOg8EoKIiIiIKE/yneACgKGhIXx8fODj41MQzRERERER6UznU6ubN2/Gzp07ta6/Z88ebN68WdfuiIiIiIi0onOC6+fnh3Hjxmldf+LEiRg8eLCu3RERERERaSVfg2OFEIVan4iIiIgor97b1V9xcXEwMTF5X90RERER0UfqvSS4wcHBeP36NUqWLPk+uiMiIiKij5jWsyj89ttv+O2335S2xcTEoHXr1hr3EULgzZs3+OeffyCTydCmTRvdIyUiIiIi0oLWCe7Dhw9x+vRppW2pqakq2zSpUqUKZs6cmYfQiIiIiIjyTusEt2XLlkp/z5o1C1ZWVpg4caLGfQwMDGBjY4OaNWuiZcuWMDQ01DlQIiIiIiJtaJ3gtmjRAi1atJD+ViS4M2bMKJTAiIiIiIh0ofNKZg8ePOAZWSIiIiL64Oic4JYtW7Yg4yAiIiIiKhDvbR5cIiIiIqL3Id8J7t9//43hw4ejevXqsLGxgaGhocabkZHOJ4yJiIiIiLSSr4xzxYoVmDBhAjIyMrgMLxERERF9EHQ+g3vx4kWMHTsWGRkZ+Prrr3H48GEAgL29PU6cOIEtW7bAz88PJiYmcHR0xNatW3Hy5MkCC5yIiIiISB2dz+AuW7YMQgiMGzcOixYtkrabmJhIq5v169cPY8aMQfv27TFt2jRcvXo1/xETEREREeVA5zO458+fh0wmw9ixY5W2vztUoU6dOli+fDnu3buHn376SdfuiIiIiIi0onOCGx0dDVNTU6XpwgwMDJCcnKxSt0ePHjA2NsaePXt07Y6IiIiISCs6D1GwsLCATCZT2mZtbY24uDikpKTA1NRU2m5sbAwLCws8evRI90iJiIiIiLSg8xnckiVLIi4uDunp6dK2ChUqAAAuX76sVPfZs2eIjY3lTAtEREREVOh0TnCrVauGjIwMhIWFSdtatmwJIQRmz54tDVVITU3FmDFjAAAeHh75DJeIiIiIKGc6J7jt2rWDEAIHDhyQto0cORKmpqYIDAxEqVKl0KRJE5QsWRJ79+6FTCbDqFGjCiRoIiIiIiJNdB6D6+vriydPnsDNzU3a5u7ujq1bt2LQoEGIiYlBcHAwgKyLzyZNmoT+/fvnP2IiIiIiohzonODa2tpixowZKtt79OiBFi1a4PDhw4iIiIBcLke7du1QsWLFfAVKRERERKQNnYco5MTe3h6ff/45pkyZgq+//jrfye3q1atRq1Yt2NjYwMbGBt7e3jhy5IhUnpycjJEjR8LBwQFWVlbw9fVFdHR0fu8GERERERVDhZLgFrRSpUrhxx9/RGhoKK5cuYLWrVujW7du+OeffwAA48ePx4EDB7Bz504EBQXh2bNn6NmzZxFHTURERERFQechCu9T165dlf6eN28eVq9ejZCQEJQqVQobNmzA1q1bpSWCN23ahGrVqiEkJASNGjUqipCJiIiIqIhoneDOnj27QDqcPn16vvbPyMjAzp07kZCQAG9vb4SGhiItLQ0+Pj5SnapVq6JMmTIIDg7WmOCmpKQgJSVF+jsuLi5fcRERERHRh0HrBHfmzJkqK5fpQtcENywsDN7e3khOToaVlRX27t2L6tWr4/r16zAxMYGtra1SfWdnZ0RFRWlsb/78+Zg1a5ZOsRARERHRhyvPQxQcHBxgaWlZGLHkqEqVKrh+/TpiY2Oxa9cuDBw4EEFBQTq3N2XKFEyYMEH6Oy4uDqVLly6IUImIiIioCOU5wU1OTkbXrl0xaNAgNG3atDBiUsvExESajaF+/fq4fPkyli5dit69eyM1NRVv3rxROosbHR0NFxcXje2ZmprC1NS0sMMmIiIiovdM61kUtm/fjvbt2yMxMRH+/v5o0aIFqlSpgh9//BGRkZGFGaNamZmZSElJQf369WFsbIzAwECpLDw8HI8fP4a3t/d7j4uIiIiIipbWCW6vXr1w+PBhPH78GHPmzEGFChVw584d/O9//0OZMmXQuXNn7Nq1C2lpaQUe5JQpU3DmzBk8fPgQYWFhmDJlCk6fPo3+/ftDLpdjyJAhmDBhAk6dOoXQ0FAMGjQI3t7enEGBiIiI6COU53lw3dzcMHXqVPz33384c+YMvvjiC5iZmeHIkSPo3bs3XF1dMXbsWFy7dq3Agnz+/Dm++OILVKlSBW3atMHly5dx7NgxtG3bFgCwePFidOnSBb6+vmjevDlcXFywZ8+eAuufiIiIiIoPmRBC5LeRhIQEbN++HRs3bsSFCxeyGpbJULt2bcyfPx/t27fPd6CFLS4uDnK5HLGxsbCxsXkvfe4Jf/9DO+j96FnF9b33mTZr4nvvk94P4xm/FEm/tX/uUyT9UuH6+5uAoul4a/5nYqIPVL98p5IFrkBWMrO0tMTgwYNx7tw5/Pfff5g8eTKMjY3x999/K42NJSIiIiIqbAW6ktn9+/fx22+/Ydu2bUhNTS3IpomIiIiItJLvBDcxMRE7d+7Epk2bcPbsWQCAEAI1atTA4MGDMWDAgHwHSURERESkLZ0T3PPnz2PTpk3YuXMn4uPjIYSAra0t+vbti0GDBsHT07Mg4yQiIiIi0kqeEtxnz55h8+bN8Pf3x507dyCEgIGBAdq0aYPBgwejR48eXDyBiIiIiIqU1glup06dcPz4cWRmZkIIAXd3d/j5+cHPz49L3BIRERHRB0PrBPfo0aOQyWQoV64cBg4ciBYtWkAmk+HBgwd48OCB1h02b95cp0CJiIiIiLSR5zG4Dx8+xKxZs3TqTCaTIT09Xad9iYiIiIi0kacEtwDWhCAiIiIiKlRaJ7h5GYZARERERFRUtE5wy5YtW5hxEBEREREViAJZqpeIiIiI6EPBBJeIiIiI9AoTXCIiIiLSK0xwiYiIiEivMMElIiIiIr3CBJeIiIiI9AoTXCIiIiLSK0xwiYiIiEivMMElIiIiIr3CBJeIiIiI9AoTXCIiIiLSK0baVDI0NCyQzmQyGdLT0wukLSIiIiIidbRKcIUQhR0HEREREVGB0CrBPXXqVGHHQURERERUILRKcFu0aFHYcRARERERFQheZEZEREREeoUJLhERERHpFa2GKGhDCIHXr18jISEhx4vSypQpU1BdEhERERGpyHeCe/DgQSxbtgzBwcFITEzMsS6nCSMiIiKiwpavBHfy5Mn45ZdftJ5GjNONEREREVFh03kM7tGjR/Hzzz/DyMgIP//8M/755x8AQIkSJXD37l2cO3cOM2bMgL29PRwdHXHgwAE8ePCgwAInIiIiIlJH5wR37dq1kMlkmDZtGiZMmIBq1aoByFr1rHz58mjcuDFmzJiB69evQy6XY8iQITA1NS2wwImIiIiI1NE5wb106RIAYNiwYUrb3x2GUKpUKaxYsQLPnz/HggULdO2OiIiIiEgrOie4r169goWFBZydnaVthoaGai80a9u2LczMzHDo0CFduyMiIiIi0orOCa6NjQ2MjY2VtsnlcsTHxyMhIUG5EwMDGBkZ4enTp7p2R0RERESkFZ0T3JIlSyIuLg7JycnStsqVKwMAzp8/r1T3zp07iI+Ph5FRgU27S0RERESkls4Jbq1atSCEwLVr16Rtbdu2hRACU6dORVRUFADgxYsXGDZsGGQyGTw9PfMfMRERERFRDnROcDt06AAhBPbt2ydtGzlyJGxtbXHt2jWUKVMGJUuWhKurK86ePQsAmDRpUr4DJiIiIiLKic4Jbvfu3bFp0yY0adJE2ubk5IRDhw6hdOnSSE9PR2RkJDIzM2FhYYFVq1ahQ4cOBRI0EREREZEmOg+KNTc3x8CBA1W2e3t74969ewgODkZERATkcjmaNm0KGxubfAVKRERERKSNQrnqy9DQEE2bNi2MpomIiIiIcqTzEIXZs2dj0aJFWtdftmwZZs+erWt3RERERERa0TnBnTlzJn7++Wet6y9evBizZs3StTsiIiIiIq3onOASEREREX2I3luCGxMTAzMzs/fVHRERERF9pN5Lgrtz5068ffsWZcqUeR/dEREREdFHTOtZFJYuXYqlS5cqbXvx4gXKly+vcR8hBN68eYO4uDjIZDJ07txZ90iJiIiIiLSgdYL75s0bPHz4UGlbRkaGyjZN2rRpg+nTp+clNiIiIiKiPNM6we3evTvKlSsHIOvM7ODBgyGXy7FkyRKN+xgYGMDGxgY1a9ZEhQoV8hsrEREREVGutE5wa9eujdq1a0t/Dx48WONqZkRERERERUXnlcwyMzMLMg4iIiIiogLBeXCJiIiISK/kO8EVQmDPnj3o1asX3N3dYWlpCUtLS7i7u+Ozzz7Dvn37IIQoiFiJiIiIiHKl8xAFAIiOjsann36KCxcuAIBSIvvo0SM8fvwYu3fvRpMmTbBjxw64uLjkL1oiIiIiolzonOCmpqaiffv2CAsLgxACDRs2RNu2bVGqVCkAwJMnT3DixAlcvHgR58+fR8eOHXHp0iUYGxsXWPBERERERO/SOcFdvXo1bty4ARsbG2zZsgVdunRRqTNnzhwcPnwY/fr1w40bN7BmzRqMHj06XwETEREREeVE5zG4O3bsgEwmw8qVK9UmtwqdOnXCypUrIYRAQECATn3Nnz8fDRo0gLW1NZycnNC9e3eEh4cr1UlOTsbIkSPh4OAAKysr+Pr6Ijo6Wqf+iIiIiKj40jnBvX37NoyNjdG7d+9c6/bu3RsmJia4ffu2Tn0FBQVh5MiRCAkJwfHjx5GWloZ27dohISFBqjN+/HgcOHAAO3fuRFBQEJ49e4aePXvq1B8RERERFV86D1FISkqChYUFjIxyb8LIyAgWFhZISkrSqa+jR48q/e3v7w8nJyeEhoaiefPmiI2NxYYNG7B161a0bt0aALBp0yZUq1YNISEhaNSokU79EhEREVHxo/MZXGdnZ8TGxuLx48e51n348CHevHkDZ2dnXbtTEhsbCwCwt7cHAISGhiItLQ0+Pj5SnapVq6JMmTIIDg5W20ZKSgri4uKUbkRERERU/Omc4DZv3hxCCIwfPz7HeW6FEJgwYQJkMhlatGiha3eSzMxMjBs3Dk2aNEHNmjUBAFFRUTAxMYGtra1SXWdnZ0RFRaltZ/78+ZDL5dKtdOnS+Y6NiIiIiIqe1gnu5s2bsXPnTulvRdK6b98+tG7dGoGBgUhLS5PK09LScOLECbRq1Qr79u2DTCbD+PHj8x3wyJEjcfPmTZ0vWFOYMmUKYmNjpVtERES+YyMiIiKioqf1GFw/Pz+4urqiV69eAIA6derg559/xsSJE3HmzBm0a9cORkZGcHR0BAC8fPkS6enp0tndn3/+GXXq1MlXsKNGjcLBgwdx5swZab5dAHBxcUFqairevHmjdBY3Ojpa4+ISpqamMDU1zVc8RERERPThydMQhXeHIowfPx779+9HlSpVIIRAWloaIiMjERkZibS0NAghUL16dRw4cADjxo3TOUghBEaNGoW9e/fi5MmTcHd3VyqvX78+jI2NERgYKG0LDw/H48eP4e3trXO/RERERFT85GupXgDo0qULunTpgrCwMFy5cgXPnz8HADg5OcHT0xMeHh75DnLkyJHYunUr/vzzT1hbW0vjauVyOczNzSGXyzFkyBBMmDAB9vb2sLGxwejRo+Ht7c0ZFIiIiIg+MvlOcBU8PDwKJJlVZ/Xq1QCAli1bKm3ftGkT/Pz8AACLFy+GgYEBfH19kZKSgvbt22PVqlWFEg8RERERfbgKLMEtTDnN0qBgZmaGlStXYuXKle8hIiIiIiL6UOk8TRgRERER0YcoT2dwo6OjYWhoqHNnMpkM6enpOu9PRERERJSbPA9R0Ga4ABERERFRUclTgmtpaYmJEycWVixERERERPmWpwTXysoKM2bMKKxYiIiIiIjyjReZEREREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFe0XoWhczMzMKMg4iIiIioQPAMLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHpFSa4RERERKRXmOASERERkV5hgktEREREeoUJLhERERHplWKR4J45cwZdu3aFm5sbZDIZ9u3bp1QuhMD06dPh6uoKc3Nz+Pj44M6dO0UTLBEREREVqWKR4CYkJKB27dpYuXKl2vKFCxdi2bJlWLNmDS5evAhLS0u0b98eycnJ7zlSIiIiIipqRkUdgDY6duyIjh07qi0TQmDJkiX4/vvv0a1bNwDA5s2b4ezsjH379qFPnz7vM1QiIiIiKmLF4gxuTh48eICoqCj4+PhI2+RyOby8vBAcHKxxv5SUFMTFxSndiIiIiKj4K/YJblRUFADA2dlZabuzs7NUps78+fMhl8ulW+nSpQs1TiIiIiJ6P4p9gqurKVOmIDY2VrpFREQUdUhEREREVACKfYLr4uICAIiOjlbaHh0dLZWpY2pqChsbG6UbERERERV/xT7BdXd3h4uLCwIDA6VtcXFxuHjxIry9vYswMiIiIiIqCsViFoX4+HjcvXtX+vvBgwe4fv067O3tUaZMGYwbNw5z585FpUqV4O7ujmnTpsHNzQ3du3cvuqCJiIiIqEgUiwT3ypUraNWqlfT3hAkTAAADBw6Ev78/Jk+ejISEBAwfPhxv3rxB06ZNcfToUZiZmRVVyERERERURIpFgtuyZUsIITSWy2QyzJ49G7Nnz36PURERERHRh6jYj8ElIiIiIsqOCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHqFCS4RERER6RUmuERERESkV5jgEhEREZFeYYJLRERERHpFrxLclStXoly5cjAzM4OXlxcuXbpU1CERERER0XumNwnu9u3bMWHCBMyYMQNXr15F7dq10b59ezx//ryoQyMiIiKi90hvEtxFixZh2LBhGDRoEKpXr441a9bAwsICGzduLOrQiIiIiOg9MirqAApCamoqQkNDMWXKFGmbgYEBfHx8EBwcrHaflJQUpKSkSH/HxsYCAOLi4go32GwS49++t77o/YqLs3zvfaYlp+ReiYol4/d4XMouIzmtSPqlwvU+P+eUJBZNt/QeFMFrytraGjKZTGO5XiS4L1++REZGBpydnZW2Ozs7499//1W7z/z58zFr1iyV7aVLly6UGImIdPbjyqKOgPSIfNqeog6B9M0w+XvvMjY2FjY2NhrL9SLB1cWUKVMwYcIE6e/MzEzExMTAwcEhx28ElHdxcXEoXbo0IiIicnwxEmmLrykqSHw9UUHi6+n9sLa2zrFcLxJcR0dHGBoaIjo6Wml7dHQ0XFxc1O5jamoKU1NTpW22traFFSIBsLGx4ZudChRfU1SQ+HqigsTXU9HSi4vMTExMUL9+fQQGBkrbMjMzERgYCG9v7yKMjIiIiIjeN704gwsAEyZMwMCBA+Hp6YmGDRtiyZIlSEhIwKBBg4o6NCIiIiJ6j/Qmwe3duzdevHiB6dOnIyoqCnXq1MHRo0dVLjyj98/U1BQzZsxQGRJCpCu+pqgg8fVEBYmvpw+DTAghijoIIiIiIqKCohdjcImIiIiIFJjgEhEREZFeYYJLRERERHqFCS59kPz9/SGTyeDn55evdvz8/CCTyeDv718gcVHx0rJlS8hkMpw+fbqoQyGij5hMJlO7iFRBHaM0tf8xY4JLRGqVK1cOMpkMDx8+LOpQiPh6JKI80Ztpwki/9OjRA40aNYJc/v7XtyYiInofNm/ejMTERJQpU6aoQ9E7THDpgySXy5ncEhGRXmNiW3g4REFP3LlzB4MHD4a7uztMTU1hZWWFsmXLonPnzti0aZNUL/vY1levXmHkyJEoU6YMTE1NUbZsWYwfPx6vX79W28eePXswdOhQ1KxZE3Z2djAzM4O7uzsGDx6M8PBwtftkHwP74MEDDBgwAC4uLjA1NUWFChXw/fffIyUlRWW/nMbgnjhxAl27doWzszOMjY1hZ2eHSpUq4fPPP8eZM2c0PkZ56f9jpnjsHz16BABwd3eXxndlHyumy+sBABISEjBt2jRUqlQJpqamcHNzw+DBg/H06VPMnDkTMpkMM2fOVNrn7du3WL9+PXr27IlKlSrB0tISlpaW8PDwwP/+9z+8efMmz/czPT0da9asQePGjSGXy2FmZoZKlSphzJgxePr0qcb9bt68CV9fXzg6OsLCwgIeHh5YsmQJMjMz9eZn9Ozj+davX4/69evD0tIStra26NSpE0JCQjTuGxMTg6lTp6JGjRqwsLCAtbU16tevj4ULFyIpKUml/unTpyGTydCyZUskJiZi+vTpqFatGiwsLFCuXDmtX4+5jdt/+PAhZDIZypUrp7b83Llz6NChA2xtbWFlZYUGDRpg8+bNKo+Htu0BOQ+rSE9Px6+//oqWLVvC3t4epqamcHd3x1dffYWIiAi17ely7AsMDETPnj3h6uoKExMTODk5oUePHggODtYYd3GUlJSEX375BY0aNYKtrS3MzMxQpUoVTJ48Ga9evVKqm/21kpCQgClTpqBixYowNTWFi4sLBg4cmOMx4M8//0SzZs1gbW0NuVyOFi1a4NChQ1q9Jt6laQxuSkoKfvrpJ9SvXx/W1tYwMTGBi4sLGjRogMmTJyMmJkZjm7t370bTpk1hY2MDS0tLNGnSBIcPH9Y6Jr0hqNgLCwsTNjY2AoCoUqWK6Nmzp+jVq5fw9vYWVlZWonbt2lLdTZs2CQDik08+ERUqVBC2traie/fuokePHsLOzk5q4/nz5yr9GBoaCgsLC+Hp6Sl69uwpPvnkE1G+fHkBQFhaWorz58+r7DNw4EABQIwdO1bY2NiIsmXLis8++0z4+PgIc3NzAUB0795dZT9FnAMHDlTa7u/vL2QymZDJZMLLy0v07t1bfPLJJ6JevXrC0NBQjB07tkD6/5idPXtWDBw4UFhaWgoAwtfXVwwcOFC63b59Wwih2+shPj5eNGjQQAAQVlZWokuXLqJXr17C1dVVODk5CT8/PwFAzJgxQyUmAKJEiRKiadOmonfv3qJdu3bCwcFBABAVK1YUL1++VOmvRYsWAoA4deqU0vbk5GTh4+MjAAgzMzPRsWNH0bt3b1G6dGkBQDg6OorQ0FCV9k6fPi29bipUqCD69Okj2rZtK0xMTETv3r1F2bJlBQDx4MEDnR//DwEAAUCMHz9eyGQy0bRpU9G3b19Rs2ZNAUAYGRmJPXv2qOx379496TEoUaKE8PX1FZ988omwtrYWAES9evVETEyM0j6nTp0SAISXl5do0KCBsLS0lJ4PHx8frV+Pmo4ZCg8ePBAARNmyZVXKtm3bJgwMDAQA4eHhIfr27SuaN28uDAwMxLfffis9Htq2p6Dp9RAXFydatmwpvQ9atGghPv30U1GlShUBQDg4OIirV68q7ZPXY58QQkycOFEAEAYGBqJhw4aiV69ewsvLS8hkMmFoaCg2btyoMfbi5OnTp8LDw0MAEPb29sLHx0f06NFDevzLlSsnHj58KNVXvFa6d+8uatWqJWxtbUXXrl1Ft27dhJOTk/S8vnnzRqWvBQsWSK8HLy8v0bdvX+mYNnnyZI2vCXWvISHUH6MyMjJEmzZtBABhY2MjOnbsKPr27St8fHyk+3Tt2jW17U+fPl3IZDLRpEkT0bt3b1G7dm0BQMhkMrXvWX3GBFcPDBo0SAAQc+fOVSlLTEwUQUFB0t+KNzYA0ahRI/Hq1Sup7PXr16Jx48YCgOjTp49KWwEBASI+Pl5pW2Zmpli5cqUAIGrUqCEyMzOVyhUJJgDxv//9T6Snp0tlYWFh0ofWhQsXlPbT9GHl7u4uAIizZ8+qxBcdHa3yoaBr/6T5w1lBl9fD+PHjBQBRvXp18ezZM2l7UlKS+PTTT6Xn6t0ENyIiQpw4cUJkZGQobU9ISBBffPGFACC+/vprlRg1JbiKpKVChQpK9y81NVUMGTJEABDu7u4iJSVFKktMTBQlS5YUAMTEiROVYvnnn3+Es7OzFL++JLjm5uYiMDBQqWzhwoUCgJDL5SI6OlqpzMvLS/oCnf218fz5c1GvXj0BQPTr109pH0WCC0DUqlVLREZGqo0pt9ejrgnu06dPhZWVlQAgli5dqlQWFBQkHSMKMsHt16+fACC6dOmi8hguXrxYABCVKlVSOl7l9di3bt066cvf33//rXK/rK2thYmJifjvv/80xl8cZGZmiiZNmggAYsiQISIuLk4qS0tLk5L8Vq1aSduzfw62b99exMbGSmUxMTGiTp06AoD44YcflPq6evWqMDQ0FIaGhirJ4o4dO6QvSflNcIOCggQAUbduXaX7o3D58mWVL/SK9m1tbUVISIhS2YwZMwQAUblyZZW29BkTXD3QqVMnAUDlAKdO9jf2u98AhRDixo0bQiaTCQMDAxEREaF1DN7e3gKA+Oeff5S2KxLM+vXrqyQ7Qgjx5ZdfCgBi9uzZauN898PKwsJCyOVyrePStX/KPaHIibrXQ2JiopRIHDt2TGWf58+fCwsLC7UJbk4SEhKEkZGRKFGihEqZug+PpKQkKY79+/erbU+RrP7xxx/S9s2bN0sfXqmpqSr7rVixQu8S3HHjxqkt9/T0FADEvHnzpG2Ks+wWFhYiKipKZZ8rV65IZxOzH1uyJ7hnzpzRGFNhJbizZ88WAIS3t7fa/b755psCTXBv3bolZDKZcHNzU5u8CPF/x/QDBw5I2/Jy7MvIyBBubm4CgLhy5YraOoovKhMnTtSqzQ/VkSNHBABRp04dkZaWplKekZEh/fIQFhYmhPi/14qlpaXSF22FgIAAAUC0bt1aafvgwYMFANG3b1+1sSi+pOc3wd2xY4cAIMaMGZPTXVfb/rJly1TKkpOThVwuFwDE48ePtW6zuOMYXD3QsGFDAMBXX32FY8eOITk5Odd9ateujTp16qhs9/DwQN26dZGZmal2TNfdu3exYsUKjBs3DkOGDIGfnx/8/PwQHR0NABrHXnbp0kXtHH3VqlUDgBzHO2XXsGFDxMbG4osvvkBoaCgyMzO12q+g+idleXk9hIaGIj4+Ho6OjmjXrp1KWyVKlEDbtm1z7O/ChQtYsGABRo4ciUGDBsHPzw9ff/01TExM8OLFC43jx7O7cuUK4uPjYW9vj65du6qUW1hYoE+fPgCAU6dOSduDgoIAAL169YKxsbHKfv3798+17+Jm4MCBard/8cUXAKA0blDx/w4dOsDZ2Vlln/r166N27drIzMyUHsvsnJyc0KxZs/wHnUeKWDQ9fwX9vB4+fBhCCHTs2BHW1tZq67Rs2RJA1utdIS/HvmvXruHZs2eoUKEC6tevr3UfxdGhQ4cAAL6+vjAyUr1u3sDAAM2bNwegel89PT3h6uqqso+mz4X39VqpV68eDA0NsXHjRqxcuRKRkZFa76vumGZqaory5csD+Lg+6ziLgh6YNGkSzp07hxMnTqBDhw4wNjZG7dq10bx5c/Tp0wcNGjRQ2cfd3V1je+7u7rh69SqePHkibcvIyMCoUaOwdu1aCCE07hsXF6d2u6YrRW1sbABAq6QcAFatWoUuXbrg999/x++//w5ra2s0aNAArVu3xoABAzT2U1D9UxZdXg+K11NuF+Wo8/z5c/j6+uLcuXM5xhUXFwc7O7sc6ygO8Dm9BypUqKBUF8g9fltbW8jlcsTGxubYf3Gi6TFSbM9+jND2cf3777/Vfsjm5cKcgpTb81rQcd2/fx8AsGHDBmzYsCHHui9evJD+n5djn6KPe/fu5Tr5f/Y+iiPFfZ02bRqmTZuWY91372tePxfe12ulQoUKWLx4MSZNmoRRo0Zh1KhRKFu2LLy9vdGlSxf06tULJiYmavflZ93/YYKrBywsLHD8+HFcvnwZR48exYULF3DhwgVcuXIFixYtwtdff42VK1fmud3sicvSpUuxZs0auLi4YNGiRWjcuDGcnZ1hZmYGAOjXrx+2bdumMdkxMCiYHwuqVauG8PBw/PXXXzh58iQuXLiAs2fP4uTJk5g9ezY2bNiAzz//vND6pyz5eT3k9IGrqWzo0KE4d+4cvL29MWvWLNSuXRt2dnbSmVQ3NzdERkbmmGwXFF3i11cF+Xibm5sXWFvq5PZrj6bnLj/Pqbo+Fdvq1KmD2rVr57i/l5eX9P+8HPsUfbi4uKB9+/Y59uHo6Jin+/ShUdzXpk2bSl9MNalRo4bS37p+LhTGa+Vdo0ePxmeffYb9+/fj3LlzOHfuHAICAhAQEIAZM2bg7Nmzas8+87Pu/zDB1SMNGjSQztamp6dj3759+OKLL7Bq1Sp8+umnaNWqlVT3wYMHGttRTGlTqlQpaduOHTsAAGvXrsUnn3yiss+dO3cK4i5oxcjICJ06dUKnTp0AZJ21W7RoEWbNmoURI0agR48esLS0fG/xfIx0eT2ULFkSAHKcQktdWUJCAg4fPgwDAwMcPnwYtra2KuVRUVFax66II6f3gOKskKJu9v9rij82Nlan6co+ZA8ePFA7lEndMULx+CgeO3XUPa4FRXFG6+3bt2rLFdOMvatkyZIIDw/X+Lxq2p5bf2lpaWp/Wv5/7d17UFTnGQbw53DZC4FlAS/RRKmGWJEoqMGoZARpJDSOEhAsYBUJGmvRYhKTqG2KMZ3oxGnMrQidOkq81AmpGJtJa42XGEmsYxVMMNQYY4y2eOMi4eYKb/+ge2Tds9wRWZ/fDDN6zn7nvOdw9uzLt995v0GDBgEAwsLC8M4772i2daSt9z7rPvz8/Jx+mnLrscbExGDp0qXduq/77rsPZ86cwdmzZzFixAi79V1dHrB///6YP38+5s+fDwAoKSnBU089hc8//xzLli1Dbm5ul+7P2TDVd1Jubm6Ij49X/3ovLCy0WX/ixAmcOHHCrl1xcTGOHTtmM24JgFpzz9/fX7PNrdu/nUwmE1auXAmz2YyamhqcOnWqx2JxJtYP8Bs3btit68j1MHbsWHh4eODy5cv4+OOP7dZfuXIFe/bssVteWVmJhoYGmEwmu+QWALZs2dKunsSHH34Ynp6eKCsrw65du+zW19bWYvv27QBg80eh9f2Ql5eneU62bdvW5hh6i82bN7e43DqOs/m///73v6tjsJs7fvw4CgsL7e4tbdXS9QjcTJpLSko011vHat7KGsuf//xnzfWOfq99+/aFTqdDWVkZLl26ZLd+9+7dmrH+9Kc/BQDs2rWr018XO7r3hYaGok+fPjh58iSKi4s7tY87nfV85uXldfs3ONZrxdE10d33gOHDh+PFF18EYP+ZTvaY4DqBrKwszYe7SktLcfToUQD2iYiIYOHChTYP5VRWVmLhwoUQEcyYMUP9yxi4Oej+D3/4g83Xbv/9738xZ84chx86Xammpgavv/665pixTz/9FBUVFXB1dbXpVaKOs55HrQ/IjlwPHh4emDdvHgDgmWeesUmC6uvrsWjRIlRXV9u169+/P3x8fFBRUWGXcB0+fBjLly9v13EZDAakp6cDAJ577jmbnj2LxYKMjAyUlpZiyJAhiI+PV9clJCRgwIABOHv2LH7961/bHHdJSQlWrVrVrjh6g/Xr19sVoF+3bh2OHDkCLy8vpKWlqcsfffRRPPLII6itrcWCBQtQU1Ojrrty5QoWLFgAAEhMTLS5t7RVS9cj0PQQlslkwsmTJ+2uk7y8PLz11lua7dLS0uDh4YFDhw7ZDeUqKChAVlaWZjt3d3c14fnNb35jcz0UFRVh0aJFmu1Gjx6NGTNm4Pvvv0dcXJzDby22bt2qvkfae+9zd3dHZmYmRASxsbGaY9cbGhqwb9++Fift6A1iYmIQGhqKI0eOIDU1VfMclZeXIzs7u9OfU4sWLYKLiwu2b9+ODz74wGbdjh078Je//KVT27fat28fPvroI1gsFpvlIoIPP/wQgHbnAt2iJ0o3UNeyFnIeMmSITJs2TWbNmiVRUVFqQfrIyEi1fErziR6GDh0qZrNZYmNjJS4uTnx9fdX6i7fWZjx8+LDodDq1ruLMmTMlOjpajEajBAUFSWxsrACQjRs32rSzlum6dbmVo9I+WsvLy8vVMkPBwcESHx8vSUlJMmHCBFEURfD/ItddsX+6WfbK09NT4uLiJC0tTdLS0qSkpKTD10NVVZWMHTtW3e706dNl5syZMnDgQOnTp4/6+2pefkrkZm1Q4GZx9bCwMFEURWbPnu2whFRLEz1YC6kbjUZ54okn5Gc/+5kMHjxYgKZC+1rllfbu3SsGg0E97sTERImKihKdTicJCQlq+wsXLnTFr6DHWM/1kiVLRFEUmTRpkiQlJanF9F1dXSUvL8+uXfOJHvr16yfx8fESExOjTkTT0kQP4eHhLcbU0vVo1fw6mTBhgsTHx0tQUJAoiiIvvfSSwxJOmzdvVmuYjho1SpKSkiQ8PFxcXFzUMmHu7u527Zq/D4YNGybx8fEyYcIEcXd3l5SUlBYnerBefzqdTkJDQ2XmzJmSkJAgoaGh6jatk1h05N4nIvL888+r5yMoKEhiYmIkMTFRIiIixGw2CwBZv359i+e9N7hw4YJau/aee+6RiRMnSmJiosTFxUlISIi4uroKAKmtrRWRzk0K8uqrr6rndPz48ZKcnCzjxo1TS65ZP0NvZW1zK617lPU6NplMEhERIcnJyTYTV3h7ezuc6MERR/dCZ8YE1wl8+OGHsnDhQhk9erT07dtXdDqd3H///RIRESG5ubk2NTubv7EvXbokCxYskPvvv190Op0MGjRIfvWrX9lM/tDciRMnZPr06TJgwAAxGAzy4IMPygsvvCDXrl1zmEh2ZYJrsVgkOztbkpKSZPjw4eLt7S1Go1EeeOABmTFjhl1B+s7sn5rqR65evVqCgoLUpK75DbIj14NIU5K7YsUKGTp0qOh0Orn33ntl9uzZ8t1336l1JnNycuza7dy5UyZOnChms1k8PT3l4YcflqysLGlsbGx3givSdD1lZWXJ+PHj1aL3DzzwgCxevFjOnz/v8LwUFRVJbGys+Pr6isFgkBEjRsjatWulvr5edDqduLi4qB+kvVXzD8v169dLSEiIGI1GMZlMEh0drTlLndXVq1dl+fLlEhgYKAaDQTw8PGT06NGyZs0aqampsXt9WxPc1q5Hq9zcXBkzZowYDAYxmUwSGRkpe/bsabVu7YEDB2TKlCliMpnEw8NDxowZIxs2bJBz584JABkwYIBmu88//1yioqLEZDKJ0WiU4ODgVq9L6/Fs27ZNnnjiCenfv7+4u7uLn5+fPPTQQ5Kamir5+fnqvbsj9z6rgoICmTVrlvj7+4terxcvLy8ZNmyYPPnkk/KnP/3J7g+O3qqurk6ys7Nl8uTJ4ufnJ25ubtKvXz8JCQmR9PR0m9rbnUlwRUR27NghYWFhcs8994iXl5c8+uijsnPnTjl48KDDmsrtSXBPnz4tK1eulJ/85CcyePBgMRgM4uPjI6NGjZJly5Zp1qhngmtPEbkNjx3THWPTpk1ITU1FSkqK0z98QL2LxWLBQw89hFOnTuFf//oXxowZ09MhtcvBgwcRHh6OkSNHao5v702sT4Pz4wF49913kZKSgmnTpmmO2SayWrVqFTIzM7F48WKHQ2Lo9uEYXCK6rbSK1P/www9YtGgRTp06hVGjRt2xye3ly5c1qy98+eWX6pPOqamptzss6qRz585pVuIoKChQn8zn75WApgoxWhPK7Nq1C6tXr4aiKA4nSKHbi2XCiOi2mjFjBmpqajBy5Ej069cPly5dQmFhIcrKyuDr63tHf7NQXFyMyZMnY8SIERg6dCiMRiO+/fZbHDt2DI2NjZgyZQoWL17c02FSO+3btw9paWkIDg7G4MGD4erqim+++QZFRUUAmpLb2NjYHo6S7gRbt27Fq6++itGjR2PQoEGwWCz497//rT7ovXLlSoezx9HtxQSXiG6rZ599Fvn5+Th58iQKCgrg4uICf39//PznP8fSpUs79IT97TJs2DCkp6fjk08+QUFBAaqqquDl5YWJEyciOTkZ8+fP15wulO5s48ePR2pqKj799FMcOHAA1dXVMJvNeOyxx/DUU08hKSmpp0OkO0R0dDS+/vprHD58GF999RXq6urg5+eHadOm4Ze//CWio6N7OkT6P47BJSIiIiKnwjG4RERERORUmOASERERkVNhgktEREREToUJLhERERE5FSa4RERERORUmOASERERkVNhgktEd52VK1dCURR1SloiInIuTHCJiIiIyKkwwSUiIiIip8IEl4iIiIicChNcIqI2KC8vx4YNGzBz5kyMHDkSvr6+MBgM8Pf3R3JyMg4fPuywrXXMb0REBABg7969mDp1Kvr27QuDwYDAwEC8/PLLqKurazGGDz74AJGRkTCbzfD09ERwcDBee+01WCwWu30096Mf/QiKomDTpk0Otz137lwoioK5c+farSstLcXbb7+NmJgYBAYGwtvbG0ajEQEBAZg3bx6Ki4tbjLszsVudPXsWS5YsQVBQEDw9PeHh4YHhw4cjIyMD586da3X/RHSXESKiu0xmZqYAkPbcApu3cXV1FR8fH9Hr9eoyRVHkzTffbLFteHi4vPbaa6IoiiiKImazWRRFUbcxefJkuXHjhuY2nnvuOfV1AMRsNoubm5sAkEmTJsmKFSvUfdzK399fAMjGjRsdHl9KSooAkJSUFIfrAIibm5v4+vqq+wYger1e3n//fYfb7kzsIiJbtmyxOdd6vV6MRqP6fy8vL9m9e7fD/RPR3Yc9uEREbTBw4EBkZmbi6NGjqKmpQVlZGWpra3HmzBlkZGQAAJ599lkcP37c4TaKioqwbNkyLFu2DJcuXUJ5eTkqKirw29/+FgCwf/9+5Obm2rXbvn07fv/73wMAkpOTcf78eZSXl6Oqqgp//OMfceTIEaxfv74bjrpJQEAA1q5diy+++AK1tbW4evUq6uvr8eWXX2LWrFmor69HSkoK/vOf/3R57Hv27MGcOXPQ0NCAF154Ad9++y1qa2tRXV2NkpISJCQkoKqqCgkJCezJJaKbejrDJiK63TrSg9ua9PR0ASBpaWkt7i8zM1OzfVxcnACQxx57zGZ5Y2OjBAQECACZMmWKNDY22rXduHGjuv3u6MFtzdSpUwWAvPLKK10ae0NDgzz44IMCQHJychzuf/r06QJAMjIy2h07ETkn9uASEXWBqVOnAgAOHTrk8DV6vR5Lly7VXBcTEwMAOHHihM3ywsJCnD59GgCwYsUKzdq9KSkpGDx4cIfi7gqOjr2zsR88eBBff/01+vTpg3nz5jnc/5w5cwAAu3fv7lD8ROR83Ho6ACKi3uLMmTPIysrC/v378c0336CqqgqNjY02rzl//rzD9tYHpLQMHDgQAFBWVmaz/NixYwAAd3d3TJw4UbOtoigIDw/H5s2b23ws7VVUVIScnBwcOnQIZ8+exQ8//AARsXnNrcfe2dgLCgoAAJWVler50XL9+nUAwHfffdf2AyIip8YEl4ioDfLz85GUlIT6+np1mclkgsFggKIouH79OsrLy1FdXe1wG15eXg7Xubk13Y5v3Lhhs/zy5csAAD8/P+h0Ooft77vvvjYdR0e88847yMjIUJN5RVHg7e0NvV4PAKitrcW1a9fsjr2zsVvH9FosFly8eLHVOGtra1s/GCK6K3CIAhFRK65evYq5c+eivr4ekZGROHDgAGpqalBZWYmLFy+itLQUeXl53RpDT00r/NVXX2HJkiVobGxEQkICjhw5grq6OpSXl6O0tBSlpaV4/fXXAcCuR9eqo7E3NDQAAB555BGISJt+iIgA9uASEbXqo48+wrVr1+Dj44O//vWv8PDwsHtNaWlpt+y7b9++AIArV67g+vXrDntCL1y44HAb1t7hlursVlZWai5///330dDQgMDAQGzfvh0uLvb9Io6OvbOx33vvvQA49ICI2o89uERErfj+++8BAD/+8Y81k1sA+Pjjj7tl32PGjAHQ9DX9Z599pvkaEcHBgwcdbsPHxwfAzeO4VWNjI44ePaq5ztomODhYM7kFHB97Z2MPCwsD0JRAO4qPiEgLE1wiolZ4e3sDAE6dOqXZC1pYWIht27Z1y75DQkIQEBAAAFizZo3m1/BbtmxpsZczODgYQNM4Yq32ubm5Dh+Osx77F198odn2b3/7Gw4cONAtsU+ePFlt/8wzz6gPkzly6wN6RHT3YoJLRHe1K1eutPhTUVGBqKgouLi4oKysDLNmzVK/Ur9+/Tree+89REVFtfgAWWcoioKXX34ZQFMZrOYTKtTV1WHDhg1YsGCB2kurJSkpCUDTeNqnn34aV69eBQBcu3YN69atwy9+8Qv4+vpqto2OjgYAFBcXIz09XU0iq6urkZOTg/j4ePj5+XVL7G5ubsjOzoabmxsOHTqESZMmYe/evbBYLOprzpw5g+zsbISGhiIrK8vhOSCiu8ztLrxLRNTTmk+80NpPcHCwiIi8+OKLNsu9vb3F3d1dAMiQIUNk69atDiePaD5VryP79+9vcfKJJUuW2EwL7OPjo+4/MjJSli9fLgDk8ccf12w/e/Zsu+lyXVxcBIAsXry4xYkeEhMT7dq6uroKABk7dqy8/fbbAkD8/f27Jfb8/Hzx8vJSt+Hu7i5+fn420/cCkN/97ncOzy8R3V3Yg0tE1AZr1qzBu+++i3HjxsFoNMJisSAgIAArVqzA8ePHW6zT2hXWrVuHHTt2ICIiAl5eXqivr0dgYCDWrl2L3bt3qyW6zGazZvtNmzbhzTffREhICIxGIxobGxEWFob33nsPb731Vov73rp1K9544w2MGjUKer0eDQ0NGDlyJFavXo2CggKHtX27KvYnn3wSp0+fRmZmJsaNGwdPT09UVFRAr9cjODgY8+bNQ35+Pp5//vmWTyIR3TUUEdZVISLq7cLCwvDZZ59h1apVeOmll3o6nHbpzbET0Z2JPbhERL3cJ598olYpsI6Z7S16c+xEdOdigktE1Aukp6dj06ZNKC0tVasRVFRUICcnBzExMQCAyMhIhIaG9mSYmnpz7ETUO3GIAhFRLxASEoKioiIAgF6vh4eHByoqKtSEccSIEfjHP/7RrVP2dlRvjp2IeicmuEREvcCuXbuwc+dO/POf/8TFixdRWVkJk8mEoKAgxMXF4emnn3Y4CUVP682xE1HvxASXiIiIiJwKx+ASERERkVNhgktEREREToUJLhERERE5FSa4RERERORUmOASERERkVNhgktEREREToUJLhERERE5FSa4RERERORU/gdhrhPF3BdEBQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUZeP18bMJkISQQg+d0ENXEKQXo4BBQRAQ8aGIoD6AFAFBaQEBQVQQlaoUH4qoiDQRASlSQlGKNOm9SgktCST3+wdv9seSQgib2SR8P9eVS3bu2ZmzM1uS48yszRhjBAAAAAAAAFjIzdUBAAAAAAAA8PihlAIAAAAAAIDlKKUAAAAAAABgOUopAAAAAAAAWI5SCgAAAAAAAJajlAIAAAAAAIDlKKUAAAAAAABgOUopAAAAAAAAWI5SCgAAAAAAAJajlAIAAGnC6tWrZbPZ9MMPP7g6iiRp+vTpstls2rp1q6ujONXHH3+sIkWKyN3dXRUrVnR1nEdWt25d1a1bN0nztm/fXoULF07WeoYMGSKbzZas+wIA8LiilAIAuNShQ4f05ptvqkiRIvL09JSvr69q1KihcePG6datW66O99D27NmjIUOG6OjRow993759+8pms6lVq1bOD4YHOnr0qGw2W5J+krN/04Lly5erb9++qlGjhqZNm6YRI0ak6Prat28vm80mX1/feF/vBw4csG/zMWPGOGWdp0+f1pAhQ7R9+3anLC+lpNfSEwCAe2VwdQAAwONryZIlatGihTw8PNS2bVuVLVtWUVFR+uOPP9SnTx/t3r1bkydPdnXMh7Jnzx6Fhoaqbt26D3XEhTFGc+bMUeHChbVo0SJdu3ZNPj4+KRcUceTMmVPffvutw7RPPvlEJ0+e1GeffRZn3vRo1apVcnNz09dff61MmTJZss4MGTLo5s2bWrRokVq2bOkwNmvWLHl6eioiIsJp6zt9+rRCQ0NVuHDhOEeCTZkyRTExMU5bFwAASBylFADAJY4cOaJXXnlFhQoV0qpVq5QnTx77WJcuXXTw4EEtWbLkkddjjFFERIS8vLzijEVERChTpkxyc3P9gcOrV6/WyZMntWrVKjVo0EDz589Xu3btXB3Lqe7cuaOYmBjLyo6H5e3trddee81h2ty5c3X58uU409Or8+fPy8vLy2n7KLHXXywPDw/VqFFDc+bMiVNKzZ49WyEhIfrxxx+dkudBMmbMaMl6AADAXa7/LRwA8FgaPXq0rl+/rq+//tqhkIpVrFgxde/e3X77zp07GjZsmIoWLSoPDw8VLlxY77//viIjIx3uV7hwYTVu3Fi//vqrKleuLC8vL02aNMl+PaK5c+dqwIABypcvnzJnzqzw8HBJUlhYmBo2bCg/Pz9lzpxZderU0fr16+PkOnXqlDp27Ki8efPKw8NDgYGBevvttxUVFaXp06erRYsWkqR69erZTztavXr1A7fHrFmzVLp0adWrV0/BwcGaNWtWnHliH8O8efM0fPhw5c+fX56ennrmmWd08OBBh3kPHDig5s2bKyAgQJ6ensqfP79eeeUVXb16VZLUrFkzPfnkkw73eeGFF2Sz2bRw4UL7tLCwMNlsNv3yyy/2aVeuXFGPHj1UoEABeXh4qFixYho1apTDESaxp8KNGTNGY8eOte+3PXv2SJLGjx+vMmXKKHPmzMqaNasqV66s2bNnP3A7SVJ0dLTef/99BQQEyNvbWy+++KJOnDhhHx88eLAyZsyoCxcuxLlv586d5e/v79QjbyIjI9WrVy/lzJlT3t7eeumll+Jd9y+//KJatWrJ29tbPj4+CgkJ0e7dux3mad++vbJkyaLjx4+rcePGypIli/Lly6cvv/xSkrRr1y7Vr19f3t7eKlSoULzbLCn7Jz42m03Tpk3TjRs37M/d6dOnS3r019+DvPrqq/rll1905coV+7QtW7bowIEDevXVV+PMn9D1m2JPeUvo9MrVq1frqaeekiR16NAhzuO8/5pS9z6PP/vsMxUqVEheXl6qU6eO/v777wc+Lkn63//+p0qVKsnLy0vZsmXTK6+84vB8fRRRUVEaNGiQKlWqJD8/P3l7e6tWrVr6/fffHea793FMnjzZvh+feuopbdmyJc5yv//+e5UuXVqenp4qW7asfvrppzjbJvb96P73t9h1xW5TSdq5c6fat29vP007ICBAr7/+uv7999846169erUqV64sT09PFS1aVJMmTUpwfydl2z7ovRAA4FocKQUAcIlFixapSJEiql69epLmf+ONNzRjxgy9/PLLevfddxUWFqaRI0dq7969+umnnxzm3b9/v1q3bq0333xTnTp1UsmSJe1jw4YNU6ZMmdS7d29FRkYqU6ZMWrVqlRo1aqRKlSpp8ODBcnNz07Rp01S/fn2tW7dOVapUkXT3tJ8qVaroypUr6ty5s0qVKqVTp07phx9+0M2bN1W7dm298847+vzzz/X+++8rKChIkuz/TUhkZKR+/PFHvfvuu5Kk1q1bq0OHDjp79qwCAgLizP/RRx/Jzc1NvXv31tWrVzV69Gi1adNGYWFhku7+odqgQQNFRkaqW7duCggI0KlTp7R48WJduXJFfn5+qlWrln7++WeFh4fL19dXxhitX79ebm5uWrdunV588UVJ0rp16+Tm5qYaNWpIkm7evKk6dero1KlTevPNN1WwYEFt2LBB/fv315kzZzR27FiHrNOmTVNERIQ6d+4sDw8PZcuWTVOmTNE777yjl19+Wd27d1dERIR27typsLCweAuI+w0fPlw2m03vvfeezp8/r7Fjxyo4OFjbt2+Xl5eX/vOf/2jo0KH67rvv1LVrV/v9oqKi9MMPP6h58+by9PR84HqSqlu3bsqaNasGDx6so0ePauzYseratau+++47+zzffvut2rVrpwYNGmjUqFG6efOmJkyYoJo1a+qvv/5y+GM/OjpajRo1Uu3atTV69GjNmjVLXbt2lbe3tz744AO1adNGzZo108SJE9W2bVtVq1ZNgYGBkh5+/9zr22+/1eTJk7V582ZNnTpVkuyvT2e9/hLSrFkzvfXWW5o/f75ef/11SXePkipVqlSc8vRRBAUFaejQoRo0aJA6d+6sWrVqOTzOhMycOVPXrl1Tly5dFBERoXHjxql+/fratWuXcufOneD9hg8froEDB6ply5Z64403dOHCBY0fP161a9fWX3/9JX9//0d6POHh4Zo6dapat26tTp066dq1a/r666/VoEEDbd68Oc7pibNnz9a1a9f05ptvymazafTo0WrWrJkOHz5sP0psyZIlatWqlcqVK6eRI0fq8uXL6tixo/Lly5fsnL/99psOHz6sDh06KCAgwH5q9u7du7Vp0yZ74fTXX3+pYcOGypMnj0JDQxUdHa2hQ4fGe7psUrZtUt4LAQAuZgAAsNjVq1eNJNOkSZMkzb99+3YjybzxxhsO03v37m0kmVWrVtmnFSpUyEgyy5Ytc5j3999/N5JMkSJFzM2bN+3TY2JiTPHixU2DBg1MTEyMffrNmzdNYGCgefbZZ+3T2rZta9zc3MyWLVviZIy97/fff28kmd9//z1Jj80YY3744QcjyRw4cMAYY0x4eLjx9PQ0n332WbyPISgoyERGRtqnjxs3zkgyu3btMsYY89dffxlJ5vvvv09wnVu2bDGSzNKlS40xxuzcudNIMi1atDBVq1a1z/fiiy+aJ554wn572LBhxtvb2/zzzz8Oy+vXr59xd3c3x48fN8YYc+TIESPJ+Pr6mvPnzzvM26RJE1OmTJmkbp44jz9fvnwmPDzcPn3evHlGkhk3bpx9WrVq1RwehzHGzJ8//6H3TUhIiClUqFC8Y9OmTTOSTHBwsMNzp2fPnsbd3d1cuXLFGGPMtWvXjL+/v+nUqZPD/c+ePWv8/Pwcprdr185IMiNGjLBPu3z5svHy8jI2m83MnTvXPn3fvn1Gkhk8eLB9WlL3T0LatWtnvL29HaY54/WXlPW9/PLL5plnnjHGGBMdHW0CAgJMaGio/bn08ccf2+83ePBgE9+vsbH75MiRI/ZpderUMXXq1LHfjn3uT5s2Ld489+7v2HV7eXmZkydP2qeHhYUZSaZnz54JZjp69Khxd3c3w4cPd1jHrl27TIYMGeJMT+ixxPd+E+vOnTsO7wXG3H2+5M6d27z++utxHkf27NnNpUuX7NN//vlnI8ksWrTIPq1cuXImf/785tq1a/Zpq1evNpIctk3s6/H+11Psuu7dvve+58aaM2eOkWTWrl1rn/bCCy+YzJkzm1OnTtmnHThwwGTIkCFZ2zYp74UAANfi9D0AgOViT5lL6oW8ly5dKknq1auXw/TYI4vuv/ZUYGCgGjRoEO+y2rVr53B9m+3bt9tPEfr333918eJFXbx4UTdu3NAzzzyjtWvXKiYmRjExMVqwYIFeeOEFVa5cOc5yH+Wr4GfNmqXKlSurWLFikmQ/tSu+U/iku6cd3XvNn9ijPQ4fPixJ9v/7/+uvv+rmzZvxLuOJJ55QlixZtHbtWkl3j4jKnz+/2rZtqz///FM3b96UMUZ//PGHffnS3dN6atWqpaxZs9q31cWLFxUcHKzo6Gj78mI1b948zlEO/v7+OnnyZLynDSVF27ZtHZ47L7/8svLkyWN/nsTOExYWpkOHDtmnzZo1SwUKFFCdOnWStd6EdO7c2WH/16pVS9HR0Tp27Jiku0eJXLlyRa1bt3bYZu7u7qpatWqcU62ku0cmxfL391fJkiXl7e3tcM2lkiVLyt/f377fpYffP0nhzNdfYl599VWtXr1aZ8+e1apVq3T27NkkHTlnhaZNmzocKVSlShVVrVrV4Tl3v/nz5ysmJkYtW7Z02BcBAQEqXrx4vPv9Ybm7u9vfC2JiYnTp0iXduXNHlStX1p9//hln/latWilr1qz22/e/d5w+fVq7du1S27ZtlSVLFvt8derUUbly5ZKd89733IiICF28eFFPP/20JNlzRkdHa8WKFWratKny5s1rn79YsWJq1KiRw/KSum2T8l4IAHAtTt8DAFjO19dXknTt2rUkzX/s2DG5ubnZS5tYAQEB8vf3t//xHyv2VKb43D924MABSUr0ouJXr15VVFSUwsPDVbZs2SRlTqorV65o6dKl6tq1q8N1oWrUqKEff/xR//zzj0qUKOFwn4IFCzrcjv0j8/Lly5LuPsZevXrp008/1axZs1SrVi29+OKLeu211+x/pLm7u6tatWpat26dpLulVK1atVSzZk1FR0dr06ZNyp07ty5duuRQSh04cEA7d+5M8Nvnzp8/73A7vn3x3nvvacWKFapSpYqKFSum5557Tq+++qr9FMEHKV68uMNtm82mYsWKOVxHqFWrVurRo4dmzZqlQYMG6erVq1q8eLF69uz5SAVifB60P2KfY/Xr14/3/rGvh1ienp5xtq+fn5/y588fJ7ufn599PbHrepj9kxTOfP0l5vnnn5ePj4++++47bd++XU899VSc/eoq9z/nJKlEiRKaN29egvc5cOCAjDHx3ldy3kXVZ8yYoU8++UT79u3T7du37dPj2w8Peq7G7sv793XstPiKrqS4dOmSQkNDNXfu3DjPwdhrO50/f163bt1KcN33Suq2Tcp7IQDAtSilAACW8/X1Vd68eZN8oeBYSS0TEvumr/vHYi/+/PHHH8e5/kqsLFmy6NKlS0kL+ZC+//57RUZG6pNPPtEnn3wSZ3zWrFkKDQ11mObu7h7vsowx9n9/8sknat++vX7++WctX75c77zzjkaOHKlNmzYpf/78kqSaNWtq+PDhioiI0Lp16/TBBx/I399fZcuW1bp16+zXyrm3lIqJidGzzz6rvn37xpvh/gItvn0RFBSk/fv3a/HixVq2bJl+/PFHffXVVxo0aFCcx5pcWbNmVePGje2l1A8//KDIyMgU+Ra9B+2P2OfYt99+G+81wjJkcPx1LKHlJWW/P+z+eRjOeP0lxsPDQ82aNdOMGTN0+PBhDRky5KGzREdHJ2vdKSEmJsb+JQHx7bt7j0RKrv/9739q3769mjZtqj59+ihXrlxyd3fXyJEjHY4SjJWU51BSPcw+aNmypTZs2KA+ffqoYsWKypIli2JiYtSwYcMHXoA/Pg+zbZPyXggAcB1KKQCASzRu3FiTJ0/Wxo0bVa1atUTnLVSokGJiYnTgwAGHi4afO3dOV65cUaFChZKdo2jRopLuFmXBwcEJzpczZ075+vo+sEh72KNwZs2apbJly2rw4MFxxiZNmqTZs2cnu6gpV66cypUrpwEDBmjDhg2qUaOGJk6cqA8//FDS3bIpKipKc+bM0alTp+zlU+3ate2lVIkSJRwu5Fy0aFFdv3490W2VFN7e3mrVqpVatWqlqKgoNWvWTMOHD1f//v0feBHy2COPYhljdPDgQZUvX95hetu2bdWkSRNt2bJFs2bN0hNPPKEyZco8Uu7kiH2O5cqV65G3W1LW5Yz9c6+UfP3d79VXX9U333wjNzc3vfLKKwnOF3uEz5UrVxwuFn7/UVvxSc6Rcvc/5yTpn3/+cbhA/f2KFi0qY4wCAwMfqQxMzA8//KAiRYpo/vz5Do8rvveTpIjdl/d/m2d80+7dB/e6fx9cvnxZK1euVGhoqAYNGmSffv82zZUrlzw9PZO07ofdtg96LwQAuA7XlAIAuETfvn3l7e2tN954Q+fOnYszfujQIY0bN07S3dN6JMX55rBPP/1UkhQSEpLsHJUqVVLRokU1ZswYXb9+Pc74hQsXJElubm5q2rSpFi1apK1bt8aZL/ZIA29vb0lx/1CLz4kTJ7R27Vq1bNlSL7/8cpyfDh066ODBg/Zv1Uuq8PBw3blzx2FauXLl5ObmpsjISPu0qlWrKmPGjBo1apSyZctmL2xq1aqlTZs2ac2aNQ5HSUl3j3jYuHGjfv311zjrvXLlSpz1xuf+r4HPlCmTSpcuLWOMw+lHCYn9JrRYP/zwg86cORPnujONGjVSjhw5NGrUKK1ZsyZFjpJKigYNGsjX11cjRoyI9/HFPsecwRn7534p+fq7X7169TRs2DB98cUX8R5VFiu26Lv3Glk3btzQjBkzHriOh3mNxlqwYIFOnTplv71582aFhYXFec7dq1mzZnJ3d1doaGicI5GMMXFeB8kRe5TQvcsPCwvTxo0bk7W8vHnzqmzZspo5c6bD++GaNWu0a9cuh3kLFSokd3f3ONcp++qrrx6YUYr7fHJ3d1dwcLAWLFig06dP26cfPHhQv/zyi8O8Sd22SX0vBAC4DkdKAQBcomjRopo9e7ZatWqloKAgtW3bVmXLllVUVJQ2bNig77//Xu3bt5ckVahQQe3atdPkyZN15coV1alTR5s3b9aMGTPUtGlT1atXL9k53NzcNHXqVDVq1EhlypRRhw4dlC9fPp06dUq///67fH19tWjRIknSiBEjtHz5ctWpU0edO3dWUFCQzpw5o++//15//PGH/P39VbFiRbm7u2vUqFG6evWqPDw8VL9+feXKlSvOumfPni1jjF588cV4sz3//PPKkCGDZs2apapVqyb5Ma1atUpdu3ZVixYtVKJECd25c0fffvut3N3d1bx5c/t8mTNnVqVKlbRp0ya98MIL9iMtateurRs3bujGjRtxSqk+ffpo4cKFaty4sdq3b69KlSrpxo0b2rVrl3744QcdPXpUOXLkSDTfc889p4CAANWoUUO5c+fW3r179cUXXygkJCRJF7/Pli2batasqQ4dOujcuXMaO3asihUrpk6dOjnMlzFjRr3yyiv64osv5O7urtatWyd1EzqVr6+vJkyYoP/85z968skn9corryhnzpw6fvy4lixZoho1auiLL75wyrqcsX/ul5Kvv/u5ublpwIABD5zvueeeU8GCBdWxY0f16dNH7u7u+uabb+zbNTFFixaVv7+/Jk6cKB8fH3l7e6tq1aqJXgurWLFiqlmzpt5++21FRkZq7Nixyp49e4KnScau58MPP1T//v119OhRNW3aVD4+Pjpy5Ih++uknde7cWb17937gY/3mm2+0bNmyONO7d++uxo0ba/78+XrppZcUEhKiI0eOaOLEiSpdunS8JXtSjBgxQk2aNFGNGjXUoUMHXb58WV988YXKli3rsEw/Pz+1aNFC48ePl81mU9GiRbV48eI414zy9fVV7dq1NXr0aN2+fVv58uXT8uXLdeTIkTjrHjJkiJYvX64aNWro7bffVnR0tH3d27dvt8+X1G2b1PdCAIALWfxtfwAAOPjnn39Mp06dTOHChU2mTJmMj4+PqVGjhhk/fryJiIiwz3f79m0TGhpqAgMDTcaMGU2BAgVM//79HeYx5u5X0oeEhMRZT+zXlyf01eB//fWXadasmcmePbvx8PAwhQoVMi1btjQrV650mO/YsWOmbdu2JmfOnMbDw8MUKVLEdOnSxeFr2adMmWKKFCli3N3d4/3K9FjlypUzBQsWTHT71K1b1+TKlcvcvn07wcdw/1ewHz582Lz++uumaNGixtPT02TLls3Uq1fPrFixIs7y+/TpYySZUaNGOUwvVqyYkWQOHToU5z7Xrl0z/fv3N8WKFTOZMmUyOXLkMNWrVzdjxowxUVFRDpk+/vjjOPefNGmSqV27tn1bFy1a1PTp08dcvXo10W0R+/jnzJlj+vfvb3LlymW8vLxMSEiIOXbsWLz32bx5s5FknnvuuUSXnZCQkBBTqFCheMemTZtmJJktW7bEm/P+/f7777+bBg0aGD8/P+Pp6WmKFi1q2rdvb7Zu3Wqfp127dsbb2zvOuurUqWPKlCkTZ3p8z/ek7J+EJLT+R339Pez67pXQc2nbtm2matWqJlOmTKZgwYLm008/te+TI0eO2OerU6eOqVOnjsN9f/75Z1O6dGmTIUMGh9dOu3btHPb3vev+5JNPTIECBYyHh4epVauW2bFjh8MyBw8ebOL71frHH380NWvWNN7e3sbb29uUKlXKdOnSxezfvz/Rxx37WBL6OXHihImJiTEjRowwhQoVMh4eHuaJJ54wixcvTvRx3E+SGTx4sMO0uXPnmlKlShkPDw9TtmxZs3DhQtO8eXNTqlQph/kuXLhgmjdvbjJnzmyyZs1q3nzzTfP33387bFNjjDl58qR56aWXjL+/v/Hz8zMtWrQwp0+fjnfdK1euNE888YTJlCmTKVq0qJk6dap59913jaen50Nv24d5LwQAuIbNmGRc2RAAACAN2LFjhypWrKiZM2fqP//5j6vjII05evSoAgMD9fHHHyfpqKb0rGLFisqZM6d+++03y9fdtGlT7d69O95rewEA0jauKQUAANKtKVOmKEuWLGrWrJmrowBpwu3bt+Nch2n16tXasWOH6tatm+Lrv3XrlsPtAwcOaOnSpZasGwBgPa4pBQAA0p1FixZpz549mjx5srp27Wq/uDWAxJ06dUrBwcF67bXXlDdvXu3bt08TJ05UQECA3nrrrRRff5EiRdS+fXsVKVJEx44d04QJE5QpU6ZEr98FAEi7KKUAAEC6061bN507d07PP/+8QkNDXR0HSDOyZs2qSpUqaerUqbpw4YK8vb0VEhKijz76SNmzZ0/x9Tds2FBz5szR2bNn5eHhoWrVqmnEiBEqXrx4iq8bAGA9rikFAAAAAAAAy3FNKQAAAAAAAFiOUgoAAAAAAACW45pS8YiJidHp06fl4+Mjm83m6jgAAAAAAABphjFG165dU968eeXmlvDxUJRS8Th9+rQKFCjg6hgAAAAAAABp1okTJ5Q/f/4Exyml4uHj4yPp7sbz9fV1cRoAAAAAAIC0Izw8XAUKFLD3KwmhlIpH7Cl7vr6+lFIAAAAAAADJ8KBLInGhcwAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5bimVDLFxMQoKirK1TFgsYwZM8rd3d3VMQAAAAAASPMopZIhKipKR44cUUxMjKujwAX8/f0VEBDwwAu2AQAAAACAhFFKPSRjjM6cOSN3d3cVKFBAbm6cAfm4MMbo5s2bOn/+vCQpT548Lk4EAAAAAEDaRSn1kO7cuaObN28qb968ypw5s6vjwGJeXl6SpPPnzytXrlycygcAAAAAQDJxmM9Dio6OliRlypTJxUngKrFl5O3bt12cBAAAAACAtItSKpm4ntDji30PAAAAAMCjo5QCAAAAAACA5SilYJnp06fL39/f6fMCAAAAAIC0hwudO0nhfkssXd/Rj0IsXZ8ztGrVSs8//7yrYwAAAAAAgFSAUgqW8fLysn97HQAAAAAAeLxx+t5j5IcfflC5cuXk5eWl7NmzKzg4WDdu3FD79u3VtGlThYaGKmfOnPL19dVbb72lqKgo+32XLVummjVryt/fX9mzZ1fjxo116NAh+/jRo0dls9k0f/581atXT5kzZ1aFChW0ceNG+zz3n5K3Y8cO1atXTz4+PvL19VWlSpW0detWh8y//vqrgoKClCVLFjVs2FBnzpxJuQ0EAAAAAAAsQyn1mDhz5oxat26t119/XXv37tXq1avVrFkzGWMkSStXrrRPnzNnjubPn6/Q0FD7/W/cuKFevXpp69atWrlypdzc3PTSSy8pJibGYT0ffPCBevfure3bt6tEiRJq3bq17ty5E2+mNm3aKH/+/NqyZYu2bdumfv36KWPGjPbxmzdvasyYMfr222+1du1aHT9+XL17906BrQMAAAAAAKzG6XuPiTNnzujOnTtq1qyZChUqJEkqV66cfTxTpkz65ptvlDlzZpUpU0ZDhw5Vnz59NGzYMLm5ual58+YOy/vmm2+UM2dO7dmzR2XLlrVP7927t0JC7l7vKjQ0VGXKlNHBgwdVqlSpOJmOHz+uPn362MeKFy/uMH779m1NnDhRRYsWlSR17dpVQ4cOdcLWAAAAAAAArsaRUo+JChUq6JlnnlG5cuXUokULTZkyRZcvX3YYz5w5s/12tWrVdP36dZ04cUKSdODAAbVu3VpFihSRr6+vChcuLOlusXSv8uXL2/+dJ08eSdL58+fjzdSrVy+98cYbCg4O1kcffeRwOqAkZc6c2V5IxS4voWUBAAAAAIC0hVLqMeHu7q7ffvtNv/zyi0qXLq3x48erZMmSOnLkSJLu/8ILL+jSpUuaMmWKwsLCFBYWJkkO152S5HD6nc1mk6Q4p/jFGjJkiHbv3q2QkBCtWrVKpUuX1k8//RTvsmKXF3u6IQAAAAAASNsopR4jNptNNWrUUGhoqP766y9lypTJXgLt2LFDt27dss+7adMmZcmSRQUKFNC///6r/fv3a8CAAXrmmWcUFBTkcJTVoyhRooR69uyp5cuXq1mzZpo2bZpTlgsAAAAAAFK3VFVKrV27Vi+88ILy5s0rm82mBQsWOIwbYzRo0CDlyZNHXl5eCg4O1oEDBxzmuXTpktq0aSNfX1/5+/urY8eOun79uoWPInUKCwvTiBEjtHXrVh0/flzz58/XhQsXFBQUJOnuEU8dO3bUnj17tHTpUg0ePFhdu3aVm5ubsmbNquzZs2vy5Mk6ePCgVq1apV69ej1Snlu3bqlr165avXq1jh07pvXr12vLli32PAAAAAAAIH1LVaXUjRs3VKFCBX355Zfxjo8ePVqff/65Jk6cqLCwMHl7e6tBgwaKiIiwz9OmTRvt3r1bv/32mxYvXqy1a9eqc+fOVj2EVMvX11dr167V888/rxIlSmjAgAH65JNP1KhRI0nSM888o+LFi6t27dpq1aqVXnzxRQ0ZMkSS5Obmprlz52rbtm0qW7asevbsqY8//viR8ri7u+vff/9V27ZtVaJECbVs2VKNGjVy+MY/AAAAAACQftlMKr1Ij81m008//aSmTZtKunuUVN68efXuu++qd+/ekqSrV68qd+7cmj59ul555RXt3btXpUuX1pYtW1S5cmVJ0rJly/T888/r5MmTyps3b5LWHR4eLj8/P129elW+vr4OYxERETpy5IgCAwPl6enpvAfsQu3bt9eVK1fiHJmG+KXH5wAAAAAAAM6SWK9yr1R1pFRijhw5orNnzyo4ONg+zc/PT1WrVtXGjRslSRs3bpS/v7+9kJKk4OBgubm52S/MDQAAAAAAANfL4OoASXX27FlJUu7cuR2m586d2z529uxZ5cqVy2E8Q4YMypYtm32e+ERGRioyMtJ+Ozw83FmxAQAAAAAAEI80U0qlpJEjRz7W1zKaPn26qyPgERXutyTR8aOerz5wGeUCCyY6Pm/knUTHg/btfeA6UrsHbsePQhIdLzejXKLjbMMHPxcf9XkopY/t+EBD/B4wftWaHHgkrn69POi18qjviVLKvy+6+n1bSv0Z08N7oqtfK1L62I6pXUrvZ4nXi+T6zxbgfmnm9L2AgABJ0rlz5xymnzt3zj4WEBCg8+fPO4zfuXNHly5dss8Tn/79++vq1av2nxMnTjg5PQAAAAAAAO6VZkqpwMBABQQEaOXKlfZp4eHhCgsLU7Vq1SRJ1apV05UrV7Rt2zb7PKtWrVJMTIyqVq2a4LI9PDzk6+vr8AMAAAAAAICUk6pO37t+/boOHjxov33kyBFt375d2bJlU8GCBdWjRw99+OGHKl68uAIDAzVw4EDlzZvX/g19QUFBatiwoTp16qSJEyfq9u3b6tq1q1555ZUkf/MeAAAAAAAAUl6qKqW2bt2qevXq2W/36tVLktSuXTtNnz5dffv21Y0bN9S5c2dduXJFNWvW1LJly+Tp6Wm/z6xZs9S1a1c988wzcnNzU/PmzfX5559b/lgAAAAAAACQsFRVStWtW1fGmATHbTabhg4dqqFDhyY4T7Zs2TR79uyUiAcAAAAAAAAnSTPXlAIAAAAAAED6QSmFFHX06FHZbDZt377d1VEAAAAAAEAqkqpO30vThvhZvL6rDzV73bp1VbFiRY0dOzZl8gAAAAAAADwEjpQCAAAAAACA5SilHgPt27fXmjVrNG7cONlsNtlsNh06dEgdO3ZUYGCgvLy8VLJkSY0bN87hfnfu3NE777wjf39/Zc+eXe+9957atWunpk2b2udZtmyZatasaZ+ncePGOnToUKJ51qxZoypVqsjDw0N58uRRv379dOfOHfv4tWvX1KZNG3l7eytPnjz67LPPVLduXfXo0cOZmwUAAAAAALgQpdRjYNy4capWrZo6deqkM2fO6MyZM8qfP7/y58+v77//Xnv27NGgQYP0/vvva968efb7jRo1SrNmzdK0adO0fv16hYeHa8GCBQ7LvnHjhnr16qWtW7dq5cqVcnNz00svvaSYmJh4s5w6dUrPP/+8nnrqKe3YsUMTJkzQ119/rQ8//NA+T69evbR+/XotXLhQv/32m9atW6c///wzRbYNAAAAAABwDa4p9Rjw8/NTpkyZlDlzZgUEBNinh4aG2v8dGBiojRs3at68eWrZsqUkafz48erfv79eeuklSdIXX3yhpUuXOiy7efPmDre/+eYb5cyZU3v27FHZsmXjZPnqq69UoEABffHFF7LZbCpVqpROnz6t9957T4MGDdKNGzc0Y8YMzZ49W88884wkadq0acqbN69zNgYAAAAAAEgVOFLqMfbll1+qUqVKypkzp7JkyaLJkyfr+PHjkqSrV6/q3LlzqlKlin1+d3d3VapUyWEZBw4cUOvWrVWkSBH5+vqqcOHCkmRfzv327t2ratWqyWaz2afVqFFD169f18mTJ3X48GHdvn3bYb1+fn4qWbKksx42AAAAAABIBSilHlNz585V79691bFjRy1fvlzbt29Xhw4dFBUV9VDLeeGFF3Tp0iVNmTJFYWFhCgsLk6SHXg4AAAAAAHi8UEo9JjJlyqTo6Gj77fXr16t69er673//qyeeeELFihVzuEC5n5+fcufOrS1bttinRUdHO1zb6d9//9X+/fs1YMAAPfPMMwoKCtLly5cTzREUFKSNGzfKGOOQxcfHR/nz51eRIkWUMWNGh/VevXpV//zzzyM9fgAAAAAAkLpQSj0mChcurLCwMB09elQXL15U8eLFtXXrVv3666/6559/NHDgQIciSJK6deumkSNH6ueff9b+/fvVvXt3Xb582X7qXdasWZU9e3ZNnjxZBw8e1KpVq9SrV69Ec/z3v//ViRMn1K1bN+3bt08///yzBg8erF69esnNzU0+Pj5q166d+vTpo99//127d+9Wx44d5ebm5nDKHwAAAAAASNsopR4TvXv3lru7u0qXLq2cOXOqQYMGatasmVq1aqWqVavq33//1X//+1+H+7z33ntq3bq12rZtq2rVqilLlixq0KCBPD09JUlubm6aO3eutm3bprJly6pnz576+OOPE82RL18+LV26VJs3b1aFChX01ltvqWPHjhowYIB9nk8//VTVqlVT48aNFRwcrBo1aigoKMi+XgAAAAAAkPbx7XvOMuSqqxMkqkSJEtq4caPDtGnTpmnatGkO00aOHGn/d4YMGTR+/HiNHz9ekhQTE6OgoCD7t/NJUnBwsPbs2eOwjHtPzStcuLDDbUmqU6eONm/enGBWHx8fzZo1y377xo0bCg0NVefOnR/0MAEAAAAAQBpBKYUEHTt2TMuXL1edOnUUGRmpL774QkeOHNGrr76aouv966+/tG/fPlWpUkVXr17V0KFDJUlNmjRJ0fUCAAAAAADrUEohQW5ubpo+fbp69+4tY4zKli2rFStWKCgoKMXXPWbMGO3fv1+ZMmVSpUqVtG7dOuXIkSPF1wsAAAAAAKxBKYUEFShQQOvXr7d8vU888YS2bdtm+XoBAAAAAIB1uNA5AAAAAAAALEcpBQAAAAAAAMtRSgEAAAAAAMBylFIAAAAAAACwHKUUAAAAAAAALEcpBQAAAAAAAMtRSgEAAAAAAMByGVwdIL0oN6Ocpevb1W6XpetLSPv27XXlyhUtWLDA1VEAAAAAAEAaQimFZImOjpbNZnN1DAAAAAAAkEZx+t5jom7duuratau6du0qPz8/5ciRQwMHDpQxRpJ0+fJltW3bVlmzZlXmzJnVqFEjHThwwH7/6dOny9/fXwsXLlTp0qXl4eGh119/XTNmzNDPP/8sm80mm82m1atXa/Xq1bLZbLpy5Yr9/tu3b5fNZtPRo0ft06ZMmaICBQooc+bMeumll/Tpp5/K39/fPt6+fXs1bdrU4XH06NFDdevWtd+OiYnRyJEjFRgYKC8vL1WoUEE//PCDffzy5ctq06aNcubMKS8vLxUvXlzTpk2zj584cUItW7aUv7+/smXLpiZNmjhkBAAAAAAAKYNS6jEyY8YMZciQQZs3b9a4ceP06aefaurUqZLuFkBbt27VwoULtXHjRhlj9Pzzz+v27dv2+9+8eVOjRo3S1KlTtXv3bn3++edq2bKlGjZsqDNnzujMmTOqXr16krKsX79eb731lrp3767t27fr2Wef1fDhwx/6MY0cOVIzZ87UxIkTtXv3bvXs2VOvvfaa1qxZI0kaOHCg9uzZo19++UV79+7VhAkTlCNHDknS7du31aBBA/n4+GjdunVav369smTJooYNGyoqKuqhswAAAAAAgKTj9L3HSIECBfTZZ5/JZrOpZMmS2rVrlz777DPVrVtXCxcu1Pr16+2l0qxZs1SgQAEtWLBALVq0kHS3xPnqq69UoUIF+zK9vLwUGRmpgICAh8oyfvx4NWrUSL1795YklShRQhs2bNDixYuTvIzIyEiNGDFCK1asULVq1SRJRYoU0R9//KFJkyapTp06On78uJ544glVrlxZklS4cGH7/b/77jvFxMRo6tSp9lMRp02bJn9/f61evVrPPffcQz0mAAAAAACQdBwp9Rh5+umnHa4DVa1aNR04cEB79uxRhgwZVLVqVftY9uzZVbJkSe3du9c+LVOmTCpfvrxTsuzfv19VqlRxmHb/7Qc5ePCgbt68qWeffVZZsmSx/8ycOVOHDh2SJL399tuaO3euKlasqL59+2rDhg32++/YsUMHDx6Uj4+P/b7ZsmVTRESE/f4AAAAAACBlcKQUkszLyytJFzd3c7vbdcZer0qSw2mASeXm5uawjPuXc/36dUnSkiVLlC9fPof5PDw8JEmNGjXSsWPHtHTpUv3222965pln1KVLF40ZM0bXr19XpUqVNGvWrDjrzpkz50PnBQAAAAAASUcp9RgJCwtzuL1p0yYVL15cpUuX1p07dxQWFmY/fe/ff//V/v37Vbp06USXmSlTJkVHRztMiy10zpw5o6xZs0q6e6Hze5UsWVJbtmxxmHb/7Zw5c+rvv/92mLZ9+3ZlzJhRkuwXXD9+/Ljq1KmTYMacOXOqXbt2ateunWrVqqU+ffpozJgxevLJJ/Xdd98pV65c8vX1TfRxAgAAAAAA5+L0vcfI8ePH1atXL+3fv19z5szR+PHj1b17dxUvXlxNmjRRp06d9Mcff2jHjh167bXXlC9fPjVp0iTRZRYuXFg7d+7U/v37dfHiRd2+fVvFihVTgQIFNGTIEB04cEBLlizRJ5984nC/bt26aenSpfr000914MABTZo0Sb/88ovDkVj169fX1q1bNXPmTB04cECDBw92KKl8fHzUu3dv9ezZUzNmzNChQ4f0559/avz48ZoxY4YkadCgQfr555918OBB7d69W4sXL1ZQUJAkqU2bNsqRI4eaNGmidevW6ciRI1q9erXeeecdnTx50lmbHQAAAAAAxINS6jHStm1b3bp1S1WqVFGXLl3UvXt3de7cWdLdC3xXqlRJjRs3VrVq1WSM0dKlS+1HJSWkU6dOKlmypCpXrqycOXNq/fr1ypgxo+bMmaN9+/apfPnyGjVqlD788EOH+9WoUUMTJ07Up59+qgoVKmjZsmXq2bOnPD097fM0aNBAAwcOVN++ffXUU0/p2rVratu2rcNyhg0bpoEDB2rkyJEKCgpSw4YNtWTJEgUGBkq6eyRX//79Vb58edWuXVvu7u6aO3euJClz5sxau3atChYsqGbNmikoKEgdO3ZUREQER04BAAAAAJDCOH3PSXa12+XqCA+UMWNGjR07VhMmTIgzljVrVs2cOTPB+7Zv317t27ePMz1nzpxavnx5nOk1atTQzp07Habdf32oTp06qVOnTg63ixUr5jBPaGioQkNDE8xls9nUvXt3de/ePd7xAQMGaMCAAQnePyAgwH5UFQAAAAAAsA6lFFxmzJgxevbZZ+Xt7a1ffvlFM2bM0FdffeXqWAAAAAAAwAKUUnCZzZs3a/To0bp27ZqKFCmizz//XG+88YarYwEAAAAAAAtQSj0mVq9e7eoIccybN8/VEQAAAAAAgItwoXMAAAAAAABYjlIKAAAAAAAAlqOUAgAAAAAAgOUopQAAAAAAAGA5SikAAAAAAABYjlIKAAAAAAAAlqOUglO1b99eTZs2td+uW7euevTokaT7Psy8AAAAAAAgbcvg6gDpxd5SQZauL2jfXkvXl1zz589XxowZXR0DAAAAAACkMpRSSFHZsmVzdQQAAAAAAJAKcfreYyQmJkYjR45UYGCgvLy8VKFCBf3www+SpNWrV8tms2nlypWqXLmyMmfOrOrVq2v//v0Oy/jwww+VK1cu+fj46I033lC/fv1UsWLFBNd5/yl5X331lYoXLy5PT0/lzp1bL7/8cpyMffv2VbZs2RQQEKAhQ4Y46+EDAAAAAIBUhFLqMTJy5EjNnDlTEydO1O7du9WzZ0+99tprWrNmjX2eDz74QJ988om2bt2qDBky6PXXX7ePzZo1S8OHD9eoUaO0bds2FSxYUBMmTEjy+rdu3ap33nlHQ4cO1f79+7Vs2TLVrl3bYZ4ZM2bI29tbYWFhGj16tIYOHarffvvt0R88AAAAAABIVTh97zERGRmpESNGaMWKFapWrZokqUiRIvrjjz80adIkde7cWZI0fPhw1alTR5LUr18/hYSEKCIiQp6enho/frw6duyoDh06SJIGDRqk5cuX6/r160nKcPz4cXl7e6tx48by8fFRoUKF9MQTTzjMU758eQ0ePFiSVLx4cX3xxRdauXKlnn32WadsBwAAAAAAkDpwpNRj4uDBg7p586aeffZZZcmSxf4zc+ZMHTp0yD5f+fLl7f/OkyePJOn8+fOSpP3796tKlSoOy73/dmKeffZZFSpUSEWKFNF//vMfzZo1Szdv3nSY5971x2aIXT8AAAAAAEg/OFLqMRF7NNOSJUuUL18+hzEPDw97MXXvN+XZbDZJd6/z5Aw+Pj76888/tXr1ai1fvlyDBg3SkCFDtGXLFvn7+8dZf2wGZ60fAAAAAACkHhwp9ZgoXbq0PDw8dPz4cRUrVszhp0CBAklaRsmSJbVlyxaHaffffpAMGTIoODhYo0eP1s6dO3X06FGtWrXqoZYBAAAAAADSPo6Uekz4+Piod+/e6tmzp2JiYlSzZk1dvXpV69evl6+vrwoVKvTAZXTr1k2dOnVS5cqVVb16dX333XfauXOnihQpkqQMixcv1uHDh1W7dm1lzZpVS5cuVUxMjEqWLPmoDw+Ak+wtFZToeNC+vRYlAQBYoXC/JYmOH/0o5IHLKDejXKLj80beSXSczxYAeHxRSj1Ghg0bppw5c2rkyJE6fPiw/P399eSTT+r9999P0ilybdq00eHDh9W7d29FRESoZcuWat++vTZv3pyk9fv7+2v+/PkaMmSIIiIiVLx4cc2ZM0dlypR51IcGAAAAAADSGEopJ0kL/4fHZrOpe/fu6t69e7zjxhiH2xUrVowzbeDAgRo4cKD99rPPPqtixYrZb0+fPt1h/tWrV9v/XbNmTYfb94tvbMGCBQnODwAAAAAA0i5KKSTZzZs3NXHiRDVo0EDu7u6aM2eOVqxYod9++83V0QAAAAAAQBpDKYUks9lsWrp0qYYPH66IiAiVLFlSP/74o4KDg10dDQAAAAAApDGUUkgyLy8vrVixwtUxAAAAAABAOuDm6gAAAAAAAAB4/FBKJdP9FwDH44N9DwAAAADAo6OUekju7u6SpKioKBcngavcvHlTkpQxY0YXJwEAAAAAIO3imlIPKUOGDMqcObMuXLigjBkzys2NXu9xYYzRzZs3df78efn7+9sLSgAAAAAA8PAopR6SzWZTnjx5dOTIER07dszVceAC/v7+CggIcHUMAAAAAADSNEqpZMiUKZOKFy/OKXyPoYwZM3KEFAAAAAAATkAplUxubm7y9PR0dQwAAAAAAIA0iQsiAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsxzWlAADAQyncb0mi40c/Ckl0vNyMcg9cx652ux4qEwAAANIejpQCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWy+DqAAAAAAAAAM6wt1RQouNB+/ZalARJwZFSAAAAAAAAsBylFAAAAAAAACxHKQUAAAAAAADLUUoBAAAAAADAcmmqlIqOjtbAgQMVGBgoLy8vFS1aVMOGDZMxxj6PMUaDBg1Snjx55OXlpeDgYB04cMCFqQEAAAAAAHC/NFVKjRo1ShMmTNAXX3yhvXv3atSoURo9erTGjx9vn2f06NH6/PPPNXHiRIWFhcnb21sNGjRQRESEC5MDAAAAAADgXhlcHeBhbNiwQU2aNFFISIgkqXDhwpozZ442b94s6e5RUmPHjtWAAQPUpEkTSdLMmTOVO3duLViwQK+88orLsgMAAAAAAOD/pKkjpapXr66VK1fqn3/+kSTt2LFDf/zxhxo1aiRJOnLkiM6ePavg4GD7ffz8/FS1alVt3LgxweVGRkYqPDzc4QcAAAAAAAApJ00dKdWvXz+Fh4erVKlScnd3V3R0tIYPH642bdpIks6ePStJyp07t8P9cufObR+Lz8iRIxUaGppywQEAAAAAAOAgTR0pNW/ePM2aNUuzZ8/Wn3/+qRkzZmjMmDGaMWPGIy23f//+unr1qv3nxIkTTkoMAAAAAACA+KSpI6X69Omjfv362a8NVa5cOR07dkwjR45Uu3btFBAQIEk6d+6c8uTJY7/fuXPnVLFixQSX6+HhIQ8PjxTNDgAAAAAAgP+Tpo6UunnzptzcHCO7u7srJiZGkhQYGKiAgACtXLnSPh4eHq6wsDBVq1bN0qwAAAAAAABIWJo6UuqFF17Q8OHDVbBgQZUpU0Z//fWXPv30U73++uuSJJvNph49eujDDz9U8eLFFRgYqIEDBypv3rxq2rSpa8MDAAAAAADALk2VUuPHj9fAgQP13//+V+fPn1fevHn15ptvatCgQfZ5+vbtqxs3bqhz5866cuWKatasqWXLlsnT09OFyQEAAAAAAHCvNFVK+fj4aOzYsRo7dmyC89hsNg0dOlRDhw61LhgAAAAAAAAeSpq6phQAAAAAAADSB0opAAAAAAAAWI5SCgAAAAAAAJajlAIAAAAAAIDlKKUAAAAAAABguTT17XsA8Dgr3G9JouNHPV994DLKBRZMdHzeQyUCAKR7Q/wePM8DPlsAAEgIR0oBAAAAAADAcpRSAAAAAAAAsBylFAAAAAAAACxHKQUAAAAAAADLUUoBAAAAAADAcpRSAAAAAAAAsBylFAAAAAAAACyXwdUBkLIK91uS6PjRj0IsSgIAAAAAAPB/OFIKAAAAAAAAlqOUAgAAAAAAgOUopQAAAAAAAGA5SikAAAAAAABYjlIKAAAAAAAAlqOUAgAAAAAAgOUyuDoAAAAAAACpXeF+SxIdP+r5aqLj5QILJjq+q92uh84EpHUcKQUAAAAAAADLUUoBAAAAAADAcpRSAAAAAAAAsBylFAAAAAAAACxHKQUAAAAAAADLUUoBAAAAAADAcpRSAAAAAAAAsBylFAAAAAAAACxHKQUAAAAAAADLUUoBAAAAAADAcpRSAAAAAAAAsBylFAAAAAAAACxHKQUAAAAAAADLUUoBAAAAAADAcpRSAAAAAAAAsBylFAAAAAAAACxHKQUAAAAAAADLZXB1AKR9e0sFJToetG+vRUkAAKnCEL/ExwMLPnARfLYAAACkfxwpBQAAAAAAAMtRSgEAAAAAAMBylFIAAAAAAACwHKUUAAAAAAAALEcpBQAAAAAAAMtRSgEAAAAAAMBylFIAAAAAAACwHKUUAAAAAAAALEcpBQAAAAAAAMtRSgEAAAAAAMBylFIAAAAAAACwHKUUAAAAAAAALEcpBQAAAAAAAMtlcHUAAAAAZyvcb0mi40c/CrEoCQAAABLCkVIAAAAAAACwHKUUAAAAAAAALJfs0/euX7+uffv26eLFi7LZbMqRI4dKlCghHx8fZ+YDAAAAAABAOvRQpdSRI0c0Y8YM/fzzz/r7778VExPjMO7m5qYyZcqoadOmatu2rYoUKeLUsAAAAAAAAEgfklRK7dmzR4MGDdJPP/0kf39/1a1bVy1atFCRIkWUNWtWGWN0+fJlHTlyRNu2bdMXX3yhYcOG6aWXXtKwYcMUFBSU0o8DAAAAAAAAaUiSSqkKFSooJCRES5YsUXBwsDJkSPxud+7c0YoVKzRx4kRVqFBBUVFRTgkLAAAAAACA9CFJpdTOnTsf6minDBkyqGHDhmrYsKH27duX7HAAAAAAAABIn5L07XuPcvpdqVKlkn1fAAAAAAAApE/J/va9e8XExGjTpk06deqUAgICVK1atQee4gcAAAAAAIDH1yM3R/v27dMLL7ygkydPKmvWrLpw4YLy5cunBQsWqGLFik6ICAAAAAAAgPTmkUup//73v2rUqJFGjx4tT09PXbx4Ua1atVLnzp21efNmZ2REOle435JEx49+FGJREgAAAABwjb2lEr9sTtC+vRYlAayTpGtKSdJbb72lS5cuxZn+zz//qH379vL09JQk5ciRQ82aNdM///zjvJQAAAAAAABIV5JcSp0+fVrFihXTuHHjFB0dbZ9et25dvfvuu1q3bp0OHjyoxYsX69NPP1XdunVTIi8AAAAAAADSgSSXUgsXLtScOXM0efJklS1bVsuWLZMkffXVV8qXL5+Cg4NVokQJNWvWTE8++aSmTJmSYqEBAAAAAACQtiW5lJKkBg0aaOfOnXrzzTf16quvKiQkROfOndP//vc/3bp1S2fPntWtW7f0/fffK2fOnCmVGQAAAAAAAGncQ5VSkuTu7q4ePXpo//79ypcvnypUqKB3331XN27cUK5cueTu7p4SOQEAAAAAAJCOPHQpFRUVpatXrypnzpyaPHmyNmzYoK1bt6pYsWKaMmWKjDEpkRMAAAAAAADpSJJLqTNnzqhRo0bKnDmzsmXLppIlS2rt2rWqWLGi1qxZo88//1wffvihnnzySa1duzYlMwMAAAAAACCNS3Ip9eabb+ro0aNauXKl/vrrL1WsWFHNmzfXzZs3JUmtWrXSvn379OKLL6pRo0Zq2bJlioUGAAAAAABA2pbkUmrt2rXq0aOH6tSpo/Lly2vUqFH6999/tWfPHvs8Xl5eCg0N1d69e2Wz2VIkMAAAAAAAANK+JJdSefLk0aZNm+y3N23aJJvNpoCAgDjzFixYUN99951zEgIAAAAAACDdyZDUGUeOHKlXXnlFf/zxh/z9/fXnn3/qnXfeUf78+VMyHwAAAAAAANKhJJdSTZs21d69e7V8+XLdunVLY8eOVY0aNVIyGwAAAAAAANKpJJdSkhQYGKg333wzpbIAAAAAAADgMZGka0qdOHEi2St4lPsCAAAAAAAgfUpSKVWsWDG9/vrr2rx5c5IXvGHDBrVt21bFixdPdjgAAAAAAACkT0k6fW/dunUaMGCAnn76aRUqVEj169fXk08+qcDAQGXNmlXGGF2+fFlHjhzR1q1btWrVKp06dUr16tXT2rVrU/oxAAAAAAAAII1JUilVpUoVLV++XNu3b9e0adP0888/a9q0aZIkm80mSTLGSJIKFCigpk2b6vXXX1fFihVTJjUAAAAAAADStIe60HnFihU1btw4jRs3TqdPn9a+ffv077//SpKyZ8+uUqVKKW/evCkSFAAAAAAAAOnHQ5VS98qbNy8FFAAAAAAAAJIlSRc6BwAAAAAAAJyJUgoAAAAAAACWS/bpewAAIK69pYISHQ/at9eiJAAAAHhYhfstSXT8qOeriY6XCyyY6PiudrseOlN6xpFSAAAAAAAAsBylFAAAAAAAACzn1NP3oqKidPv2bXl7eztzsXChcjPKPXCeeRbkAAAAAAAA6UuyjpSaO3euevbs6TAtNDRUWbJkkb+/v1566SVdv37dKQEBAAAAAACQ/iSrlPrkk09048YN++0NGzYoNDRUDRo0UM+ePbVs2TINHz7caSEBAAAAAACQviTr9L1Dhw6pXbt29tuzZ89WQECAfvrpJ2XIkEExMTH68ccfNXLkSKcFBQAAAAAAQPqRrCOlIiMj5enpab+9fPlyNWrUSBky3O24SpcurZMnTzonIQAAAAAAANKdZJVSgYGBWrFihSRp69atOnjwoBo2bGgfP3funLJkyeKchAAAAAAAAEh3klVKvfnmm5o3b57Kly+v5557Tvnz51fjxo3t4+vXr1eZMmWcFvJep06d0muvvabs2bPLy8tL5cqV09atW+3jxhgNGjRIefLkkZeXl4KDg3XgwIEUyQIAAAAAAIDkSVYp1a1bN02aNElFixZVkyZNtHz5cnl5eUmSLl26pLNnz6pNmzZODSpJly9fVo0aNZQxY0b98ssv2rNnjz755BNlzZrVPs/o0aP1+eefa+LEiQoLC5O3t7caNGigiIgIp+cBAAAAAABA8jz0hc5v376tvXv3qlGjRurUqVOc8WzZsjkcueRMo0aNUoECBTRt2jT7tMDAQPu/jTEaO3asBgwYoCZNmkiSZs6cqdy5c2vBggV65ZVXUiQXAAAAAAAAHs5DHynl5uamSpUqaf78+SmRJ1ELFy5U5cqV1aJFC+XKlUtPPPGEpkyZYh8/cuSIzp49q+DgYPs0Pz8/Va1aVRs3bkxwuZGRkQoPD3f4AQAAAAAAQMp56FLK3d1dhQoVUmRkZErkSdThw4c1YcIEFS9eXL/++qvefvttvfPOO5oxY4Yk6ezZs5Kk3LlzO9wvd+7c9rH4jBw5Un5+fvafAgUKpNyDAAAAAAAAQPKvKTV58mRdunTJ2XkSFRMToyeffFIjRozQE088oc6dO6tTp06aOHHiIy23f//+unr1qv3nxIkTTkoMAAAAAACA+Dz0NaUkKTo6Wh4eHipatKhefvllFS5c2H6h81g2m009e/Z0SshYefLkUenSpR2mBQUF6ccff5QkBQQESJLOnTunPHny2Oc5d+6cKlasmOByPTw85OHh4dSsAAAAAAAASFiySqnevXvb//3111/HO09KlFI1atTQ/v37Hab9888/KlSokKS7Fz0PCAjQypUr7SVUeHi4wsLC9Pbbbzs1CwAAAAAAAJIvWaXUkSNHnJ0jSXr27Knq1atrxIgRatmypTZv3qzJkydr8uTJku4WYT169NCHH36o4sWLKzAwUAMHDlTevHnVtGlTl2QGAAAAAABAXMkqpWKPTLLaU089pZ9++kn9+/fX0KFDFRgYqLFjx6pNmzb2efr27asbN26oc+fOunLlimrWrKlly5bJ09PTJZkBAAAAAAAQV7JKqVinTp3S2rVrdf78eTVv3lz58+dXdHS0rl69Kj8/P7m7uzsrp13jxo3VuHHjBMdtNpuGDh2qoUOHOn3dAAAAAAAAcI5kffueMUa9evVSYGCg2rRpo169eumff/6RJF2/fl2FCxfW+PHjnRoUAAAAAAAA6UeySqmPP/5Y48aNU+/evfXbb7/JGGMf8/PzU7NmzezfiAcAAAAAAADcL1ml1JQpU9S2bVuNGDHC/i139ypfvrz9yCkAAAAAAADgfskqpU6cOKHq1asnOO7t7a3w8PBkhwIAAAAAAED6lqxSKleuXDpx4kSC49u2bVPBggWTHQoAAAAAAADpW7JKqWbNmmnixIk6fPiwfZrNZpMkLV++XNOnT1eLFi2ckxAAAAAAAADpTrJKqdDQUOXJk0cVK1ZU27ZtZbPZNGrUKNWsWVONGjVS+fLl9f777zs7KwAAAAAAANKJZJVSfn5+2rRpk/r27atTp07J09NTa9as0ZUrVzR48GCtW7dOmTNndnZWAAAAAAAApBMZkntHLy8vDRgwQAMGDHBmHgAAAAAAADwGknWk1K+//qrr1687OwsAAAAAAAAeE8k6UqpRo0Zyd3dXhQoVVKtWLftPzpw5nZ0PAAAAAAAA6VCySqlNmzZp7dq1+uOPP/Ttt99q3LhxstlsKlGihENJVbhwYSfHBQAAAAAAQHqQrFKqSpUqqlKlinr37i1J2rNnj9atW6d169Zp2bJl+vrrr2Wz2XTnzh2nhgUAAAAAAED6kOwLnceKiIjQ+fPndf78eZ07d06XL1+WMUZFixZ1Rj4AAADLlZtRLtHxeSMT/x9vQfv2OjMOAABAupSsUmrx4sX2I6O2bdum6OholS1bVrVr11bnzp1Vu3Zt5c6d29lZAQAAAAAAkE4kq5R68cUX5e7urubNm2vAgAGqUaOG/Pz8nJ0NAAAAAAAA6VSySqmQkBBt2LBB8+bN08aNG1WrVi3Vrl1btWrVUlBQkLMzAgAAAAAAIJ1JVim1aNEiSdLff/9tP41v2LBhOn36tLJly6YaNWqoVq1aevfdd50aFgAAAAAAAOmD26PcuWzZsnr77bc1e/ZsHTx4UF9//bVy5MihhQsXqm/fvs7KCAAAAAAAgHQm2d++d/36da1fv15r167VunXrtGXLFkVFRSlDhgx6+umnVatWLWfmBAAAAAAAQDqSrFKqUqVK2rlzp6Kjo5UlSxZVq1ZN77//vmrVqqWqVavKy8vL2TkBAAAAAACQjiSrlCpcuLD+85//qFatWnriiSfk5vZIZwECAAAAAADgMZOsUurHH390dg4AAAAAAAA8RpJVSl27dk1XrlxRgQIF7NNOnz6tiRMnKjIyUs2bN1eVKlWcFhIAAAAAAADpS7JKqc6dO+vIkSPatGmTJCk8PFxPP/20Tp48KTc3N40bN07Lli1T3bp1nZkVAAAAAAAA6USyLgb1xx9/qHHjxvbb//vf/3T69Glt2LBBly9fVvny5fXhhx86LSQAAAAAAADSl2SVUhcvXlS+fPnstxcuXKiaNWvq6aeflo+Pj9q2basdO3Y4LSQAAAAAAADSl2SVUv7+/jp79qwk6datW1q3bp2ee+45+3iGDBl08+ZN5yQEAAAAAABAupOsa0pVr15dX331lUqVKqVly5YpIiJCTZo0sY//888/DkdSAQAAAAAAAPdKVik1atQoPffcc2revLkk6d1331WZMmUkSdHR0fr+++/VsGFD56UEAAAAAABAupKsUqpYsWLav3+/9uzZIz8/PxUuXNg+dvPmTX3xxReqUKGCszICAAAAAAAgnUlWKSVJGTNmjLd48vHxcTiVDwAAAAAAALhfskspSdqzZ48OHz6sy5cvyxgTZ7xt27aPsngAAAAAAACkU8kqpQ4dOqTXXntNmzdvjreMkiSbzUYpBQAAAAAAgHglq5R68803tWvXLo0dO1a1atVS1qxZnZ0LAAAAAAAA6ViySqn169fr/fffV7du3ZydBwAAAAAAAI8Bt+TcKUeOHPLz83N2FgAAAAAAADwmklVKvfXWW/rf//6n6OhoZ+cBAAAAAADAYyBZp++VKFFC0dHRqlChgl5//XUVKFBA7u7uceZr1qzZIwcEAAAAAABA+pOsUqpVq1b2f/fu3TveeWw2G0dSAQAAAAAAIF7JKqV+//13Z+cAAAAAAADAYyRZpVSdOnUeOE9MTExyFg0AAAAAAIDHQLIudJ6YLVu2qEePHsqfP7+zFw0AAAAAAIB0IllHSt3v4MGDmjVrlmbPnq2DBw/K3d1dNWvWdMaiAQAAAAAAkA4lu5Q6f/685s6dq1mzZmnr1q2SpGeeeUZDhgzR888/Lz8/P6eFBAAAAAAAQPryUKfv3bhxQ99++60aNmyo/Pnzq1+/fipYsKDGjBkjY4zeeusttW7dmkIKAAAAAAAAiUrykVKtW7fWokWLdPv2bQUHB+ubb75R06ZNlSVLFh06dEjvvvtuSuYE0rRyM8olOr6r3S6LkrhO4X5LEh0/6vlqouPlAgsmOj5v5J1Ex4P27U10PEmGPKBwf0BGpA4PfC5+FJLo+INez/MeOhFcgtczgMfIgz77pDTyuxiQDuwtFfTAeR6n10uSS6nvvvtOgYGB+uabb5L07XsAAAAAAABAQpJ8+l7v3r11+/Zt1a9fX+XKldPIkSN1+PDhlMwGAAAAAACAdCrJpdTo0aN1/PhxrVixQlWrVtXHH3+s4sWLq2rVqpo0aZJsNltK5gQAAAAAAEA68lAXOpekevXqaerUqTp79qzmzZun/Pnza/z48TLGKDQ0VCNGjNCuXen/+jgAAAAAAABIvocupWJlypRJzZs3148//qizZ89q0qRJypYtmwYOHKiKFSuqSJEizswJAAAAAACAdCTZpdS9/Pz81KlTJ/3+++86duyYRowYIR8fH2csGgAAAAAAAOmQU0qpe+XPn1/vvfeeduzY4exFAwAAAAAAIJ1weikFAAAAAAAAPAilFAAAAAAAACxHKQUAAAAAAADLUUoBAAAAAADAcskqpdauXasLFy4kOH7x4kWtXbs22aEAAAAAAACQviWrlKpXr55+++23BMdXrlypevXqJTsUAAAAAAAA0rdklVLGmETHIyMj5e7unqxAAAAAAAAASP8yJHXG48eP6+jRo/bb+/bti/cUvStXrmjSpEkqVKiQUwICAAAAAAAg/UlyKTVt2jSFhobKZrPJZrNp+PDhGj58eJz5jDFyd3fXpEmTnBoUAAAAAAAA6UeSS6mWLVuqbNmyMsaoZcuWeuedd1SrVi2HeWw2m7y9vVWxYkXlzp3b6WEBAAAAAACQPiS5lAoKClJQUJCku0dN1a5dW4GBgSkWDAAAAAAAAOlXsi503qZNG2XPnj3B8fDwcN25cyfZoQAAAAAAAJC+JauUeuedd1S9evUEx2vUqKF333032aEAAAAAAACQviWrlFq2bJlefvnlBMdffvllLV26NNmhAAAAAAAAkL4lq5Q6ffq08uXLl+B43rx5derUqWSHAgAAAAAAQPqWrFIqe/bs2r9/f4Lje/fula+vb7JDAQAAAAAAIH1L8rfv3athw4aaNGmS2rRpoyeeeMJh7M8//9TkyZPVokULpwQEAAAAAABpX+F+SxIdP+r56gOXUS6wYKLj8x4qEVwtWaXUsGHDtGzZMlWpUkUvvviiypQpI0n6+++/tWjRIuXKlUvDhg1zalAAAAAASI0e+If2RyEWJQGAtCVZpVTevHm1detW9evXTz///LN++uknSZKvr6/atGmjESNGKG/evE4NCgAAAAAAgPQjWaWUJOXJk0czZsyQMUYXLlyQJOXMmVM2m81p4QAAAAAAAJA+JbuUimWz2eTh4aEsWbJQSAEAAAAAACBJkvXte5K0detWNWzYUJkzZ1b27Nm1Zs0aSdLFixfVpEkTrV692lkZAQAAAAAAkM4kq5TasGGDatasqQMHDui1115TTEyMfSxHjhy6evWqJk2a5LSQAAAAAAAASF+SVUq9//77CgoK0p49ezRixIg44/Xq1VNYWNgjhwMAAAAAAED6lKxSasuWLerQoYM8PDzivY5Uvnz5dPbs2UcOBwAAAAAAgPQpWaVUxowZHU7Zu9+pU6eUJUuWZIcCAAAAAABA+pasUurpp5/WDz/8EO/YjRs3NG3aNNWpU+eRggEAAAAAACD9SlYpFRoaqq1btyokJES//PKLJGnHjh2aOnWqKlWqpAsXLmjgwIFODQoAAAAAAID0I0Ny7lS1alUtXbpUb7/9ttq2bStJevfddyVJRYsW1dKlS1W+fHnnpQQAAAAAAEC68tCllDFG165dU/Xq1bV//35t375dBw4cUExMjIoWLapKlSrFe/FzAAAAAAAAINZDl1JRUVHKli2bRowYob59+6pixYqqWLFiCkQDAAAAAABAevXQ15Ty8PBQQECAPDw8UiIPAAAAAAAAHgPJutB5+/btNXPmTEVFRTk7DwAAAAAAAB4DybrQebly5bRgwQKVKVNG7du3V+HCheXl5RVnvmbNmj1yQAAAAAAAAKQ/ySqlWrdubf/3wIED453HZrMpOjo6eakAAAAA4DFRbka5RMd3tdtlURIAsFaySqnff//d2TkAAAAAAADwGHnoUioiIkI7duxQxYoVVbt27ZTIBAAAAAAAgHTuoS907unpqffee0/79+9PiTwAAAAAAAB4DCTr2/fKli2ro0ePOjkKAAAAAAAAHhfJKqWGDx+uSZMmacWKFc7OAwAAAAAAgMdAskqpL774QtmyZVODBg1UrFgxPfvss3rxxRcdfpo0aeLsrHF89NFHstls6tGjh31aRESEunTpouzZsytLlixq3ry5zp07l+JZAAAAAAAAkHTJ+va9nTt3ymazqWDBgoqOjtbBgwfjzGOz2R45XGK2bNmiSZMmqXz58g7Te/bsqSVLluj777+Xn5+funbtqmbNmmn9+vUpmgcAAAAAAABJl6xSytXXk7p+/bratGmjKVOm6MMPP7RPv3r1qr7++mvNnj1b9evXlyRNmzZNQUFB2rRpk55++mlXRQYAAAAAAMA9knX6nqt16dJFISEhCg4Odpi+bds23b5922F6qVKlVLBgQW3cuDHB5UVGRio8PNzhBwAAAAAAACknWUdKxVqzZo2WLFmiY8eOSZIKFSqkkJAQ1alTxynh4jN37lz9+eef2rJlS5yxs2fPKlOmTPL393eYnjt3bp09ezbBZY4cOVKhoaHOjop0pHC/JYmOH/V8NfEFBBZMdHhvqaBEx4P27U18+QAAAAAApDHJKqWioqLUunVrLViwQMYYewl05coVffLJJ3rppZc0Z84cZcyY0ZlZdeLECXXv3l2//fabPD09nbbc/v37q1evXvbb4eHhKlCggNOWDwAAAAAAAEfJOn0vNDRUP/30k959912dOXNGly5d0qVLl3T27Fn17t1b8+fP19ChQ52dVdu2bdP58+f15JNPKkOGDMqQIYPWrFmjzz//XBkyZFDu3LkVFRWlK1euONzv3LlzCggISHC5Hh4e8vX1dfgBAAAAAABAyklWKTV79my1a9dOo0ePVu7cue3Tc+XKpVGjRqlt27b69ttvnRYy1jPPPKNdu3Zp+/bt9p/KlSurTZs29n9nzJhRK1eutN9n//79On78uKpVq+b0PAAAAAAAAEieZJ2+d+bMGVWtWjXB8apVq2ru3LnJDpUQHx8flS1b1mGat7e3smfPbp/esWNH9erVS9myZZOvr6+6deumatWq8c17AAAAAAAAqUiyjpTKnz+/Vq9eneD4mjVrlD9//uRmeiSfffaZGjdurObNm6t27doKCAjQ/PnzXZIFAAAAAAAA8UvWkVLt2rXT4MGD5e/vr549e6pYsWKy2Ww6cOCAxo4dq++//96yb7O7vxzz9PTUl19+qS+//NKS9QMAAAAAAODhJauUev/993Xo0CFNnjxZU6ZMkZvb3QOuYmJiZIxRu3bt9P777zs1KAAAAAA8jvaWCkp0PGjfXouSAIBzJauUcnd31/Tp09WrVy8tXbpUx44dkyQVKlRIzz//vMqXL+/UkAAAAAAAAEhfklVKxSpfvjwFFAAAAAAAAB5akkupiIgI9ejRQ2XKlFG3bt0SnO/zzz/X3r179fnnnytjxoxOCYkUNMQv8fHAgtbkAAAAAAAAj5Ukf/ve5MmTNX36dIWEhCQ6X0hIiKZNm6apU6c+cjgAAAAAAACkT0kupebNm6fmzZurSJEiic5XtGhRtWjRQnPmzHnkcAAAAAAAAEifknz63q5du9SmTZskzVu9enUtWrQo2aEAAHAZTmsGAAAALJHkI6WioqKUKVOmJM2bKVMmRUZGJjsUAAAAAAAA0rckl1J58+bV33//naR5//77b+XNmzfZoQAAAAAAAJC+JbmUCg4O1syZM3X+/PlE5zt//rxmzpypZ5999pHDAQAAAAAAIH1Kcin13nvvKSIiQvXr11dYWFi884SFhemZZ55RRESE+vTp47SQAAAAAAAASF+SfKHzIkWKaN68eWrdurWqV6+uIkWKqFy5cvLx8dG1a9f0999/69ChQ8qcObPmzp2rokWLpmRuAAAAAAAApGFJLqUkKSQkRDt37tSoUaO0ePFiLViwwD6WN29ederUSX379lWRIkWcnRMAAAAAAADpyEOVUpJUuHBhTZgwQRMmTNC1a9cUHh4uX19f+fj4pEQ+AAAAAAAApEMPXUrdy8fHhzIKAAAAAAAADy3JFzoHAAAAAAAAnIVSCgAAAAAAAJZ7pNP3AAAAAAAPMMQv8fHAgtbkAIBUhiOlAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFgug6sDAA80xC/R4XKBBRMdnzfyTqLjQfv2PnQkAAAeew/4fJYkPeAzGgAAPN44UgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWo5QCAAAAAACA5SilAAAAAAAAYDlKKQAAAAAAAFiOUgoAAAAAAACWS1Ol1MiRI/XUU0/Jx8dHuXLlUtOmTbV//36HeSIiItSlSxdlz55dWbJkUfPmzXXu3DkXJQYAAAAAAEB80lQptWbNGnXp0kWbNm3Sb7/9ptu3b+u5557TjRs37PP07NlTixYt0vfff681a9bo9OnTatasmQtTAwAAAAAA4H4ZXB3gYSxbtszh9vTp05UrVy5t27ZNtWvX1tWrV/X1119r9uzZql+/viRp2rRpCgoK0qZNm/T000+7IjYAAAAAAADuk6aOlLrf1atXJUnZsmWTJG3btk23b99WcHCwfZ5SpUqpYMGC2rhxY4LLiYyMVHh4uMMPAAAAAAAAUk6aLaViYmLUo0cP1ahRQ2XLlpUknT17VpkyZZK/v7/DvLlz59bZs2cTXNbIkSPl5+dn/ylQoEBKRgcAAAAAAHjspdlSqkuXLvr77781d+7cR15W//79dfXqVfvPiRMnnJAQAAAAAAAACUlT15SK1bVrVy1evFhr165V/vz57dMDAgIUFRWlK1euOBwtde7cOQUEBCS4PA8PD3l4eKRkZAAAAAAAANwjTR0pZYxR165d9dNPP2nVqlUKDAx0GK9UqZIyZsyolStX2qft379fx48fV7Vq1ayOCwAAAAAAgASkqSOlunTpotmzZ+vnn3+Wj4+P/TpRfn5+8vLykp+fnzp27KhevXopW7Zs8vX1Vbdu3VStWjW+eQ8AAAAAACAVSVOl1IQJEyRJdevWdZg+bdo0tW/fXpL02Wefyc3NTc2bN1dkZKQaNGigr776yuKkAAAAAAAASEyaKqWMMQ+cx9PTU19++aW+/PJLCxIBAAAAAAAgOdLUNaUAAAAAAACQPlBKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy1FKAQAAAAAAwHKUUgAAAAAAALAcpRQAAAAAAAAsRykFAAAAAAAAy6XbUurLL79U4cKF5enpqapVq2rz5s2ujgQAAAAAAID/L12WUt9995169eqlwYMH688//1SFChXUoEEDnT9/3tXRAAAAAAAAoHRaSn366afq1KmTOnTooNKlS2vixInKnDmzvvnmG1dHAwAAAAAAgNJhKRUVFaVt27YpODjYPs3NzU3BwcHauHGjC5MBAAAAAAAgVgZXB3C2ixcvKjo6Wrlz53aYnjt3bu3bty/e+0RGRioyMtJ+++rVq5Kk8PDwlAtqkZjIm4mOh9tMouPRt6IfuI7r0YnP86DtmNIZHzWflPozPmo+KfVnZD+zn6UH55NSf0anfLZEPmBfp/DnF58tvOdIaeQ95wH3TxXvOSmc8bHYz3y2PHI+KfVn5LOFz5ZYqT2jFe85aUHsYzAm8e1lMw+aI405ffq08uXLpw0bNqhatWr26X379tWaNWsUFhYW5z5DhgxRaGiolTEBAAAAAADStRMnTih//vwJjqe7I6Vy5Mghd3d3nTt3zmH6uXPnFBAQEO99+vfvr169etlvx8TE6NKlS8qePbtsNluK5k1LwsPDVaBAAZ04cUK+vr6ujhMvMjpHas+Y2vNJZHSG1J5PIqMzpPZ8EhmdJbVnTO35JDI6Q2rPJ5HRWVJ7xtSeTyKjM6T2fCnJGKNr164pb968ic6X7kqpTJkyqVKlSlq5cqWaNm0q6W7JtHLlSnXt2jXe+3h4eMjDw8Nhmr+/fwonTbt8fX1T/QuKjM6R2jOm9nwSGZ0hteeTyOgMqT2fREZnSe0ZU3s+iYzOkNrzSWR0ltSeMbXnk8joDKk9X0rx8/N74DzprpSSpF69eqldu3aqXLmyqlSporFjx+rGjRvq0KGDq6MBAAAAAABA6bSUatWqlS5cuKBBgwbp7NmzqlixopYtWxbn4ucAAAAAAABwjXRZSklS165dEzxdD8nj4eGhwYMHxznVMTUho3Ok9oypPZ9ERmdI7fkkMjpDas8nkdFZUnvG1J5PIqMzpPZ8EhmdJbVnTO35JDI6Q2rPlxqku2/fAwAAAAAAQOrn5uoAAAAAAAAAePxQSgEAAAAAAMBylFIAAAAAAACwHKUUAAAAAAAALEcpBUkS17sHADxu+OwDgLTl3vdt3sOB9IFSCpIkm83m6ggJiv3A+eeff3TixAk+gJIpJibG1RGSLCoqytUR4nX/NuS5CCQsLbznxH72/fPPPy5OEr9732NS+/YcMWKERo4c6eoY8eK92jkoA9K/tLBfY9+3p02bplGjRrk4TdqV2vd1as8H56KUgt3w4cPVp08fV8dwYIyRzWbTggUL1KBBA/3yyy/6999/XR3rgVLbG2l0dLTc3O6+3I8dO5ZqSx9J+uijj/TNN99ISl1/hMXExNi34ZYtW/Tvv/+mujI39nmXmv9wuHef3rlzR1LqyXjv9rt9+7aL0yQsNueNGzd07do1F6dJWOzrZenSpS5Okrhvv/1WPXr0kJR6nouxYt9jxo0bp82bN0tKXe+LsWJiYnTt2jWtWLFCFy9edHUcBzExMfbtePLkyVT3+Zca92dC7v3Ms9lsqe71kpakxm0XHR2d6n6vScjt27e1cOFCrV692tVR0qzYfX348GEXJ4kr9u+/DRs2aOXKlanufRvORykFOx8fHy1dulSHDh1ydRQ7m82mxYsX67XXXtO7776rF154QTly5HB1rHidO3dOly5d0oULF1LVL2vR0dFyd3eXJLVv314ffPCB9u/fn2ry3e/s2bMaM2aMrl69av+j1tXuLaQGDBignj17aunSpYqKiko12/HeP7yuXLmiW7du2T/UU8sfPfduxwkTJmjEiBG6detWqvklODbH+fPnlTFjRknSTz/9lOqKcJvNpp9//llNmjRRrVq1NHLkSJ09e9bVseJ1+PBhNW7cWHPnznV1lATlyZNHy5Yt06pVq1LNc/F+3377rYYPHy5JqeZ98V5ubm6qW7eudu/erT179khKHWXLve85oaGh6tu3r7Zs2ZIqskmO+dauXatffvlFJ0+eTDX54vPFF1/ojTfekJS6jrJPLZ/FCbn3fyZERkamqm0n3X0uxv6uOGzYMLVp00bjxo3T33//7eJkccXExChjxowaPny4wsLCNG/ePFdHcpDan4v3+v7779WlSxddv3491bzvxP7uOn/+fL344otavnx5qvufHdL/7eddu3Zp9+7dLk6T9qW+32zgMtWrV1dMTIy2b98uKXX8Qnn9+nWNHTtW3bt3V9euXZU1a1adOXNGkyZN0sKFC3Xr1i1XR5QkLV68WI0bN1adOnVUtWpVLVmyJNX8whH7S0bz5s31559/qmPHjipUqFCqyRcr9s29devWypo1qzZs2CApdTwPY/9o+OCDDzRp0iSFhobqhRdeUKZMmezb0ZW/hNz7h82YMWPUtGlTBQcHq3Xr1oqKipKbm5vLf0kyxtgz9unTRx9++KFy5sypc+fO2edJDft6zpw5ql+/vo4fP64GDRpo9OjR8vb2dnUsh/23fv16tWvXTmXLllVwcLCGDBmi9957T/v373dhwvgVLFhQ7dq109q1a3Xnzh2X7+PY9RtjZIxRTEyMgoOD1aFDB82cOVM3btxw+WvlXrF5+/Xrp/Pnz2vnzp2SXPt+k9AphQ0aNFBwcLAGDhyoW7dupYryLDZDv3799NVXX+mll15SiRIlHLK5clvG5ujdu7dat26tFi1aqHnz5ho/fnyqPFrzzp07+vfff3X48GFdv37d1XHs7v2fMlFRUYqIiHBxorhsNpsWLVqkVq1aqWbNmpo6daqOHTvm6liSHH+HePXVVzVt2jRFRkZqzJgxGjhwoH799VcXJ3QUm7VgwYIKCQmxHy3l6s8X6f8KlT/++EOfffaZevXqpb1796aav1fud+fOHa1Zs0bHjx9PFb8rSndfKytWrFC7du00ZswYDRkyRHnz5nV1LAex+/mnn35S8+bNNXv27FRZnKUpBo+1W7duOdx+++23TalSpcz169ddlMhReHi4qVWrlhk9erTZv3+/6d27t6lfv77x8/MzTz75pPnggw9MTEyMSzMuWrTIZMmSxYwZM8aEhYWZLl26GA8PD/P111+7NNe9vv32W1O0aFFz5swZY4wxkZGRZvfu3eb33383R48edUmme/fb7du3Hcaee+45ExwcbHWkRG3fvt0EBQWZdevWGWOMuXz5stm9e7cZO3as2bZtmzHGmOjoaFdGNP379ze5c+c2X375pZk1a5YpXLiwqVatmrl48aIxxrjktRIREeFwe+rUqSZ37txm8+bNDtPvfy9ylV9++cWEhISYnDlzmuLFi7s6ThxHjx41X331lRk9erR92rp160yOHDnMa6+9Zvbt2+eybAk9/6dPn258fX3NoUOHjDGueR7e799//3W4/eWXX5r8+fPb3yNdlTGh9Z47d84UKVLEDBgwwOJEju7dx59++qkZM2aM2bRpk33asmXLTIUKFcxff/0VZ35XWbZsmcmfP7/5888/jTHG3Llzx5w9e9asX7/enD9/3hhjfc579/Pq1avNU089ZdavX2/27dtnOnbsaKpVq2Y+/PBDExUVZWmupPj7779N5syZzfTp010dxRjjuO8+++wz8/zzz5s6deqYfv36uTBVXH/88YfJkiWL6dGjh2nTpo3JnTu36dKli/n7779dHc1u5cqVpk2bNubw4cPGGGPWrFljnnvuOfP888+bZcuWuSTTvft33LhxZuDAgebIkSP2ad9++63x9PQ0u3btckE6R7Gv6/nz55usWbOaBg0amGrVqpm8efOaL7/80ly4cMGl+WK3ZUxMjMN2femll0yLFi1Sze9hxhjTp08f06FDB2OMMdevXzebNm0yb731lhk4cKBZvny5i9PdtXjxYuPp6WkmTpxoLl265Oo4aR6l1GNs7Nixplu3bmbVqlX2aXv27DGVKlUyCxYsMMakjl8ou3btanLkyGG8vb1N8+bNzTfffGOuX79uXn31VfOf//zHpdlOnjxpgoODzSeffGKMMeb48eOmSJEipkKFCsbNzc1MmjQpVWzDqVOnmlq1apnw8HCzdOlS06VLF5M9e3ZTokQJ07BhQ3P8+HGXZfv666/NO++8Y06ePGn/QP/rr79MyZIl7c9DV7h/vx04cMAEBgaan376yWzfvt289dZbpmTJkqZEiRLGZrPFKVmstnTpUlO+fHmzfv16Y4wxCxcuND4+PiZnzpwmKCjIJcXUq6++ahYtWuSw3q5du5rXX3/dGGPM7t27zaRJk0zlypVNUFCQWbx4seUZY927v1u1amVsNpupXLmy/ZdzV7+Oo6OjzdmzZ43NZjNeXl4mNDTUYXzNmjUme/bspn379mb37t0uSnnX5s2bzcGDBx2mBQcHmw4dOpjIyEiXZLp3//38888mV65cZsKECQ5/yFSvXt289tprrogXx9y5c82XX37pMO2bb74xxYsXNzt27HBJpntflytWrDAvvPCCqV+/vsmRI4fp06ePWbt2rTHGmGrVqpn27du7JKMxcd8/Fi9ebJ566ilz6tQp8/fff5sPPvjAFC5c2BQrVsxUrVrVnDp1ykVJ7/7x2rFjR9OnTx/7tGvXrplu3bqZp59+2gwfPjxVFlMDBgww9erVs5e4qUG/fv1M3rx5zeDBg82UKVOMu7u7efPNN+MU0K5w4sQJM2zYMPvvisbcLVOCgoLMW2+9lSqKqeHDh5uqVaua5557Lk5p+uyzz5qQkBCXFVPGGDNjxgwzfvx4kzNnTlOnTh3Tpk0bc+rUKXPr1i3z+uuvmzfeeCPO/wRzhfXr15s8efKYb775xhhz93/Mubm5mUKFCplPPvkkVTwf7/0fwTExMearr74yTz75pP317Irfd+59zt25c8e88sorplKlSmbz5s2mdevW5tlnnzVVqlQxlStXNk2aNDGXL1+2NN/ChQvNsWPH7LfDw8PNiy++aIYNG2aMufu+feDAATN69Gjzv//9z2W/66RllFKPsYEDB5qXXnrJeHh4mDfeeMPMmjXLGGPM888/b1q2bGl5ntg3pM2bN5vvvvvOfPTRR/b/i7lu3TqzZMkSY8zdNytjjOnUqZPp0KGDiYqKctn/1T516pT56KOPzMWLF82ZM2dMqVKlTMeOHc2dO3fMa6+9Znx8fOL8YZHSYrfPvZYtW2bc3NxM9erVTY4cOUz37t3N8uXLzXfffWcCAwMt/SP23g+7mJgY061bN1OzZk3j6+tr+vTpYxYvXmxu375t6tWrZ95//337fFa6N+P69evN8ePHzeXLl02LFi1M6dKljaenp/nvf/9rfvzxR3Pt2jVTuXJl89FHH1ma8X7Lli2zfzguXbrU5MiRw3z55Zdm27ZtxtfX9/+x955RUWVb1/A4RlQECRIkS845g+QMAgImEBQxZ0EkKApGFMyxzRFFUQTFiIo5oqBtjqBgAiQLAvP7Ud/Ztw6Ffd/nfbtO2f0wx7ijr1WnqhZ7n7P32nOtNRdsbW3x+fNnVm2aM2cOOVDR/122bBmkpaURFxcHU1NTBAYGYt68eRg9ejQkJCTw/ft3Vm0EmM/M58+fkZeXh+zsbPj6+sLS0pI8H7/D4fD48ePo2rUr/P39UVZWBuA/z8fVq1dBURQmTJjAqq3c0dfLly9DQkICenp6SE1NJeTU9u3bYWFhQSLFgiL55s+fj/j4eKSmphJSYvz48Xj9+jVWrVqF4OBgkj3K5rrDPR4VFRXw8PCAkpISjIyMsHnzZrx58wafP3+GmZkZ9u3bB6DjtZ4N+2hSp7y8HB8/fkRWVhasra2hr6+PgIAA8v69e/dYs68jO9++fYuGhgZcu3YNcnJy8PT0hISEBMaMGYMdO3YgNzcXampquHDhAut2Apzov5ubG3r16gUfHx/Ge7W1tZg+fTpsbW0xd+5cnmxiNpGSkoLY2FhGdsKFCxegqKhIsuQETdpnZ2dDQ0ODBGXOnj2Lnj17omfPnggICBAYEdDW1oY3b95AXl4eMjIyjAxXgENMaWpqYsqUKQIjm7lt0dXVhZycHG7evMl4j86YsrCwQHFxMSv2cN9TCxcuBEVR+PLlC758+YJdu3bBxsYG6urqGDlyJDw9PeHu7k6ICkGdCVpaWrB7927ExsYCAF6/fg1lZWVMnToV06ZNg5CQENasWYNPnz4JxD6AsxfLyspi//79JCjT3NwMdXV1TJw4UWB2ARwC9PTp0wA4Y6ekpARpaWkMGzYMJ06cAMAJ2BgaGrJGSrW1teH69etQV1cnPhcNJycnjB49GpWVlZgyZQoGDRoEDQ0NdO/eHQsWLGDFvn8TOkmp/yXgXty5HdmWlhbk5+dj+PDhUFdXh4eHB+bMmYOePXvi/PnzrNt59OhRSEpKwtvbG9ra2tDW1sbKlSsZDtnHjx+RkJAAUVFRgWcEAJxsKYATOfT09CSH6rlz50JaWhoSEhKspXVyz+3169dx69YtUoqZn5+P1atX4/bt26itrQXAyf4xMDDA3bt3WbGPG1lZWYR0BIDNmzcjNDQUwsLCiI6OxpAhQ9C7d2/WI4jczkxcXBzMzMywfv16AMCzZ89w4cIFXLt2jVzX1NQECwsLVss1f3UAKC0tRWNjIxwcHJCUlAQAqKyshKmpKSiKYo1sbm/fpk2bsHXrVjQ1NeHly5eIi4uDjo4OVq9eTZ7hixcvwsHBgWR0sQXuZ2bSpElISUnBy5cvAXDIPS8vL1haWuLp06cAONGxPXv2sOIQ/cqxPnr0KCiKwqxZsxjPEADcuHEDz58/57ttHYFeV65fv44tW7ZARkYGDg4OmDhxIp48eQIxMTEsXbqUVZu4x/Dw4cOQlpbG5cuXAQBPnz7FoUOHoK2tDWdnZ5iZmYGiKNYDCdygD9U/fvxARUUFoqKi4ObmBgkJCezduxeWlpYwMjJCQ0ODQOz7+PEjJk6ciLy8PMbrFRUVKCwshL+/P8keXbVqFQD2Dojc605SUhL8/f1JMCs7OxtLlixBVlYWISgqKipgaGiI/Px8Vuyjx4F7PD5//ozQ0FCoq6tjy5YtjPdqa2sxatQojB8/ntVDdvvfSk9Ph6WlJbS0tODn50een7Fjx8LBwUHghFRbWxsyMzOxdu1aAJx1W0xMDNu2bcOVK1fQo0cPjB8/XqClU+np6ejbty+GDRvGk5l+8OBBSElJYdasWaxlV/yK0M7OzoaRkRFGjBjBk/19/vx5HlKNDRQWFmLOnDmMqg4au3fvxpw5c9CjRw9QFIXExETW7WuPp0+f4smTJ2hoaICLiwvGjh0LgDPmUlJSJGDI1nPT/nkuLi7GhAkTYGpqCk1NTcyfPx+vX7/GgQMH4OPjI7BzFb3eiYmJkf2lurqahwSdM2cOnJ2dUV1dzap9tG/67NkzEmzbsGEDtLS00K1bNwQGBmLv3r0AOMEvJyen3yJz75+ETlLqfwG4F6R169Zh2rRpmDlzJqqqqsiiWFNTgw8fPmD06NFwcHAARVGYO3cuAPYiYA8ePICsrCx27doFACgvLwdFUUhNTSXXFBQUYNCgQdDU1CSaFWzjyZMnuHz5Mk6ePMkY2+DgYERERJB/z5w5EydOnGA9xRQAgoKCICUlBVlZWairq5MFlLa3trYW7969g66uLoYPH86KTdz30fv370FRFMaOHUt0ZgCgvr4et2/fRlBQELkP6UMsv+/D9hv34sWLISEhgYKCgg5JxcbGRrx8+RLe3t4wMTFhLZLNPQ7Pnj1DSUkJw8Gko0sFBQUAOAevESNG4O7du6w8yx0dngYPHgw1NTUcOHCAjFNNTQ15v6WlBZ6envDz8xNYhDMwMBA6OjrIzc1lzPfp06fh6+sLXV1dHDx4EOrq6ggODua7PfQ4FBQUICUlBTNnzsThw4fJenL48GFQFIWZM2fyEFNsgft+okvLuNPb3717hwMHDsDMzAxmZmYQFxeHoaEhT7SRDeTl5WHatGnYtGkTz3utra04fPgwZs+ejV69esHExISUbfIb3GN4+/ZtUBTFU+Lx6dMnrFmzBk5OTtDS0gJFUTh8+DAAdjMCDh48CIqiMHDgQNy+fbvDvwHgHHpiY2MhLS0tEM3CxMRESEpKIjs7m5GRQI9Vc3MzKisr4e3tDRsbG1YyzrjH6OPHj/j+/TshScrLyxEUFAR7e3ts376d8bmGhgZGJiK/wf0bmzdvJuP38eNH3Lx5Ey4uLrCwsICxsTFmzJgBPT09EtQSBPlIo66uDm/fvkVlZSUsLCyI31BSUgJlZWVQFEWyV/iNX41DWloaZGVlsWDBApSWljLey8zM5Cl55he47/fjx48jIyMDx48fJ68dPXoUZmZmCA0N/WXAkq25zs3NhYyMDJSUlEhgqLW1leceKCoqwrhx4+Dh4cGqz02PQ0f+3/Pnz6Gvr08yMd++fYsRI0Zg2rRpJPDFln0AcODAAaxcuZL8u6ioCLt374a6ujqcnZ2hoaGB/v37IyMjg+ezbNlYWFiIyMhIKCoq8gQ+rl69irlz50JERAQPHz5kzbb2SRFSUlKYNm0aPn/+jKamJrx48YLH1sjISERERAg0w/WfiE5S6n8RlixZAhEREYSGhqJ///4wMDDAjRs3eByyT58+YeXKlejVqxerorknTpzAoEGDAHAiDcrKyoiKiiLv0xlJWVlZDJFDNpGVlQU1NTXo6urC0NAQqqqqJKqwbNkyCAkJYeHChQgLC4OYmBhrGQvcG/SBAwdgbGyMhw8f4vz58/D09IS0tDQh8aqrqzFjxgzo6+sjKCiIfI6fGxD3d8+fPx8LFy6EgoICunXrhpEjR/LMZ0NDA8rLyzF27FgoKCjwPSuAu9Spra0Nnz59gr29PSmToUGPc0tLCzZv3gxvb2/Y2dmRz7NZTjN37lyoq6tDWFgYs2bNImUULS0t0NXVhZ2dHXJycuDk5IRBgwYxbOcnaNF3gCOETJNjw4cPh7a2Nvbu3Yv6+noAHGLq+PHjcHZ2hqGhIRlHtokp2jGj1xiAOU4FBQUkm5QW3mTDzqysLAgJCWHo0KHQ0dGBkZERHBwcyGE2MzMTPXr0QFRUFOtZANxrTk5ODtatWweKouDu7t4hEZGRkYGYmBhQFIWjR4+yaSru3LkDY2Nj9OvXD3/88QeA/8xv++chJycHSkpKrJR0cd8/aWlp2LJlC3r27AkRERGsXLmShwwvKSnB7du3YWhoCC8vL77b1x51dXVEb40mxbjBfU+8ePEChoaGrGvQPHr0CFpaWjxCuNyZrcnJyXBxcYG5uTkrazf3PC9cuBDm5uZQU1ODmZkZcnJyADCJKVqLhhtsBBS4f+P58+cYOHAgjIyMeLJX7969i9jYWMjJyRFinC20L8+sq6tjiDM/f/4c6urqpPzsy5cvGD9+PAoLC1nZn+m5vnbtGhYtWoTk5GTs37+fvL9s2TLIyckhKSmJsd+wBe57kc5qlJeXh7y8PIyMjIi+2uHDh2FpaYmwsDCSvSkIXLlyBSNHjkT37t1x5MiRDq/h1iIVEhLC2bNnWbGN/t3Tp08jMDAQo0ePxpYtW8j7V65cgYyMDA4dOoTy8nIsXLgQ7u7urImJcz8rd+7cgYeHB9TU1LB161bGdZ8+fUJubi6GDRuGHj16QEdHh4c05Se4A5QAhyyLiIiAoqIiWcffvXuH0aNHw9TUlJUy1478ZZoU3bhxI5SUlDBnzhweX+fVq1eIjY2FmJjYbyG8/09DJyn1L0Z7J2bKlCkkTb25uRlmZmbQ0NDAjRs3eK6tqamBtbU1yVpiA5s2bYK7uzuam5uhqKiIcePGEbtOnjyJefPmCbQr4LVr1yAiIoJt27YB4CzyFEWRlPGGhgbExMTAyMgILi4uAsnkmjdvHpYuXcooJauoqICfnx+kpaVJdOHSpUukJA1gLxtuxYoVEBMTw5UrV3Djxg1kZmZCSEgIw4cPZyzu9Gbf2NgITU1NHnLo70RUVBRDfBTglFQMGDCApOJyo7GxkWSaHT58mGxabEZE8vLyoKamhry8PKxbtw6GhoYICgoiB+mCggIYGRlBV1cXrq6u5ODF73l++fIlIcliY2N5yi9pcmXv3r1oaGjA69evMX/+fERFRZHxE0RkadmyZXB0dERLSwvPwYXbHu4MH36MJfeBoaSkBBoaGli3bh157cSJE3BwcICTkxMpEz548CDExMQEplExd+5cyMnJITU1FePGjYOCggLMzc3J89x+nGJiYmBra8vX1PuOyML169cTDSna4W6vb0djyJAhCAkJYW1dTE5OhpiYGHJycpCZmYno6GhQFIUVK1YwNNZoG//8809IS0uTTqD8wK/+9qamJnh5eUFaWvq/ln1raGhgzZo1/DAPADB58mSeA/Pdu3chKyvbYQkKXRqVn5+P5ORk1tec5ORkiIuL49ChQ9i8eTPGjx+PLl26EJ/i48ePCAkJgZaWFmkQwRa47/+UlBT4+/vD0NAQFEXBwMCgQ9L72bNnSEtLg5qaGulsyBYSExOhpaUFdXV1LFiwgGSelJeXQ1hYGJMnT8b58+fh4eEBBweHv8xo+buRlZWFPn36wM/PD3p6elBWVmaQyMuXL4eysjKio6MFJrIfHx8PNTU1lJaW4uPHj3jw4AEsLCygpaVFSo4yMzOhpKSEzZs3s2LTr9ac4uJiBAYGQllZmZGRwn3P0v/fzs6OJ9uQn7hw4QJ69OiBUaNGwdvbGxISEpg9ezZ5Pzg4GCIiIlBXV4ekpCQjaMcW5syZA29vb7i4uEBSUhLq6urk3NIeR44cgampKQkm8jvwVlhYCGNjY0bmLcDpdh0SEgIFBQVcu3YNAIeYYtPPeffuHUmUyM3NhZycHCGaNm/ejAEDBiA2NpYE1S9evIixY8dCS0tLYJU8/3R0klL/UnAv7rdu3cKFCxcwduxYHubWzMwMmpqaHRJTBgYGRDj57wa90L18+ZI80O/evYO0tDS6du2KadOmMa6fOXMmfH19BSKCTGPz5s0kc+vNmzdQVFTEpEmTeK6rqKgQiN5HeXk5tLW1SfkH8J/7oKKiAv7+/pCWlubRCWBTDyIwMJBnbq9evYqePXsiIiKCUTJD3yP6+vp8czJ+/PiBjRs38kTL379/j4EDB2LJkiWM1wHO85SYmEj0c9q/zw+0n6OLFy8yWsPn5+fDxsYGgYGBZANvbW3FmzdvWHHGabKmpqYGBw4cQK9evdC3b19CTHA/D0OHDoWuri4p5aupqSE2splpxo05c+ZAWVmZ/Ju2o6mpCTk5OTwZo3+3oxYXF8eja1NUVMRz8G9qasKxY8dgaGhIxEABMO5FNlFcXAwpKSnGQeHp06fQ0tKCpaVlh0RzVlYWzM3NeaKjfxe4n5Xm5mZGKceOHTtgZmaG8PBwchjkvp7+/0OGDEFUVBQr92NtbS3Mzc15tFqWLl2KLl26ID09nZEx1dbWhsrKSujo6HSosfJ3gHtM9u/fj7lz5yIhIQGHDh0i73t6emLAgAG/FDPPzc2FqKgonjx5whcbKyoqEBoayiPof/XqVXTr1o1kynCve5cuXUJWVhbjen7NcXsfoKqqCra2toSAAjjjuHjxYlAURdbtjx8/IjExUWBr4erVqyEsLIyLFy/i+fPn2LNnD0xNTaGrq0uIKW7doxcvXkBTU5PV7Mdjx45BUVERx48fx7Rp02Bvb4/g4GDi3x49ehSioqLQ1taGjY0N3zNwuZ+Xd+/eQVlZmQQTamtrcfr0aSgqKjLE7FNSUqCjo8P3DNfq6moegrO1tRUjRowgjWRofPz4EZqamggNDSWvsaU3yj2Ge/fuxdKlSzFp0iQUFRXh58+fePLkCUJDQ6Gnp8fY+7ixY8cOUBTF19K49nOdlZVF5rqyshI7d+5Ejx49MHXqVHJdRkYGsrKyWCsJ58a+ffsgKiqK27dvo6GhgZQQWlhYMLQTuZ9pBwcH1jqbnz9/Hq6urrC0tOTZS7Kzs9GlSxf06dOHdY1jWtzc2NgY6urq6Nq1K0928ObNmyEnJ4e5c+eivLwcdXV1OHfuHKtZZv82dJJS/0Jwb7zR0dGQkJCAjIwMyeppL6RoaWkJUVFRBmF1+fJliIiI8CX9kLbv+PHjMDIyQlpaGr59+4ampiasWbMGCgoK5MD94sULxMfHQ0xMTOAtc6dOnYqgoCB8/vwZCgoKDPHRAwcO8LRo5zc6IpOePn0KJycnDBw4kEQUaBsrKythY2ODKVOmsGonwLG1ubkZtra2hNhra2sj92JiYiIoikJUVBTRUmlra8O5c+dAURRfDjbtHdTt27djwoQJJLU6NTUV3bp1Y6SM19XVwcvLCyNGjBCI9tG6deswevRoeHl5MVqIAxyiytbWFkFBQTz17fwkHqdPnw5XV1fy7+zsbPTo0QOioqKIjo4mr3OnrA8fPhz9+vVjlPawMZ6/Oujdvn0bampqiI6OZtjx9u1bmJqa4tixY3yz6evXr5g8eTKPmGdJSQm0tbV5Snl+/vwJBQUFxnojKB2uW7duQUJCgmih0PfZvXv30LdvX3h7exNRX3rsFy9eDHFxcb4I2nPf5ytWrICPjw9puU6n3m/atAm2traIiIggxBQ9fq2trXj16hUoimIlot3W1oaqqiqoqqqSzFVuksXf3x8iIiI8+/aBAwdAURTfDzlz5syBrKwsoqKiEBERgX79+pEGCg0NDfD29oaioiJu3LjB89nCwkK+ldm3X892796NEydOkHkMCAiAjo4OmXOAE4Bwc3NjrEn8gqura4cH/n79+pHs27a2NrS1taGhoQHu7u6YOXMmD8HGNjHV1NSEkSNHMsrxWltbkZ+fD21tbZiYmBCClNtWKysrzJ8/HwB/1qL2833o0CEsW7aM/Hvv3r1wdHREUFAQCSB8/vwZL168IJ/lR1AmISGBJ2Bx//59KCgoMKQbmpubcfLkSaiqqiI7O5u8zkZHwOTkZIZMAw0XFxcGSUbfawsWLICdnR0psafBVvByzpw5kJGRwbhx4+Dk5ARFRUWkpaUB4OzTYWFhMDAwYGhg0SgtLWU8838nVqxYwQj+vHnzBiIiIpCSksLu3bvJ6w0NDYSYmjFjBl9s+Z9g3rx5sLGxYbz28uVLuLm5QUlJiVHKRz/To0ePxtixY/nyzHS0Ppw/fx6DBw+GqakpgwR99OgRfH19ERMTw5oG14wZMxg+V1paGiiKgpKSEnkGuMXLN2/eDCUlJUyePBnl5eWs2PhvRicp9S8D9wN/6dIlWFlZ4ezZs3j06BFcXFxgZGSErKwsHudn7NixDAfozZs3fK13z8nJgZCQENatW8doU//161csXrwYoqKikJGRgZ6eHnR0dFhPDe8IZ86cgbOzMyQkJAix0traira2NkybNg1jx47l2cj5Be65ev/+PZ48eUJKG9++fQsTExNoamqSKBx9X7BV/vgrB2bjxo0QFhYmdeK0XWvXriX17LRzC3AO5vwSym1vY3x8PExMTBATE0MIFLqMZvjw4RgxYgQGDRoEPT091rSPuG1ctGgR+vTpg6FDh0JaWhpycnI8jtmlS5egrq7OcyDiJ8rKysh40JmMz58/x969eyEpKcnIjGv/97B56OL+rXPnzuHEiROknLW+vh7z58+Hubk5hg8fjmvXriEjI4O0uOc3aMLh3LlzRA+DJkAHDRrEIEja2trg7u7Oeoe4ju71uro6SEtLY+HChYzXv337BmNjYwgLC8Pa2pq8XlFRgaSkJL6v5wkJCZCRkcG6deuQn5+PHj16wMfHh9yfGzduhL29Pfz8/DrMVOBXRu6v1ouIiAioqakRwXr6MDBjxgxYW1ujS5cupIvcz58/cefOHb4dvmjk5eVBSUmJZBwdOHAAQkJCjNLwpqYmmJmZwd/fn6+2cKOtrY3xLP/48QNaWlqwsbEhz861a9fg6ekJWVlZbNy4EStWrICbmxv09fVZKd+6f/8+Obhw+1rBwcHw8fEhhxf6fhgyZAijSYogMXz4cFKywo34+HhQFAVTU1PGM5OdnY3+/fuz0rFry5YtSEhIwMiRIwlRQWPfvn1wdHRESEgIT+kMPwiV79+/IyQkhCeY8OHDB8jIyDCICoCzJiopKf2ybIoNcGfJ7969G/r6+jx2bty4Eba2tnzLZP0rHDt2DAoKCmRfzs/PB0VRjMBgYWEhvL29ERYWxvgsP32J8vJyWFpaMgjIjx8/IiUlBeLi4jwC+g0NDdizZw8oikJ8fDzf7Por0OOxbt06mJiYkGx2+lm4cOEC2Z9pnUWAs3YJCwvzRUicXu9u3bqFw4cPIzMzk7x38eJFUjJ89epVNDQ0YP78+Rg5ciRrXfaam5uxYsUKhn9y4sQJLFq0CHZ2djAwMCCkPHeQdcOGDdDU1GScZTvxf4dOUupfiiNHjiA8PByzZs0ir/348QMeHh4wMTHpkJgC2Km3//btG+zt7YlT0dDQgA8fPmDXrl0khb20tBQZGRm4deuWwNjnFy9e4MGDByTS//HjR3h5eUFRUZGUAHz79g0JCQmQkpLiW5lCe3A7WGFhYbCxsUGvXr0QEhKC1atXE9stLCygra3d4aGLn2QKt30PHjxAfn4+3rx5g7q6OjQ0NCAsLAwaGhokBbumpga+vr44duwYNm/eDDExMb5nANy+fZscGubPn4/9+/ejsbERCxcuhKWlJWJiYsj7GRkZiIyMJOnugtA+unv3LhITE3HlyhUAnE09ICAATk5OOHHiBOPa+/fvC6T0Y9++fRASEiLdFCsqKvDHH39AUlKSEXmfPXs2ec4BdrIBuO/J4cOHQ0VFBTo6OujWrRtWrFiBxsZG1NXVYfv27TA3N4eIiAiMjY0RGRnZ4Xf8XeB+DhsaGhAREYEuXbqQw/XHjx+hpqYGe3t7rFu3DhcvXkR0dDT69evHWuQQ4C2J487aWbhwIYyNjRkkWX19PcLDw3H58mVIS0szsro62nf+Tjx58gQ6OjqkHPLWrVvo2bMng0wBOJmQEydO7FBXit/ZHu/evcPTp09JaeHTp09hY2MDR0dHkkHW0tKCgIAA3LlzB5GRkdDT02Mt6AFwMsrc3NwAcEou+/btS0R8a2pqyDPc3NzMagk4932/bds2vHnzBp8+fYK1tTXs7e3JvL948QLTp0+Hqqoq7OzsEBYWRu49fq7d7bP1fH19yQF/586dsLKywpw5c0iWzI8fP+Do6Ii4uDi+2fTf7OTGzp07YWxsjIyMDMZzvn//foSGhsLd3R3Dhw8n++OrV69YyYiLj49Hv379YG1tDUlJScjJyfEQYfv374eenh5rQRn6Pjp//jyxpbKyEgEBAfD392fonbW1tcHR0ZH1YAINOruSLkEqLS3FsGHD4OLiglWrVqGyshLFxcXQ1dVllJ6xia1bt5Ig0IEDByAiIkK6pdbU1JCM3CdPnrC65gD/yY65evUqeZ7LysqwZMkSCAkJMbqEA5w98ODBg3wPHtD41XjcunULvXr1QlJSEoNIuXTpEgICAjBy5Ei4u7szMpf52c33xIkTEBISgr6+Pnr06IGQkBCyrxUUFJBGGgYGBhAREWFF1Jwb9N6fl5fHKLW+fPkyrKysYGBgwCDJ6H2QLeLs345OUupfiKamJvj7+6N3795wcnJivPfjxw94enrC3Nwc+/btE4iocHNzM2xsbJCcnIzq6mrMmTMH9vb2pJNL+84QgkBWVhbExcUxcOBA9OnTh6RzvnnzBra2ttDV1YWCggKcnJygoKDASiZX+00nLCwMmpqaKCoqwpMnT2Bubg5tbW0SEXnx4gXMzc3Rr18/1jRnuA9zsbGxGDhwIERFRaGlpQVfX198+fIFHz9+RGRkJLp06QI9PT1CELS0tODo0aPQ1NTkq3ZYeXk5unTpgrFjx2Ly5MmM0tWGhgYkJSXBwsICs2fPJrog7Ute2SR9Tp8+DRkZGaioqDBKAq5du4bAwEA4OTmRDk6CshEAXr9+jUGDBkFBQYEQU5WVlfjjjz8gJiYGNzc3uLi4QFlZWWBtcseMGQN9fX1ysA0ODkaPHj0wd+5cxoH/xYsXDMeMXw4w/bxwH/DGjRsHMTExkhlTVlaGwMBAIphrYmLCauZo+0N2UFAQ9PT0sHjxYjx8+BA1NTWYPHky1NTUEBYWhjVr1sDe3h4WFhaor6+Hk5MTJk+ezJq9hYWFMDAwAMCJvAsLCxOhXrrbIw3usj1+gntdTEhIgKGhIXr16gV7e3vMnTsXAMfptbGxgZiYGLy9vaGrqwtNTU20tLQgNTUVFhYWrGji0Dhw4ADGjBmDI0eOQFhYmNFVKjc3F9HR0YzIMBuHxKKiInTr1g379u3D3Llz0a9fP7Imfvr0CZaWlrC1tWXoj3z79o1hG1trz8+fP3Hp0iX07t0bYWFh5HeXLl0Kc3NzqKurIzQ0FBYWFtDR0WF1TeQejxs3buDChQtEaLi+vh7+/v5EMPr79+9Ek3LBggVYtWoVVFVVWe2AXFJSgpiYGFLak5eXB3d3d1hbW/MEA8+cOcPK3kf/RnNzM7y8vNCjRw9CTF2/fh2Ghobw9fXFxo0bcefOHcyePRtiYmKEWGHLPm7MmjULvXr1QkZGBgDOfjNhwgQoKSmhb9++UFdXR2BgILmereAljQULFmDIkCG4ffs2+vbtyyDwduzYgfj4eIZWGxtrTltbG/mduro66OjoQEVFhRBTnz59wtKlSyEiIsJDTLEF7nGgNa5WrVpFqgxoQjImJgYXL17Eq1ev4OXlhXnz5uH+/fugKIqxZvJj3ukM16FDh2LHjh348uULrl69CmlpaXh6ehJSp7a2Frm5udi/f7/Auqy3trYiJSWFcR5taWlBQUEBrKysoKenh8ePHyMxMRHKysqdZXt/IzpJqX8BOlpAampqMG7cOKiqqmL16tWMQ/WPHz9gamrKaG3OJmprazF9+nQYGRmhZ8+eCAgIwB9//IGqqiqMGjUKISEhAtNIATgOkKamJrZu3Yrbt29jwYIFoCgKK1euBMDRKsjPz8eiRYtw4sQJvpWX0WhubuZpX/7s2TOYmZmR1PGNGzeiX79+ZGOhD9hPnz7FggUL+GofDe4527BhA8TFxXHx4kW8efMGe/bsgZOTE8zNzUnmVn5+PlatWoXt27czylUcHR35Lmj/8OFD9OzZE8LCwrh16xaA/4wtTUxZWVkxSvkEhTt37mDs2LEQEhLCnj17GO9dv34dwcHB0NXV5Wsnrvb4lTNYVlYGR0dHDBgwgBBT1dXVOH36NIKCgjBhwgRWWrDT4P6N+/fvY/DgwaSEITU1FVJSUpg9ezYoisL8+fM7LFnm11pEf++ZM2cQGxtLDtcvX75EZGQkg5hqaGjA169f8fr1a4ZwNz/R/u+Oj4+HuLg4Fi9ejPHjx8PKygpWVla4fv066uvrsXv3bhgbG8POzg7+/v5kz/H09OSb3kxHWU5v3ryBiooK5s2bB1FRUUbnqFu3bsHJyYmhW8HmwWvZsmUQFxdHTk4Ozpw5g6SkJGhoaGDs2LEAOCRuamoqZs6ciaSkJPKsREVFISAgAA0NDX+7vdzfl5WVRebt4sWL6NOnDyiKItkKAGdv8fDwYGgqsoXy8nIsWrQIvXr1gqioKAnA0KQuTUwNGjQIp0+f5rGPn/ZevnyZCM/PnDmTdB28evUqREREMHz4cHI/XLx4EUlJSRg9ejTmzZsnsM6jc+bMwYABA6CiooIuXbpg2LBhePToEerq6jB8+HAYGBhAVFQUOjo60NTUBMAJhqioqLAm2nz48GF07doVBgYGjN/My8uDp6cnrK2tO8xG+bv3F25tTvp+u3TpEj59+oQPHz4gICAAEhISJMB148YNjBgxArKyslBTU4Ouri5rwQTuv33btm0MwmH27Nno0aMHIabq6urw5csX5ObmEl8IYE9D6urVq8SHfv78OaSlpUFRFMPXaWxshLe3NyZMmMDKmkP/7dzZL3fv3kVDQwOKi4thYmICAwMDQkyVl5dj6dKlkJCQYM3f7gjR0dGQlZWFiYkJtLW10bt3b9KcIjMzEyoqKpCVlYWCggKMjIzQ2NiIT58+QVtbm2+C9vR8ffv2DV+/fkV0dDTjeS0qKoKMjAy8vLwYDT0Ejfr6etKEgvYhWlpacOPGDdjb20NKSgoDBw7kaRzVif83dJJS/3Bwbxzv37/H169fiaP2/ft3jBo1ClZWVli/fj2jbIKtlHt6QSouLsaxY8cIifLt2zcUFBTg0KFDDEds+PDhAhUHPHfuHDZs2MCTvkyL3aWlpbGaNtzc3IxRo0Zh0qRJjHF69eoVtLW1UV9fj9TUVIiJiRHR6IqKCqxfv54nIscvu2nNEfo3aJtjYmIY19GZALNmzeJxvt+8eUOyltprNPzdaGlpwbVr10BRFISEhDB+/HiSSUaPUX19PRYuXAhlZWUiQMwGfjVHjx8/Rnh4OFRVVYmTQePSpUuIj49nLTOK28ZDhw5h0aJFWLRoESmb+fTpE5ydnRnEVHuwcfjidl5pTSZawyAjIwOKioqkK1FISAh69OiBadOm8TWrsL1DnZWVBREREcTHxzOy4F69eoXRo0dDTEyMlPIJAvQ99eeff0JbWxsXLlwg7127dg1hYWFwcHBgRDS578OYmBjIyMjwpdSQeyzXr1+P06dPEwJ56tSp6N27N2Md//HjB3x9feHv78/KGs5dhgdwDjienp6kUxPACdDs378fGhoaHbZd//LlC6ZPn863Rh/c41BYWIiBAwciPDyc+Ap//PEHKIrCkiVLcOHCBVy7dg1ubm4wNDQkzzDbxNS2bdtAURR69+7NOLjSZNqnT59gY2MDLS0txiGbnygrKyOZoMOHD0f37t0ZZSdXrlwhxFT7rFsabKyJ3PO9detW9O/fHzdu3EB5eTkKCgpgamoKPz8/vH79Go2NjXj48CG2bNmCI0eOkPt4ypQpsLW1Za0T8o0bNxAUFAQhISGeUp7Tp0/Dx8cHqqqqfA8OApx59vDwwPbt23Hw4EFQFEX0MT98+ABfX18GMVVbW4tv377h5cuXrB24uec4MDAQhoaGyMrKYhAsM2fORI8ePXi6iXX0Hfy0r6CgAKKioli4cCE5t6xevRqKioqIiYnB+/fvUVBQAC8vLxgYGLC65pSWliIgIAB5eXk4cuQIKIoivu7jx49hYGDAQ0zNmzcPioqK+PbtG+vr4tGjRyEpKYkHDx6gvr4eP378wPTp09GrVy8ilfHmzRs8fPgQ165dI/MQGxsLdXV1vmb7ZGVlQVdXFwYGBujVqxdOnjzJeL+4uBgKCgqws7NjRfy/Pei5Ki8vx7Nnz0jjLYAjT8BNTNHNKW7evEnu2U78fegkpf7B4F70kpKSYGxsDCUlJejr6xNnrbq6GmFhYbC2tsbGjRt59DzYcM7pEgo1NTV07doVcXFxPIRJWVkZ4uLiICEhwZo2U3tUVlZi6dKloCgKRkZGPE5XWloaevTogSVLljC6L/AD9NzW19dj1qxZsLS0xNy5c8mm/PLlSygrK2Po0KGQkpJitMi9fPky3NzcGGQRv7B9+3ZQFMXTDjokJITR2YXGrFmzYGZmxrgPa2trsWPHDgQEBPCtfryj+7ypqQk3b95E7969MWbMGB4R+J8/f2Lv3r0CIXuOHz+Obdu2YdWqVWSTfvbsGcaOHQstLa1fOpNsluzRnbnGjBkDT09PDBw4kHREevfuHdzc3CAvL88gWwB2HErusfTw8ICCggJ+/vxJSIuwsDBMnz6dXDdt2jQEBgay1gYZ4BBlkpKS2LVrF+P1yspKtLW14cuXL4iMjARFUbh06RJrdk2bNo2hRQhwSKl+/foxSCmAk/GhpKTEQ5wVFhZi6tSpUFJS4kt2APf8fv/+HbKysjAyMiKZKvfu3YOvry80NDSQnJyMJUuWwMXFhdGkgJ9734IFC9C3b19Ga+impibo6+sz9NUAThacv78/Ro8ezXj948ePWLFiBWxsbHiEm/8OcD+Hq1evRnh4OBQVFdGjRw+EhoYSpzwtLQ0qKioQExODpaUlvLy8WM12pOeJ/u+HDx9w+/ZtpKSkMMoKuctsvnz5gokTJ7K6Hl67dg3Kysro2rUrtm/fzmPTlStX0K9fP4waNYo1QofGqVOnyHzSYzJu3DgiFk3fC7dv38bAgQN57lGAk5U7ffp09OvXjy8iyMCvn8kHDx7AyckJAwYMwIsXLxjvHT9+HLNnz2ZlrqurqzFy5EhoaWmhe/fuRKeOHj9uYooN4fe/wvjx46Gnp/fLgMH06dPRs2dPnuxrfoJ7zVm1ahWWLVsGYWFh9O3bF0lJSaiqqkJlZSXWrl0LWVlZiIuLw9DQEN7e3qyuOQDHx3Z2doahoWGH49QRMfX582e+dJVtj61bt5LOsTTWr18PBwcHtLS0MMZozJgxUFJS4llzHjx4gOHDhxMii194+PAhlJSUEBcXh/Xr10NOTg62trY857zCwkJoamoSDV+2QN+Tx44dg6GhIRQVFWFtbY2IiAjSwXzJkiW/jbTMvx2dpNS/AIsWLYK4uDiOHTuG3bt3IyYmBl26dCHlZlVVVQgPD4eamhoPecAv0A/6+/fv4ezsjC1btuD79+/YtGkT1NXVMWXKFLIonThxgmSB8HNx/CscOnQIqqqqKCsrQ3JyMrp27YoDBw7wXEePNVtsfl5eHn7+/ImUlBSYmZkhNjaWbM4rV64kZUc0SkpKYGBgwBBo5idev35NHFW6Q0pbWxuWL18OIyMjFBQUMCLA+/btg6WlJU8JUm1tLd+6vXA7uvn5+di5cydyc3NJ9sa5c+fQp08fREVFkWhiWFgYozMIm4eb2bNnQ1paGiYmJpCTk4OCggJ5bp88eYJx48ZBV1eXp2sOm8jOzoaioiLJRNizZw+EhISwf/9+cs3Hjx9haGiIwYMHC8pM3Lt3D5GRkYQEb2trQ319PczMzDBjxgy0tLTg27dvsLGxIdFt+rq/E0lJSRg3bhzjtZycHAwaNIiIrO/btw/u7u4wMTHB1KlT0djYiNevX2Pq1Kk8bcf5haqqKsyePRs6OjqMjnrPnj2DtrY2tm3bRlrZ09DT02OsQTTy8vLw/v17vtobHR2N4OBgODo6QkxMDMrKyoTAu3//PhYsWICBAwfCx8eHkW3K76yUq1evwsXFBRoaGoSYamxsxMSJE+Hr68tzsI6Li4OHhwdP0Ki0tJTvh5zFixdDREQEJ06cQEFBAWbOnAk9PT1GVs+bN2/w9OlTvH//nsw925k979+/Z2TDVFRUID4+HsLCwgxB2uTkZEbQi59rN7d9jx49gqOjI2xtbeHl5cUgcGkbrl69CoqieLpV8hPr1q2DqqoqI1u+paUFI0aMQEhICADOXNLzuXnzZkhKSuLr16+Mvy8jIwNubm58y2Tm/q3z588jKysLWVlZJJDw559/wt3dHUpKSjzPDw1+zjX93efPn0evXr2goqKC7du382S+0aV8FEWxsm7X1NRgwoQJDK2l8vJymJubk4Y8xcXF2L17N3x8fEipMMAhLAQh47Fo0SKIiooiNzcXp0+fRnR0NERERLBgwQLiG9bW1uLWrVt4+/YtuTfYKm+l17iDBw+iW7du0NbWJlnV3Hj8+DFMTEwgLy/Pmm5rYWEhKIrC5MmTCWkCAMuXL4eEhAT5Nx04v3HjBuTl5RkB39bWVrx8+RIzZ87kSwYujUePHiEtLY3RxOHjx4+QkZGBo6MjDzH1qyxSfuPChQvo3bs31q5di+rqakJC0T52Q0MDSVhoH0TsxN+LTlLqH46ampoOO3ps2LABFEURTZLv378jJSWF1cP11atXkZiYiOHDhzNSh3fs2AFNTU1MmTIF79+/R2VlJQ4cOMBK+nVH+PDhA3x8fBi6GTNnzkTPnj0ZrWhpsEVI/fjxA9LS0lizZg1aWlowb948WFhYICYmhjiX06dPB0VRCAwMxODBg6Gvrw9fX1/yHWxkpbx79w7Tpk2DiIgIIXJqa2thbGwMa2tr5ObmoqKiApWVlXBxcUFQUBDfbeoIc+bMgaqqKkxMTIhze+/ePQD/0U+xtLSEqakpNDU1+d4lrCMcOnQI/fv3R1FRESHphg4dCiUlJaILUVhYiODgYIwcOZJ1+2isWrWKZMIdOXIEffv2JenNtbW1pFzu8+fPrHfJoZGWlgZZWVlYWlqisbGRYceaNWtAURTRv/L29ibv/d3PTHNzMw4dOsTj/GVkZKB79+5YtGgRTE1N4evri4kTJyIpKQkDBw4knZvYdtRoYl5LSwtJSUnk9QkTJqBfv37Iz88nY1lVVQVjY2MGKcBW2cIff/wBUVFR3L9/Hx8/fsSHDx9gZ2cHOTk5RmZZ+451bO2Bd+7cgbOzM9TU1Ej09+rVq5CUlERUVBQ5JNTV1cHBwQGTJk1ixS7u+amvr8egQYOQnp7OeG39+vVQUVFBREREh+sg2890QkIClJWV0b9/f+jr62Pv3r0kkJGQkICePXti2rRpcHV1hYaGBusdPfPz8/Hq1Ss0NjbiypUr8Pb2hpubGylp5kZxcTGr2lE1NTUYPXo0bGxssG7dOrKe7Ny5ExRF4fLlywD+c1/s3buXNCno6Lv4jejoaEhLS0NXVxfdu3eHs7MzIQQePXpEsnLZzKinx6a6uhrFxcU4deoUIiMjiTRGR8TUsGHDeLKE+YEHDx4gNDSU8VpFRQXs7OwwdepULF26FO7u7nB0dMTo0aOhoKDA2lpDgzvbsba2FpaWlliyZAnjmpSUFPTs2RMLFizoMJjB5ppD/9apU6ewfft2+Pr6wtnZmUc6AeBoItnY2PxSquDvBH0fnj59Gt26dcOkSZNICdmbN2+gr6+P8ePHMwjKwsJCqKmpdViFwK91srW1FQ0NDdDV1QVFURgyZAjjfZqYcnV1ZQQD2UZraytaWlowbdo0kh36+fNnKCoqYsqUKeQ6Wu4mLS1N4BmQ/3Z0klL/cHz58gWSkpKElKLTxZubm+Hv748JEyYIrHMY3b1ATk6OJ7K1c+dO6OrqIjw8nO/R9L/CvXv3MHLkSHh4eKC8vJzhLM6aNQs9e/ZkLbusI2zbtg2hoaHEAY+Pj4eFhQWjlO/gwYOYOnUqoqOjGemlbG7ib9++JcTUwYMHAXAcODs7O+jp6UFSUhKmpqYwMDAghxw2a+537NgBaWlpUtKYnp4OiqIYpOOTJ08wadIkJCYmkrFlu4Ndeno6Bg0ahKamJsa96OPjQzqKARzNIUGQPTS5vH79ekyZMgVnz55ldDcDOLpNSUlJjHRxtscRAHbv3g0HBweIi4uTiCL3AXvv3r2Ii4vDihUryGv87rJ34cIFxgEiPj4enp6emD59OimJqaurg4GBASlFEwTKysqwcOFCaGlpITExkbweEhICERERTJkyBQsWLICrqyv09PRYz5oBOCSzp6cnI3Orra0NVlZW0NTURH5+Ps/ex8aaw/0bt27dgrOzM0Pz5ty5c1BQUICZmRlMTExINx821kXu775z5w4aGxthb2+PCRMmMK5rbW3F4MGDQVEUg5hia83mnuv9+/ejf//+yMjIwOXLlzFy5Ejo6upi2bJlaGxsRFVVFTZt2gQbGxuMHDmSlfJM7nGIi4uDvLw8du7cSYicc+fOwdvbG56eniSY4Ovriz/++IN8jo1nhl53a2trER4eDisrK6xdu5Y8F6NHj4awsDBOnjyJL1++oLKyEh4eHvDz82P8jWzN++7duyEtLY179+7h+/fvePfuHZydneHk5ESI5nv37sHCwoLnoMsv0H97bm4uXFxcSLCgurqaaLZyS2Ps379fYMGYDRs2kH13yZIlcHd3h7S0NDZt2kQO02PGjEFsbCzjc2ytOS9evMDPnz9hamqKpUuXAgCjkUxQUBCkpaWxZMkSVsrgfmXr169f0dDQQLKfnj9/Di8vLzg7OzMy6E+dOoXGxkZWA0f0fZWXl4cuXbpg0qRJ+PLlC1paWrB69WpYW1sTQvTu3bvw8fHBoEGDWNUQprO06G7lWlpaRPOWRllZGXr06AE/Pz+BZUjRCA8Px/r16/Hx40fIyckxmnicOHGCZBx2gv/oJKX+QSguLiZiiYsWLSJp1GPGjIGLiwupHacfprCwMAwbNkwgttJYs2YNxMXFkZCQwFMDvWnTJpibmwu0nWZycjIGDhwIGRkZEgXkdhZjYmJAURSys7MFYt/Tp0+ho6NDyKbq6mokJCTAwsICsbGxPDoRNNgSquTG+/fvMWXKFAYx1dDQgEuXLmHr1q04fPgwsZPtLkMzZswgKcTZ2dkQFhYmB4Ta2lrSdY17HPltY0fjmJCQAFVVVfJvOuJVWFgISUlJHn0eNh3f1atXY/Xq1QA4mQEURfF0yamvr4e7uzsmT57Mml3Ar8fh2LFjMDAwgL29PYko/mpe+U1IAZwDS58+fRjaVe0zLxMTE6GhodFhJ0B+gf7buW0tKSnBwoULoampiXnz5pHXk5OTERgYiEGDBiEyMpJ1rY8NGzYAACkzpEEfbrKzs0FRFPT19UnGHhvPya9+486dO3B0dGQQU0VFRdizZw9iYmKwZs0aVsoK2xMp1tbWeP78OWbOnAknJyc8fPiQcc3ixYvh6+sLBwcHLF68mG92/RWOHj2KrVu3MrKYgf9kvRYUFJDXmpqaWC0tBDgl9FJSUrh58yYjGxzgEFMBAQFQVFSEoaEhlJWVBZJ9S48FTUxZWlpi/fr1pHR5ypQp6N69OwYOHAhNTU0YGRmxQux1hLi4OJK1Sq8nJSUlMDExIaWGAIckYNO27Oxs9O7dGykpKYw9uLq6GuHh4bC1tcWMGTMwd+5cUBT1y/LCvxvca+6rV69I1jw9fxUVFYz9paqqCvr6+kT7kd/gnqPJkydDTU0Nzc3NiIyMhJKSElmzaXtnzJgBc3Nz9O/fn2QlsTXP3OSjra0tjI2Noaamhn379gHgjK+XlxdcXV2RmpqKpKQkUBTFelCdOwhz6tQpdOnShTTr+fHjB7Zt2wZzc3NSdmhra8sqUZ+fn4+YmBiy17179w5GRkYdZo6Wl5ezkk3YEe7fv0+y1ydMmAB7e3uoqKgwAjT19fUIDw9HSkoK62eW/63oJKX+ISgqKoKuri4WL16MyZMng6IoEvnIyMiAjY0Npk+fztCvcHJywuzZs1mxj16QXr16hYcPHzKcxaVLl0JeXh4pKSk83QrYFvxsj+bmZqSlpUFOTo4hQMq92SckJHTYcpgt7Nu3DwMHDiSZFHTJgrW1NUNjig1wb2pHjx7Fhg0bsGTJEpSUlKCtrQ1fv34lxFRHqc6AYLJmpkyZgtTUVOTm5jIye1pbW7F7926sXbuWEbHjN7jH8dixY7hy5QoAzvMzYMAAnu6P169fh7q6OmvObkeYMWMGpKSkyDOyYcMGdOvWDWvXrsXdu3dx584duLu7w8jIiNUuOdz304MHD/D48WNGKv3hw4cxaNAguLm5EQKcbQfj6tWryMvLA8DJbBwwYAAjY6qtrQ27d+/GhAkTICEhwVrrcIB5L7579w7v378nEeLPnz8TYoo7Y6qxsZGx7vBzPLntW7t2LdFqefLkCaSlpREdHc24/vz585g9ezYsLS1hYWHBN7t+ZePFixeRk5ODU6dOkTF68OABHBwcoKqqSg4x7Z8NttbFFy9ewMXFhZRtvX37FoqKivD398eNGzfQ0tKChoYGDBkyBOvXr0dkZCTs7OwYJSFsoLS0FMLCwqAoipCi3PeZjY0NAgMDATDHn62snqamJnh7e/Mc8LltLCoqwu7du7F48WLW9MyAXx8+6eweCwsLbNiwgdhSUFCAzMxMZGVlsRY4am9ja2srpkyZAgcHB/IaHXTLy8tDnz59eLp4skFYfPr0CUZGRli+fDnjdXp8ampqMGvWLLi4uMDExEQguqh0BvitW7cgKSmJwMBARqllaWkpzp07Bz09Pfj5+bFu35cvXzBy5EiS/fvhwwcYGxvD2NgYVVVVaG5uRltbG4KCgnDr1i2MHTsWAwcOZH2fPnXqFHr16oX09HQUFxdj6tSpoCgKV69eBcDxz0JDQ2Fubg4dHR0S9OA3uO9zekzo13JycggxxU2M37hxA8+ePWNVj+vo0aMQERHBvHnzcPfuXfL669evYWhoCFdXV1abtnSE1tZW1NXVQVpaGgkJCQA4fo6Ghgbk5eVJw6PW1lYkJCRAUVFRoH73/zZ0klL/ICQlJUFaWhq9e/cmDiWNNWvWwNraGsrKyggICICZmRl0dXVZORxydy/Q0dGBpqYmtLS0YG9vT1JwaWJqyZIlrGYAdIRPnz6hoqKC6Hz8/PkTy5cvh4WFBaZOnUo2c7bJk/bp8vT/KioqMGbMGKxevZqRjp+YmIiBAwf+shMbPzF79mz0798f9vb2kJaWJi3Nf/z4gc+fP2PatGkQExPD3r17WbXrV05qSkoK5OTkGNpHACeS6O7ujpSUFLZMZMzznDlzoKamhuTkZFRWVqKhoQEbN26EpqYmxowZg3fv3uHhw4fw8/ODg4MD61FD4D9j+u7dO9jZ2WHt2rUAOM74ypUrISYmRoTZ3d3dBdKZCwBGjRoFfX19DBgwAPb29iRbD+BodTk5OcHV1ZXREY0N1NXVYdiwYYSEqq6uxv79+zFgwACEh4eT69avXw8/Pz9WNQu453n+/PnQ1taGoqIiFBUVsXv3bjQ2NqKiogILFy6EtrY2Q2Oqo+/gJwoKCpCcnEzaSTc0NGDNmjXQ0NDA5MmT8fXrV7x48QLe3t5ITExEUVERevfuTVq2s4GYmBjIyMhAS0sLXbt2hZeXF+lMWFhYCCcnJ2hqajI6YrGJ5cuXw9raGu7u7ozymGfPnkFLSwumpqbQ09ODsbExNDQ0AHDKXDU1NXmaU/zd6Ghtu3LlCoyNjWFqaso4LACc8nqalBIEvn37BikpKZJxy21/Y2Njh+sM22vioUOHsHDhQqxcuZL4jDU1NQgPD4eFhQXWrVvXYSdhftvJbWNOTg7xCS9dugSKokj3QhonT56EgYEBvnz5wle7OsKrV6+grKyM27dvA+DYzl0uDHCCmzU1NQIJsh49ehTdu3cnGlu3b9+GuLg4goODiT2HDh2Cr68vQ0uKLV9iy5YtUFBQgL29PQkKtbW14ebNm7CwsICkpCQcHR2hq6sLNTU1tLW1YcuWLTA0NGSFSOHev0aNGoX4+HgAnMx/dXV10qCEvq6yshKfPn1irbyQe57Wr1+PMWPGYMiQIVi9ejU+f/4M4D/E1MSJE3kC/+2/4+9C+27Vd+/ehYSEBKNEGQAZp7dv38LMzAzm5uYkCCtIbNiwAWpqaiQAmJ+fDwkJCZiYmMDNzQ2BgYGsBwg70UlK/SNAOwhHjhyBrKwstLS0sHjxYrIg0bh27RrS09Mxfvx4LFq0iNXI3KVLl9CnTx9s27YNNTU1OHfuHCiKIi1zAQ4x1atXL6xYsUIg2TIAp30wnZarqqqKRYsWAeCM8dKlS2FlZYXp06fzpOLzG+3Ho72Gx6pVq6Ctrc2IftXU1HQoxM5vZGVlQVZWFg8fPiSRzLFjx8LU1JR0X3vz5g3Cw8Ph5ubGml3cG+/Zs2dx/vx5ov8AAO7u7ujXrx9u3bqFDx8+4O3bt/D09IS5ublAUnPXrFkDCQkJ3Llzh3EwqKysxN69ezFw4ECIiopCTU0NNjY2rJVUdERIAZx1JCIiAnZ2dozrX79+jQcPHrAeleNGaGgotLS0UFRUhOLiYjg7O0NISIix/hw+fBi6uro8EW82sGvXLggLC5OMy5qaGkJMjR49mlzHhpBwR1i2bBkkJCRw7NgxkmkkKipKxGjLysqQkpICcXFxngMjG7h06RLk5OQgLi7OcGi/fv2K7du3Q15eHmJiYpCXl4eRkRFaWlrw5MkTqKio8K19fXvs3LkTUlJSuHv3LiorK/H06VPY29vDzc2NrEO3bt2CgYEBa2X17deKgoIC9OzZE7179yaHbPp5//jxIw4ePIj4+Hikp6eTZ3jMmDHw8fHha6YUt53Z2dnYvHkztm/fjufPn+PKlStQV1eHs7MzPn/+jPr6ejQ3N8PKygoRERF8s4kbv9JXCggIgLe3N75+/QrgP/v4zZs3MXfuXNaaonQEmiB1cHCAhYUFKIpCWloagP9kTNna2mLp0qWsrtfc4zd37lwoKSlhwYIFaGxsRFtbGxYuXIgePXpgzZo1ePfuHUpKSohwPJs6lDRKSkogKSnJKFOn79erV692KGbPJh4/fgxbW1tGN16amAoJCSEZ4NzC8GzJO7S0tODIkSMwNTWFlJQUz/7W2NiI9PR0JCYmIjk5mfg4UVFR8PLyYi078/jx49iwYQPMzMxw7tw51NbWYsCAAQxtoY0bNwqsGRMAxMbGQlxcHLGxsfDw8ICZmRksLS2JLEpubi569OiBESNG8H3dWbhwISkBpsdny5YtsLe3B8BZXzIzMzF48GCoqqqSQOaLFy9gb28vUB1h2t7i4mLY2NgwSLTy8nLExsZi8uTJSE1N5cnM7AT/0UlK/cZovwGXlpbi06dPmD9/PoyNjTF//vz/GjniB/lDR0y5N59ly5Zh2rRpADiMuLKycocdPlauXCmwVMjz58+jZ8+eWLt2LQ4cOIA1a9agW7duiIyMBMAhgpYuXQotLS3MmTOHNQeIe44WLlyIUaNGwd/fnyfN1dXV9ZdOOFtClQCnxTQduebOxAsJCYGhoSG5rry8XCCZPdHR0RAXF4eCggIUFBQI8VhTUwNLS0soKSlBTEwMVlZWsLa2Zl0TB+AIQQ4bNoxotXRE5rS0tKCgoAAPHz4UCNmza9cujBs3DhUVFeT3y8vLISEhQbSlOgKbgpoAR4jSxsYGb968AcAh+8TExBAUFITevXsTTYi2tjbcunWLVdvai9WPHDmSONp1dXU4ePAgevbsifHjx/Pdrl+hvr4eDg4ODMF3AFixYgV69epFMo3ev3+PHTt2sJ7tAXAOVHPmzIGwsDDmzp3Lc31DQwNOnTqFa9euEfvmzp0LIyMjRttsfmL27Nnw9/cH8J+15OXLl9DT02NoiD158oR1rZ67d++SiPW9e/cgJCSEoKAgki3cER4+fIjo6GiIiYkR/Up+Izo6GpKSkrCzs0OfPn1gY2OD9PR0XLlyBRoaGlBQUICzszNGjBgBHR0dVgTY25cGcpetbtiwAcbGxoiPjycH7traWvj6+sLDw0NgnUdPnTqF/v37k/Wuuroaa9euRdeuXYk+V01NDfz8/BgHbzaxYsUKSEhI4O7du4wsvG/fviE9PR29e/eGvLw81NTUYG5uLjCdq2/fvsHb2xuDBw8mRC6NKVOmwN/fnzXy5Fdr7+TJkzFw4ECeRgYSEhJwcHBgCEmzNdd0xm9jYyNOnjwJRUVFDBo0iLzfkS9TVlaGqVOnQlxcnLWubPfu3YO4uDiOHTuGyMhIDBs2DPLy8pg8eTK55+rr6zF48GCsXLlSIM/K/fv3oaqqyjgTnD17Fi4uLnByciJaw8eOHYOdnR3fn5F58+YRPSb63srNzUW/fv0wb948ODk5wc/PD+Hh4Vi4cCEoiiJlrYLSZnry5AlPB8KZM2dCXl6eVemOTvw1Okmp3xTci0plZSVPqujcuXNhbGyMhQsXkvfGjh3Ld+0juo05TSzRdgYHB2Py5MmoqqqCvLw8w9HZuXMn1q9fz1e7/gq0HZMmTcLIkSMZ7126dAldunRBamoqAM4Cm56ezlp5BfcGN2TIEOjp6WHGjBmYMmUKunTpgv3795NF/OzZswgICCC12mxvjnQq+LJly6Curk5epx2yly9folevXrhx4wbjc2xm9rx9+xYGBgZ48OAB7t+/j1WrVqFr166YP38+uebs2bM4evQorl27xhrZ034MmpubYWpqilmzZvH8HQ0NDay27+3IxpaWFiQkJJAI57x584hDFBMTg9DQUHz79k0gDlp7fPjwgTy/W7duxYABA3D+/HmUlpaSMio6UkeD33ZfvXoVr1+/ZhwGNm3aBGNjY0KeARxiKjMzU2BEfWtrK6qrq6GhoUEOq9xZewEBAfDy8uK5f9kicDdt2kTWnTdv3iA2NhaKiooMAq19556ioiJMnDgRoqKifNN36UgPZ9y4cXB3dwfAub9ou7KystC3b1+eKDtbY3jq1CkoKChg1apV5PBy/fp19OzZE6GhoYwyM+7W7WvWrIGRkVGHaxE/QGeC37t3D21tbaiqqkJUVBQcHR2xZcsWXLlyBYaGhpCRkWFkfbClZ7Z+/XqEhITA09MTq1atIq8nJSXBzMwMampq8PHxgbGxMfT19QXSZZbG9u3bYW5uzhBFBjgNcqSkpIi4cENDQ4dNDviNhoYG+Pv7k+BGRzY8f/4cZ8+eRX5+Pis6V9wZFDk5OThx4gTR1jt37hy0tLTg5+eHjRs34syZM5g8eTJERUUF0tL+7du3pNMjwNFs0tfXx8qVKxnXXbt2rcPgML9x8eJFUBSFAwcOAOCs0bm5uVBXVydrJP06jbKyMmzatAnW1tas6XK9fPkSSUlJpBvhjh07oKamBgsLCwbRGB8fDzU1NYZWJZs4f/48REVFGX7Cz58/cfToUejr63cYbOOH391+jbh06RLS0tJQUVGByspKLFq0CPr6+pg8eTJu376N1tZWfP36Febm5mRO2Vxn6N968uQJvLy8ICEhgRUrVpCSvNraWpibm2P58uU8a+Xv4Nv+b0QnKfUbgnsxWbx4MVxdXSEtLY24uDhGqvDcuXNhamoKHx8fODk5oX///nw/XL99+xYuLi6Ql5dnpDZmZGTAy8sLUlJSJOrf1taGlpYWTJo0CdOnT2ddKJUGXfvs6emJESNGENvoDXHJkiUwMDBgLaLeERYtWgQDAwNSkrl+/XpQFIVu3bqRw2JlZSVcXFwwffp01u1bsWIFxo4dC4CTsdevXz+eNuJ37tyBpqamwETh09LSMGrUKJKxB3A2nQ0bNqBr164MoWZusBl5pQnkuro6DBkyBF5eXvj27RvDhmfPnmHEiBECG8fMzEyGk7Ns2TL4+/tDREQEKSkpiI+Ph7i4uEDKFjIzM8mBKjg4mLTqbWpqQnNzM7y9vZGeng6AM69BQUFwcnLCxIkTWbOxpqYGLi4uEBISwsSJE3HixAlij4GBAcaMGcO4nk3n51f3+tChQ6Gvr08OOvTaOGXKFEbXKzbx+fNnqKqqQlFRkWShvHr1CnPnzoWmpiYpRQKYY3j27FnMmjWLRHL/bnCP4alTp0i2cl5eHiiKQkZGBuP6Y8eOwdjYWKClXGPGjIGJiQnWrl3LIKaEhIQwatSoXwZh2LQ5NTUVlpaWaG5uJmP86dMnDBkyBB4eHgA4ZO+AAQNIhzaAnecnLi4OAwYMQExMDFJTU0FRFDnIApzDWXJyMqZOnYqVK1cKTNScHotDhw6hd+/ehACnr7lx4wakpaV5BJr5vQe2//6qqirIyspi6dKl5DXuoAxdDskNfpK43LqoysrK0NTUhLGxMXR0dEh51OXLlzFy5EjIyMhAU1MTVlZWrJUGcyM1NRWioqIYPXo0CQC2tbVhypQp8PT0JNe1H3M295nm5mbExMRASEiIrIc/fvxAbm4uNDU1GXZy4/Pnz2R94jeqq6thZmaG/v37Y+bMmQA491h0dDQMDQ3h7OyMWbNmITg4GGJiYqwRZdzzRgeIXrx4AR0dHRw6dIgxj7W1tRAXF8eWLVtYsa09YmJiICYmhtWrV5NzVvsSzYSEBGhqagrsfHX9+nXExMRg3759OHDgAJSVlWFjY4Nx48bh48ePiIiIwNChQwWW1doJJjpJqd8YiYmJpJZ99+7dsLCwgIODA3Jycsg169evx+TJkzF69GjiAPE7AltSUgJ3d3fIyMgQYqqwsBAWFhbQ0NBgCGomJiZCVlYWz54946tNvwKtj/L+/Xts3rwZMjIyPJlGmzZtgqGhocBIs5qaGixduhTHjx8HwNGPEhMTw/nz55GQkAAhISHs3LkTAEeTZMCAAYzOFmzg4MGDkJCQIM5sRkYGREVFERYWhvv37+PevXvw9fVlJXW4I9TW1iI6Ohp9+vSBl5cXz3sbNmxAjx49GJlJbOPw4cOQkZEhkdVbt26R0q3379/j58+f+PbtG3x8fODu7i6QcSwrK4OysjJ8fHxIpxyAczjMysqCiYkJvL29QVEUD7nCbxQXF8Pc3BxDhgyBk5MTFBQUGIeXL1++QEpKimQxlJSUwNPTk5HyzqZjvmfPHkRERJCD/6lTp3D06FHY29uz/vwCTGe3uLgYT548IU7vvXv3YGZmBm9vb7IOtrW1wdHRkbVIe0dzU1hYCEtLS6iqqhJn9+XLl4iLi4OOjg4WLFjQ4XfxKx2f28a4uDgoKSkhJSUFTU1NaG1txdy5c9GzZ09s27YNpaWlKCsrg5eXFzw8PFi5936lBwdwdFoMDQ2xdu1aUi51/fp1UBSF5OTkX34Pv0H/Vnp6OgwNDcnhhvZn7t69C4qiUFxcjLa2Nly9ehVKSkqwsbFhxb5Dhw5BVVWVdDg7d+4cunbtii5duiAyMvKX3W/ZLnOlu+c1NTXh7du3sLe3x7hx4xjZHa9fv4aWlhauXbvGd9v+CjU1NQgMDMSYMWN4tFGvXr2K0NBQ1knc/Px89OvXj2jM5Ofng6IoqKioED+3oaEB379/R1lZmcD0/wBg8+bNCA0NRbdu3TBhwgScPXsWX758Qd++fRnaV2yg/VrBLf4eGxuLbt26MYipkydPQlRUlBBBgkRhYSHU1dVhZGREfNufP39i9+7dGD16NDw9PTFr1izWAoTtMzM3bNiAkpIS/PjxA66urrC1tWWUkFZUVMDExARHjx5lxb6OQGcvp6enM+RkLl68iKioKEhISAikIyWNbdu2QUFBAdOmTUN1dTXKysqwb98+qKqqwt7eHp6enqAoitEYpxOCQycp9ZsiLy8PWlpaJGPhypUr6N69O0xMTGBra4vTp0+Ta3+lYcJPlJSUwMPDA9LS0oRwunz5MvT19WFoaAgDAwO4u7tDVlZWYN0LsrKy0KtXL6SkpODevXt4/Pgx/Pz84O3tjXv37pHroqOj4ejoyJqT0RHZ8PTpU3z79g137tyBuro6jh07BoATiacoChRF4ezZs2htbUVOTg5fOyF15GS8fv0adnZ2DD2K06dPQ1VVFbKyslBTU4O9vT1rug8dfX9JSQmSkpJAURSxk0ZdXR2WL18Oe3t7gaXlXrx4EZ6entDX1ycaLefOnYOIiAhMTU2hq6sLS0tLGBoaCnQcb968CXNzcwQGBvJkQ5WVlSE/Px+zZs0SiDbA0aNHISoqir59+5I2zbTYZmtrK6ZPn04ESgcOHIigoCDyWUHMe2NjI65cuQIPDw9YWFhAQkICXbp0YXSAZBtz5syBsrIyevbsiVGjRpEgwokTJ2BiYgJpaWl4enrCxMQEOjo6rHRw/Ss8ePAAZmZmPMTUpEmTMGLECIHYtXz5cqKHw314/vz5M5YsWQIhISEoKChAXV0dpqamrOvh7NixA/v27eMpbRw7diyUlZWxYcMGsocUFxcLTOeDG3/++Se6du2KhQsXMl6/desW9PT08OrVK/LaxYsXoa2t/ZeaWP+3aD9H+/fvx7p16wBw9mNRUVFs374dx48fR5cuXRAXF8d6Y5T2iImJgby8PLZu3UoyEjZu3AhbW1sEBgbizJkzuH79Ojw9PWFlZSWQgMfGjRuho6ND/r1582b07NkTy5cvJ933Kisr4e/vD09PT1ZtbGpqwpQpU4jG48ePH6GoqIiwsDDY2tpCUVFRoCLXNNqPSW5uLoKCgiAnJwd/f38YGxvDycmpw0wzfmPFihUoKCgA0DExRTfl+fHjB65fvy6wZkftUVRUBAMDA0RFRbFWqvzfMGfOHEhJSWHr1q0kU6+yshJ6enqwsLBAbGws9uzZA1dXVxgYGLAylvRvlJWVoaysjEFAzZo1C0pKSkhPT8fXr1/x/ft3rFixAsHBwXzLWP6fYPfu3dDQ0MDEiRMZJH1qaioiIiLQrVs3gVUmdIKJTlLqN8WjR4+IQPOpU6cgLi6OnTt34vr165CQkICNjQ0yMzMFaiNNTElJSRFiqqioCJmZmZg5cyb27NkjsBrs58+fQ0VFhYecyM7Ohp+fHyQkJODt7Q0PDw+IiIiwxuRzbx6fP3/G58+fGYeqQ4cOwczMjJR5Xb58GfPnz8eZM2fINb+KzP4d4LalvaMdExODAQMGMF5vbGxEYWEhHj16JBB9pmfPnuH69euoqKhAS0sLGhsbERcXB2FhYZ6UZrq7D8D/A/avvv/atWvw8fGBtrY2yZh6/vw5tm3bhgULFmD79u2sln7QaO/E3rp1C8bGxggICCCOZkfg573IDfq5OXXqFGxtbWFra4vg4GBC7nHrgcyfPx8+Pj6IiYkhn+fXfP8qM6X9fVZVVYWioiJS/kGLwLIBbhvpw3x+fj4yMzNhaWkJDw8Psr6Ul5cjOTkZsbGxWLJkCev34tatW2FoaMgzX4WFhdDR0YGuri7JpCktLWXteeZGfX09fH19iU5iR3o4jx49wqlTp3D27FlW9XBaW1vR2toKKysr6Ovr4+jRozzElKWlJbS1tbF48WLGWv47EFO7d+9G9+7dMXv2bFy/fp1ogdjb2/McyPmR2cw9h7Nnz8bevXtRW1uLt2/f4suXLzAxMSF6Zi9fvkT//v1BURSWLVv2t9vyf4o//vgD0tLSuHnzJs8Y7dy5EwEBAaAoCoaGhnBwcBCYYHh+fj4UFBQY3VuXL18OGRkZ2NjYkC6B3Hpc/LSRnuvr16+juroaly5dIqLrpqamRJ7g2LFjoCgK4uLirGmNAr/OtGu/5lVUVODhw4fw9fVF7969Gd1c+QnuZ+XHjx/w8fFBjx49SEYh/X5NTQ0cHR0hIiKCvXv3Mr7jdyGmCgsLYWJigqioKIGTKEeOHMGAAQMYJbb02lxVVYVJkybB0tISZmZmCA4O5mujnqysLJw/f578OzMzE7q6upCWloaDgwOjhJkmplavXo3a2lo0NjYKLJvw9evXhMyjsWvXLmhqamLixIk8moSCLK3vBBOdpNRvgI423ubmZlRVVaG+vh5ubm6EoAIAe3t7qKurs5r++iunvyNi6nfA+fPnoaGhQaJb3GP89OlT7N+/H+Hh4UhISBBIau6UKVNgZWUFQ0NDODo6ErHZzMxMUBSF7OxsXLt2DYaGhox5ZquV7549exAQEICTJ0+SQ011dTUsLCyIaHRHhASbouYJCQnQ1taGjIwMzMzMMHHiRHz+/Bnfvn1DYmIiREREGO1eO/oOfuPAgQM80fyrV6/Cx8cHOjo6hJxgW0j62LFjpCvd+vXrGQQPjZs3b0JRURHu7u64cuUKX+35FdqPC615dOjQITg5OSEgIIAhNEtnTP1VGdPfjfPnz5MIa0e/1f5+42eWY3u0t+f27duIjo4m/3748CFcXFzg7u6O3NzcDr+Dn/diR5F/DQ0NODs78xy+0tPTyeGQW+SX7UypiooK9O/fn6FpRaOhoaFDTRS2xpDeR5qamuDr6wtjY2NkZmYyxOsjIyOhpKSEcePG/ZZirllZWZCVlcWAAQOgpqYGGxsbvndIbX94OnXqFOTk5BglzMXFxdDU1CQBrNLSUkyePBnXrl0TCKFHz11ERAQmT57MeK/93vzkyRO8e/dOYI096NeuXr0KFRUVWFpaktdPnjyJtWvXYtKkSVizZg2rRPj58+fRu3dvxtp35swZWFtbEz2ugoICDB48GCEhIUTPkE3QWf3/J/c+N5HBVkdK+vBfVVWFUaNGoU+fPjzNbqKioqCpqQl7e3u+2fT/ClqCZPjw4QLNmlmxYgVcXV3x48cPMuft55ImUujX+fGsvH37FlpaWggICMDNmzfx/PlzSElJIS0tDfv27UNKSgrExMQYzaNiY2PRp08fbNiwQWB7S2VlJWRlZZGQkICysjLGe9u3b0f37t0xbdo0gejBdeK/o5OUEjC4F/fnz5/zsPTfvn2DqqoqKfeoqKjAyJEjkZGRwbfDVkffy+3UtgdNTMnLy/82KZDHjx+HgoICg5SiF/hLly6xGvFqj6FDh0JHRwd5eXl48OABhISE4OrqSjIAJk6cSLQMAgICWLGJewPZtWsXRowYgXHjxqFHjx4ICQlBWloaWlpaEBYWxiiJEhTS0tIgJSVFysvCwsIgKSmJ69evA+BkfMybN48QfILAs2fPYGRkhEGDBvFEbc6ePQs5OTmYmJiw1m6dG6tWrYK7uzuqq6tx4sQJyMrKIioqiqeT0K5duyAsLAwXFxdGySsb4HbCHz58iPv37zMIvr1798LJyQnBwcEoKirCz58/YWVlhbNnz5Jr+O0Ytba2YsSIEdDX1/+v0TZBCmmmp6djyJAhcHBwwLhx4xjv0cSUt7c3q7oK3ONx69YtlJeXA+A8G7q6unBwcGDcA0eOHMHo0aMxffp01iLsHc1ZTU0NfH19MX78eJ6uuJcvX0ZERARr5Vztm6I4OTmR57S5uRleXl4wNjbGoUOHSCexiIgIXLlyRSBd1/5PUV5ejocPH+LOnTt8J1I8PT0ZmiwnTpzAhAkTsHz5csZ1L1++RNeuXZGcnIwbN27Ay8sLrq6ufD0Y/hXoblEuLi6YOnUqAOaa+ePHD1y+fJnHd2NzHaJlCLh/+8qVK1BRUYG1tfUvP8eP53v//v0M/aqSkhJMnz6ddACksW3bNvTo0YMQ34mJiQgLCxNI2/h9+/ahS5cupAPpr+au/XixFbxcvHgxIiIiiEbZ58+fERoaCmFhYVy/fp0EiYYOHYorV678lmsNN+7cuQMHBwceMoMN0GMTFRUFIyMj8jo9ty0tLbh8+TJPkJOfY3ru3DnY2dkhNDQU8+bNY5DfTU1NyMnJgbi4OObNm0deX7BggcC6CdO4dOkSlJWVkZyczON7m5qaQlRUFLGxsTxZxJ0QPDpJqd8EdHcXaWlp2NjY4Pnz52hra8OXL1/g6emJoKAgrFu3Dh4eHrC1tWW0buYHXr9+TQ7LWVlZGDp06F9uyqWlpbCysoKmpiZrJT1/hTdv3qBXr15ISEjgeW/GjBlISkoSyIJUVFQEc3NzklW2atUqSEpKIi8vj3Hd3bt3GSWFbDkZq1evhrKyMpn727dvEw0aNzc3jB8/HhRFka5nbKO1tRV1dXXw9fUlpZl5eXno27cvtm7dCoCzWf78+ROfPn3C1q1bBVqWkpmZCRcXFzg5OTFar//8+RODBg2CtLQ06QjJJu7cuQMnJydy3+Xk5EBRURGRkZEMkmzPnj3w8/NDVFQUq4cZ7t8KDQ2FkZERhIWF4efnx9Bj2rdvH1xdXaGsrAx1dXVWIrHtncCCggK4ublhy5Ytv00HF247VqxYgT59+mD8+PFQVVWFtLQ0duzYwbi+qKgIhoaGmD17Nuv2xcfHw9DQkJSaNTc34/Tp09DV1YWdnR3Kysrw8eNHBAcHY/78+eRz/CamuG0sKSlhOLerV6+GkJAQ1qxZQzR8qqqq4O/vDy8vL9bvgzlz5kBGRgaHDx9maC81NTUhICAA+vr6MDc3h5WVFbS0tMjY/S73638Dv+ycMmUKlJWVic9SUlJCDi20iD7dRRjglMp169YNGhoasLCwIJ9jW8SeG9OnT4eMjAxPttf79+8RFRWFO3fu8N22jvDkyRP06dOHJ4j18+dPnDx5El27doWfnx8rtiQkJICiKLx//x4AR6fO2dmZBAeB/6wnnz9/hpGREcTExODs7Iw+ffqwpjXU0Zpma2uLoKCg36bUjUZsbCwkJSVx9OhRxtpIZ0x169YN3t7e0NfXh5GR0T9mzWGLfPzVOFy4cAFSUlKkIoHG58+f4ePjw2h0xS9wrzXnzp2DjY0N5OXlMWTIEMZ1P378QFxcHDw8PAhx+rvg6tWrkJeXR0pKCiEZ6+vrMXHiRCxdupRkQnbi90InKSUgcC9Ix44dg4qKCrKzs5GXlwdra2uoqqqSDk3Z2dnw9PSErq4uPD09+V5v39raioCAAIiKimLlypWgKIqU+vwVPnz4QDb93wE7duxA9+7dMWfOHDx69AhPnjxBbGws+vXrJ7CMrtOnT2PAgAEAONkLYmJiJLOjtLQUK1eu/GU3E36juLgY48ePx+HDhwGAQXzW1NQgJiYGISEhjM5rbDgYHf39jo6OKCoqwtmzZxn6UU1NTfjjjz94ys3YLldo3xXJ0dERzs7ORBzy+/fvGDVqFE6ePCkwJy0uLg4DBw4kGXq5ubmEmDp16hS+f/8Of39/bNu2jXyGbVtHjRoFLS0t0i3OyckJsrKyWLlyJbmmoKAA27ZtY0S8+W3nhQsXcODAAfLvGTNmwMjIiIylIB1v7qDAtWvXkJycTDIKnz17htDQUNjZ2WHXrl2Mz718+ZJ1u5OSkiAtLY2zZ88yDtVtbW24cuUK9PX10a1bN6iqqkJPT08gBHNiYiKUlZWhpqYGPz8/sh4lJydDWloa9vb2cHd3Z1UPhxv5+flQUlIiTVFaWlpQVVVFtOBaW1uxefNmREdHIyYmhozh73445DdoaQS682BSUhK+f/+OnJwcWFpaQk1NrUNC5927d6xqKALMuaqpqWFoAH769An6+vowMDDAhw8fUFVVha9fv8LLy4sRwGQbdXV1yMjIgIqKCoYOHcp479OnT9DV1QVFUTyZm3833r59C11dXUI+PX/+HHV1dUQDae7cueRaOvvs+fPnmDdvHubNmycQX/H69eskU+vkyZOwt7cXuIYsN3Jzc6GgoEBKoNra2vD161eiJwUA69atw6RJkxhrzu9GrAkK3D5tbm4uNm/ejPv376OxsRHV1dUYP348zM3NsXjxYlRVVaGwsBC+vr4wMzMTSJbwpUuXYGpqCjk5OUaTLYDTsGDgwIEdlq0LGlevXoWysjKmTp2KgwcPIjExETo6OgJvTNGJX6OTlBIwMjIysHHjRtLdBeAcKuzt7aGsrExqxGtqavheQ9weWlpa6NmzJ1JSUvj+W/xAa2srMjMzISYmBnl5eaipqUFTU5O1boAdkSmfP3+Gp6cnwsPD0a9fP1y4cIG8R2dcCKLWme4q1L9/fxKJ6UhE+MePH/jjjz/Qo0cPVqKH3L+dkZFBxIUDAgKgqakJUVFRRtbHhw8f4OTkhO3bt/PdNhrcm/f27dsxbtw4TJgwgVEKdfToUTg6OkJJSQkLFiyAjY0NBg0axPeMx7+y98ePH/D390dqaipxdM6cOQMrKyvIyMhAWVmZ0QmQ7dT7EydOwNTUlJTabty4EX379kVwcDCUlJQYayY3+C2O++nTJ4iJiYGiKCxYsAAFBQVoa2uDsbExwsLCGNeyifj4eEb2Z35+PtHm4V5THj16hNDQUNja2nbYPpwtp/fFixfQ1tYmei7fvn1DUVER0tPTGdHgQ4cO4cSJE4wyBn6C+/7JyMiArKwsDhw4gE2bNpH24XSp5okTJ5CamoqxY8di5cqVAmlScPDgQairqwPgZLwlJSVBTU0NXbt2hb+/f4ef+R1EzX8HLF++HBRFYeTIkaAoimQwZ2dnw9HREX5+fsRfoEuRuMHGut2+XMrZ2RkSEhKIiYkh5er37t2DtbU1+vXrB01NTRgaGsLExERgXVy5Ra4PHz4MBQUFBjFVVVWFiIgIVrqwNTc3w9DQEKGhocjOzkaXLl3w4cMHlJeXIygoCCYmJjwEPQ1BEHrLli0DRVGYNm0aKX8MDQ2Fj48PuUbQZXBHjx6FsbExamtr8ezZMyQnJ0NJSQny8vKwtbXt8DOdaw4vYmNjISIiAg0NDfTq1Qvx8fH48uULysvLMX/+fEhLS5P37ezs+K6tB/z63rp48SIsLS0REBDAyC6cNm0aLC0tf1ui5+7du7C3t4eCggJ0dHQYumud+P3QSUoJEDU1NZCVlQVFUaSLAXcr1UGDBkFVVRU3btxgTbiX+/fl5OSgrKwMZWVl1rrT8QMfP37EjRs3cPPmTVJqwW9wbxp1dXUkg6KyshLBwcEQEhLCkiVLyDVlZWUwNDTExIkTWbGvI8yaNQvdunXD9OnTebRS2m9UTk5ODPv5Ae77/PHjxzA2NoaxsTGOHz+OP//8k2QmAByCpaqqinRqEkRELjY2FnJychg9ejSmTp2Kbt26MYiT27dvY9y4cbC3t8fIkSNZOzB0RC7SXbqWL1+OIUOGMMiMFy9e4MKFCzh8+DArncO4beJGVVUVVq1aBYDTlU1GRgaXLl1CWVkZtLS0IC4uTkps2MbSpUvRs2dPhISEIDw8HBMmTMDx48dhaWkpkNLWoqIiyMjIMBzXR48eYebMmRAWFubRx3n8+DHCw8OhoaHBUzrMFt6+fQsjIyMcPHgQFy9eRFRUFAwNDaGpqQlFRcUOmxSw+VxnZWVh37592LlzJ3ntxYsX0NPTYxBT7cH22vPs2TNISUnB3NwcsrKyGDNmDPbs2YN79+6BoihG4KMTvNDQ0ECXLl1I+TeNI0eOwMXFBYMHD/4t/J/ExERISUlh27ZtOH78ONTV1eHp6cnQ0NuzZw+2bduG/fv3s7Z2c6/be/fuRWJiIqZPn046XDU0NODw4cOQk5ODjY0NNm7cCEdHR7i4uJDP8uuZobVEz507Bzk5OXTr1o2R9f/x40cEBARg0KBB2L17N3mdzWe4/b63b98+9O3bFxMnToSPjw9mzJiB58+fQ0hIiEf/SlDIzc2Fnp4eXF1dMWDAAERERGD9+vXIy8uDjIxM55rzC3D7YLdu3YKTkxM5323YsAHq6uqYPn06KTerqKhAXl4e7t+/z0pmJm3fjRs3sHr1aiQnJ+PmzZuMoKWlpSWkpKTg7e2N0aNHQ0FB4bcnempqalBSUkIqFTrx+6KTlGIRHR0+S0pKYGVlBR0dHVLjyp0NpaWlhZCQEFbso3+3qKiIIQTu4uICJSUlHseMJlo6wQT3xhMZGYlBgwZBR0cHx48fB8CZc3Nzc1hYWGDYsGGIjY2FtrY2fH19O/yOvxt/pfk1efJkKCkpYePGjX9ZI25padmhXhc/EBMTg6CgINjY2EBMTAyamprYvHkzMjIyIC8vDw0NDdjY2MDGxgbGxsasRJPa65Ht2bMHKioquH37NgDOgZaiKFAUxZNpyGYbdu41p7KyEg0NDYx7q7q6GkpKSn85l2w46Ny/ceXKFXz48AEAZ3x+/PgBT09PrFmzhlwTFBQENzc3hsAmv/H48WPSfamlpQWTJ09GbGwsLl68CF9fX0hKSkJJSQkhISGs6yv8/PkT58+fh5GREWxsbMj9+fLlS8ycOROqqqoky5DGgwcPkJycLLCSisbGRri5ucHExARdunTBjBkzcPr0aXz9+hWOjo4ddrdjC6WlpejTpw8oiuI5CL58+ZJoNLEV5PgrNDc34/r165g5cyaOHj1KSru+f/8OKysrkk3TCV4UFBTAyMgIgYGB6Nq1K86dO8d4/8iRI3B3d4etra1AxXvPnj0LLS0tMpc3b94k2laOjo44c+ZMh59jM6MiNjYWCgoK8Pf3x+DBg9G7d2+cOnUKAGe/vHnzJmxsbGBtbQ0fHx9Wy1xPnTqFbt26QUpKCuPHj2e89+HDBwQEBMDZ2ZnIAAgC3G3qR44cCTMzMzx79gxWVlYIDg6GlZUVlJSUGCVygsS+ffuQmJiIw4cPEwH5d+/ewcjIiPhBnegYW7ZsQWRkJEaPHs14ffPmzaSzekfdzNlISMjKyoKIiAgCAgJIw5FFixYRX5XOmJKWlkZqaipDK7UTnfh/RScpxRK4F5Pz58/j+PHjOHHiBACOA6ynpwdzc3PSWYFeIFpaWlg5NNC/d/ToUaioqCAuLg6vX78GANTW1sLFxYWRMbVixQqMHDmys0a8HbjHY+LEidDV1UVaWhrCw8PRpUsXctB6//49li9fDmdnZ4wbNw5Lly4ln+PXxtPeqd62bRsmTZqEhQsX4tChQ+T1cePGQVVVFZs2berwcH337l307t2blfK9Xbt2oV+/frh//z4qKytRXl4ONzc3ODg4YOfOnSgtLcXSpUuRnJyM7du3sxIdnjFjBrZs2YKGhgYAnMP18uXLSVbUyZMnISoqinXr1pHykPaEAMBOZzgaK1euxKBBg2BjY4Nhw4YxSLXTp0/DxcVFYIK43HaGhITA3d0dmZmZ5NDy/ft3qKioYOHChQA4hwhfX1+GtgE/x7KtrQ3fv3+HrKws3N3dsWLFCgAcpzw8PJxENVNTU6GjowMJCQmeTEN+gnuvOH/+PAwNDWFlZUXm+NmzZ4iOjoampmaH9yH9WTZBz3l9fT0uXrzIc+/Z2NggPT2ddXu4ceXKFRgYGMDOzo6nNferV68gJSWFyMhIVuz7n+gMNjc3o6KiAr6+vrCysurco7nQfp4bGhpQXV2N6upqREZGomvXrjh//jzjmr1792L69OkC1eAqKioiwsd5eXkQExPDnj178OjRI/Tt2xfu7u5EC5JN0PfhH3/8AXl5edL58eTJk6AoCn379uWxi00ZCnrOTp06hSNHjmD//v1QV1fnIQPosn8fHx+BCDanpaXBwsICixcvBgB8+fIFwcHBRAIgPT0d3t7eoCiKVWmCjsD9HHDvPfSaI6hM9X8SYmJiQFEUDAwMeLrDbdmyBTo6OhgzZgzrhM+1a9cgJydHdESfPn2KPn36QEtLC3FxceR5zcvLg6en528RlOnEvwudpBQL4HYg4+LiICcnB2NjYwgJCSEiIgKlpaUoKSmBrq4uLCwsOlyI2FjkL168iD59+mDLli089cG1tbVwd3dHr1694O7uDiEhIda0mf6JePDgAWJiYvD48WPyWlpaGiiK+ssMAH45vrGxsfD09CSHv3nz5qFv374ICAiAtbU1JCUlSVtpABg/fjw0NDSwcuVK0kqcRnV1NWubUWJiIuzs7Ei5GcAhcS0sLKCqqoojR46Qa7kdJH7CxcUFenp62LdvHxEj/fjxI169eoXS0lLo6OiQA/WtW7fQs2dPUBTFKANiE/Hx8ZCWlsbGjRtx4MABKCsrw9ramhAnr169QmBgIDZs2ABAMOWEABAeHg5tbW08fvyYEH5tbW2or6/HtGnTYGBggLCwMKirqyMgIIDn+/iN4uJiJCUlQUdHB56ennjw4AHMzMwYJbfFxcU8TiYb4D7knTt3rkNiKiYmBjo6Oli2bBlrdv3VvdT+vbq6Orx58waenp4wNDRkTYOE247s7Gxs3rwZ27dvx/Pnz3HlyhWoqanB3d2dXEOP9YcPH1jZl7nt+2+tyn/8+IF9+/bBzs4O5ubmrIuu/87gHoPc3Fzs3bsXmzdvJmt4RUUFxo0b12HGVEffwYadNGpra/Ht2zfU1dXBzc0NixcvJvchnbUQFxfHd9sATst3bg2m79+/IyUlhexvOTk56Nu3L7Zs2YJJkyZBREQEOTk5v9Sd4gfo7/769SsaGhpIVn91dTW2bdvWITFVVlbGGgnQ/m+/efMmVqxYgf79+8Pb2xtnzpxBcnIyZs2aRWwvKSlBRkaGQOwDfn3vNzQ0YO3atfDw8ICpqSkrmer/JPxq3JYvX47+/ftj0aJFPP50Wloahg8fzpovRttJa6ICnA7mAwcOxKhRozBp0iTIyMggOTmZzG9npUwn+IFOUopFpKamQlZWlqS2rl+/HhRFYciQISgtLUVpaSkMDAygrKxM0mHZAH3gnzJlCklt/tUBf+nSpUhJSRFY97rfFdzjdOrUKVAUBQkJCZ4MgLS0NHTr1g2rV68mzjAbyMjIgKWlJUaMGIGsrCz4+fmRDnWVlZXYs2cPevfujZiYGPKZ4cOHIyQkRCCimvRvpqSkwMzMjLTppTfEixcvonfv3nByciKOGpuZR0OHDoW2tjb27t3L2JwvX74MfX19cnh89OgRxo0bh9zcXIEIfebl5cHAwICUfdAHhv79+0NLS4uU+uzevRu9e/dm9bnmTk8vLi6Gvr7+L0uNiouLMW/ePAwePBhz5swhr/NrzunvpQ8qtNP48+dP/Pnnn7CysoK9vT3CwsIgLCzMIEfZwq8c1qamJpw9e7ZDYioqKgrDhw9n5Znmtu/27dt/WTYMABs2bICdnR2cnJwEcrCJjo6GpKQk7Ozs0KdPH5KtdeXKFaiqqsLT07PDz/HTxvYi12PGjPlLvZba2lqcPHkSqampAhFd/ydgzpw5UFBQgKurK2nmQGddlpWVYcKECejZsycR4GcT3PP95MkTvH37Fj9+/CCvVVZWQk9PD5s2bQLAme8xY8bgxIkTrBBm5eXlMDc3h6urKyMD6t69e3j37h1evHgBTU1NkjWcn59PytjpDqD8Br225ebmwtbWFsbGxlBTU8OBAwfQ3NyMuro6bNu2DRoaGoiKimLFJm5wrxf19fXEtwGA169fw9bWFt7e3nB3d4esrCyP1hnAX3KU+7tLSkrw5s2b/7p27927l1Hi1bnmcMA9ls+ePcOff/5JZFoAICEhAQoKCli2bBkPMUXfx2yU7F28eBH5+fn48uULHj9+jMbGRjg4OJAu2xUVFaRpCi2ZIGix/U78O9FJSrGEjx8/IiIigpRJZWVlQUxMDPPnz4eoqCiGDBmCt2/f4u3btwgLCxNIlMHPz4/RPYobf/75J/n/nVFXJtprSBUVFWHp0qWgKKpDsd5Vq1aBoqhf6kDwCydOnICVlRWGDBkCCwsLRlvpxsZGrF+/HpqamgzRQnquBbUBFRcXo2vXrqR0i8aZM2cQFBQEZ2dnuLq68mg88QN0u2ga4eHh0NTUxN69e0lmz7Vr10BRFPbs2YO3b9/Cx8cHwcHBrHbN5MaZM2ewaNEiAByCSlJSEhs3bsT9+/chIiICGxsb4gxFRUVh1apVrNh48+ZNGBkZERLs/v376N+/Pyn/4B7nysrKDju78Gsdon/72LFj0NbWhqqqKkRERJCQkMBYB5csWYLg4GBQFIURI0YwDo/8Bvffvn//fsTFxSExMRE3btwAwCGm6Iwpa2tr8ny8f//+l5lqfye4v3vevHnQ1NRERkbGX+5rDQ0NOHLkCKvi+jSOHDkCWVlZ3Lt3D21tbaiqqkJUVBQcHR2xZcsWXL16FfLy8rCwsGDNJm7ExcVBQkICx44d+6+ZeNxj3JmtwMTOnTshIyNDSs+PHz/OsxeXl5cjJCQE9vb2gjITcXFxkJKSgrq6Ouzs7Ei79ZKSEtjY2GDEiBFYvXo1PDw8YGlpyUqWMP0bL1++hI+PD1xcXBgdZgHOHmNubo73798D4KzzM2fOxKZNm1h9nk+dOoVevXohPT0dxcXFmDp1KiiKwrVr1wBwhI937NgBSUlJTJkyhTW7uNftqVOnwsPDA6qqqpg/fz5Zu2lfLDw8nBB63HpT/AT3ur1w4UIYGhpCRUUFGhoa2LVr139tgAN0rjk0uMcmPj4eenp66Nu3L0xMTEg2EsAhphQVFZGamsqTCcuG33358mVQFIXjx48TP6GoqAja2tq4e/cugP888/Hx8URiphOd4Ac6SSmW0NjYiGPHjqGqqgp3796FsrIy0QhIT08HRVFwcnJiZEixtbjTmVJhYWGM7k0AZ1H89u0bZs+eTQ6MnfgPuJ2M5cuXQ1VVlYghR0dHo2fPnh1mUXDr4fAb3BvbsWPHYGBggO7du/PYUFhYiH79+vFE4gVNQu7atQvdu3fHnDlzcO/ePbx+/Ro+Pj5YsmQJnjx5AoqieHRA/m5wj+HevXuxd+9eAMCoUaOgpaXFyJiKjY0FRVFQVVVlCK+zmcnFjdLSUhL5SkpKAsAhekxNTUFRFGmkcPv2bRQXF/PVRhpPnjyBn58fEf8vLCxEnz59cODAAQBMQuLUqVNYs2YNampqyGv8GEvu8bt06RJ69eqFNWvW4PLly6QzzpgxYxhaaq9fv8bKlStZOzS0R2xsLBQVFeHr64uhQ4eid+/epJtec3Mzzp07BxMTE6iqqjLWdbae6ZSUFPTv3x+XLl1CeXn5L69rbw/bB5vU1FRYWlqiubmZ2PLp0ycMGTIEHh4eADhZH4MHD2Z9Pbx+/TrU1dVJZiuNzkj1f0f7uYqLi8OMGTMAAAcPHoSoqCjJOqqrqyPBha9fvwps3zt//jzU1NRw+vRp7NmzB3Z2dlBUVMS7d+8AcNZDOzs7mJiYwMPDg9X9hf6N58+fw9PTEy4uLgw9yn379oGiKNy+fRvv37+Hn58fwsPDyftsdA4DOPtyfHw8AA4Rr66uziACgP9kiL969YpvNnVkG8Bp1KGhoYFNmzZh+vTpsLOzg62tLfG9Wltb8e3bNyQmJiIiIoLv9rXH4sWLISUlhdzcXDQ1NcHBwQEqKiqdFRL/F0hNTYW4uDjOnj2L8+fPY8OGDejfvz+GDBlCrklKSkL37t0ZnSHZwNu3b7Fnzx4SuKTXvIcPH5LmKA0NDUhKSsLgwYMJOd6JTvALnaQUi6Cdh2XLljEEFdevX4+wsDB4enqy4gj9Kqr29OlTCAsLY/z48Yyof3x8PHR0dP6rnsX/Zuzfvx9jxoxBTk4O4/VZs2ahZ8+eOHr0aIefYysNmxt5eXkwNDRklPABwOfPn6GmpkYE+H8nHD16FFJSUpCXlyeabI2NjXj37h3U1dX5KrrOPY6PHz+GsbExDA0NSXnHqFGjoKmpiX379pFn/P79+7h48aJA2nI/e/YMJSUljOf79evXUFJSQkFBAQBOOvaIESNw9+5dgaXaL1q0CPLy8qiqqgIAzJw5E7169cLFixfJNWVlZdDT0+Nrlz3u7Cd6LGbMmMFwGgFOVoWKigpx4ASNP/74AwoKCqREOCMjAxRFoUuXLuSg2NzcjNzcXERERLBO9Hz9+hU2NjY8Wmq/E5lC25Keng5DQ0NCLNP3wd27d0FRFA9Zy691e/78+Txr2alTp6CkpMQo+6Dx38pq/jeD+z6j1+qQkBDExsbi7t27EBYWJoRUW1sbli9fztMIQBAaUpcvX8bKlSvJv1+/fg1HR0fIy8sTYurLly/4/v07axm43GNJ+63Pnj0jxBS31lFgYCAoisLAgQNhYGDA6j16/PhxbNiwAWZmZjh37hxqa2sxYMAAjB8/nvwNmzZtIt2l+b0Wcc8Lvf4WFBRAS0uLUb5+6dIlDB06FF5eXr/MRGGLJP3+/TscHR2xf/9+ABx/UUREBJs3b2bVjn8q7t27R5IL6uvrERgYSJqjAJw1+/Tp05CWlibC9gAYjXr4Be5s/0+fPqFLly7o3r07j39VVVWF8PBwqKqqQkVFBf379+/UEO4EK+gkpVgEvRiMGTMGdnZ2qK6uRmNjI3x9fRnRJjZqiM+dO4cpU6bAzc0Nu3fvJhvkiRMn0LdvX1haWsLLywtDhgxBv379Ohekv0BOTg40NTUhJiaGS5cuAWA6I7Nnz4aQkBDJrmED3M7W8ePHkZGRgcuXL5PXjh07BnNzc1hZWWHDhg04cuQIfH19oaOj89umX3/48AE3b97ElStXyDMSFxcHLS2tv8zC+LsQExODoKAg2NjYQFxcHAMHDkRWVhaA/xBT+/fv5xGGZ3M8586dC3V1dQgLC2PWrFm4desWsUFXVxd2dnbIycmBk5MTBg0aRMaRTWKK+94cMmQI4uPj0dLSgrdv32Ls2LGgKAphYWEYOXIkdHR04OvryzdbDh8+DGNjY+KA04iKioK/vz8AjhNJ27xy5Ur079+/w3JCNlFbW4v4+HjSJSc3NxciIiJYvXo1Jk2ahG7dupGDeEcHo78bNjY2PCK8L1++RJ8+fUgWI/e8NzU1kayU3wF//vlnh2XCt27dgp6eHivZFNevX0doaCjPs7h3717079+flFtzlyqfOXOG9TLwfwK4faiFCxdCWFgYX758QU5ODhQUFEBRFHbv3k2uqa2thZeXF+bOncuqndzPRHp6OiZPngwjIyNMnDiR8Te8efMGTk5OHZKT/CYJuL//6NGjCAgIICWkNDHl7OzMeP5zcnJw+vRpVktx7927B3FxcRw7dgyRkZEYNmwY5OXlMXnyZEKM1dfXY/DgwVi5ciXfCanm5mYEBATwHPgvXbqEfv364eHDh4zXc3JyMGDAAOJrd9Tljh9of/98/PgRampq+Pr1K/Lz8yEsLEwIqfr6eqxdu1YgzTx+d7S2tqK2thYKCgqEVG5qaoKuri7R6qXR3NyMqKgoDB06lIe0/bv3aHp+ubXL3rx5g7a2Nhw9ehSioqIIDAwkPg13k4CTJ09iz549pBN7JzrBb3SSUgLAzZs30b17d+jp6UFdXR36+vqsHgqPHz+OPn36YOrUqRgzZgxsbGwQEhJCOsW9f/8es2fPRmRkJOLi4hgRnU7wOghNTU1Yvnw5BgwYAD8/PxJJ5N5cIiMjiWggm5gzZw4kJSUhKysLIyMjTJs2jbyXnZ0NfX19dOvWDR4eHoiPj//HdE55/PgxRo0aBQkJCTx48IDvv7dr1y7069cP9+/fR2VlJcrLy+Hu7g4zMzNkZ2cDACIiIiAmJsZqaSY38vLyoKamhry8PKxbtw6GhoYICgoiJQEFBQUwMjKCrq4uXF1dWe3M1dH91NbWhj/++AODBw9GRUUFAI6u0J49ezB8+HCMGTOG0SmOH3a+fPkSHh4ecHV1ZeijpKeno3fv3sQZo9fnY8eOQV9fn/W24R0dSv7880+8evUKL1++hIaGBhEXzsvLI1okv+oi9neiqakJO3fu5NHUqq2thampKeLj48l79H2Ql5eH9PT03ypravfu3ejevTtmz56N69ev48mTJ/Dy8oK9vT1r2QH0eGRlZZEgQmNjI1RUVHiE1uvr6+Ht7Y3ly5ezYts/EXfv3kVUVBTJEH3//j0iIyOhpaWFgwcP4ufPn2SeTU1NWfXDuO+ppUuXQkREBCEhITAxMYGkpCQJKNB48+YN9PT0EBgYKBAbr1y5gmHDhkFCQgLjx4/nIabal/LRYMOXePnyJZKSkhAbGwsA2LFjB9TU1GBhYcEgv+Pj46GmpsbXQzZ3JsrUqVOho6OD1NRU8v7t27ehoqLCkz3f2toKRUVFEmhgG3TZNwC4urrCxcUFwsLC2LFjB3n9/fv3sLOzQ2ZmpiBM/EcgMzMT+vr6RO5k/vz5cHJy4nmeFyxYAAcHB1b0UEtKShAWFoby8nJkZ2dDVFQUL168AMDRU6TlMej173falzvxvwudpJSAcP/+fSQmJrLeJaewsBCqqqrYvn07AE6LXFFRUaiqqmLw4MEkekM7Ep2LExPtHSz6sNXc3IzU1FSYmppiypQpRP+GbXKHW5i8rKwMrq6uePToEd69e4cVK1bAyMiIQY7l5eVBSUkJaWlpAhPj/p/i58+fKCwsRHR0NCFS+Y3ExETY2dkR/TWAk7llaWkJZWVlQkwtWrSItXKF9gflixcvMqKy+fn5sLGxQWBgIBF4bW1tJVEygJ255n4GtmzZgmfPnpHfbWxshJ6eHqZPn874TPu/jZ+kwJs3b+Dj4wMnJyei6dDW1gZ3d3coKiri5cuX5NpZs2bBwsKC1Uwpbqe1ozbMOTk5sLCwICK0N27cwIQJE7Bz507Wn+VFixaRUoWWlhZMmDCBJxPtx48f8PX1RVBQ0G+3v2RlZZEuQ2pqarCxsWGFvOVeM0pLS6Gqqorg4GDy3J46dQoDBgyAtbU1Tpw4gQMHDsDDw4P1gNbvjsOHD5PDdWZmJoyNjaGrq4vS0lJyzZ07dxAZGQlRUVHIyMhAX18fgwYNElhA5s2bN4iKiiKdR6uqquDp6Ql5eXkeHc+ysjLW7ON+NmfNmgVTU1NERkbC1tYWUlJSiIiIIOP67Nkz+Pj4wNDQkO/6ju1RXV0NMzMz9O/fHzNnzgTAmcPo6GgYGhrC2dkZs2bNQnBwMMTExFgJYgEcQvTTp0+Ij4+Huro6gzweNmwYZGRkcO3aNbKuvHz5Eqqqqjh58iQr9nHjxYsX6N69O8nm3717N0/H0bq6Onh7e8PJyem3D1oKEuXl5QgPD8eGDRsAcIKBBgYGGDNmDCHHv3//DhcXF4wdO5YVm7KysmBnZwcrKyv07NmTaHfSz/ihQ4fQrVs3zJ07t3M/6YRA0UlK/Sbg50LA7Uzn5+djwoQJaGtrw9u3bzFw4EBMnDgRu3fvhri4OAIDAxmO0O92aBAkuDfipKQkDBs2DMHBwYTg+/nzJ5YtWwZLS0tMmzaNEFPcY8hWGva3b9/w9OlThnZZTU0NyaCJjIwk1+bn5/8jSUg2yB96PFJSUmBmZkZSoOnfvnjxInr37g17e3uGM8mm07Zu3TqMHj0aXl5emDNnDuO9ixcvwtbWFkFBQYxIKMC+XkpwcDA0NDRw5MgR/Pjxg7x39epVmJubM7Sk2CpdoMFNTNEZUy9evICnpyd69eoFR0dHODs7Q1RUlLVDTX5+PuNvT0tLg7e3N0aOHImTJ0+SPePQoUOgKAo3b97E58+f4efnh9GjR5PPselkJiUlgaIoos1TX18Pf39/GBoawsPDA9OnT4elpSV0dXVZE2j+n6K8vBwPHz7EnTt3WClv5RaPPXDgAOrq6nDy5EnY2Nhg2LBhpANSUVERBg0aBFVVVRgYGCAwMPAfk9nKFlJSUmBsbIzKykqcP38erq6uEBISIkEDGlVVVXj69CmOHDmC27dvs1rGzD1XJ0+eJE0xuDMp6uvrCTHF3Q23o+/gB7ifyTNnzqB///64ffs2eW3ZsmWwsLDAmDFjiNbo48ePMXv2bIFoDhUWFkJdXR1GRkZkvH7+/Indu3dj9OjR8PT0xKxZs1gR6qYDghRFITs7G42NjYiPj4empiZDQ8jHxwcSEhIYPXo0YmNjoaOjAz8/P77b1xEqKysREhJCgkPfvn1DbGwsNDU1YWlpiREjRsDa2pqhEda55vwaGzZsgIKCAim5zsvLg4WFBbS0tKCrqwtTU1Po6enxfQ/k/t6UlBRQFAUTExNSAsytMXXo0CH06tULU6ZM6SSmOiEwdJJS/0LQi8z3798JMXL69GkiKPzu3Tu0trYiKCiIIYBrZWUFaWlpjBw5ktX25v80+Pv7Q1tbGxMmTCBte8eNG4empiY0NzdjyZIlsLa2RlhYGKOOmy3MmzcPqqqqsLKygp6eHuO9mpoarF+/HiYmJggICGC81+lk/BrFxcUdas6cOXMGQUFBcHZ2hqurKyvPDbfTv2jRIvTp0wdDhw6FtLQ05OTkSEc7GpcuXYK6ujoSEhL4btuvMGbMGOjq6uLDhw88Tm1NTQ1CQ0OJwy4oIVWamHJ0dMThw4fJ65s3b0ZcXBwWLlxIOmvyGytWrICWlhZ27doFgEM8ioqKIjExEQYGBrC2tsbSpUuJ3tXQoUNBURQpB2eD8Ll//z5p/Z6QkICrV6/ix48fWLlyJSiKwurVqwFwsuE2btyIkSNHIjAwEDExMaxmB/+/gp/345UrV9CnTx98/vwZ0dHRkJOTI0LHubm5sLCwwNChQxmExfv37/H169d/TGYrm3jy5AmCg4NJw5HLly/D1dUVNjY2jAyejvY6tted9PR0AJyyb4qisGPHDkZWZH19PXx8fNC1a1dWJRTy8/NhZmZG/p2ZmQlZWVmGAHdbWxsSExPRq1cvjB07Fh8+fADwnzEUhC9RVFQEAwMDREVF8bXxyX8D/VyuWrUKQUFBqKysxIcPHwgxtWTJEnJtSkoKhg8fDl9fX9ItEODfvdjW1vbL7z5y5Ai6detGGmdUVlbi3LlzGD16NKZMmYLly5f/o9ZtQYD7vh8yZAjGjBlDnuknT57g1KlTSEhIwNatW1kZS/peLCwsRHx8PBYvXgx3d3f4+/uTZ4S7qyatX8jdBb4TnWATnaTUvxRlZWWwtLTE4cOHSZte7sNqZWUl9PT0SGek2tpahIaGYvny5Z0ihn+BY8eOQUlJiXTBAYALFy5ASEiI6Bk0NTUhLi4OycnJrNjE7WQcOHAA0tLS2Lx5M6ZOnQpxcXEMHjyYcX1tbS2WLVuGiIiIzk4q/wPs2rWL1N7fu3cPr1+/ho+PD5YsWYInT56AoihWSxfu3r2LxMRE0kHx1q1bCAgIgJOTE08Hxfv37wuMdPzy5Qvs7e2J8Paff/6JgwcPwt3dHcuWLcPXr19x5swZCAsLC7yhAjcxRae4CwIfPnxAcHAw7O3tsXXrVkycOJHoQzU2NmLy5MmwsrLC0qVLybyeOnUK2dnZrIgLP336FNra2oiJicG4ceNAURQppW1sbERqaiqDmKLBTZJ1Hmw4+7S/vz/69esHUVFRHhFrmpgaPnw4rl69yvP5zvWbFzNmzICRkRH59/nz5+Hr6wtXV1eirycIcM/V9u3bQVEUkUsIDAyEpKQkTp8+zcgArqurw+zZs1ldu799+wZbW1tSynX+/HmoqqoySsABTtBTSUmJSBYIuvkDwDl8m5iYICoqirXS/l/h1q1bcHBwII0IXr9+3WHGVEtLC2N++fVMty/9LioqIiXfNIKCgjBq1Ki/nMvO4CUH/22esrOzERgY+Jf3IT/Hkt5rjx07BlVVVSQmJgIADh48CGdnZwwePJhB3hYWFqKtrY0kMnSiE4JAJyn1L8bw4cOhqKiIrl274o8//gDwn4X08+fPGDRoECZMmICbN29i/vz50NfXx5cvXwRp8m+H9pvGjh07oKWlhZaWFrS1tZGD1cGDB9G3b1+SOs52+RHA6Yyza9cu4kw2NDTgyJEjUFZW5mlv39DQQOzqPNj8n+Po0aOQkpKCvLw85OTkYGxsjMbGRrx79w7q6uqsRWhPnz4NGRkZqKioMLJ3rl27hsDAQDg5OZFsAW6w4VC2v98/fvyIvn37IikpCWvWrIGvry/s7e3h5+eHgQMHIi0tDQAwfvx4jBo1iqd7IdugiSk3NzdSmssm6MhqWVkZgoKCYGdnBy0tLTx69IhcU11djSlTpsDS0hLLly/nEUtlY543bNgAKSkpCAkJEXF/7k4/qamp6NKlC9HW6MR/wP2MLFiwABRFQUxMjAQ7uAm73NxcWFtbw83NTeAH7d8Nv9pbra2tGVmtFy5cgJ+fH9zd3XHq1Cm2zOsQZ8+eRUpKCo4cOcJ43c/PD/379+chpmiwRQb8+PEDsbGxGDduHADOM21kZARra2tGMO7Vq1cICQkhZV4dlRkKXfedSwAAZ1tJREFUAoWFhYTIZaNc768wd+5cqKmpob6+HgCnSiE+Ph46OjqMJh40+OUrhoeHIygoCABnPi9fvgyKohAQEICNGzeS6/bs2QMNDQ0yz2zpY/7TwO0zb926FbNmzUJISAju3LlD/Jfa2lrY2dkhKiqKXMt2qfrJkyfRq1cv/PHHHySrGeA0u3Jzc4Ofnx8uX76MhQsXon///jwkZSc6wTY6Sal/IegF8/r16+jZsydkZGRw6NAhHgZ8zZo1MDY2hqysLJSUlH4bp+J3AbcTmJGRgWfPnuH69evo3r070Vegx7q4uBgDBgzAjRs3GN/B1iZUWloKYWFhUBSFNWvWkNdpYkpFRQXBwcE8n/vd9Fz+Cfjw4QNu3ryJK1eukPmPi4uDlpYWysvLWbHhzp07GDt2LISEhLBnzx7Ge9evX0dwcDB0dXU7zK7gJ9ofnOjx2bp1KxQUFKCgoIANGzaQDIGgoCDMmDEDAKcUcu3atQIpeW2Pt2/fws7ODoMHDxZYBkB5eTmqq6sxfPhw9O7dm+cQU1NTg2nTpkFVVZXR3p6f4E71P3v2LBQUFKCpqYnY2FiejlaNjY2klK99p6n/zeA+0NTV1eHVq1e4ceMGhgwZAgkJCUI8cZcC5+XlYezYsZ0BBC5wj0VpaSmDmN28eTNCQ0OJ3hHAKUuztrYm640gcOPGDSgrK0NERIRoEHKvd4MHD4asrCyOHz/OakYK/UzT/33+/DlERESwdetWAJxsV1VVVZiammLjxo3IycmBm5sbhg8fDgAQExPD0qVLWbP3v+HOnTtwcHBgzD8/0f65pEnl+vp6DB48GCtXriTzWVJSgoSEBIiJibEmav769WvyfND/zcnJQWJiIvr27QtnZ2ds2rQJP3/+hK2trUA6Rf8TMXfuXEhLS2PcuHHw9fWFnJwc1q9fj0+fPgHglOxpaGjwSCqwgcbGRoSEhBDZhvr6erx48QIrVqzA2bNnkZaWhsGDB2PAgAFQUVFhaMZ1ohOCQicp9S/G06dPcfHiRUREREBTUxM7d+7kyUJ49+4dbt261Vmy1w7cTkZgYCAsLS2xdetWvHv3DgEBAXBzcyMCtABHFFlNTY2UUrFpH42CggKYmprC1taW4dA2NjYiKysLQkJCAtUV+jfi8ePHGDVqFCQkJPgmgP2rg+jjx48RHh4OVVVVnlbcly5dQnx8vEAONgCnDfKkSZMQGxtLsi/fvn3LEHX+8uULDAwMSKYUgN+iBITGu3fvGDoq/EZmZiZWrlwJAJg5cyZcXV0BcLJaQ0JCYGNjQ8qtaXz//h3p6emszDP3ffjy5Uu0traivr4e69evh5GREWbMmMFTftbc3Ix9+/Z1lur9/+AewxUrViAhIYHoBZWUlMDPzw8SEhIMDaHVq1cznotOYoo5BgsXLsSIESNw7do18hzQTVxo3SYa9+7dE+j4ffr0CYsXL4akpCTCwsLI69zElK2tLXx8fARhHgPbtm2Dh4cHyTaqrq6Gv78/DAwMoKysDGdnZ5IBZG5uzrMHCRpsBTe4197y8nLG7/78+RNLlixBYGAggzR98+YNMjMzWbGPG1u3boWMjAxpftPW1oaSkhKMGzcOpqam0NDQgJeXF2RlZQWqy/VPwI4dO6CkpET8vlu3boGiKCgoKCA9PR1fvnxBW1sb5syZw9BRZAsNDQ0wMzPDtGnTUFFRgalTp8LBwQGysrKQl5fHypUr8e7dO9y5c4downWiE4JGJyn1LwJ9KPzw4QPKy8vR0NBA3hsxYgQ0NTWxe/duQkxt2bKFiJ93omNMmjQJWlpaePPmDXE+cnNz4efnBy0tLaxcuRIbN26Ejo4OAgMDWbGJ26netWsXYmNjMXPmTGRmZqKgoACampqMVr4AZ4O6dOlSpx7A34ifP3+isLAQ0dHRfCur4Z7r48ePY9u2bVi1ahUqKioAcFpxjx07FlpaWgxxbm6wMefcvxEYGAh1dXX4+PjAwMAAAwcOZESsS0tLkZ2dDSMjo9/i8PU74OfPn0hLSwNFUfj/2rvzsJrW9g/g390kSeoQoaRB81xEyFwyT+c45qnMMqXMTmSOkJk6MhPJPISQmaKUeSbJrNKk9v37o99eZ2/lfc85r3al+3Nd7/We1lp77cea9lr3up/7adWqFamrqwvZZEQFDzvdunWjpk2bFgpMSRTnfv42CGBjYyN02SMqKNpsZ2dHEydOFAJTvXr1knn7yoGpv0yaNIm0tbVpy5YtMudGSkoKtW/fnqpUqUIbNmygFi1akJ2dHV+3v8PPz4+qV69Ou3fvLlR6YM+ePWRiYiLz8khC3iOPSnvz5g3Nnz+fDA0NaeLEicJ06cy4kgicBQcHywxRHx8fT+3ataO9e/cK08RiMb17907mIXb69OlUu3btQgHp8kD6RczAgQOpQYMGZGJiInNef/78merWrSvU9PlWce5r6fbl5ubSrVu3yNLSkmxtbWUC3Tk5OZSSkkKTJ08mfX19cnFx4eD3f5CTk0Nr164VuqZHRERQlSpVKCwsjLy9vUlNTY2CgoIoIyODoqKiZDJg5SksLIwqVqxIGhoa1LVrVyGr3tvbm1q2bMm/K6zU4aDUT2bv3r1kaWlJurq61LdvX5mCx7169SJLS0vy8/OjcePGkUgkoqSkpBJsbemWmppKLi4uwhst6Qv45cuXafLkyaSjo0PNmjWjYcOGCfPk9WM+adIkqlGjBo0fP5569OhBJiYm5O3tTefOnaOaNWtSu3btivwc/xD9WPKouzBhwgSqUaMGOTg4UO3atUlPT0/oEnX79m3y8vIiS0tLuXXj+p7nz5/T0KFDhdHBJMPY16pVS+jaeOzYMWrRogUNHTpU+BzfABdo0KABiUQimjRpEhEVbBdJMCclJYW6d+9OzZs3p+Dg4BJpnyQIcOTIEZkaFUQFo005ODhQs2bNqHHjxlSjRg2uSVKEbdu2Uc2aNSkhIUGYlpaWJtRxycnJoUGDBpGtrS117NhR2IZ8jsg6duwY6erqCoMj5OXl0evXr+n8+fNC95n+/fsL3dnl+bsnva+OHTtGISEhFB4eLrQrJSWF5s2bR5aWlsK5TkQy2TTy3N9fv36lP/74g1q0aCFT5uGPP/4gfX39Iuv83b59m3799VeqUaNGiQ9QURKkjydJXa2tW7dSr169yMDAgGbMmEFPnjwhooJBKFq2bCmMbCcP0dHRtH37diIiGjZsGI0bN47EYjElJSWRra0tWVtbC4Ep6eDV3bt3S3QUxdKoqDIXd+7coVevXtGTJ0/IxsaGli5dSkQFo6NWrlyZNDQ0aMeOHUREtGXLFrn1ovhWUlKSMEiKZL+OGjWK+vXrx6Oss1KHg1I/kXv37pGOjg4tX76cgoKCqHPnztSgQQPaunWrsMzo0aPJzc2N6tevL/MmnhWWkpJCurq6tGXLFmGa9MgzKSkplJeXVyJvOI8ePSrTD3z37t1UoUIF4SYkJiaGDA0NZYZ2ZmXTzp07SVtbm+Lj44UHht9++4309fWF0f7i4uKoR48e1Lt37xJrp7+/P6mqqlLTpk1l3sImJSWRq6sr6enpCQ9l0gVo+WG7QH5+Pk2YMEF4YSDdrVHysJqSkkKtWrWiYcOGyb0e3LVr18jU1FQYhevLly/08uVL2rp1q9Atc/v27TR58mQaMWIEDx/+HcuXLxcyWe/du0dBQUFkZGREdnZ2NHz4cGG55ORkYR/zNiz8YHjo0CGqX78+JScnU2JiIk2bNo3q1q1LxsbG1LBhQ/r48SOFhISQrq6uXAv4SrfTz8+PDA0NydLSkpo1a0bOzs5C8DElJYUWLFhA1tbWQlHxkpSYmEhqamqFXmx06dKFZsyYUegYTEtLo7CwMJmBNsqjmJgY8vT0lAk4BQQEkJmZGU2fPp1evXpFb9++pS5duggvE4rz2i0ZQa1Vq1bUokUL6tSpE2loaMh0xysqMPXtYBn8u1zg2xqA33YLPXv2LFlaWgrbNzY2lkaNGkVLliwRtmlpuX7fuXOHpk6dSlWqVJEZOIWx0oKDUj+J+Ph4+uOPP8jPz0+YFhsbS/379ycnJyeZwNT79+952M+/4f3792Rqaio8KEjfSJw9e5ZGjhwp0/VCng+JISEh5OrqSkRE4eHhVLlyZVqzZg0RFdRSOHPmDJ08eZK6dOnCNxdl3JIlS8jV1ZVycnJkbm4k3eMkHj58WGL7WiwWC2+DtbW1heuL5Jy4ffs2ubq6koKCglDPQnp+eSS9L7+9aZUUCJcOTBEVFKzNzMwU9rM8t9/p06fpl19+oQ8fPlBCQgL5+PiQiYkJVaxYkSwsLOjt27eFPlNabsZLA8m+WrJkCRkaGtLAgQPJzMyMevXqRbNnz6ZFixaRsbFxoW4efP2W3QZPnjyhzMxMOn/+PNWuXZvatm1LVatWpUGDBlFISAgdPHiQDA0N6ezZs0RE1LlzZwoICJD7dly6dCnVqlWLLl++TEQFNcREIhEZGxvTw4cPiaggMDV16lTq06dPqbgWTp8+nVq0aCFktYrFYlq9ejV17txZ6DLOx+NfNm3aRMrKyqStrU0XLlyQmRcQEEDm5uY0ffp0ysjIoC1btpCmpqbc6ve8ffuWTExMSCQS0aJFiwrNT0pKInt7e7Kzs+MyHn/D3LlzqXHjxuTh4SEzmNCePXtIW1ubdu3aRQkJCdSxY0caOHCgML+0ZJtdv36devXqRebm5pyQwEotDkr9BN69e0cdOnSgqlWrUr9+/WTmSQJTDRs2/G4tEvZ9e/fuJSUlJZo9ezZlZWVRdnY2PX36lKysrGjkyJEl1q6wsDDq06cPHTlyhNTV1YWAFFFB//YpU6ZQamqqMI1vJMuGovbT1KlTycjISPhbUisuLi6OqlWrVqjrhDz2dVE3Wnl5eRQTE0Pm5uZkb28vFMGViI+Pp4CAgGJvW2n34MEDmWDNsmXLyMvLiwYPHkyPHz8msVhMYrGYAgMDSVFRkebNm0cpKSnUsWNH+vXXX4XPyasWicT79+/JycmJdHV1SUtLi4YNG0Y7d+6kzMxMqlSpEv3555/F1p6y6Nv9I71Np06dSr169aINGzYIoxZev36dHBwchIAFKyC9HWfOnEmdO3emw4cPExFRZGQkzZ07l/bu3SsETd6/f0+2trZCl5WkpCSZrpLykJKSQj169BCKfx8+fJjU1dVpypQp1KhRIzI1NRW6v75//77Q6HfyMHv2bPL19RW2ExHRyZMnqU6dOkIgjaggg8bExITGjRsnt7aVVkXtHz8/P1JTU6NZs2YJx6DE3LlzqUqVKhQeHk5EBd24vl3mR/p2REp3d3dq0qQJubm5CVn0RH/9O5KSkqhmzZqFnhuY7LZcunQpVa1alWbOnEn9+/cnLS0tmfOhW7dupKWlRXp6euTk5FQqu61nZmbSuXPn5Dp4C2P/FAelyjDpH8ijR4+Sm5sb1a5dm06ePCmzXFxcHHXt2rVQvQD23+Xn51NISAgpKChQ/fr1ycnJiczNzalDhw7CMiXxhvPOnTukoqJCIpFI5mEwMzOT3N3dafDgwaXizSv7+6RvgiIiIoQaBA8fPqRatWrR6NGjZZa/cOEC1atXj+7fvy/XdkoHpDZu3EizZs2i4OBgIR38/Pnz5ODgQE5OToUCUxLlNUg6fvx4qlatmtDVY+7cuVS5cmUaMmQI6erqkqGhIR08eJC+fv1KYrGYVq5cSSKRiCwsLMja2louN7vS++bTp09Cl0uighEJV6xYQcePHxf2bVZWFrm4uNCBAweKvW1lhfQ2XL9+PQ0aNIgGDx5MGzduFKZLgstisZi+fPlC7du3Jzc3t3J7bvw306ZNo2rVqlFkZKTMMSn5ncvNzaUPHz5Qu3btyMXFRQj8ltTv4MmTJ+nJkycUFxdHderUodWrVxMR0cKFC0kkEpG6ujq9ePFCWL642/nt+pcsWULOzs5kZmZGHTt2pDNnzhAR0ZAhQ6hZs2Yyx2F0dDR5e3sXKiZfnvynjJeRI0eSgYEBrVy5slDWkfR18dsucj+S9P7as2ePENxOTk4mDw8PatmypUxgStKeZ8+elZpsntJCelteunSJ1q5dS0eOHCGigm6roaGhpKKiInNPdurUKYqJiRG2JWcJM/bPcVCqDPpenYnTp09T27Ztyc3NjU6dOiUzLz4+npKTk+XWxp9NYmIiLV68mAICAmRqLpTkA0R4eDhVrFiRfH19KTo6mk6fPk1t2rQhGxubEr8hZ/+M9H6aNGkSGRsbk7+/P3348IEyMzNp1apVZGpqSoMGDaKnT5/SzZs3qWPHjoUeHoqb9Hd17dqVTE1NqXfv3tSwYUOytramffv2EVHBtah+/fpUv379Iovklldfv34lOzs7srS0pAsXLlC/fv3o4sWLwnwPDw8yNjam/fv3CwGoxMREOnz4sFxudqX375w5c6hZs2akpaVFY8aMKVSoNSsri168eEEdOnQgR0dHfrApgq+vL9WuXZu8vLxo/PjxpKysLNOVJi0tjZYuXUoeHh5kZ2fHRc2/49atW2RmZiaT1UP013UzJyeH/P39qVWrVlS/fn1hO8rjmJQOFBe135YtW0adOnUSgpDbtm2jXr160cyZM+V2zkj/vqxZs0YI6iUnJ9OlS5eoVatW1KBBA7K3t6exY8eSlZWVzKiFGRkZ5TqDT3o/LViwgAYMGEATJ06U6X0wbNgwMjQ0pFWrVhXZHa6460hJ+Pr6Uq1atWjhwoVCOx4+fEgeHh7k5uZGYWFhlJ+fT82aNaMZM2YIn+PrN9GAAQNkXqRduHCBRCIRValShU6fPi1Mz8zMpNDQUFJVVSVvb+9C6+Ftydi/w0GpMkby43PixAnq06cP9ejRg0aOHCnUaTl9+jS1a9eOWrduTdHR0SXY0p9fST845OXl0fbt26l27dpUu3ZtcnR0lBmtiX8Yy55ly5ZR1apV6erVqzIF9D98+ECbN28mQ0NDqlKlChkbG5OLi4tcHmJzcnKELkYSCxYsICsrK6H2iK+vL1WvXp0uXbpERAXXqbNnz5Kuri7NnDmz2NpWlkiCSXl5eWRlZUWGhobk6OgoU/SdqCAwVa9ePdq/f3+hTLPiOqe/PX6mT59O1atXp9DQUDpy5AiZmJiQm5ubEHQkKuiK4urqSo0aNeJrDlGhArhbtmwhQ0NDoStUREQEiUQiEolENHXqVGG5gIAA8vb25sLw/2/kyJGF6vNcu3aNatasWeRowZLsk1OnTpG/v7/ctuO318SQkBAaP348BQUFyYxMOXXqVKpevTp9+PCBcnNzqUuXLjR9+nRhfnGfM9Ln9r1798jQ0JDs7OwKFX+/du2aEEQViUTcXa8IXbp0IVNTU+rfvz+5u7vTL7/8IjM4wciRI8nIyIgWLFjw3Szh4rR8+XKqVq0aXb9+Xfh+yf5/+PAhde3alczNzcnIyIgsLS2LNXOrrHn06BF1795dJsj84sULmj9/PlWuXJlmzZols3xmZiZt2rSJRCIRLV++XM6tZeznxEGpMigyMpJUVFRo6NChNGjQIKpXr57Mze+xY8eoc+fOVL9+/RIbhvRnVFqzjt68eUP379+nZ8+e8WhNZVh2djb17NlTqLskuZmU3pd5eXl09uxZunnzZpHzfzSxWEy9evWiX3/9VeaB0MvLSxhUISAggLS0tOjYsWNEVFBPRTIU9rcBl/JOOnjTpEkTEolEtH///kJBoQ4dOlDlypXlcv2WZLJJHo6joqLI3NxcGGXv0qVLpKysTKamptS0aVOhG8P169dpw4YN3F2BCka1XbFihbAts7OzacmSJUJB3EOHDpGmpiYFBwfT8uXLSSQS0fz58wutpzwH9YgK6iv16dOnUDfVmJgYUlJSEoLe0sdadHQ07d27V2b54t6Ow4cPJzc3N4qNjSWigpFHK1WqRJ07dyYVFRXq0KEDHT16lIgKstSdnZ2patWqZG1tTebm5nLLZJZe/+zZs6lz585ka2tLIpGIbGxsihyc4O7duxQYGEjGxsaF6hWWN9Lbb8eOHWRoaCgEI9PT02n79u2krq5OPj4+wnJ9+vShCRMmlEhb+/btK2Q/SX5TpH9bkpOTaf/+/bR+/XoOgv8H69atE0YlTElJoblz51LFihVp4cKFMst9+fKFjhw5wtuQsR+Eg1JlzIcPH8jJyUmmYHBOTg61atWKDA0NKSMjg4iIDh48SD179pR5Y8fKh5LO4GJ/z7f7KTc3lxwdHWn8+PHCNMlNcWZmpsyQzhLyeIi9cuUK1a9fn7y8vIQ29O3bl9asWUOhoaGkqakpBKRycnIoMDCQ1q5dK3NDX56Pye/92/Py8sjW1pbMzMzoypUrhR5QJ06cWOz7d8qUKVS9enWh+G5eXh4lJibSihUriKigVqGWlhaFhYXR/fv3SVNTk1q0aEG7d+8u9G8pzzp06EBmZmYUGhoq1G188+YNPXz4kJKTk8nKykoYSTE2NpbU1dVJJBIJQ8QTld6XHvLy7XmyadMm2r9/v7BdunTpQhYWFjKB7uzsbGrTpg1NnDhRrm09deoUGRkZUc+ePen48ePUrVs3oRvu/fv3ydnZmdq2bSvU94yPj6fAwEAKDAyUyZiUl6CgIFJXV6fTp0/TvXv3KCwsjBwdHcnS0lIITElnzdy/f59MTU1pz549cmtjaZGRkUGtW7cWultKLFy4UGa0W6KC7MigoCCytbUtsrajPM/pL1++kLGxsUxATPL9WVlZ9Pjx40KfKe/XbQnpa8+7d++odu3aZG5uLlzLU1JSaN68eaShoVHkSIZEHNxj7EfgoFQZ8+bNGzI2NqbIyEgi+uvNe2ZmJhkaGpKvr6+wbEmkDzPG/hlJN4qMjAzq1q0beXh40Lt372RulO7evUu9evUqscyjuLg4cnBwIE9PT3r58iWFh4eTSCQiZWVlmbfpz58/JwcHB1q6dGmJtLO0kd6HkZGRtGzZMjp06JAwJPPXr1/JysqKLCwsigxMERXvg8OpU6eocePGZGtrKwSm0tPT6d27d/Tlyxdyd3enOXPmCO1ycXEhHR0dmjRpUrG1qSyR3r8DBgwgU1NT2rhxo/CWnaig8L+FhYUwFPydO3fI09OTjh07xg8y/08sFssc59nZ2WRmZkYuLi50/PhxIirYjm3btqWaNWvSqlWraNGiRdSmTRuytraW63aU7PMLFy6QgYEBdezYkVq2bCnTHS4xMZGcnZ3J3d290MAzRPINBuTk5FDv3r1luuPl5+fTqVOnyNzcnBwcHOjDhw9EJFsfq2HDhkLWTXkKmN67d6/IrosHDx4kfX19YZAKiejoaKpUqRLduHFDZro8akh9+x2jR4+m1q1b0+3bt2Wm37hxg3r16kVPnz4ttjaVVdLbZNeuXZSVlUW3bt0ie3t7srGxkQlMzZ8/n7S0tGRqcTHGfhwOSpVykh8d6QCTmZmZTD/23NxcEovF1KVLFxo6dKjc28gY+3d27dpFOjo6wsh1ly9fpgoVKtDQoUPp2bNn9PXrV3r37l2pGJkrLi6O7OzsaMiQIRQbG0t//PEHVahQgQ4cOEDx8fF08eJFsrCwoK5du5ZYG0urSZMmUZUqVcjGxobq1q1LVlZWwoAJeXl5ZGNjQ9bW1hQTEyPXB0CxWEznz58nFxcXsrKyknmw/vz5M9nY2AhZU1++fKGBAwfSgQMHynXm27ekAwz9+vUjU1NTCgkJEbryXbt2jUQiEa1atYoePnxI7dq1o65du3JXaykPHjwQ/nvDhg30+PFjev36NTVq1IiaNm0qDNxy//598vb2JiMjI2rSpAn17dtXCKTIYzt+2yXq3LlzZGRkRJUrVy40uExSUhI1btyY6tevLzOYQUn4/fffydXVtdD0KVOmkEgkIkdHR5mufJGRkaStrV1kDa/yZNq0aUKx8Pj4eHJycqIRI0YIv9eS6ZaWlnLr6ih97U1PT5fJcNu9ezcZGBjQ+PHjhazm1NRU6tSpE7Vo0YKv2984e/as0CV93LhxJBKJhJcHiYmJZGNjUygwNWXKFGrTpk25CtQyJi8clCrFJBe9qKgomjBhgvCGJjg4mGxsbAplI3Tr1o3GjBlDYrGYL5iMlQGSETOtra0pISGBiAoGMdDQ0BC6Vzg7O5OtrW2pGJlLkjE1dOhQ2rdvH02bNo0qVapENWrUIAcHB+rbt6+wbHm+AZa+/l64cIEaNmxIFy5cILFYTNevX6exY8dSrVq1hCG68/PzqWbNmtSnTx+5t1EsFlNMTEyhwNTLly/J1dWVevToQQsXLiQ3NzeqX7++sF/Le9eP7x3fffr0EQJTkoypWbNmkUgkIiMjI3JwcBDOZf6dLnioV1JSoi1btpCfnx9pamrSvXv3iIjo9evX5OzsTI0bN6aoqCjhM99mksozIEVUEBx78eIFERUE1AwNDalr1650/fp1mc/Ex8fT0KFD5XYt/N73hIaGkr29Pe3YsUMmiLF161bq06cPubm50e+//y4MrvHw4UOhLmB5Ir39UlJSSEdHh6ytrYXzeNu2bWRubk5dunShRYsW0d69e8nMzIy6d+8u9/YtXbqUWrduTS1atKDBgwcL0zds2ED29vZkZGREtra2ZGdnV2ruH0qbBw8ekLu7O+nr65OmpiYlJibKzJcEpmxtbYXA1Pv377+bqcYY+99wUKqU27t3L1WsWJHmzJkjDNH74sULGjduHFlaWtLAgQNp48aNNGzYMKpcuXKhtF3GWOnwvRuY8+fPU/v27cnc3Fx4A3vv3j3asGEDzZo1izZu3FiqipLGxsaSk5MTeXl50ZMnT+jp06cUGxsr81adb3wLrF27lgYOHEg9evSQCeI8fPiQBg8eTO3ataM3b94QUeEuTMWlqH2Tn59P58+fp4YNG5KVlZWQNREVFUUtWrSgBg0akIeHBz/Y/L9vRzR79uwZJScnC9N69+5NJiYmFBISIjzo37p1i86dOyeXAQrKkpSUFJozZw5VrFiRqlSpQq9evSIiErabJDDl6upKR48eLXQdlceDofR3+Pn5kZmZGVWtWpWaNGlCkZGR9PjxYzI0NKQePXoUCkxJFPc5I73+ixcv0smTJ+nKlStEVJDl2LlzZ2rSpAlt3LiRPn36RO/fv6fOnTvTrFmzaOnSpWRkZFQuA1ESkpdCRAWj2GVlZVFSUhI5ODiQpaWlEJjat28fDRkyhKpWrUqNGzemgQMHCp+TV5Bi8uTJpKOjQ4GBgbRx40bS0dEhNzc34Zy5fPkyhYeH09SpUyk0NLRU3T+UFpLzZc6cOVShQgVq0KABHThwoNByiYmJZG9vTzVq1JDpscIBKcZ+PA5KlWL37t0jAwMDWr16daF5L1++pA0bNpCdnR05ODhQq1athDoljLHSa9u2bfT8+XOZaTExMdS+fXuysLAQgjvfPsSUpsyU2NhYcnR0pCFDhsh0ZSDimzVpPj4+JBKJSF9fv9AD37Zt20hDQ6NQAdri3M/Sx9Tx48dp3759dPLkSWH6lStXqGHDhmRhYSEEy968eUPp6enc3ez/SR/fvr6+VK9ePfrll1+oSZMmtGDBAmFe7969ydTUlEJDQ+nTp08y6yhN53JpsGHDBhKJRKSmpkZhYWHCdElWz+vXr8nFxYXMzMyEUYblRfqc2bFjB+no6FBkZCRt2rSJfHx8SEFBgcLCwujRo0dkZGREvXr1EkYJLAmTJk2iWrVqkYGBASkoKFDPnj3p1q1blJGRQb///jvZ2NhQlSpVyMLCgkxNTYmo4MWIgYFBkcWwy4MdO3ZQgwYNKDIykjw8PEhbW1sYNCgpKYlsbW3JwsJCCEzl5eXR+/fvZbo7yytQHxkZSZaWlkKX0AMHDpC6ujpVrlyZnJycKCsrq8jP8TWnwLddcE+dOkUnTpygDh06UIsWLWjXrl2FPhMfH0/9+vXjbchYMeOgVCkWFRVFJiYmMoX4ivrhy8jIKDRSCGOs9Ll79y7Z2dmRq6urTGYFUUGQoHbt2uTg4CDz1ra0iouLI11dXQoJCSnpppQK33soWbhwIWlqatLUqVOFLj9ERDdv3qR69eqVyMsEHx8f0tDQIBMTExKJRNSlSxc6ffo0ERW8ZXdxcSFra2tKTU2V+RxnSP3179+1axfVrFmTDh48SDt27KAZM2ZQhQoVyM/PT1imf//+pKmpSQcPHiyJ5pZa3z4Yvnz5kq5cuUKzZ88mdXV1Wrt2LREVBAAly7x584aGDx9eYg+G0dHR5OnpKVM2IS0tjZYvX06qqqp04cIFiouLIzU1NZo5c6bc2iV9TK5bt460tbXp4sWLlJKSQmfPniVHR0fq2LEjPXr0iLKysujmzZu0du1aCg8PF7blqFGjqHHjxoWCp+XF06dPqV27dlS1alWqU6eOUEdKQhKYsrGxkRnEQKI4X8R8e809efIkzZkzh4iIDh8+TFWrVqVVq1ZRTEwMqaqqUrt27YSAGpP1bRfcZ8+eCb9x9+/fJw8PD2rZsiWFh4cLy61atUrIQCPi4B5jxYmDUqXYvn37SE9PTwhKSV9Qo6OjC40Cwhgr/Xbv3k2tWrWiFi1ayAQpvn79Sq6urlSjRg3q1atXCbbw7+PRfAp8O1JiUlKSTNbBtGnTqHbt2jR8+HCKjo6m2NhYcnd3JycnJ7kEeqQfmu7cuUMmJiZ0+fJl+vjxI8XGxlLDhg3Jw8ND6O4TExNDJiYmMjXC2F9Onz5Nnp6eMsODZ2Rk0IYNG0hdXZ1CQ0OF6XPmzOEHGSnSx/uzZ89kriHv37+nKVOmkLq6Om3YsEGY7u/vTw8fPhT+lvf2TElJEQqaBwQEyMz78OEDderUiUaNGkVEBSOdyaN9hw8fFjLJJN/n5eUlnLOSc/7KlStkaGhY5IhyFy5cIG9vb9LU1CyXmfb5+fnCdho9ejRpaGhQ06ZNKSIiotCySUlJZGdnR9WrV5fbS+Bvu41Onz6diApGuU1PTycXFxfy9/cnooJsQktLSxKJRDRo0CC5tK8skd6Ws2bNImtrazI1NSUdHR1av349ERXUmGrXrh01a9aMpk2bRh06dKCqVauW+5cxjMkLB6VKscePH1PFihVp6tSpheaNGzeOZs6cKTOEL2Os9Pj2Rkb67927d1Pz5s2pZcuWQjepT58+Ub9+/ejQoUNl7iaorLX3R5K+2Z0yZQpZWVlR5cqVycHBgby8vIR5M2fOJFVVVVJVVaVff/2V+vXrJzxUymv7zZs3j4YOHUqenp4ybb916xaZmZkJ7c3Pz6eEhAQOphTh1q1bZGxsTOrq6sJDosTnz5/p119/peHDhxfq5sjbUtbUqVOpbt26pK2tTdbW1rR582ZKT0+ntLQ0mjp1KlWoUIHGjBlDrVu3JhMTkxLffvHx8UKh+m9HWhsyZAi5u7vLTCvO9q5YsYKMjIwoODhYuAfMy8ujXr160a+//kpEBS85JMfgmjVrqFq1avT27dtC3RHbtGlTJjJzfzTp/fPhwwe6du0a3bhxgzp06EAtW7akHTt2FPpMQkJCkffjP1pmZqbM78qRI0fI1NSULly4IEx78OAB1a1bV3g5nZqaSn379qVr166V+LlSms2ePZu0tbXp+PHjlJGRQV27diVNTU2hbMLDhw/J09OTmjdvTu3bt+c6iozJEQelSrmQkBBSVlamSZMm0a1bt+j27dvk6+tLmpqadOfOnZJuHmOsCNI3MBs3biQvLy8aNmyYMNoaEdGePXuoefPmpK+vT7NmzSIXFxdydXUt1LWFlQ0LFy6kX375hY4fP05RUVG0cuVK0tbWpm7dugnLLFq0iKpVq0aBgYFCQWd5vVjIzc2lCRMmkEgkImdnZ8rNzSWxWCw8uG7fvp0qVapEz549k/kcP+AUtmfPHjIzMyMbG5tCNY5GjRpFrVu3LqGWlV7S17OtW7eStrY27dixg86cOUO9e/cmS0tLmj9/PmVlZdHHjx9p9erV5OLiQr179y41D4bx8fFka2tL/fv3pxs3bhBRQRc+FxcXmQB0cUtLS6OBAweSi4sLrVixQghuh4aGkkgkojNnzhDRX0HnzZs3U4MGDWQKNUuvq7yRvqYNHDiQunfvLoz4KN2Na/fu3URElJWVRX/88YfMyIXFdSw6ODjQqlWrhL8PHTpEXl5eQgBc0vb09HSqW7cudezYkU6dOiVkX/PoqLKk91N+fj516NCBtm7dSkQFvVG0tLSEur2S60x6ejrXUWSsBHBQqpTLz8+n3bt3k5aWFunq6pKxsTGZmpoWelPHGCt9fH19qXbt2jRw4EAaPXo0KSkp0YoVK4T5V65cIS8vL2ratGmpevhi/0xWVhZ17dpVpjtXbm4uHT16lGrUqCHT5WfatGmkp6dHCxcupJcvX8q1nR8/fqR58+aRgoKC0GVBYv/+/WRhYVGojhT7i/R5uWfPHrK3t6fevXsLgalPnz5R48aNufvMf7Bnzx5at25doQFcJk2aREZGRnT27FlhWk5OTql7MIyLiyMLCwvS0dGhDh06ULdu3cje3l4IWBT3QA/SQYn+/ftTw4YNafny5cL3Dxw4kNTV1enQoUP05s0b+vDhA7m7u1PHjh1l2sYDUhB1796drK2t6ejRozJFyx8+fEgdOnQgFxcX8vb2Jmtra2rQoEGxt8fHx4csLS2F+4C0tDSys7MjVVVVGjBggLCc5Fw4fPgw1atXj8zMzKhZs2Z8//AfzJw5kxYsWEC1a9eme/fuUXR0NKmrq9OaNWuIqCA7bdq0aYUGoeFtyZj8cFCqjEhOTqaLFy/SpUuX6PXr1yXdHMbYN6TfohIRhYWFkYGBgVCnZ+/evSQSiUgkEtHs2bNllpUunlpaHr7Y35eTk0NWVlY0dOhQmem5ubnk6elJv/32m0xGlL+/P1WqVImCgoLk/kZb0j1KQUGBli1bRgkJCfTs2TNyd3eXydQr7763HaQf5rdv305WVlZUrVo1cnd3p27dupGjo6NQGJcf/GW9ePGC1NXVSSQSCZkf0tc7FxcX6tq1KxHJbv/Sth1v3bpFBgYG1LRpU+Ghlkh+WY+SbSYJTDk7O1NwcDDl5eXRu3fvaNSoUaSsrEyGhoZkampKdnZ2HLD4xrFjx8jExIQSExOFadKF9R8/fkxjx46lDh060MiRI2WWKS49e/akHj16EBHR5MmT6dKlS5SYmEgtW7akevXq0d69ewt95suXL/TgwYNSF7wtadLH+c6dO0lPT48SExOpb9++5O7uTmpqajKDtCQnJ1PTpk1py5YtJdFcxhhxUIoxxv5nY8eOpbVr1woFULOysmjBggVCVtShQ4eoSpUqtGLFClqwYAGJRCIKDg4utJ7S9vDF/jvJPps5cya1aNGiUHeuWbNmUbNmzSgnJ0fmRnn+/Pl0//79H96ev/PQmZ6eTtOmTSMFBQVSU1Mjb29vatmypdxrXJVW0ufhypUrKTo6+rvzIyIiyMTEhBo3biyT/fNtkLo8Kuo4OnfuHNnb25Ojo6MwSphkufHjxwtBqdLuxo0b5OzsTF5eXvTgwYNi/77vnZOfP3+mfv36UYMGDWjlypVCUOLs2bO0e/du2rt3rxD45oDFX9avX08mJibCuSx9Tkt+x3NycmRGXiuu66Lku3ft2kW1atUiV1dXqlSpEt2+fZuICo615s2bU7t27ejQoUPC5759oVHer9tFOXPmDA0fPpyWLVtGRAXXc0m3R4m0tDTy8PCg5s2bc7dHxkqQAhhjjP1PEhMTsXLlSuzduxeZmZlQVVVFv3790K5dO7x8+RK+vr6YOXMmxowZg+bNm0NFRQXe3t74888/ZdYjEolK6F/A/i3JPmvfvj3evXuHtWvX4ty5cwCAz58/4/z58zA2NoaKigoUFBQgFosBAJMnT0a9evV+eHsUFAp+1r29vbFmzRrh+6Spq6vD19cXc+fORXZ2NmxtbXHq1CmoqKjg69evwjrKI7FYLOzTVatWYe7cuahcubLMMiKRCEQEAOjatStmz56N/Px8XL16Fbdv3wYAqKioyLfhpYxYLBaOo/3792Pt2rUICQlBjRo1sHz5cqSlpaFTp0548+YNsrOz8fXrV1y6dAkaGhol3PK/x87ODmvWrEF8fDxmzJiBu3fvFtt3SW/LXbt2wd/fH4GBgTh79iw0NDSwatUqmJmZYfPmzVizZg1ycnLg6uqKX3/9Fd26dYOioiLy8/OhpKRUbG0sa2rUqIG0tDTcvHkTQME5nZ+fj7y8POzYsQPx8fFQUVFBhQoVAABEVGzXRcn15rfffkPdunURExOD/v37w9zcHEDBsbZ48WJkZmZizZo1OHLkCABAUVFRZj3l+bpdlNevX2PIkCHYtm0bsrKyAADDhw9H165d8fz5c9jb2+O3335DmzZt8OrVK5w4cUI4VxhjJaCko2KMMVZWSb+Z/O2338jc3Jw2b94sZAAQFbyps7a2Fgpb37p1i7y8vOjgwYP85rqMk7zhTkhIoOzsbDp9+jQ1aNCAzMzMyNLSkhwdHcnKykroOlOcmXDS6758+TJVq1ZNpj5PUT59+kRTpkwhBQWFIkebKs9u3rxJI0aMoJ07d353mW+78jk7O1O3bt3K5Whm3zNx4kSqVq0aNWnShCpVqkQuLi60ZMkSOnfuHJmYmJCenh61bNmSevXqRRYWFnI5V36kq1evUrNmzYTre3Hy8fEhHR0datasGTVo0IBEIhEFBgYS0V8ZU40bN6Z58+bxb8v/+17mS2xsLFlZWdGYMWOEjCQiojdv3pCVlZWQWSNP169fJxcXFxozZgzVqVOHZs2aVWh+y5YtydnZmS5evCj39pVF8fHxZGxsTC4uLnT9+nUiKjgm9u/fTxMmTKAxY8bQ0qVLhfOFzxvGSg4HpRhj7F8Si8UyD0/9+/cnU1NT2rx5s9AF4Pz58yQSiSgsLIyePHlC7du3px49enANiDJOsv/27NlDurq6wkPCnTt36PDhwzR16lRat26d3G92g4ODaebMmYXqln1Peno6TZ8+nUQiEYWHhxdz68qGqKgoqlSpEmlpadGuXbv+47LS539oaCg1b96ckpOTi7uJZUJ4eDjVrFmTrl+/TmKxmD5+/CgMt7527Vo6d+4c2drako6OjkxgoKxdE7Oysor9Ow4fPkza2tpC9+DPnz/T8uXLSVFRUeg2mpaWRh07dqShQ4eWmaBecZIOSG3dupXWrl1LoaGhwrR169aRmZkZdezYkebPn0+rV68mU1NT6tSpk1za973udh8/fqSAgADS1dWlP/74Q2bexYsXafTo0dxV7x+Ij48nOzs78vT0pPj4+O8ux133GCtZHJRijLF/Qfqmf/PmzbR582YiIurXrx+ZmZnJZEz5+vqSSCQiIyMjsre3L3PZAOXZf7r53717N6moqBQaSexb8rrZff36NbVu3ZpEIhENHz78b393WloazZ49WyYwUN7NnDmTVFRUaOjQof91cBHp81h60ILybuHCheTs7Ey5ubnCefT69Wvq1q0bubu7ExFRTEwM1apVi9q1ayd8jq+LhW3cuJHq169f6EXInDlzqHr16nTv3j0iKqiHJNnW5Xk7Sl+3e/ToQRYWFuTg4EA2NjbUqlUrIfAZHh5OXl5epK2tTW3atKFRo0YVuY7ibN+uXbto8eLFNHXqVHr27BkREb19+5bmzZtHenp65O/v/1/Xwf6zuLg4cnBwIC8vL5ni9oyx0oODUowx9g9J3wwmJiaSvb092dra0sGDB4moIDBlampKW7ZsEQJQsbGxdPr0aS46W4ZI7+czZ87QgQMH6MSJE8K0JUuW0MqVK0uiad919epV6tGjB6mrqws3338nMFVeH2D/04Pd5MmTSVdXl5YsWSIzZHxRyuv2K4pkWyxZsoRsbW2F4Lzkmnft2jUSiUSUkJBAYrGYYmJiSF9fn1xcXEqszaVJUSMP7ty5k9TU1Ojx48cyy1y8eJFq1KhBsbGx311HeTZy5EiytLQUuldOmDCBRCIROTs7y2S4ffr0SchuJpLf9ps0aRLVqVOHOnbsSG3btiUVFRVhlL3Xr1/T/PnzqW7dujRx4kS5tOdnFhcXR/Xr16cePXoI5xFjrPTgqoeMMfYPSQqKTpo0CU+ePEHFihVx9+5djB07Frm5udi8eTP69++PgIAAiEQidO7cGQ4ODsLnuehs2SC9n8PDw5GXlwdFRUVUrlwZBw8exIQJE0qsbdLFj6X/rl+/PqZOnYqMjAy4ubkhKioKFhYWyM/PL1QYV1p5LLIvvQ2PHTuGlJQUaGtrw8HBAbVq1cL8+fORm5uLFStWQCQSoX///qhatWqR6yqP2+97JNuibdu28PX1RWBgIGbNmiVc8/Lz82FpaQk1NTWIRCI0adIEf/75J0aNGoUXL15AT0+vJJtfoqSPyfDwcCgqKqJDhw5wdnaGo6Mj5s+fj8mTJ8PQ0BBAQcFuLS0toZCzRHktei19nXv+/DnevHmDkJAQ1KxZE0FBQdi0aRNWrFiBwMBAtGvXDocOHYKamhqqVKkirIOKsai5tJ07d2Lr1q04cuQI7OzsEB0djePHjwvza9Sogf79+yMtLQ13794FEfF15n9gb2+PlStXYu3atdDX1y/p5jDGvlXSUTHGGCuL/vzzT9LU1KTY2Fj68OEDpaSkkJubGzk5OVFkZCQREQ0YMIC0tLTo6NGjJdxa9m9t2LCBfvnlF7py5Qo9e/aM4uLiyNXVlQwMDOjt27dEJP+sBOnv27BhAw0aNIiGDBlCf/75pzA9Li6OOnToQHp6enTnzp0SaWdpJp3Z5OfnRzo6OtSoUSOqXr069enTh6KiooT5EydOJENDQ5o9ezZ9+vSpJJpbZm3atImUlZVpwoQJdOHCBbp9+zZ5eHhQ06ZNCx2P0pkq5Z2Pjw/p6urSunXrhO6jq1atosaNG1PXrl3p2LFjdOHCBWrbti01bNiQz22SPadDQkKIiOjAgQOUnp5Oe/fupTp16tCxY8eIiGj8+PEkEomoXr16QjZzcft2Hy1atEjoZr1z506qXLkyrVmzhohkM7fevn0r/Ns4I/N/J9mGfM4wVrrwq3rGGPsXHj58CCsrK9jZ2QEoeDMdGhqK7t27Y9y4cQCATZs2ISAgAK1atSq5hrJ/5NsMpKSkJHTq1AkNGjQAANSpUwcRERFo27Yt+vXrh6NHj8o9K0HyfX5+fti2bRs8PDygrq6OoUOH4t27d/Dx8YG9vT1mz54Nf39/WFtb4+HDh/x2+P/l5eUJWTtLly7Ftm3bsG/fPjRs2BCLFi3C9OnT8fnzZ+Tn58Pd3R2BgYH49OkT4uPjoaGhUcKtL1sGDBiAypUrY/To0di5cyfU1NRQvXp1nDlzBgoKCjKZLRUrVizh1pYOGzZswJYtWxAZGYkGDRoI5/vIkSNRsWJFHDhwAB4eHrCxsYGmpibOnTsHBQWFQteu8kT63+7p6Ylr166hQ4cO6NixIwDg8uXLaNOmDVq3bg0A0NXVxfjx41G5cmUoKysXe/tIKvtq69at6Nq1K96/f4/U1FRERUXBy8sLCxcuxPDhwwEAoaGhePr0KZYuXYpq1aoJ6+BMqf+dSCSSWzYcY+wfKOGgGGOMlSmSt2yzZ88mJycnoS6F5G3r6dOnSU1NjZo2bUqHDh0SPscju5R+0m+hd+7cSTk5OTR48GBycHAQpkv24/r168nKykrIlipu2dnZMn9v2bKFDAwMhNG4IiIiSCQSkUgkoqlTpwrLXb58mSZNmsTHHxFNmTKFcnJyiKigvtH79+9p8ODBtGHDBiIq2Iaampo0btw4MjExoZYtW9Lx48eFz3O2wr+XkpJCN2/epKtXrwoZClxXT5bkuBowYACNHDlSZt632Ty3b9+mp0+flutt+enTJ1q0aJFMbaioqCjq2bMnJSUlySzbvXt3sre3JyKi58+fU8OGDYVsKqLizZqRvl4sWrSIatSoQUlJSRQTE0OOjo6kpKQkU5swPT2dOnbsSGPGjOFrDWOs3OAwMWOM/QOSN5VdunTBjRs3sHDhQgAQ3rbm5ubCw8MDysrKWLZsGXJycgDgP9bzYSWPpN5CL1iwAOPGjcPjx4/RvXt3ZGdnY82aNQD+2o/a2togInz9+rXY2+bt7Y2NGzfiy5cvAICcnBykpqZi3LhxcHZ2xuHDhzFo0CCsWLECS5cuxfz587F48WIAgLOzMxYtWgRFRUXk5+cXe1tLq4SEBPz5559o1aoVvn79CiUlJaipqWHo0KHo0qUL4uPjMWHCBPzxxx8ICgrChAkTcO3aNcydOxcXLlwAUHDui8Vizlb4F3R0dGBra4v69esLWT1cV68wIsLLly+FLA7JOausrIycnBycPXsWOTk5MDc3h76+frndlllZWbC3t0d0dDRUVVUBAAsXLoS3tzfu3r0r1CWTbL+JEyciJSUFtWrVgouLC6pWrYrBgwcL6yvOrBnJ9eL69etITEzEpk2bYGFhARsbGzRq1Aimpqb49OkT3rx5gytXrqBnz554+fIlli5dKmT1MMbYz46DUowx9i9YW1tj48aNmDt3Lnx9fREbG4vHjx8jODgYDg4OWLlyJU6dOoWYmJiSbir7GyQPDrGxsbh9+zbCwsJgZmaGBg0awMnJCXv27MGiRYuQnZ2N58+fY/369TAwMICOjk6xt+3Ro0dYtWoVwsPDkZGRgQoVKqBfv35o3749kpOTMXnyZMyYMQOjR49G06ZNoaamBj8/P6xevVpmPeU5MGphYYEtW7YgIyMDzZs3x9evX6Gqqgpra2tUq1YNp06dgpGRETw9PQEUBAcaNmwIe3t7NGrUSFgPd/n4MXg7olCwQSQSQSQSwdLSEnv27EF6errMOZuamoqtW7ciISFB5nPlcVsePXoUSkpKOHLkCADg5s2b6Nq1K2rUqIFHjx5h//79AP665tWvXx/R0dHw8/PD3LlzcejQIQAF3f7kYdeuXRg2bBguX76MOnXqAAA0NDQwY8YMNGvWDDt27ECdOnUwcuRI5Obm4sqVK1BSUkJ+fj4HwRlj5YKIOATPGGP/2t69ezFy5EioqKiAiFC9enVcvHgRqampaNOmDfbs2QMbG5uSbib7G3bs2IGgoCBkZGTgwIEDMDY2BgC8ePEC8+fPR1RUFFJSUmBgYAAVFRVcvnwZysrKxVbLRXq9/fv3x7Vr1+Dr64sePXqgcuXKAIDz589j+PDhOH78OGrXro07d+5g6dKl6N69O1q3bl3uMiiKItmO+fn5iI6OxsSJE1GpUiWcOXMGKioqAICAgAAcOnQI69atg7W1Nbp16wYPDw8MGzZMZh2M/QjSx1N6ejpycnKE2kGS3w6RSIQjR46gUqVKyMvLE0Zik9SQKs+SkpLQpEkT+Pj44MqVK0hOTkZsbCwSEhLg7e0NFRUVjB07Fu3bt//uOuR5Tj98+BDjxo3DqVOn4O/vD19fX2FeVlYWMjMzER8fD319fRgYGEBBQUGm9h1jjP3sOCjFGGP/o+TkZLx48QJfv35F48aNoaCggClTpiAyMhLR0dFyyaZh/9y3DyVxcXHw9fXFhQsXsHjxYowePVqYl5GRgfT0dJw9exbVq1dHs2bNoKioWKwPDkQkU5C1d+/euHHjBnx9ffHbb7+hUqVKuHbtGpydnbFmzRq0adMGY8aMgaqqKvbs2QORSMQPNt/Iy8tDdHQ0fHx8ZAJTJ06cwOjRo4VuUhUqVEB8fDyUlJS4wDD7oaSvO3PnzsXp06cRHx+PQYMGoWvXrnBxcUFsbCzGjBmDO3fuoEaNGlBVVYWiomKxB8LLAsl1cfXq1fDz84O6ujpSUlKE7REbGwsfHx+oqalh1KhRaNeuHYCSDyy/fPkSI0eOxLt37zB69Gj07t37u+0q6bYyxpi8cVCKMcZ+oKSkJCxcuBBHjhzByZMnhdH5WOm1d+9eNGjQAHp6erh37x68vb2RlZWFsWPHonv37gCKfkiQHjmsOD169AhGRkYAZANTkoypmTNnIiAgAIaGhqhSpYrw4MrBlL/Mnz8fampqGDt2rExgSk1NDWfOnEGFChVw6tQpPHjwAFlZWRgzZozQfaY8d3tkxWf69OnYsGED5s6di2rVqsHX1xdGRkYYP3483NzcAACbN29Gbm4uKlasiN9//73YA+FliZeXFyIjI6GiooJRo0Zh6tSpwrzr16/Dz88PFStWxKBBg4TreEl78uQJxowZg8zMTHh5eaFXr14AeGQ9xhjjoBRjjP0geXl5uHXrFrZt24ZBgwbB0tKypJvE/ouEhAT06dMHhoaGWLNmDWrVqoVbt25h4sSJAIDhw4ejW7duAErmwWH79u1Yt24dpk6dCnd3dwAFgam4uDj4+fmhd+/eqFChAhISEvDp0yc0adKEu34UYdq0aZg/fz7WrVsHLy+vQoGps2fPCl35JDggxYrLiRMnMHbsWISEhMDFxQWXL19G06ZNYWhoiFq1amHy5MnC+S6tPB+TkhcDkuvwoUOHYGhoiCNHjmD58uXw9PTErFmzhOVjY2MxcOBADBw4ULielwZPnjyBt7c3srOz8fvvv2PIkCEl3STGGCtxHJRijLEf7OvXr8JofKx0KSqwFBISgq1bt0JLSwvBwcGoXbs2bt26BR8fHygoKKBPnz7o27dvibT30KFDCAwMhJaWFkaOHIk2bdoA+CswNWXKFHTt2hUaGhrCZ8rzgyvw/e4wixYtwrRp07B69WoMGzYMeXl5OHPmDHx9fZGeno47d+5wII/JRUJCAs6cOQNvb28cPXoUffr0wbJly+Dg4AAXFxc0atQIQ4YMwW+//VbSTS0VpK9pDx48gJKSEmrVqoUKFSogNTUVISEhWLNmTaHA1NOnT1G3bt0SavX3PXnyBL1790b9+vWxYsWKkm4OY4yVOA5KMcYYK3dyc3NlMmNCQ0OxadMmVKtWDStXrkStWrWQmJiIAQMGwNXVFUFBQcXepu/VETl58iQWLFgANTU1jB49Wuja079/fxw8eBBbt279jwV9y6vHjx/D0NBQCESKxWIsWLAAM2bMwJo1azB06FDk5eXh2LFjCA8PR2hoaLkO5rHiUdR5nZGRgZycHKiqqqJr165o1qwZpk6dCpFIhIYNG+Lp06cYNGgQ5s+fX0KtLj2kt9/gwYMRGxuLzMxMEBGWL1+O9u3b482bNwgJCcG6deswePBgzJw5U2YdpbF7XEpKCmrUqMG1oxhjDABfCRljjJUrYWFhGDp0KNLT04VpgwcPxsCBA/Ho0SNMmDABqampsLKyQnh4OJYsWSKXdkkeTg4dOoTY2FhheuvWreHn54fMzEwsW7YMZ86cAVBQb2bcuHFo27atXNpXlhw9ehTGxsY4evQoRCKRUDDez88Pfn5+GDVqFLZv3w4lJSV4eHggLCwMioqKyM/PL+mms5+IdEDlzp07ePr0KXJycqCuro6qVasiNzcXKSkp+OWXXyASiZCRkQELCwusX78ec+fOLeHWlw6S7devXz9cvXoV69evx61btyAWi+Hv7483b96gevXqGDRoEIYNG4aAgABERkbKrKO0BaQAoGbNmlBQUIBYLC7ppjDGWInjoBRjjLFyg4hw//59JCUlYfr06YUCUw0aNMD+/fvRq1cvvHnzBoaGhsX+4CCdsJyUlARvb28sX74cCQkJwvQ2bdpg0qRJuHTpEhYtWoSDBw8CAGbNmsXBFKDQ/mnevDkGDx6MHj164NixY0KmlKKiIjp16gSRSIS+ffsiMjJSJjuKM6XYjyQJqEyZMgXNmzeHm5sbWrdujY8fPwIoyJjS0NBATEwMli1bhh49euD27dvo2LEjFBQUyvV5LX1dfPr0KR49eoRNmzbB2dkZq1evRlpaGmbPno3q1atDLBZDR0cHffv2xd69e9GlS5eSa/g/xJlSjDHGQSnGGGM/sW+DFSKRCLNmzcKvv/6KS5cuYcqUKfj8+bMw39raGo0bN4azszOqVasmTC+uBwexWCy8xc/MzISlpSXmzp2Le/fuISgoCPHx8cKy7u7usLS0RGJiIi5duiSznvIcTJHORtmyZQs2bdqEChUqICgoCAMGDEDnzp1x7NgxYRktLS2MGjUK27ZtQ4cOHUqy6awcOHnyJPbs2YOwsDBMnz4dAGBnZ4dnz55BT08P06ZNw4sXL7BlyxYAQExMjJDdV17P6/z8fOG6mJ6ejry8PNy/fx9OTk4IDg5GQEAAtm/fjrZt2+LVq1eYMWMGsrKyoKenh44dOwIofO1njDFWenFFT8YYYz8l6WDF8ePH8fHjRxARunTpgkmTJkFBQQF79+6Fn58f/P39UaVKFVy8eBHdunXDiBEjhOya4gxISda9YMECvHjxAj4+PujVqxeICEuXLsWyZcswbtw42Nra4uPHjzA3N8eoUaPQs2fPYmlTWSTZhpMmTcLOnTsxadIkpKSkoHbt2pg3bx4AoHPnzggMDISZmRlWrlwJFRUVoU4Yj1TIfqRvrxnKysoYNmyY0M22SZMmGDJkCJo0aYLz58+jXbt2qF+/PlRUVKChoQGRSFSuj0npYFz37t1hYGCAhQsXon79+nBzc8PVq1cRGRmJ5s2bAwBev36NkydPws3NDc2aNRPWwxlIjDFWdpTPXzzGGGM/PclDiZ+fH7Zv3w5TU1PcvXsX69atw8yZMzF+/HgAwJ49e1CvXj0YGhoiJycHW7dulalDJI/2bd68Gf7+/sKojb179wYArFy5EmPHjkWDBg1w48YNZGVlYf369cUeMCtrNm3ahK1btyIyMhLOzs7CdE1NTSxevBg6OjqYPHky9PT0oKmpiZiYGAAFD8Dl9eGf/XjS14ylS5fi0aNHuHjxIho2bCicr4aGhggNDcWQIUPQrFkzREdHw8DAQFiHWCwut8ek9DVtx44dSE1NxZIlSyAWi1G/fn1s2LABffr0EQJSr169wqBBg+Dk5CQTkGKMMVa28Oh7jDHGflohISGYMWMGDh48CEdHR6xbtw6jRo3CwYMH4eHhAbFYjNu3byM6OhqKiooYOnQolJSUZIYgL06nT5/GgAEDsHv3bjRq1AiA7INZVFQU9u3bhxs3bqBu3brYvHkzlJWVS+VoUiVBsh1GjRqFrKwshIaGCtO+3Yf379+HoqIiDAwMoKCgUK6zUdiPJ33ezp8/HwsWLIC7uzsePXqE58+f49ChQzIB0ydPnqBTp06oV68eIiIiSqrZpdLatWsRFRUFKysr+Pv7AwDev3+PcePG4ebNm6hUqRIMDAwQHx8PY2NjHDhwAEDpHGWPMcbYf8d3Y4wxxn5ad+/eRY8ePeDo6Ihdu3bBz88PwcHB8PDwwJcvX5CTkwMrKytYWVkJn5FXQAoAUlNToa2tDVtbW+F7JQ9VRIQ2bdqgTZs2yMnJgYqKSrnv2vM979+/F7ab5P8VFRWRm5uL06dPo3Xr1jAxMRGWL8/ZKKx4SAJST548wePHj3H06FG4uLjg06dP6NWrF3r06IHIyEg4OjoCAAwMDHDixAlUr169JJtd6rx9+xabN29GXFwcKlSoIEyvWrUqli9fjjNnzuDw4cPQ0dGBq6srRowYAaBwt0nGGGNlB1+9GWOM/RS+TfwVi8V4/vw5DAwMEBcXB09PTyxYsAAjRoyAWCxGSEgIDh48WGiEK3kWF/7y5QsePnyI3NxcKCoqCoXPxWIxTp48iUePHgEAKlSoIHQpLM/BlKIK1wMFD/hRUVF4+vSpzPyPHz8iLCxM6K4nwQ+v7EeRvn4cPnwYRkZGQuYlUNCFdO/evbCyskKXLl0QFxcnLF+zZk0ePfMb2tra2LVrF9q1a4dr165h06ZNwrxffvkF3bp1Q0hICObOncsBKcYY+0nwFZwxxliZJz2K3ePHj/HmzRsoKCige/fumDp1KpycnLB+/XoMHz4cQMFId4cOHcKDBw/kEoT63khQLi4u0NfXx+zZs5Gamio8WGVnZ2PevHk4fPiwzPLluWuK9IPnzZs3hf8BBd2ljI2N4eHhgZs3b+LVq1d49eoVBg4ciOfPn8PV1bUEW85+ZpLrx9KlS9G+fXv0798fjx8/RlJSEnJzcwEAampq2Lt3L2xtbdGgQQPcu3evyHWwAnp6eggKCoKpqSk2b96M7du3C/Py8vIKLc8BKcYYK9u4phRjjLGfxtSpU3HgwAG8fv0agwcPRtOmTRETE4Nt27Zhy5YtaNSoEV69eoXRo0fj7du3uHz5crFnHkkHU/bv34/Xr19DJBLB3d0d+vr6WLBgASIiIlCvXj2MGjUKnz9/xooVK5CamoqrV6+W68woCelaMZMnT0ZERAQ+fvyIihUrolmzZvjzzz+RmpqKfv36ISEhARUqVIC2tjaUlZVx8eJFKCsrczYF+6Gkj6eQkBB4eXnhxo0bsLW1Rbdu3RATE4MtW7agVatWwgAGX758wcyZM7Fo0SIORP0NT548wZgxY5CdnY0hQ4agV69eJd0kxhhjxYCDUowxxsos6QfD8PBwjB8/HitXrkRCQgKOHTuGOnXqwMHBAcnJyVi9ejVq1aoFLS0tVK5cGadPn4aysrLcakj5+PggLCwMZmZmuHnzJszMzDB06FB4eXlh48aN2LFjB6Kjo2Fra4vq1avj0KFDcm1fWRAUFISAgADs27cPysrKSElJwYgRI9CoUSNERkYCAA4cOICsrCyoqqqiQ4cOUFRU5DpcrNicOHECV65cgbm5OXr06CFM79SpEy5fvozNmzfLBKYk+Lz+e548eQJvb288e/YM69atEwaEYIwx9vPgoBRjjLEy79y5c0L3mMGDBwMoCE4EBwdDS0sLXl5eqFWrFm7fvg1tbW24urrKdQS2PXv2wNvbGwcPHoSDgwM+f/4MX19fJCUlYcSIEejbty8A4Pbt29DS0oKOjg4XNQdw/fp1KCsrw9bWFnl5eRg4cCD09PQwf/58YZkbN26gRYsW8PLywuLFiwutgx/+WXG5dOkSevfujQ8fPmD79u1o3749srOzoaqqCgDo3Lkzrl27htWrV6Njx458HP5LDx48wMGDBzFhwoSSbgpjjLFiwHnsjDHGyjRJV71NmzYhLS1NmN6pUyd4e3vj/fv3WL16NdLT0/Hrr7+iefPmUFBQQH5+vtwCPo8fP0adOnVgY2MDIoKmpibmzJkDHR0d/Pnnn8JyFhYWqFmzplDsvLwGpIgI6enpQiBPMu3evXt48eKFsFx+fj7s7e0xevRo3LhxA5mZmYUK3nMggBUXQ0NDeHp6QkVFBTt37gQAqKqqIjs7G0BBd11DQ0Ns3LiRj8P/Qb169YSAFL9LZ4yxnw8HpRhjjJVpOjo6iIiIgI6ODo4cOYJbt24J8zp27IiJEyfi4cOH2L9/P4C/Hmrk8ZAo+S4lJSVkZ2cjNzdXyNCqUaMGpkyZgujoaKFgt7TyXP9IJBKhcuXKmDp1KoKDg4W6UP3790dCQgKOHz8OADIjnGVmZkJBQaFcF4NnxaeowQpq1KiBoUOHYuLEibh48SJ8fHwAFASmcnJyAADnz5/HgQMH5NrWnxmf34wx9vMpv3e8jDHGfho2NjbYvXs33r17h+DgYCQlJQnz2rVrh3Xr1iEgIACAfB9qJN/Vtm1bJCYmIjAwEACEDKj8/HxYWVlBQ0NDbm0qK4gIbdu2Rc+ePXH06FEABaMV1q5dG+vXrxcyqD58+ICTJ0/CyMhI6DbF2I8kXbvu+PHjCA0NxZ49e5CamgptbW0MHDgQnp6eOHbsGHx9fQEAFSpUEEbfU1BQ+O4InIwxxlh5xzWlGGOM/TRu3LgBT09PODo6Yty4cbCwsJCZX5L1hcLCwuDl5YUxY8age/fu0NLSwsSJE5GRkYEzZ86U68woiaJGyNu6dSsWLFiAo0ePQk9PD6dOnUJwcDCuXLmCypUro2LFigD+qj8lPVIfY/+rb0d+DA8PR8WKFVGtWjVkZ2dj165d0NfXx+vXrxEWFoZt27ahYcOGWL9+fQm3nDHGGCsbOCjFGGPsp3Ljxg0MGzYM+vr6WLRoEQwMDEq6SYKIiAiMHj0aIpEIampqqF69Os6cOQNlZeUiAzLl1alTp9CoUSOoqakBALp3746srCwcPnwYIpEIz549Q3JyMmJiYqCrq4uePXtCSUmp3BeGZ8UnKCgIgYGBiIiIgLOzMxYvXgw/Pz8YGRnh2LFjMDIywuvXrxEcHIxnz55hy5YtHBxljDHG/gYOSjHGGPvpXL16FWvXrsXGjRtLXaDn9evXSE1NRW5uLhwdHeU6CmBpR0S4e/cuLC0tERUVhVatWgEAYmNj4e/vj1GjRsHd3b3IbCgeZY8Vl9evX2PMmDHo0aMHevbsiSNHjqBnz54YM2YMzpw5gw8fPuDEiROoU6cOPnz4AC0tLYhEIs7aY4wxxv4GDkoxxhj7KUkeCEt7BlJpb19J6Nu3LxQVFbF69WpUqlQJGRkZ8PT0hLq6OjZu3AgA/MDP5OrUqVMwMjLCx48f0aVLF0yePBkjRozAokWLMHnyZFSqVAl37tyBrq4uAD4+GWOMsb+L74IZY4z9lCSZCqU94FPa21ecvi3+LPm7SZMmuHDhAtLT0wEA6urqmDt3Lvbv348tW7YA4FG4WPH4+vWr8N/Sx2erVq1Qt25dnDt3DnZ2dhg4cCAAQFdXF7///jsmTJiAmjVrCsvz8ckYY4z9PeX3TpgxxthPjx8MSzdJQO7y5ctITk4W/h4+fDg0NDQwZcoUYVkjIyNMmTIF0dHRePPmTYm0l/28Hj9+DABQVlYGAISGhsLHxwfLli3D8+fPheXevHmDy5cvIzs7G1+/fkV4eDiMjIzg7+8PRUVF5Ofnl0j7GWOMsbKKg1KMMcYYkyvpygGnTp1Cnz590LhxY4SEhODmzZsAAG9vbzx9+hRPnjwRlnVwcMDVq1fx9OlTObeY/cxGjBiBESNGIC4uDgAwe/ZseHt74/Hjx/Dz88OoUaNw7NgxAEDPnj1hYGCAevXqwdHREffu3cOsWbMAFBzXXNeMMcYY+2e4phRjjDHGSkRaWho0NDRw48YNHD16FH/++Sd++eUXNG3aFB06dECnTp2wZMkSeHl5CZ8JDw9H1apV0bJlyxJsOfuZnD59GkOHDoWTkxMGDx6MdevWwcfHB40aNcKDBw/Qr18/aGlpwcfHB61atUJCQgKioqIAAGPHjoWSkhIX2meMMcb+JQ5KMcYYY0wupIu6BwcHIywsDFu2bIG5uTkAICkpCffv34evry+sra0RGRkJc3NzHD16FHXq1CnJprOflOSYvHjxIvr27QsrKyt8+fIFu3fvRtWqVQEUHJdDhgyBpqYmJk2aJIwKKcEBKcYYY+zf4+57jDHGGCt20gGpc+fOIT8/H3FxcZg+fToSExMBAJaWlujatSsSExPRp08fjBgxAg8fPkRSUpKwDsZ+FMkxKRaL4eLigrCwMNy+fRvXrl1DfHy8sJylpSVCQ0ORkZGBKVOm4NKlSzLr4YAUY4wx9u9xphRjjDHG5Gby5MnYvHkzxowZgydPnmDv3r2ws7PDypUrhYwpaUOGDEFiYiIuXLgAJSWlEmgx+xlJB0kfPHiAihUrQldXFw8fPoS7uztsbW0xbdo0ODo6Cp9JSEjAqlWrsGbNmnI9aiZjjDH2I3FQijHGGGNyERcXB3d3d+zYsQOtW7cGANy7dw/NmjWDlZUVVqxYAQsLCwBAXl4elJSUcPDgQSxYsABHjhxBlSpVSrL57CdBRMLInJMnT8b+/fvx9u1bmJubw8fHBzY2NmjdujUcHBwwefJkmcCUhHRQizHGGGP/Hv+aMsYYY0wu8vPzoaysDD09PQDA169fYWpqiqNHj+LixYvw9/fHnTt3AEDIioqJicGDBw+46x77IcRisRCQ2rlzJ8LCwrBgwQIsWbIEDRs2RLdu3RATE4OoqCjcuHEDS5YsweXLlwuthwNSjDHG2I/BefCMMcYY++Gks1Ekateujc+fPyMqKgqmpqZQVlaGWCyGvr4+jIyMEBkZiczMTERGRkJRURFpaWlQUVHBkSNHoKWlVUL/EvYzkQSTzpw5g1OnTsHX1xedO3cGAKSnp0NPTw/Dhg3DqVOnEB4ejiZNmqBevXpo2LBhSTabMcYY+2nxax7GGGOM/VDS2SjZ2dkgIuTn56NWrVqYNGkSFi5ciK1btwIoCBKoqqrC1dUVJ06cwOnTpxEcHAwA0NDQgL+/P5ycnErs38J+Pq9fv4anpyd27dqFzMxMYXrlypXRr18/uLm5Yfv27bC3t8eFCxcwc+bMEmwtY4wx9nPjTCnGGGOM/TDStXYkXZ+Sk5PRpk0b9O3bF76+vnj//j3GjBmD69evQ19fHwcPHsTnz58RHByMhg0b4t69e8L6eGQz9qPp6OggIiIC3bp1Q0REBNq1awd7e3sAgJaWFrS1tfHw4UMAgJ2dHYCCrqd8LDLGGGM/HmdKMcYYY+x/Jhk3RRKQmjJlCubOnQsHBwcYGxvj7Nmz6NSpE549e4agoCAsWrQIJ06cwN69e1G5cmVcvnwZCgoKICLUqFGjJP8prBywsbFBREQE8vPzsWzZMty8eRNAQRe+O3fuoE6dOjLLc0CKMcYYKx48+h5jjDHGfghJltSdO3fQvXt3LFu2DG5ubgCAK1euYMmSJXj06BH2798PXV1d5OTkoEKFCsLn/fz8sHXrVpw9exbGxsYl9c9g5ciNGzfQt29ffPjwAU5OTlBRUcGTJ09w+fJlqKioFFkbjTHGGGM/DmdKMcYYY+xf69u3L+bOnQvgryyprKwsPHv2DOrq6sJyzs7OGDFiBL5+/YqkpCQAgLKyMoCCwMDEiROxbds2HDp0iANSTG7s7e2xa9cuVKxYEZ8/f0abNm0QFxcHFRUVfP36lQNSjDHGWDHjoBRjjDHG/pXPnz+jZs2aWLx4MVasWCFMr1q1KszNzXHz5k3k5uYK01u0aIHMzExcu3YNwF9BLBMTE7i5ueHChQtCbR/G5MXKygoRERHIzc1FXFycUE9KEjRljDHGWPHhoBRjjDHG/pUqVarAx8cHEydOxPTp07F8+XIAgL6+PkxNTbFixQqcOXMGYrEYAJCWloZffvkFtWvXlllPpUqV4O7uDn19fbn/GxgDCgqar1mzBvHx8ZgxYwbu3r1b0k1ijDHGygWuKcUYY4yx/0lqairWrVuHwMBA/PHHH5gwYQIAoHXr1njx4gWaNm0KExMTHD9+HG/fvkVcXByUlHgAYFb6XLt2DZMmTcKOHTtQs2bNkm4OY4wx9tPjoBRjjDHG/hFJ8WfpItDJycnYuHEjlixZgpkzZ8LHxwcAMGPGDCQkJODDhw8wMjLChg0boKysjPz8fB7RjJVK2dnZUFVVLelmMMYYY+UCB6UYY4wx9rdJRtgDgJSUFGRnZ8PAwABAQY2poKAgLF26VCYwlZeXh9zcXKipqQl/c6YUY4wxxhjjO0LGGGOM/S1EJASkZs6ciX379uHt27f45ZdfMGnSJHTv3h2TJk0CAMyZMwfKysoYO3YslJSUhCAUEXFAijHGGGOMAeCgFGOMMcb+JklXvfnz52P16tVYuXIlatasibCwMAQGBuLVq1cYP348xowZAyUlJYwfPx61atXCr7/+WmgdjDHGGGOMcfc9xhhjjP0tRIT09HS0a9cOv/32G7y9vYV506dPx7Zt2xAaGooWLVrg5cuXiIqKQr9+/TgzijHGGGOMFUmhpBvAGGOMsdJLLBYL/y3JckpPTxf+OycnBwAQEBAAfX19LF++HACgq6uLQYMGQUlJCXl5eXJuNWOMMcYYKws4KMUYY4yxIkkXNX/y5AkAQENDA7Vr18aOHTsAABUqVEBubi4AwNbWFhUrViy0Hs6UYowxxhhjReGgFGOMMcYKkQ5IzZ49G7/99htOnjwJAFi8eDGeP3+Obt26AQAUFBRARIiNjUXVqlVLrM2MMcYYY6xs4ZpSjDHGGPuuadOmYePGjdiwYQMsLS1hZGSEvLw8HD9+HCNGjICqqioMDAzw+fNnpKWlISEhgTOjGGOMMcbY38JBKcYYY4wV6e7du+jRowcWLlyI9u3bF5r/9u1bBAUFQSwWo1KlSpgyZYpQQ4oDU4wxxhhj7L/hO0bGGGOMFent27d49eoVTE1NARSMvgcUFDzPzc2FtrY25s2bJ/OZ/Px8DkgxxhhjjLG/hWtKMcYYYwzSidOS/65SpQo0NTVx+/ZtAAXBKMlofDt27MC+ffsKrUdRUVEOrWWMMcYYYz8DDkoxxhhj5ZxYLIZIJBL+zs/PBwDUrFkTmpqaWLVqFRITEwEUBJ3y8vKwc+dOHDt2rETayxhjjDHGfg5cU4oxxhhjAIDAwEBcu3YN+fn5mDBhAlxcXHD37l20bt0aJiYmaNSoEfT19bF9+3Z8+PABcXFx3FWPMcYYY4z9a5wpxRhjjJVTkq54ADB79mwsWrQIGhoa+PDhA5o2bYpt27bBzMwMZ8+ehYGBAQ4fPozNmzdDV1cXsbGxUFJSErKqGGOMMcYY+6f49SZjjDFWTikoFLybSk5OBgBERESgSZMmyMrKgr+/PwYOHAgiQt++fbFu3TqIxWLk5OSgcuXKAMCj7DHGGGOMsf8J30kyxhhj5dj+/fvRtWtX1K1bF23btgUAVKxYEXPmzAEADB48GEpKSvj9998BACoqKgAKiqFzQIoxxhhjjP0v+G6SMcYYK8caNGiAESNGYN26dUhJSQFQ0K1PWVkZAQEBUFRURO/evaGtrY1WrVoJn5MujM4YY4wxxti/wYXOGWOMsXJCLBYLXfakvXv3DuPHj0dERASioqLg4uICIoJIJMLXr18REhICT09PzoxijDHGGGM/FAelGGOMsXJAOiC1f/9+vH79GgDg5uYGAwMDZGZmwtPTEwcOHMCJEydkAlMSXEOKMcYYY4z9SHxnyRhjjJUDkoCUj48PwsLCYGZmhps3b8Lc3Bx9+vTB2LFjsWHDBigoKMDDwwP79+9H8+bNZdbBASnGGGOMMfYjFc7hZ4wxxthPac+ePdi+fTuOHTuGc+fO4cWLF7Czs8OePXsQEhKCSpUqISgoCE2bNkVAQEBJN5cxxhhjjP3kuPseY4wxVk4sWrQIERERiImJgaKiIhQUFJCamoqRI0fi8+fPOHnyJADg06dP0NDQKLL+FGOMMcYYYz8K320yxhhjPznJ+yclJSVkZ2cjNzcXCgoKyMvLQ40aNTBlyhScPn0acXFxAABNTU0oKChALBaXZLMZY4wxxthPjoNSjDHG2E9OUqy8bdu2SExMRGBgIIC/akTl5+fDysoKmpqaMp/jTCnGGGOMMVacuGIpY4wxVk5YWFggJCQEXl5eSEtLQ/fu3aGlpQV/f39oamqibt26Jd1ExhhjjDFWjnBNKcYYY6yciYiIwOjRoyESiaCmpobq1avjzJkzUFZWhlgs5gwpxhhjjDEmFxyUYowxxsqh169fIzU1Fbm5uXB0dBRqTEm69DHGGGOMMVbcOCjFGGOMMc6QYowxxhhjcsdBKcYYY4wxxhhjjDEmd/xKlDHGGGOMMcYYY4zJHQelGGOMMcYYY4wxxpjccVCKMcYYY4wxxhhjjMkdB6UYY4wxxhhjjDHGmNxxUIoxxhhjjDHGGGOMyR0HpRhjjDHGGGOMMcaY3HFQijHGGGOMMcYYY4zJHQelGGOMMcbk6MyZMxCJRNizZ09JN4UxxhhjrEQplXQDGGOMMcbKOpFI9LeWi46OLuaWMMYYY4yVHRyUYowxxhj7H23ZskXm782bNyMqKqrQdHNzc9y5c0eeTWOMMcYYK7U4KMUYY4wx9j/q27evzN+XL19GVFRUoekAOCjFGGOMMfb/uKYUY4wxxlgJEIvFmDt3LnR1daGqqopWrVrh4cOHhZa7cuUK2rZtiypVqkBNTQ3NmjXDhQsXZJb5448/IBKJcP/+ffTt2xdVqlSBtrY2ZsyYASLCixcv0LlzZ2hoaEBHRwdLliwp9D05OTmYNWsWjI2NUaFCBejp6cHX1xc5OTnFtg0YY4wxVr5xUIoxxhhjrAQsWLAA+/btg4+PD6ZMmYLLly+jT58+MsucPn0arq6uSEtLw6xZszBv3jx8+vQJLVu2xNWrVwuts2fPnhCLxViwYAGcnZ0REBCAZcuWoU2bNqhduzYWLlwIY2Nj+Pj44Ny5c8LnxGIxOnXqhMDAQHTs2BHBwcHo0qULgoKC0LNnz2LfFowxxhgrn7j7HmOMMcZYCcjOzsbNmzehoqICANDS0sLYsWORmJgIKysrEBGGDx+OFi1a4OjRo0Ix9WHDhsHS0hLTp0/HiRMnZNbZoEEDrFu3DgAwdOhQ1K1bFxMnTsT8+fPh5+cHAOjVqxdq1aqF0NBQuLq6AgC2b9+OkydP4uzZs2jSpImwPisrKwwfPhwXL16Ei4tLsW8TxhhjjJUvnCnFGGOMMVYCBg0aJASkAKBp06YAgMePHwMAbt68iQcPHqB37954//493r17h3fv3uHLly9o1aoVzp07B7FYLLNOT09P4b8VFRXh5OQEIsKQIUOE6ZqamjA1NRW+BwDCw8Nhbm4OMzMz4XvevXuHli1bAuBRAxljjDFWPDhTijHGGGOsBNSpU0fmby0tLQDAx48fAQAPHjwAAAwYMOC76/j8+bPwuaLWWaVKFaiqqqJatWqFpr9//174+8GDB7hz5w60tbWL/J43b978t38OY4wxxtg/xkEpxhhjjLESoKioWOR0IgIAIQtq8eLFsLOzK3JZdXX1/7rO//Y9ku+ytrbG0qVLi1xWT0+vyOmMMcYYY/8LDkoxxhhjjJVCRkZGAAANDQ20bt262L8rPj4erVq1EmpXMcYYY4wVN64pxRhjjDFWCjk6OsLIyAiBgYHIyMgoNP/t27c/7Lt+++03JCcnY8OGDYXmZWVl4cuXLz/suxhjjDHGJDhTijHGGGOsFFJQUMDGjRvh4eEBS0tLDBo0CLVr10ZycjKio6OhoaGBgwcP/pDv6tevH3bv3o3hw4cjOjoajRs3Rn5+Pu7evYvdu3fj+PHjcHJy+iHfxRhjjDEmwUEpxhhjjLFSqnnz5rh06RLmzJmDlStXIiMjAzo6OnB2dsawYcN+2PcoKCggMjISQUFB2Lx5M/bt2wc1NTUYGhpi7NixMDEx+WHfxRhjjDEmISLpKpeMMcYYY4wxxhhjjMkB15RijDHGGGOMMcYYY3LHQSnGGGOMMcYYY4wxJncclGKMMcYYY4wxxhhjcsdBKcYYY4wxxhhjjDEmdxyUYowxxhhjjDHGGGNyx0EpxhhjjDHGGGOMMSZ3HJRijDHGGGOMMcYYY3LHQSnGGGOMMcYYY4wxJncclGKMMcYYY4wxxhhjcsdBKcYYY4wxxhhjjDEmdxyUYowxxhhjjDHGGGNyx0EpxhhjjDHGGGOMMSZ3HJRijDHGGGOMMcYYY3L3f/aoxrPCziMSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 anatomy 16 8 13 15 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 21 76.190476 38.095238 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 61.904762 71.428571 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeCUlEQVR4nO3dd1QU1/8+8GfpTZYigiggiArYxYaoWFDsjdhiIsYWFayxYe9YsaJG4wcsGBNiSdTYe8VuTFTsJSpoooCC9Pv7wx/zdV1Q2FkCJM/rnD3HvTNz570zu8vjzJ1ZhRBCgIiIiEhDOoVdABERERVvDBNEREQkC8MEERERycIwQURERLIwTBAREZEsDBNEREQkC8MEERERycIwQURERLIwTBAREZEsDBNEMpw7dw4GBgZ4+PChVvq7fv069PT08Pvvv2ulPyoeypUrhz59+vzj642IiIBCocCFCxf+8XXTvwvDxHvu3r2Lr7/+Gi4uLjAyMoK5uTm8vb2xdOlSvH37trDLy7fr169j2rRpePDgQb6XHTt2LBQKBbp37679wv5FJk6ciJ49e8LJyUlq27FjB9zc3KBUKtG+fXs8ffpUbbkOHTpg4MCBau0eHh5o27YtpkyZkqf1Z/8xeP9RqlQpNG3aFHv27NH8heWgXLlyaNeunVb7JO168OCB2vsht4cm3wuUf3K+h4sTvcIuoKjYvXs3unbtCkNDQ/Tu3RtVqlRBWloaTp48iTFjxuCPP/7AmjVrCrvMfLl+/TqmT5+OJk2aoFy5cnleTgiB77//HuXKlcPOnTvx+vVrlChRouAKLaauXLmCgwcP4vTp01LbvXv30L17d3Tv3h1eXl5YsmQJvvrqK+zbt0+aZ9++fTh+/Dhu376dY7+DBg1CmzZtcPfuXZQvXz5PtcyYMQPOzs4QQiAuLg4RERFo06YNdu7cyQBQDMTExEBHR/7/7WxsbLBx40aVtkWLFuHPP//E4sWL1ealgqfp93BxwzAB4P79++jRowecnJxw+PBhlC5dWpoWGBiIO3fuYPfu3bLXI4RASkoKjI2N1aalpKTAwMBAK18och09ehR//vknDh8+DD8/P2zbtg0BAQGFXZZWZWRkICsrCwYGBhr3ER4eDkdHR9SvX19q279/P8qWLYv169dDoVDA3d0dzZo1Q0pKCoyMjJCRkYGRI0diypQpuX6Z+/r6wtLSEuvXr8eMGTPyVEvr1q1Ru3Zt6Xm/fv1ga2uL77//nmGiGDA0NNRKP6ampvjiiy9U2rZs2YJXr16ptRNpU+H/5SoC5s+fjzdv3mDdunUqQSKbq6srhg8fLj3PyMjAzJkzUb58eRgaGqJcuXKYMGECUlNTVZbLPiy8b98+1K5dG8bGxvj2229x9OhRKBQKbNmyBZMmTUKZMmVgYmKCxMREAEB0dDRatWoFpVIJExMT+Pj44NSpU2p1PXnyBP369YO9vT0MDQ3h7OyMwYMHIy0tDREREejatSsAoGnTptKhzaNHj35ye0RGRsLDwwNNmzaFr68vIiMj1ebJfg0//vgjZs+ejbJly8LIyAjNmzfHnTt3VOa9ffs2/P39YWdnByMjI5QtWxY9evRAQkICAKBLly6oVauWyjLt27eHQqHAL7/8IrVFR0dDoVCoHL6Pj4/HiBEj4ODgAENDQ7i6umLevHnIysqS5sk+9Ltw4UIsWbJE2m/Xr18HACxfvhyVK1eGiYkJLC0tUbt2bWzevPmT22nHjh1o1qwZFAqF1Pb27VtYWFhIbVZWVhBCSKfJVqxYgczMTAwdOjTXfvX19dGkSRP8/PPPn6whNxYWFjA2Noae3rv/LwghUK5cOXTs2FFt3pSUFCiVSnz99dcary/biRMn0LVrVzg6OsLQ0BAODg4YOXKk2mnCPn36wMzMDE+ePEGnTp1gZmYGGxsbjB49GpmZmSrz/v333/jyyy9hbm4OCwsLBAQE4OrVq1AoFIiIiJDma9KkCZo0aaJWU58+fdT+R7hw4UI0aNAA1tbWMDY2hqenJ3766Se1Zd++fYthw4ahZMmSKFGiBDp06IAnT55AoVBg2rRpKvM+efIEffv2ha2tLQwNDVG5cmX873//y9N2+3DMRPbpq1OnTmHUqFGwsbGBqakpOnfujBcvXuSpz/xITU3N03r27NmDRo0awdTUFCVKlEDbtm3xxx9/qMyTvW8fPXqEdu3awczMDGXKlEFYWBgA4Nq1a2jWrBlMTU3h5OSU42ctL59rAHj27Blu3ryJ9PT0T77GvO5zhUKBoKAg7NixA1WqVJH25d69e1Xme/jwIYYMGYJKlSrB2NgY1tbW6Nq1q8rpjLx8D69cuRKVK1eGoaEh7O3tERgYiPj4eJV1NWnSBFWqVMFvv/0GHx8fmJiYwNXVVar/2LFjqFevHoyNjVGpUiUcPHhQWvbIkSNQKBTYvn272mvdvHkzFAoFzpw588nt90mCRJkyZYSLi0ue5w8ICBAAxGeffSbCwsJE7969BQDRqVMnlfmcnJyEq6ursLS0FOPHjxerV68WR44cEUeOHBEAhIeHh6hRo4YIDQ0VISEhIikpSRw6dEgYGBgILy8vsWjRIrF48WJRrVo1YWBgIKKjo6W+nzx5Iuzt7YWJiYkYMWKEWL16tZg8ebJwd3cXr169Enfv3hXDhg0TAMSECRPExo0bxcaNG0VsbOxHX1tKSoqwsLAQM2fOFEIIsWHDBqGrqyuePXumMl/2a6hZs6bw9PQUixcvFtOmTRMmJiaibt260nypqanC2dlZ2Nvbi1mzZonvvvtOTJ8+XdSpU0c8ePBACCFEaGio0NHREQkJCUIIIbKysoSlpaXQ0dERo0ePlvpasGCBynxJSUmiWrVqwtraWkyYMEGsXr1a9O7dWygUCjF8+HBpufv370vb28XFRcydO1csXrxYPHz4UKxZs0bal99++61YunSp6Nevnxg2bNhHt9Off/4pAIhly5aptJ84cUIoFAqxefNmce/ePdGtWzfh6uoqhBDi+fPnwsLCQuzateujfQshxKxZs1Rea27Cw8MFAHHw4EHx4sUL8fz5c/H777+Lr7/+Wujo6Ij9+/dL806cOFHo6+uLv//+W6WPH3/8UQAQx48f/+i6nJycRNu2bT86z9ChQ0WbNm3EnDlzxLfffiv69esndHV1xWeffaYyX0BAgDAyMhKVK1cWffv2FatWrRL+/v4CgFi5cqU0X2ZmpvDy8hK6uroiKChIrFixQrRo0UJUr15dABDh4eHSvD4+PsLHx0etpoCAAOHk5KTSVrZsWTFkyBCxYsUKERoaKurWrSsAqO2bbt26CQDiyy+/FGFhYaJbt27SuqdOnSrNFxsbK8qWLSscHBzEjBkzxKpVq0SHDh0EALF48eKPbjMh3m3bgIAA6Xn2fq1Zs6Zo1qyZWL58ufjmm2+Erq6u6Nat2yf7e1/btm3VXr8m69mwYYNQKBSiVatWYvny5WLevHmiXLlywsLCQty/f1+aL3vfenh4iEGDBomwsDDRoEEDaX/Z29uLMWPGiOXLl4vKlSsLXV1dce/ePWn5vH6us9cFQGX9ucnrPgcgqlevLkqXLi1mzpwplixZIlxcXISJiYn466+/pPmioqJE9erVxZQpU8SaNWvEhAkThKWlpXBychJJSUlCCPHJ7+GpU6cKAMLX11csX75cBAUFCV1dXVGnTh2RlpYmrcvHx0fY29sLBwcHadt5eHgIXV1dsWXLFmFnZyemTZsmlixZIsqUKSOUSqVITEwUQrz7PnVwcBD+/v5q26RNmzaifPnyn9x2efGfDxMJCQkCgOjYsWOe5r9y5YoAIPr376/SPnr0aAFAHD58WGpzcnISAMTevXtV5s3+Q+zi4iKSk5Ol9qysLFGhQgXh5+cnsrKypPbk5GTh7OwsWrRoIbX17t1b6OjoiPPnz6vVmL1sVFSUACCOHDmSp9cmhBA//fSTACBu374thBAiMTFRGBkZqX0hZr8Gd3d3kZqaKrUvXbpUABDXrl0TQghx+fJlAUBERUXlus7z588LAOLXX38VQgjx22+/CQCia9euol69etJ8HTp0EDVr1pSez5w5U5iamopbt26p9Dd+/Hihq6srHj16JIT4vzBhbm4unj9/rjJvx44dReXKlfO6eSQHDx4UAMTOnTvVpmV/eQAQVlZW0ntiwIABolWrVnnqf/PmzQKASoDMSfYfgw8fhoaGIiIiQmXemJgYAUCsWrVKpb1Dhw6iXLlyKu+5nOQlTLz/fs4WEhIiFAqFePjwodSW/UdgxowZKvNmh9NsW7duFQDEkiVLpLbMzEzRrFkzWWHiwzrT0tJElSpVRLNmzaS2ixcvCgBixIgRKvP26dNHLUz069dPlC5dWuWPjRBC9OjRQyiVyhy3y/tyCxO+vr4q+2XkyJFCV1dXxMfHf7S/9+UlTHxqPa9fvxYWFhZiwIABKsvHxsYKpVKp0p69b+fMmSO1vXr1ShgbGwuFQiG2bNkitd+8eVNtW+b1c/3+uvISJvKyz4V4FyYMDAzEnTt3pLarV68KAGL58uW59ieEEGfOnBEAxIYNG6S23L6Hnz9/LgwMDETLli1FZmam1L5ixQoBQPzvf/+T2nx8fAQAsXnzZqkte9vp6OiIs2fPSu379u1T+2wEBwcLQ0NDlffN8+fPhZ6ensq2l+M/f5oj+9RCXgcY/vrrrwCAUaNGqbR/8803AKA2tsLZ2Rl+fn459hUQEKAyfuLKlSu4ffs2Pv/8c/z999/466+/8NdffyEpKQnNmzfH8ePHkZWVhaysLOzYsQPt27dXOU+e7f3D7vkVGRmJ2rVrw9XVFQCkQ5k5neoAgK+++kpl3EGjRo0AvBuICABKpRLAu0GHycnJOfZRs2ZNmJmZ4fjx4wDeHSovW7YsevfujUuXLiE5ORlCCJw8eVLqHwCioqLQqFEjWFpaStvqr7/+gq+vLzIzM6X+svn7+6uNU7CwsMCff/6J8+fP53kbAe8OvQOApaWl2rSlS5fi4cOHiI6OxsOHD9G0aVNcuXIFGzZswOLFi5GQkIAvvvgCZcqUQZMmTXDjxg21PrL7/euvv/JUT1hYGA4cOIADBw5g06ZNaNq0Kfr3749t27ZJ81SsWBH16tVT2ZcvX77Enj170KtXL1nvm2zvv5+TkpLw119/oUGDBhBC4PLly2rzDxo0SOV5o0aNpPcOAOzduxf6+voYMGCA1Kajo4PAwECt1fnq1SskJCSgUaNGuHTpksq6AWDIkCEqy354ikoIga1bt6J9+/YQQqi8F/38/JCQkKDSb34MHDhQZb80atQImZmZWrsUOa/rOXDgAOLj49GzZ0+V16erq4t69erhyJEjan32799f+reFhQUqVaoEU1NTdOvWTWqvVKkSLCwsVPZ5fj7XERER0im8T8nLPs/m6+urMvi5WrVqMDc3V6nz/f7S09Px999/w9XVFRYWFnna3wcPHkRaWhpGjBihMlZuwIABMDc3V/tbYmZmhh49ekjPs7edu7s76tWrJ7Vn//v9Wnv37o3U1FSV0zo//PADMjIytDaW5j8/ANPc3BwA8Pr16zzN//DhQ+jo6Eh/bLPZ2dnBwsJC7UPu7Oyca18fTsse3f+xwY4JCQlIS0tDYmIiqlSpkqea8yo+Ph6//vorgoKCVMY9eHt7Y+vWrbh16xYqVqyosoyjo6PK8+w/gq9evQLw7jWOGjUKoaGhiIyMRKNGjdChQwd88cUXUtDQ1dWFl5cXTpw4AeBdmGjUqBEaNmyIzMxMnD17Fra2tnj58qVKmLh9+zZ+++23XAcyPn/+XOV5Tvti3LhxOHjwIOrWrQtXV1e0bNkSn3/+Oby9vfO0zYQQObY7OjqqbJthw4Zh0KBBcHNzwxdffIHHjx/j559/xvr169G+fXvcvHlTGt/wfr95/QNft25dlWDZs2dP1KxZE0FBQWjXrp0U+Hr37o2goCA8fPgQTk5OiIqKQnp6Or788ss8redTHj16hClTpuCXX36R3gPZssfIZDMyMlLbd5aWlirLPXz4EKVLl4aJiYnKfB9+/vJr165dmDVrFq5cuaIy1un97Z39Wf/wffPhul+8eIH4+HisWbMm1yu+Pnwv5tWnPl/a8qn1ZH83NWvWLMfls79Hs+W0b5VKJcqWLav2nlYqlSqvJ7+f67zKyz7P9uH2ANTfm2/fvkVISAjCw8Px5MkTle+CD9/rOcn+W1GpUiWVdgMDA7i4uKj9Lclt2zk4OKi1AarvETc3N9SpUweRkZHo168fgHf/caxfv77sz1I2hglzc9jb2+f7JkF5/ZLP6cqN3KZlDy5asGABatSokeMyZmZmePnyZd6KzKeoqCikpqZi0aJFWLRokdr0yMhITJ8+XaVNV1c3x77e/2AtWrQIffr0wc8//4z9+/dj2LBhCAkJwdmzZ1G2bFkAQMOGDTF79mykpKTgxIkTmDhxIiwsLFClShWcOHECtra2AKASJrKystCiRQuMHTs2xxo+DD457Qt3d3fExMRg165d2Lt3L7Zu3YqVK1diypQpaq/1fdbW1gDy9qX+ww8/4MaNG/jll1+QmZmJH3/8Efv370ft2rVRuXJlrF27FmfPnkXDhg2lZbL7LVmy5Cf7z4mOjg6aNm2KpUuX4vbt26hcuTIAoEePHhg5ciQiIyMxYcIEbNq0CbVr11b7QtNEZmYmWrRogZcvX2LcuHFwc3ODqakpnjx5gj59+qgNnsvtvaMphUKRY7j7cEDniRMn0KFDBzRu3BgrV65E6dKloa+vj/Dw8DwNvP1Q9uv64osvcv2PQLVq1fLdL5C3z5c2fGo92a9x48aNsLOzU5vv/SD8sf7y8nry+7nOi/zu87zUOXToUISHh2PEiBHw8vKCUqmEQqFAjx491N7r2iBnmwLv/iMxfPhw/Pnnn0hNTcXZs2exYsUKrdX3nw8TANCuXTusWbMGZ86cgZeX10fndXJyQlZWFm7fvg13d3epPS4uDvHx8So3L8qv7MNq5ubm8PX1zXU+GxsbmJubfzIA5fewdWRkJKpUqYKpU6eqTfv222+xefPmj/6B/ZiqVauiatWqmDRpEk6fPg1vb2+sXr0as2bNAvAuJKSlpeH777/HkydPpNDQuHFjKUxUrFhRChXAu+315s2bj26rvDA1NZXuDZGWloYuXbpg9uzZCA4OhpGRUY7LuLm5AXh3WfHHJCcnY8yYMZg5cyYsLCwQFxeH9PR02NvbA3gXcCwtLfHkyROV5e7fvw8dHR2NvjizZWRkAADevHkjtVlZWUmnrXr16oVTp05hyZIlGq/jfdeuXcOtW7ewfv169O7dW2o/cOCAxn06OTnhyJEjSE5OVjk68eEVQ8C7/zm+f2g324f/w9u6dSuMjIywb98+lUsyw8PD1dadlZWF+/fvo0KFCrmu28bGBiVKlEBmZqbs92JRlf3dVKpUqQJ/jdr6XL8vr/s8P3766ScEBASo/McrJSVF7UqM3L6Hs/9WxMTEwMXFRWpPS0vD/fv3tb6de/TogVGjRuH777/H27dvoa+vr9WbEv7nx0wA7+72aGpqiv79+yMuLk5t+t27d7F06VIAQJs2bQBA7Qs4NDQUANC2bVuN6/D09ET58uWxcOFClT8A2bIv1dLR0UGnTp2wc+fOHG+Dm51ITU1NAUDtzZ2Tx48f4/jx4+jWrRs+++wztcdXX32FO3fuIDo6Ol+vKTExUfqjlq1q1arQ0dFROdRYr1496OvrY968ebCyspL+J92oUSOcPXsWx44dUzkqAQDdunXDmTNnVG4IlS0+Pl5tvTnJHvuQzcDAAB4eHhBCfPRyszJlysDBweGTtyGeN28eLC0tpXP+1tbW0NPTw82bNwG8GxPx4sULtf/tXbx4EZUrV5YOWeZXeno69u/fDwMDA5XQCwBffvklrl+/jjFjxkBXV1flPKwc2f9Dev9/REII6bOjCT8/P6Snp2Pt2rVSW1ZWlnSZ4fvKly+PmzdvqlzSePXqVbXLqnV1daFQKFSOWDx48AA7duxQWzfw7tK99y1fvlytP39/f2zdujXHgF8Ql3L+0/z8/GBubo45c+bk+LnQ5mvMz+c6r5eG5nWf54eurq7a//6XL1+udiQst+9hX19fGBgYYNmyZSr9rFu3DgkJCbL+luSkZMmSaN26NTZt2oTIyEi0atVK4yOfOeGRCbz7Etq8eTO6d+8Od3d3lTtgnj59GlFRUdI14NWrV0dAQADWrFmD+Ph4+Pj44Ny5c1i/fj06deqEpk2balyHjo4OvvvuO7Ru3RqVK1fGV199hTJlyuDJkyc4cuQIzM3NsXPnTgDAnDlzsH//fvj4+GDgwIFwd3fHs2fPEBUVhZMnT8LCwgI1atSArq4u5s2bh4SEBBgaGqJZs2YoVaqU2ro3b94MIQQ6dOiQY21t2rSBnp4eIiMjVQb7fMrhw4cRFBSErl27omLFisjIyMDGjRulL+BsJiYm8PT0xNmzZ6V7TADvjkwkJSUhKSlJLUyMGTMGv/zyC9q1a4c+ffrA09MTSUlJuHbtGn766Sc8ePDgkx+Wli1bws7ODt7e3rC1tcWNGzewYsUKtG3b9pODcjt27Ijt27dDCJHj/z4ePXqEBQsWYPfu3dIfWj09PXTs2BEjRozAo0ePsH37dtjb26scEUtPT8exY8fUBv59zJ49e6SA8vz5c2zevBm3b9/G+PHj1c5nt23bFtbW1oiKikLr1q1zfD/k5s6dO9LRpPfVrFkTLVu2RPny5TF69Gg8efIE5ubm2Lp1q6zz+506dULdunXxzTff4M6dO3Bzc8Mvv/winep7f7v37dsXoaGh8PPzQ79+/fD8+XOsXr0alStXlgZaZ7/+0NBQtGrVCp9//jmeP3+OsLAwuLq64rfffpPm8/T0hL+/P5YsWYK///4b9evXx7Fjx3Dr1i21dc+dOxdHjhxBvXr1MGDAAHh4eODly5e4dOkSDh48WGCnJv8p5ubmWLVqFb788kvUqlULPXr0gI2NDR49eoTdu3fD29tba4fM8/O5Dg4Oxvr163H//v2PDsLM6z7Pj3bt2mHjxo1QKpXw8PDAmTNncPDgQekUaLaPfQ8HBwdj+vTpaNWqFTp06ICYmBisXLkSderUKZCbjPXu3RufffYZAGDmzJna7Vwr14T8S9y6dUsMGDBAlCtXThgYGIgSJUoIb29vsXz5cpGSkiLNl56eLqZPny6cnZ2Fvr6+cHBwEMHBwSrzCJH7pXTZl1Xmdrnk5cuXRZcuXYS1tbUwNDQUTk5Oolu3buLQoUMq8z18+FD07t1b2NjYCENDQ+Hi4iICAwNVLtVcu3atcHFxEbq6uh+9TLRq1arC0dHxo9unSZMmolSpUiI9PT3X15B9GWb2ZUn37t0Tffv2FeXLlxdGRkbCyspKNG3aVBw8eFCt/zFjxggAYt68eSrtrq6uAoC4e/eu2jKvX78WwcHBwtXVVRgYGIiSJUuKBg0aiIULF0rXaWfXtGDBArXlv/32W9G4cWNpW5cvX16MGTPmk/d3EEKIS5cuCQDixIkTOU7v2rWr6NKli1p7XFycaN++vShRooSoVauWuHDhgsr0PXv2qFye+zE5XRpqZGQkatSoIVatWpXr5Z5DhgxRu9TsU7Ivdc7p0a9fPyGEENevXxe+vr7CzMxMlCxZUgwYMEC6rO79S9UCAgKEqamp2jqyr7t/34sXL8Tnn38uSpQoIZRKpejTp484deqUAKBymaEQQmzatEm4uLgIAwMDUaNGDbFv374cLw1dt26dqFChgjA0NBRubm4iPDw8x3UnJSWJwMBAYWVlJczMzESnTp2kS2znzp2rMm9cXJwIDAwUDg4OQl9fX9jZ2YnmzZuLNWvW5Gnb5nRp6IeXfmd/7vJzuXdeLg3N63qOHDki/Pz8hFKpFEZGRqJ8+fKiT58+Ku/h3Patj49Pjpdh5/Q9mZfPdfa6kMdLQ/O6zwGIwMDAHOt8fx+9evVKfPXVV6JkyZLCzMxM+Pn5iZs3b6rNJ8THv4dXrFgh3NzchL6+vrC1tRWDBw8Wr169Ulk+P9vuY68hNTVVWFpaCqVSKd6+fZvDVtKc4v+vmIg00Lx5c9jb26v9HoIcnTp1yvWOddoycuRIrFu3DrGxsWpXShQHO3bsQOfOnXHy5Mk8X3mjLVeuXEHNmjWxadMm9OrV6x9dN5EcGRkZsLe3R/v27bFu3Tqt9s0xE0QyzJkzBz/88IPWrvu/ceMGdu3apf1DkO9JSUnBpk2b4O/vXyyCxIe34s7MzMTy5cthbm6udhv2gl438G68lI6ODho3blyg6ybSth07duDFixcqA6S1hWMmiGSoV68e0tLStNafu7t7ngaOauL58+c4ePAgfvrpJ/z9998qvzdTlA0dOhRv376Fl5cXUlNTsW3bNpw+fRpz5sz56KXX2jB//nxcvHgRTZs2hZ6eHvbs2YM9e/Zg4MCBatf3ExVV0dHR+O233zBz5kzUrFkTPj4+2l+JVk+aEFGRlX0evFSpUiq3BS7qIiMjRa1atYS5ubkwMDAQHh4e/1j9+/fvF97e3sLS0lLo6+uL8uXLi2nTpon09PR/ZP1E2hAQECB0dXWFp6en9FMH2laoYyYyMzMxbdo0bNq0CbGxsbC3t0efPn0wadIkaaS0EAJTp07F2rVrER8fD29vb6xatUrlum8iIiIqPIU6ZmLevHlYtWoVVqxYgRs3bmDevHmYP3++ynXc8+fPx7Jly7B69WpER0fD1NQUfn5+SElJKcTKiYiIKFuhHplo164dbG1tVUaV+vv7w9jYGJs2bYIQAvb29vjmm28wevRoAO/ueW5ra4uIiAit3WyHiIiINFeoAzAbNGiANWvWSD8gdfXqVZw8eVK6m+T9+/cRGxurcltRpVKJevXq4cyZMzmGidTUVJU7K2ZlZeHly5ewtrbWyq8iEhER/VcIIfD69WvY29ur/Lrphwo1TIwfPx6JiYlwc3ODrq4uMjMzMXv2bOna7djYWABQ+T2G7OfZ0z4UEhKi8e9HEBERkbrHjx9LP8yYk0INEz/++CMiIyOxefNmVK5cGVeuXMGIESNgb2//0Z/h/pjg4GCMGjVKep6QkABHR0c8fvxY7bbCRERElLvExEQ4ODh88ucFCjVMjBkzBuPHj5dOV1StWhUPHz5ESEgIAgICpB8/iouLQ+nSpaXl4uLicv2JbkNDQ5Vfhctmbm7OMEFERKSBTw0TKNSrOZKTk9XOwejq6kq/Be/s7Aw7OzscOnRImp6YmIjo6OhP/lQ4ERER/TMK9chE+/btMXv2bDg6OqJy5cq4fPkyQkND0bdvXwDvktCIESMwa9YsVKhQAc7Ozpg8eTLs7e3RqVOnwiydiIiI/r9CDRPLly/H5MmTMWTIEDx//hz29vb4+uuvMWXKFGmesWPHIikpCQMHDkR8fDwaNmyIvXv3wsjIqBArJyIiomz/+l8NTUxMhFKpREJCAsdMEBER5UNe/4byV0OJiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGTRK+wCiqty43cXdgn/eg/mti3sEoiIKA94ZIKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWfQKuwAiIvpvKDd+d2GX8K/3YG7bQlkvj0wQERGRLAwTREREJAvDBBEREcnCMEFERESyFGqYKFeuHBQKhdojMDAQAJCSkoLAwEBYW1vDzMwM/v7+iIuLK8ySiYiI6AOFGibOnz+PZ8+eSY8DBw4AALp27QoAGDlyJHbu3ImoqCgcO3YMT58+RZcuXQqzZCIiIvpAoV4aamNjo/J87ty5KF++PHx8fJCQkIB169Zh8+bNaNasGQAgPDwc7u7uOHv2LOrXr59jn6mpqUhNTZWeJyYmFtwLICIioqIzZiItLQ2bNm1C3759oVAocPHiRaSnp8PX11eax83NDY6Ojjhz5kyu/YSEhECpVEoPBweHf6J8IiKi/6wiEyZ27NiB+Ph49OnTBwAQGxsLAwMDWFhYqMxna2uL2NjYXPsJDg5GQkKC9Hj8+HEBVk1ERERF5g6Y69atQ+vWrWFvby+rH0NDQxgaGmqpKiIiIvqUIhEmHj58iIMHD2Lbtm1Sm52dHdLS0hAfH69ydCIuLg52dnaFUCURERHlpEic5ggPD0epUqXQtu3/3VPc09MT+vr6OHTokNQWExODR48ewcvLqzDKJCIiohwU+pGJrKwshIeHIyAgAHp6/1eOUqlEv379MGrUKFhZWcHc3BxDhw6Fl5dXrldyEBER0T+v0MPEwYMH8ejRI/Tt21dt2uLFi6GjowN/f3+kpqbCz88PK1euLIQqiYiIKDeFHiZatmwJIUSO04yMjBAWFoawsLB/uCoiIiLKqyIxZoKIiIiKL4YJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGTRK+wCiIjyo9z43YVdwr/eg7ltC7sEKmZ4ZIKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWQo9TDx58gRffPEFrK2tYWxsjKpVq+LChQvSdCEEpkyZgtKlS8PY2Bi+vr64fft2IVZMRERE7yvUMPHq1St4e3tDX18fe/bswfXr17Fo0SJYWlpK88yfPx/Lli3D6tWrER0dDVNTU/j5+SElJaUQKyciIqJshXrTqnnz5sHBwQHh4eFSm7Ozs/RvIQSWLFmCSZMmoWPHjgCADRs2wNbWFjt27ECPHj3+8ZqJiIhIVaEemfjll19Qu3ZtdO3aFaVKlULNmjWxdu1aafr9+/cRGxsLX19fqU2pVKJevXo4c+ZMjn2mpqYiMTFR5UFEREQFp1DDxL1797Bq1SpUqFAB+/btw+DBgzFs2DCsX78eABAbGwsAsLW1VVnO1tZWmvahkJAQKJVK6eHg4FCwL4KIiOg/rlDDRFZWFmrVqoU5c+agZs2aGDhwIAYMGIDVq1dr3GdwcDASEhKkx+PHj7VYMREREX2oUMNE6dKl4eHhodLm7u6OR48eAQDs7OwAAHFxcSrzxMXFSdM+ZGhoCHNzc5UHERERFZxCDRPe3t6IiYlRabt16xacnJwAvBuMaWdnh0OHDknTExMTER0dDS8vr3+0ViIiIspZoV7NMXLkSDRo0ABz5sxBt27dcO7cOaxZswZr1qwBACgUCowYMQKzZs1ChQoV4OzsjMmTJ8Pe3h6dOnUqzNKJiIjo/yvUMFGnTh1s374dwcHBmDFjBpydnbFkyRL06tVLmmfs2LFISkrCwIEDER8fj4YNG2Lv3r0wMjIqxMqJiIgoW6GGCQBo164d2rVrl+t0hUKBGTNmYMaMGf9gVURERJRXhX47bSIiIireGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGTR02Sh+/fv48SJE3j48CGSk5NhY2ODmjVrwsvLC0ZGRtqukYiIiIqwfIWJyMhILF26FBcuXICtrS3s7e1hbGyMly9f4u7duzAyMkKvXr0wbtw4ODk5FVTNREREVITkOUzUrFkTBgYG6NOnD7Zu3QoHBweV6ampqThz5gy2bNmC2rVrY+XKlejatavWCyYiIqKiJc9hYu7cufDz88t1uqGhIZo0aYImTZpg9uzZePDggTbqIyIioiIuz2HiY0HiQ9bW1rC2ttaoICIiIipeNBqA+b7du3fj6NGjyMzMhLe3N/z9/bVRFxERERUTsi4NnTx5MsaOHQuFQgEhBEaOHImhQ4dqqzYiIiIqBvIVJi5cuKDy/IcffsCFCxcwf/58LF68GDt37sSmTZvy3N+0adOgUChUHm5ubtL0lJQUBAYGwtraGmZmZvD390dcXFx+SiYiIqIClq8wMWjQIIwYMQLJyckAABcXFyxatAgxMTG4du0aVq1ahYoVK+argMqVK+PZs2fS4+TJk9K0kSNHYufOnYiKisKxY8fw9OlTdOnSJV/9ExERUcHKV5iIjo5G6dKlUatWLezcuRP/+9//cPnyZTRo0ACNGjXCn3/+ic2bN+erAD09PdjZ2UmPkiVLAgASEhKwbt06hIaGolmzZvD09ER4eDhOnz6Ns2fP5msdREREVHDyNQBTV1cX48aNQ9euXTF48GCYmppixYoVsLe317iA27dvw97eHkZGRvDy8kJISAgcHR1x8eJFpKenw9fXV5rXzc0Njo6OOHPmDOrXr59jf6mpqUhNTZWeJyYmalwbERERfZpGAzBdXFywb98+dO7cGY0bN0ZYWJhGK69Xrx4iIiKwd+9erFq1Cvfv30ejRo3w+vVrxMbGwsDAABYWFirL2NraIjY2Ntc+Q0JCoFQqpceHN9ciIiIi7cpXmIiPj8fYsWPRvn17TJo0CZ07d0Z0dDTOnz+P+vXr49q1a/laeevWrdG1a1dUq1YNfn5++PXXXxEfH48ff/wxX/28Lzg4GAkJCdLj8ePHGvdFREREn5avMBEQEIDo6Gi0bdsWMTExGDx4MKytrREREYHZs2eje/fuGDdunMbFWFhYoGLFirhz5w7s7OyQlpaG+Ph4lXni4uJgZ2eXax+GhoYwNzdXeRAREVHByVeYOHz4MNatW4dBgwZhy5YtKldeNG/eHJcuXYKurq7Gxbx58wZ3795F6dKl4enpCX19fRw6dEiaHhMTg0ePHsHLy0vjdRAREZF25WsAZoUKFbBmzRr0798fBw4cUPtlUCMjI8yZMyfP/Y0ePRrt27eHk5MTnj59iqlTp0JXVxc9e/aEUqlEv379MGrUKFhZWcHc3BxDhw6Fl5dXroMviYiI6J+XrzDxv//9D/3790dYWBhq1KiB7777TtbK//zzT/Ts2RN///03bGxs0LBhQ5w9exY2NjYAgMWLF0NHRwf+/v5ITU2Fn58fVq5cKWudREREpF35ChM1atRQuwumHFu2bPnodCMjI4SFhWl8tQgREREVvDyPmRBCFGQdREREVEzlOUxUrlwZW7ZsQVpa2kfnu337NgYPHoy5c+fKLo6IiIiKvjyf5li+fDnGjRuHIUOGoEWLFqhdu7Z058pXr17h+vXrOHnyJP744w8EBQVh8ODBBVk3ERERFRF5DhPNmzfHhQsXcPLkSfzwww+IjIzEw4cP8fbtW5QsWRI1a9ZE79690atXL1haWhZkzURERFSE5GsAJgA0bNgQDRs2LIhaiIiIqBjS6Lc5iIiIiLIxTBAREZEsDBNEREQkC8MEERERycIwQURERLJoFCYuXbqEa9euSc9//vlndOrUCRMmTPjkTa2IiIjo30WjMPH111/j1q1bAIB79+6hR48eMDExQVRUFMaOHavVAomIiKho0yhM3Lp1CzVq1AAAREVFoXHjxti8eTMiIiKwdetWbdZHRERERZxGYUIIgaysLADAwYMH0aZNGwCAg4MD/vrrL+1VR0REREWeRmGidu3amDVrFjZu3Ihjx46hbdu2AID79+/D1tZWqwUSERFR0aZRmFiyZAkuXbqEoKAgTJw4Ea6urgCAn376CQ0aNNBqgURERFS05fu3OTIzMxEfH4/jx4+r/aDXggULoKurq7XiiIiIqOjL95EJXV1dtGzZEvHx8WrTjIyMoK+vr426iIiIqJjQ6DRHlSpVcO/ePW3XQkRERMWQRmFi1qxZGD16NHbt2oVnz54hMTFR5UFERET/HfkeMwFAuhS0Q4cOUCgUUrsQAgqFApmZmdqpjoiIiIo8jcLEkSNHtF0HERERFVMahQkfHx9t10FERETFlMa/GnrixAl88cUXaNCgAZ48eQIA2LhxI06ePKm14oiIiKjo0yhMbN26FX5+fjA2NsalS5eQmpoKAEhISMCcOXO0WiAREREVbRpfzbF69WqsXbtW5b4S3t7euHTpktaKIyIioqJPozARExODxo0bq7Urlcocb2ZFRERE/14ahQk7OzvcuXNHrf3kyZNwcXGRXRQREREVHxqFiQEDBmD48OGIjo6GQqHA06dPERkZidGjR2Pw4MHarpGIiIiKMI0uDR0/fjyysrLQvHlzJCcno3HjxjA0NMTo0aMxdOhQbddIRERERZhGYUKhUGDixIkYM2YM7ty5gzdv3sDDwwNmZmbaro+IiIiKOI3CxOHDh9GgQQMYGRnBw8ND2zURERFRMaJRmOjQoQMyMjJQp04dNGnSBD4+PvD29oaxsbG26yMiIqIiTqMBmK9evcKhQ4fQunVrnDt3Dp07d4aFhQW8vb0xadIkbddIRERERZhGYUJfXx/e3t6YMGEC9u3bh7Nnz6Jnz544d+4cQkJCtF0jERERFWEanea4desWjh49iqNHj+LYsWNITU1Fo0aNsHDhQjRp0kTLJRIREVFRplGYcHNzg42NDYYPH47x48ejatWqUCgU2q6NiIiIigGNTnMMGzYMZcqUwYwZMzBo0CBMnDgR+/fvR3JysrbrIyIioiJOozCxZMkSXLp0CbGxsQgODkZaWhomTpyIkiVLwtvbW9s1EhERURGmUZjIlpmZifT0dKSmpiIlJQWpqamIiYnRVm1ERERUDGh8mqNatWqwtbXF119/jadPn2LAgAG4fPkyXrx4oe0aiYiIqAjTaADms2fPMHDgQDRp0gRVqlTRdk1ERERUjGgUJqKiorRdBxERERVTGp3mWL9+PXbv3i09Hzt2LCwsLNCgQQM8fPhQa8URERFR0adRmJgzZ470OxxnzpxBWFgY5s+fj5IlS2LkyJFaLZCIiIiKNo1Oczx+/Biurq4AgB07dsDf3x8DBw6Et7c374BJRET0H6PRkQkzMzP8/fffAID9+/ejRYsWAAAjIyO8fftWe9URERFRkadRmGjRogX69++P/v3749atW2jTpg0A4I8//kC5cuU0KmTu3LlQKBQYMWKE1JaSkoLAwEBYW1vDzMwM/v7+iIuL06h/IiIiKhgahYmwsDB4eXnhxYsX2Lp1K6ytrQEAFy9eRM+ePfPd3/nz5/Htt9+iWrVqKu0jR47Ezp07ERUVhWPHjuHp06fo0qWLJiUTERFRAdFozISFhQVWrFih1j59+vR89/XmzRv06tULa9euxaxZs6T2hIQErFu3Dps3b0azZs0AAOHh4XB3d8fZs2dRv359TUonIiIiLdMoTABAfHw8zp07h+fPnyMrK0tqVygU+PLLL/PcT2BgINq2bQtfX1+VMHHx4kWkp6fD19dXanNzc4OjoyPOnDmTa5hITU1Famqq9DwxMTE/L4uIiIjySaMwsXPnTvTq1Qtv3ryBubm5ys+P5ydMbNmyBZcuXcL58+fVpsXGxsLAwAAWFhYq7ba2toiNjc21z5CQEI2OkBAREZFmNBoz8c0336Bv37548+YN4uPj8erVK+nx8uXLPPXx+PFjDB8+HJGRkTAyMtKkjBwFBwcjISFBejx+/FhrfRMREZE6jcLEkydPMGzYMJiYmGi84osXL+L58+eoVasW9PT0oKenh2PHjmHZsmXQ09ODra0t0tLSEB8fr7JcXFwc7Ozscu3X0NAQ5ubmKg8iIiIqOBqFCT8/P1y4cEHWips3b45r167hypUr0qN27dro1auX9G99fX0cOnRIWiYmJgaPHj2Cl5eXrHUTERGR9mg0ZqJt27YYM2YMrl+/jqpVq0JfX19leocOHT7ZR4kSJdR+cdTU1BTW1tZSe79+/TBq1ChYWVnB3NwcQ4cOhZeXF6/kICIiKkI0ChMDBgwAAMyYMUNtmkKhQGZmpryq/r/FixdDR0cH/v7+SE1NhZ+fH1auXKmVvomIiEg7NAoT718Kqk1Hjx5VeW5kZISwsDCEhYUVyPqIiIhIPo3GTOQmPj4+x5tZERER0b+XVsLEoUOH8Pnnn6N06dKYOnWqNrokIiKiYkLjMPH48WPMmDEDzs7OaNmyJRQKBbZv3/7RG0oRERHRv0++wkR6ejqioqLg5+eHSpUq4cqVK1iwYAF0dHQwceJEtGrVSu3KDiIiIvp3y9cAzDJlysDNzQ1ffPEFtmzZAktLSwDQ6JdCiQpLufG7C7uEf70Hc9sWdglE9A/K15GJjIwMKBQKKBQK6OrqFlRNREREVIzkK0w8ffoUAwcOxPfffw87Ozv4+/tj+/btKj/0RURERP8t+QoTRkZG6NWrFw4fPoxr167B3d0dw4YNQ0ZGBmbPno0DBw5o7YZVREREVDxofDVH+fLlMWvWLDx8+BC7d+9Gamoq2rVrB1tbW23WR0REREWcRnfAfJ+Ojg5at26N1q1b48WLF9i4caM26iIiIqJiQqt3wLSxscGoUaO02SUREREVcVoNE0RERPTfwzBBREREsjBMEBERkSwahYkZM2YgOTlZrf3t27eYMWOG7KKIiIio+NAoTEyfPh1v3rxRa09OTsb06dNlF0VERETFh0ZhQgiR410vr169CisrK9lFERERUfGRr/tMWFpaSr/NUbFiRZVAkZmZiTdv3mDQoEFaL5KIiIiKrnyFiSVLlkAIgb59+2L69OlQKpXSNAMDA5QrVw5eXl5aL5KIiIiKrnyFiYCAAACAs7MzvL29oacn+waaREREVMxpNGYiKSkJhw4dUmvft28f9uzZI7soIiIiKj40ChPjx4/P8ddBhRAYP3687KKIiIio+NAoTNy+fRseHh5q7W5ubrhz547sooiIiKj40ChMKJVK3Lt3T639zp07MDU1lV0UERERFR8ahYmOHTtixIgRuHv3rtR2584dfPPNN+jQoYPWiiMiIqKiT6MwMX/+fJiamsLNzQ3Ozs5wdnaGu7s7rK2tsXDhQm3XSEREREWYRtd2KpVKnD59GgcOHMDVq1dhbGyMatWqoXHjxtquj4iIiIo4jW8UoVAo0LJlSzRu3BiGhoY53l6biIiI/v00Os2RlZWFmTNnokyZMjAzM8P9+/cBAJMnT8a6deu0WiAREREVbRqFiVmzZiEiIgLz58+HgYGB1F6lShV89913WiuOiIiIij6NwsSGDRuwZs0a9OrVC7q6ulJ79erVcfPmTa0VR0REREWfRmHiyZMncHV1VWvPyspCenq67KKIiIio+NAoTHh4eODEiRNq7T/99BNq1qwpuygiIiIqPjS6mmPKlCkICAjAkydPkJWVhW3btiEmJgYbNmzArl27tF0jERERFWEa3wFz586dOHjwIExNTTFlyhTcuHEDO3fuRIsWLbRdIxERERVh+T4ykZGRgTlz5qBv3744cOBAQdRERERExUi+j0zo6elh/vz5yMjIKIh6iIiIqJjR6DRH8+bNcezYMW3XQkRERMWQRgMwW7dujfHjx+PatWvw9PRU+9lx/nIoERHRf4dGYWLIkCEAgNDQULVpCoUCmZmZ8qoiIiKiYkOjMJGVlaXtOoiIiKiYyveYifT0dOjp6eH3338viHqIiIiomMl3mNDX14ejoyNPZRAREREADa/mmDhxIiZMmICXL19qux4iIiIqZjQaM7FixQrcuXMH9vb2cHJyUrua49KlS1opjoiIiIo+jcJEp06dtFwGERERFVcahYmpU6dquw4iIiIqpjQaM5Ht4sWL2LRpEzZt2oTLly/ne/lVq1ahWrVqMDc3h7m5Oby8vLBnzx5pekpKCgIDA2FtbQ0zMzP4+/sjLi5OTslERESkZRodmXj+/Dl69OiBo0ePwsLCAgAQHx+Ppk2bYsuWLbCxsclTP2XLlsXcuXNRoUIFCCGwfv16dOzYEZcvX0blypUxcuRI7N69G1FRUVAqlQgKCkKXLl1w6tQpTcomIiKiAqDRkYmhQ4fi9evX+OOPP/Dy5Uu8fPkSv//+OxITEzFs2LA899O+fXu0adMGFSpUQMWKFTF79myYmZnh7NmzSEhIwLp16xAaGopmzZrB09MT4eHhOH36NM6ePZtrn6mpqUhMTFR5EBERUcHRKEzs3bsXK1euhLu7u9Tm4eGBsLAwldMU+ZGZmYktW7YgKSkJXl5euHjxItLT0+Hr6yvN4+bmBkdHR5w5cybXfkJCQqBUKqWHg4ODRvUQERFR3mgUJrKysqCvr6/Wrq+vn+9bbV+7dg1mZmYwNDTEoEGDsH37dnh4eCA2NhYGBgbSaZRstra2iI2NzbW/4OBgJCQkSI/Hjx/nqx4iIiLKH43CRLNmzTB8+HA8ffpUanvy5AlGjhyJ5s2b56uvSpUq4cqVK4iOjsbgwYMREBCA69eva1IWAMDQ0FAa0Jn9ICIiooKj8U2rOnTogHLlykmnER4/fowqVapg06ZN+erLwMAArq6uAABPT0+cP38eS5cuRffu3ZGWlob4+HiVoxNxcXGws7PTpGwiIiIqABqFCQcHB1y6dAkHDx7EzZs3AQDu7u4q4xs0lZWVhdTUVHh6ekJfXx+HDh2Cv78/ACAmJgaPHj2Cl5eX7PUQERGRdmgUJgBAoVCgRYsWaNGihcYrDw4ORuvWreHo6IjXr19j8+bNOHr0KPbt2welUol+/fph1KhRsLKygrm5OYYOHQovLy/Ur19f43USERGRduVrzMThw4fh4eGR4+WWCQkJqFy5Mk6cOJHn/p4/f47evXujUqVKaN68Oc6fP499+/ZJAWXx4sVo164d/P390bhxY9jZ2WHbtm35KZmIiIgKWL6OTCxZsgQDBgzIcVCjUqnE119/jdDQUDRq1ChP/a1bt+6j042MjBAWFoawsLD8lElERET/oHwdmbh69SpatWqV6/SWLVvi4sWLsosiIiKi4iNfYSIuLi7H+0tk09PTw4sXL2QXRURERMVHvsJEmTJl8Pvvv+c6/bfffkPp0qVlF0VERETFR77CRJs2bTB58mSkpKSoTXv79i2mTp2Kdu3aaa04IiIiKvryNQBz0qRJ2LZtGypWrIigoCBUqlQJAHDz5k2EhYUhMzMTEydOLJBCiYiIqGjKV5iwtbXF6dOnMXjwYAQHB0MIAeDdPSf8/PwQFhYGW1vbAimUiIiIiqZ837TKyckJv/76K169eoU7d+5ACIEKFSrA0tKyIOojIiKiIk7jO2BaWlqiTp062qyFiIiIiiGNfjWUiIiIKBvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREclSqGEiJCQEderUQYkSJVCqVCl06tQJMTExKvOkpKQgMDAQ1tbWMDMzg7+/P+Li4gqpYiIiIvpQoYaJY8eOITAwEGfPnsWBAweQnp6Oli1bIikpSZpn5MiR2LlzJ6KionDs2DE8ffoUXbp0KcSqiYiI6H16hbnyvXv3qjyPiIhAqVKlcPHiRTRu3BgJCQlYt24dNm/ejGbNmgEAwsPD4e7ujrNnz6J+/fqFUTYRERG9p0iNmUhISAAAWFlZAQAuXryI9PR0+Pr6SvO4ubnB0dERZ86cybGP1NRUJCYmqjyIiIio4BSZMJGVlYURI0bA29sbVapUAQDExsbCwMAAFhYWKvPa2toiNjY2x35CQkKgVCqlh4ODQ0GXTkRE9J9WZMJEYGAgfv/9d2zZskVWP8HBwUhISJAejx8/1lKFRERElJNCHTORLSgoCLt27cLx48dRtmxZqd3Ozg5paWmIj49XOToRFxcHOzu7HPsyNDSEoaFhQZdMRERE/1+hHpkQQiAoKAjbt2/H4cOH4ezsrDLd09MT+vr6OHTokNQWExODR48ewcvL658ul4iIiHJQqEcmAgMDsXnzZvz8888oUaKENA5CqVTC2NgYSqUS/fr1w6hRo2BlZQVzc3MMHToUXl5evJKDiIioiCjUMLFq1SoAQJMmTVTaw8PD0adPHwDA4sWLoaOjA39/f6SmpsLPzw8rV678hyslIiKi3BRqmBBCfHIeIyMjhIWFISws7B+oiIiIiPKryFzNQURERMUTwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREshRqmDh+/Djat28Pe3t7KBQK7NixQ2W6EAJTpkxB6dKlYWxsDF9fX9y+fbtwiiUiIqIcFWqYSEpKQvXq1REWFpbj9Pnz52PZsmVYvXo1oqOjYWpqCj8/P6SkpPzDlRIREVFu9Apz5a1bt0br1q1znCaEwJIlSzBp0iR07NgRALBhwwbY2tpix44d6NGjxz9ZKhEREeWiyI6ZuH//PmJjY+Hr6yu1KZVK1KtXD2fOnMl1udTUVCQmJqo8iIiIqOAU2TARGxsLALC1tVVpt7W1lablJCQkBEqlUno4ODgUaJ1ERET/dUU2TGgqODgYCQkJ0uPx48eFXRIREdG/WpENE3Z2dgCAuLg4lfa4uDhpWk4MDQ1hbm6u8iAiIqKCU2TDhLOzM+zs7HDo0CGpLTExEdHR0fDy8irEyoiIiOh9hXo1x5s3b3Dnzh3p+f3793HlyhVYWVnB0dERI0aMwKxZs1ChQgU4Oztj8uTJsLe3R6dOnQqvaCIiIlJRqGHiwoULaNq0qfR81KhRAICAgABERERg7NixSEpKwsCBAxEfH4+GDRti7969MDIyKqySiYiI6AOFGiaaNGkCIUSu0xUKBWbMmIEZM2b8g1URERFRfhTZMRNERERUPDBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCRLsQgTYWFhKFeuHIyMjFCvXj2cO3eusEsiIiKi/6/Ih4kffvgBo0aNwtSpU3Hp0iVUr14dfn5+eP78eWGXRkRERCgGYSI0NBQDBgzAV199BQ8PD6xevRomJib43//+V9ilEREREQC9wi7gY9LS0nDx4kUEBwdLbTo6OvD19cWZM2dyXCY1NRWpqanS84SEBABAYmKiVmvLSk3Wan+kTtv7LBv3XcErqH0HcP/9E/jZK760ve+y+xNCfHS+Ih0m/vrrL2RmZsLW1lal3dbWFjdv3sxxmZCQEEyfPl2t3cHBoUBqpIKjXFLYFZCmuO+KN+6/4qug9t3r16+hVCpznV6kw4QmgoODMWrUKOl5VlYWXr58CWtraygUikKsrHAlJibCwcEBjx8/hrm5eWGXQ/nAfVd8cd8VX9x37wgh8Pr1a9jb2390viIdJkqWLAldXV3ExcWptMfFxcHOzi7HZQwNDWFoaKjSZmFhUVAlFjvm5ub/6Q9GccZ9V3xx3xVf3Hf46BGJbEV6AKaBgQE8PT1x6NAhqS0rKwuHDh2Cl5dXIVZGRERE2Yr0kQkAGDVqFAICAlC7dm3UrVsXS5YsQVJSEr766qvCLo2IiIhQDMJE9+7d8eLFC0yZMgWxsbGoUaMG9u7dqzYokz7O0NAQU6dOVTsFREUf913xxX1XfHHf5Y9CfOp6DyIiIqKPKNJjJoiIiKjoY5ggIiIiWRgmiIiISBaGCQIARERE5Pl+HPmZlwrOgwcPoFAocOXKlcIuhehfrU+fPujUqZP0vEmTJhgxYkSels3PvMVZkb+ag/4Z3bt3R5s2bQq7jGKpSZMmqFGjBpYsWVLYpVAB6NOnD+Lj47Fjx47CLoWKiG3btkFfX7+wyyhSGCYIAGBsbAxjY+PCLoOoyMjMzPxP34KfcmdlZVXYJRQ5PM1RRPz000+oWrUqjI2NYW1tDV9fXyQlJUmH16ZPnw4bGxuYm5tj0KBBSEtLk5bdu3cvGjZsCAsLC1hbW6Ndu3a4e/euND37cPi2bdvQtGlTmJiYoHr16iq/vPrhqYurV6+iadOmKFGiBMzNzeHp6YkLFy6o1Lxv3z64u7vDzMwMrVq1wrNnzwpuAxVRffr0wbFjx7B06VIoFAooFArcvXsX/fr1g7OzM4yNjVGpUiUsXbpUZbmMjAwMGzZM2mfjxo1DQECAyqHUT+3XnBw7dgx169aFoaEhSpcujfHjxyMjI0Oa/vr1a/Tq1QumpqYoXbo0Fi9e/K85DNukSRMEBQUhKCgISqUSJUuWxOTJk6VfO3z16hV69+4NS0tLmJiYoHXr1rh9+7a0fPZn4JdffoGHhwcMDQ3Rt29frF+/Hj///LO0f48ePYqjR49CoVAgPj5eWv7KlStQKBR48OCB1LZ27Vo4ODjAxMQEnTt3RmhoqMrn7MPD5wAwYsQINGnSRHqelZWFkJAQ6f1UvXp1/PTTT9L0V69eoVevXrCxsYGxsTEqVKiA8PBwafrjx4/RrVs3WFhYwMrKCh07dlSpsbj72PbJ3k+HDh1C7dq1YWJiggYNGiAmJkalj1mzZqFUqVIoUaIE+vfvj/Hjx6NGjRq5rvPDz8zKlStRoUIFGBkZwdbWFp999plajWPHjoWVlRXs7Owwbdo0bb38IoNhogh49uwZevbsib59++LGjRs4evQounTpIn0JHjp0SGr//vvvsW3bNpVfRk1KSsKoUaNw4cIFHDp0CDo6OujcuTOysrJU1jNx4kSMHj0aV65cQcWKFdGzZ0+VPzTv69WrF8qWLYvz58/j4sWLGD9+vMphveTkZCxcuBAbN27E8ePH8ejRI4wePboAtk7RtnTpUnh5eWHAgAF49uwZnj17hrJly6Js2bKIiorC9evXMWXKFEyYMAE//vijtNy8efMQGRmJ8PBwnDp1ComJiWqH0fO6X7M9efIEbdq0QZ06dXD16lWsWrUK69atw6xZs6R5Ro0ahVOnTuGXX37BgQMHcOLECVy6dKlAtk1hWL9+PfT09HDu3DksXboUoaGh+O677wC8+8N94cIF/PLLLzhz5gyEEGjTpg3S09Ol5ZOTkzFv3jx89913+OOPP7Bs2TJ069ZNCsvPnj1DgwYN8lTLqVOnMGjQIAwfPhxXrlxBixYtMHv27Hy/ppCQEGzYsAGrV6/GH3/8gZEjR+KLL77AsWPHAACTJ0/G9evXsWfPHty4cQOrVq1CyZIlAQDp6enw8/NDiRIlcOLECZw6dUoK/+//h6Q4+9T2Ad599y1atAgXLlyAnp4e+vbtK02LjIzE7NmzMW/ePFy8eBGOjo5YtWpVntd/4cIFDBs2DDNmzEBMTAz27t2Lxo0bq8yzfv16mJqaIjo6GvPnz8eMGTNw4MAB+S++KBFU6C5evCgAiAcPHqhNCwgIEFZWViIpKUlqW7VqlTAzMxOZmZk59vfixQsBQFy7dk0IIcT9+/cFAPHdd99J8/zxxx8CgLhx44YQQojw8HChVCql6SVKlBARERE59h8eHi4AiDt37khtYWFhwtbWNu8v+l/Ex8dHDB8+/KPzBAYGCn9/f+m5ra2tWLBggfQ8IyNDODo6io4dO+baR2779fLly0IIISZMmCAqVaoksrKypGXCwsKk90piYqLQ19cXUVFR0vT4+HhhYmLyyfqLAx8fH+Hu7q7y+seNGyfc3d3FrVu3BABx6tQpadpff/0ljI2NxY8//iiE+L/39ZUrV1T6DQgIUNsvR44cEQDEq1evpLbLly8LAOL+/ftCCCG6d+8u2rZtq7Jcr169VD5nOfU9fPhw4ePjI4QQIiUlRZiYmIjTp0+rzNOvXz/Rs2dPIYQQ7du3F1999VWO22Tjxo1q74nU1FRhbGws9u3bl+Myxcmntk/2fjp48KA0bffu3QKAePv2rRBCiHr16onAwECV5b29vUX16tWl5x/up/c/81u3bhXm5uYiMTExxxp9fHxEw4YNVdrq1Kkjxo0bl9+XW6TxyEQRUL16dTRv3hxVq1ZF165dsXbtWrx69UpluomJifTcy8sLb968wePHjwEAt2/fRs+ePeHi4gJzc3OUK1cOAPDo0SOV9VSrVk36d+nSpQEAz58/z7GmUaNGoX///vD19cXcuXPVDq+bmJigfPnyKv3l1td/UVhYGDw9PWFjYwMzMzOsWbNG2h8JCQmIi4tD3bp1pfl1dXXh6emp0kde92u2GzduwMvLS+U8v7e3N968eYM///wT9+7dQ3p6usp6lUolKlWqpK2XXejq16+v8vq9vLxw+/ZtXL9+HXp6eqhXr540zdraGpUqVcKNGzekNgMDA5XPiRwxMTEq2xqA2vNPuXPnDpKTk9GiRQuYmZlJjw0bNkifycGDB2PLli2oUaMGxo4di9OnT0vLX716FXfu3EGJEiWkZa2srJCSkvLJU2bFQV62D/Dx7z65+6lFixZwcnKCi4sLvvzyS0RGRiI5OVllng/fU//G70sOwCwCdHV1ceDAAZw+fRr79+/H8uXLMXHiRERHR+dp+fbt28PJyQlr166Fvb09srKyUKVKFbXDmO+fpsj+ws3tkPm0adPw+eefY/fu3dizZw+mTp2KLVu2oHPnzmp9ZfcneGd2AMCWLVswevRoLFq0CF5eXihRogQWLFiQ5/2ZLa/7lbTH2Ng4T4MudXTe/T/s/ff8+6dL8kpHR0ftc/N+P2/evAEA7N69G2XKlFGZL/s3I1q3bo2HDx/i119/xYEDB9C8eXMEBgZi4cKFePPmDTw9PREZGam2bhsbm3zXW9R8avtkB4r8fPflV4kSJXDp0iUcPXoU+/fvx5QpUzBt2jScP39eGh+T0/elttZfVPDIRBGhUCjg7e2N6dOn4/LlyzAwMMD27dsBvPvfxdu3b6V5z549CzMzMzg4OODvv/9GTEwMJk2ahObNm8Pd3V3lqIYcFStWxMiRI7F//3506dJFZVAX/R8DAwNkZmZKz0+dOoUGDRpgyJAhqFmzJlxdXVX+l6RUKmFra4vz589LbZmZmSpjFzTZr+7u7tJYgPdrKVGiBMqWLQsXFxfo6+urrDchIQG3bt2S9fqLkg8D29mzZ1GhQgV4eHggIyNDZXr2Nvbw8Phonx/uX+D//hC/P+j4w/t9VKpUSWVbA1B7bmNjozZw+f1+sgeCPnr0CK6urioPBwcHlX4CAgKwadMmLFmyBGvWrAEA1KpVC7dv30apUqXUllcqlR993cVBXrfPx+RlP32Knp4efH19MX/+fPz222948OABDh8+nK8+ijsemSgCoqOjcejQIbRs2RKlSpVCdHQ0Xrx4AXd3d/z2229IS0tDv379MGnSJDx48ABTp05FUFAQdHR0YGlpCWtra6xZswalS5fGo0ePMH78eFn1vH37FmPGjMFnn30GZ2dn/Pnnnzh//jz8/f219Ir/XcqVK4fo6Gg8ePAAZmZmqFChAjZs2IB9+/bB2dkZGzduxPnz5+Hs7CwtM3ToUISEhMDV1RVubm5Yvnw5Xr16Jf2vSZP9OmTIECxZsgRDhw5FUFAQYmJiMHXqVIwaNQo6OjooUaIEAgICMGbMGFhZWaFUqVKYOnUqdHR0/jWXQD569AijRo3C119/jUuXLmH58uVYtGgRKlSogI4dO2LAgAH49ttvUaJECYwfPx5lypRBx44dP9pnuXLlsG/fPsTExMDa2hpKpVL6YzVt2jTMnj0bt27dwqJFi1SWGzp0KBo3bozQ0FC0b98ehw8fxp49e1S2dbNmzbBgwQJs2LABXl5e2LRpE37//XfUrFkTwLv/9Y4ePRojR45EVlYWGjZsiISEBJw6dQrm5uYICAjAlClT4OnpicqVKyM1NRW7du2Cu7s7gHcDqRcsWICOHTtixowZKFu2LB4+fIht27Zh7NixKFu2rJb3wD/rU9vHycnpk30MHToUAwYMQO3atdGgQQP88MMP+O233+Di4pKnGnbt2oV79+6hcePGsLS0xK+//oqsrKx/1enDPCncIRskhBDXr18Xfn5+wsbGRhgaGoqKFSuK5cuXCyH+b+DPlClThLW1tTAzMxMDBgwQKSkp0vIHDhwQ7u7uwtDQUFSrVk0cPXpUABDbt28XQqgP1BNCiFevXgkA4siRI0II1QGYqampokePHsLBwUEYGBgIe3t7ERQUJA1Y+nCwphBCbN++XfxX304xMTGifv36wtjYWAAQN2/eFH369BFKpVJYWFiIwYMHi/Hjx6sM6EpPTxdBQUHC3NxcWFpainHjxomuXbuKHj16SPNosl+PHj0q6tSpIwwMDISdnZ0YN26cSE9Pl6YnJiaKzz//XJiYmAg7OzsRGhoq6tatK8aPH1/Qm6nA+fj4iCFDhohBgwZJ23XChAnS4MOXL1+KL7/8UiiVSmFsbCz8/PzErVu3pOVzel8LIcTz589FixYthJmZmcpn5uTJk6Jq1arCyMhINGrUSERFRakMwBRCiDVr1ogyZcoIY2Nj0alTJzFr1ixhZ2en0v+UKVOEra2tUCqVYuTIkSIoKEgagCmEEFlZWWLJkiWiUqVKQl9fX9jY2Ag/Pz9x7NgxIYQQM2fOFO7u7sLY2FhYWVmJjh07inv37knLP3v2TPTu3VuULFlSGBoaChcXFzFgwACRkJAgc4sXDR/bPnkZKCuEEDNmzBAlS5YUZmZmom/fvmLYsGGifv360vSPDcA8ceKE8PHxEZaWlsLY2FhUq1ZN/PDDDznOm61jx44iICBAi1uh8PEnyIs43n3vvyErKwvu7u7o1q0bZs6c+Y+tNykpCWXKlMGiRYvQr1+/f2y9BaE43Il0wIABuHnzJk6cOFHYpdBHtGjRAnZ2dti4cWNhl1Js8DQHUSF4+PAh9u/fDx8fH6SmpmLFihW4f/8+Pv/88wJd7+XLl3Hz5k3UrVsXCQkJmDFjBgB88lA/aWbhwoVo0aIFTE1NsWfPHqxfvx4rV64s7LLoPcnJyVi9ejX8/Pygq6uL77//HgcPHvz33QeigDFMEBUCHR0dREREYPTo0RBCoEqVKjh48KB0rrsgLVy4EDExMTAwMICnpydOnDgh3eSItOvcuXOYP38+Xr9+DRcXFyxbtgz9+/cv7LLoPQqFAr/++itmz56NlJQUVKpUCVu3boWvr29hl1as8DQHERERycJLQ4mIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGC6D+sT58+6NSpU2GXQUTFHMMEERERycIwQUQ5Cg0NRdWqVWFqagoHBwcMGTIEb968kaZHRETAwsIC+/btg7u7O8zMzNCqVSuVn9TOyMjAsGHDYGFhAWtra4wbNw4BAQEqR0PKlSun9nsaNWrUwLRp0/JcCwCsXbsWDg4OMDExQefOnREaGgoLCwuVeX7++WfUqlULRkZGcHFxwfTp05GRkSF7WxH91zFMEFGOdHR0sGzZMvzxxx9Yv349Dh8+jLFjx6rMk5ycjIULF2Ljxo04fvw4Hj16hNGjR0vT582bh8jISISHh+PUqVNITEzU6EfrPlXLqVOnMGjQIAwfPhxXrlxBixYtMHv2bJU+Tpw4gd69e2P48OG4fv06vv32W0RERKjNR0QaKNTfLCWiQvXhTyt/TFRUlLC2tpaeh4eHCwDizp07UltYWJiwtbWVntva2ooFCxZIzzMyMoSjo6PKOp2cnMTixYtV1lW9enUxderUPNfSvXt30bZtW5V5evXqpfKT4s2bNxdz5sxRmWfjxo2idOnSua6HiPKGP/RFRDk6ePAgQkJCcPPmTSQmJiIjIwMpKSlITk6GiYkJAMDExATly5eXlildujSeP38OAEhISEBcXBzq1q0rTdfV1YWnpyeysrK0WktMTAw6d+6sskzdunWxa9cu6fnVq1dx6tQplSMRmZmZaq+JiPKPpzmISM2DBw/Qrl07VKtWDVu3bsXFixcRFhYGAEhLS5Pm09fXV1lOoVBA5PO3A3V0dNSWSU9Pz3ctn/LmzRtMnz4dV65ckR7Xrl3D7du3YWRklK+aiUgVj0wQkZqLFy8iKysLixYtgo7Ou/9z/Pjjj/nqQ6lUwtbWFufPn0fjxo0BvDsScOnSJdSoUUOaz8bGRmXQZmJiIu7fv5+vWipVqoTz58+rtH34vFatWoiJiYGrq2u+XgcRfRrDBNF/XEJCAq5cuaLSVrJkSaSnp2P58uVo3749Tp06hdWrV+e776FDhyIkJASurq5wc3PD8uXL8erVKygUCmmeZs2aISIiAu3bt4eFhQWmTJkCXV1dabqrq+snaxk6dCgaN26M0NBQtG/fHocPH8aePXtU1jNlyhS0a9cOjo6O+Oyzz6Cjo4OrV6/i999/x6xZs/L92ojoPYU9aIOICk9AQIAAoPbo16+fCA0NFaVLlxbGxsbCz89PbNiwQQAQr169EkK8G4D5/gBHIYTYvn27eP9rJT09XQQFBQlzc3NhaWkpxo0bJ7p27Sp69OghzZOQkCC6d+8uzM3NhYODg4iIiFAbgPmpWoQQYs2aNaJMmTLC2NhYdOrUScyaNUvY2dmp1Ld3717RoEEDYWxsLMzNzUXdunXFmjVrtLY9if6rFELk8wQnEZGGsrKy4O7ujm7dumHmzJkFuq4BAwbg5s2bOHHiRIGuh4h4moOICtDDhw+xf/9++Pj4IDU1FStWrMD9+/fx+eefa31dCxcuRIsWLWBqaoo9e/Zg/fr1WLlypdbXQ0TqGCaIqMDo6OggIiICo0ePhhACVapUwcGDB+Hu7q71dZ07dw7z58/H69ev4eLigmXLlqF///5aXw8RqeNpDiIiIpKF95kgIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhk+X8WrcROdHwGCAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 cornea 4 4 5 4 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 10 40.0 40.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 50.0 40.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV8klEQVR4nO3dd3QU5f/28WsTUgkphJBQQm+hIwgGpJeIVEWaKEEQRSkCIlVBEESliwFE/YIgiCI2VKQ3EZAiiAKhF5GmkIQaQnI/f/hkfywJkOwkJtH365w9h51yz2dmdocrM/fM2owxRgAAAE5yyeoCAABAzkaYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAy0U8//SR3d3cdP348Q9rbu3evcuXKpV9//TVD2kPOUKxYMXXr1u0fX+7cuXNls9m0ffv2f3zZyFkIE+lw+PBhPfvssypRooQ8PT3l6+urOnXqaNq0abp27VpWl5due/fu1auvvqpjx46le97BgwfLZrOpY8eOGV/Yv8iIESPUuXNnFS1a1D7syy+/VLly5eTn56dWrVrpjz/+SDFf69at9cwzz6QYXr58ebVo0UIjR45M0/KT/zO49ZU/f341bNhQy5Ytc37FUlGsWDG1bNkyQ9tExjp27FiKz8OdXs4cF/DflSurC8gpvv32W7Vv314eHh7q2rWrKlasqBs3buiHH37QSy+9pN9++02zZ8/O6jLTZe/evRo9erQaNGigYsWKpXk+Y4w+/vhjFStWTEuXLtWlS5eUJ0+ezCs0h9q1a5dWrVqlH3/80T7syJEj6tixozp27Kjw8HBNnTpVTz31lJYvX26fZvny5dqwYYMOHjyYaru9evXSww8/rMOHD6tkyZJpqmXMmDEqXry4jDE6e/as5s6dq4cfflhLly4lAOQA0dHRcnGx/rdfUFCQ5s+f7zBs0qRJ+v333zVlypQU0wJpZnBPR44cMT4+PqZcuXLmjz/+SDH+4MGDZurUqZaXk5SUZK5evZrquGvXrpnExETLy7jV4sWLjSSzdu3adM23Zs0aI8msWbPGuLm5mblz52ZoXdlBQkKCiY+Pt9RGv379TJEiRUxSUpJ92MyZM02JEiXsw9auXWtsNpu5du2afblhYWFm0qRJd2z3xo0bJiAgwLzyyiv3rGHOnDlGktm2bZvD8AsXLhg3Nzfz+OOPO7NqqSpatKhp0aJFhrWHf0aLFi1M0aJFUx13p88P0udux/Z/Cy5zpMFbb72ly5cv64MPPlCBAgVSjC9VqpReeOEF+/ubN2/qtddeU8mSJeXh4aFixYpp+PDhio+Pd5gv+bTw8uXLVaNGDXl5eendd9/VunXrZLPZtGjRIr388ssqVKiQvL29FRcXJ0naunWrHnroIfn5+cnb21v169fXpk2bUtR16tQp9ejRQwULFpSHh4eKFy+u5557Tjdu3NDcuXPVvn17SVLDhg3tpzbXrVt3z+2xYMEClS9fXg0bNlSTJk20YMGCFNMkr8Onn36qcePGqXDhwvL09FTjxo116NAhh2kPHjyodu3aKSQkRJ6enipcuLA6deqk2NhYSdKjjz6q++67z2GeVq1ayWaz6euvv7YP27p1q2w2m8Pp+5iYGPXv31+hoaHy8PBQqVKl9OabbyopKck+TfKp34kTJ2rq1Kn2/bZ3715J0vTp01WhQgV5e3srICBANWrU0MKFC++5nb788ks1atRINpvNPuzatWvy9/e3D8ubN6+MMfbLZO+8844SExPVt2/fO7br5uamBg0a6KuvvrpnDXfi7+8vLy8v5cr198lJY4yKFSumNm3apJj2+vXr8vPz07PPPuv08pJt3LhR7du3V5EiReTh4aHQ0FANGDAgxWXCbt26ycfHR6dOnVLbtm3l4+OjoKAgDRo0SImJiQ7T/vXXX3ryySfl6+srf39/RUZGavfu3bLZbJo7d659ugYNGqhBgwYpaurWrVuKM3MTJ05U7dq1FRgYKC8vL1WvXl2fffZZinmvXbumfv36KV++fMqTJ49at26tU6dOyWaz6dVXX3WY9tSpU+revbuCg4Pl4eGhChUq6H//+1+attvtfSaSL19t2rRJAwcOVFBQkHLnzq1HHnlE58+fT1Ob6REfH5+m5Sxbtkx169ZV7ty5lSdPHrVo0UK//fabwzTJ+/bEiRNq2bKlfHx8VKhQIUVFRUmS9uzZo0aNGil37twqWrRoqt+1tHyvJen06dPav3+/EhIS7rmOSUlJmjZtmipVqiRPT08FBQXpoYcecugvklHH9rQcF6W0HeuPHz+u559/XmXLlpWXl5cCAwPVvn37f/4yVVanmZygUKFCpkSJEmmePjIy0kgyjz32mImKijJdu3Y1kkzbtm0dpitatKgpVaqUCQgIMEOHDjWzZs0ya9euNWvXrjWSTPny5U3VqlXN5MmTzfjx482VK1fM6tWrjbu7uwkPDzeTJk0yU6ZMMZUrVzbu7u5m69at9rZPnTplChYsaLy9vU3//v3NrFmzzCuvvGLCwsLMxYsXzeHDh02/fv2MJDN8+HAzf/58M3/+fHPmzJm7rtv169eNv7+/ee2114wxxsybN8+4urqa06dPO0yXvA7VqlUz1atXN1OmTDGvvvqq8fb2NjVr1rRPFx8fb4oXL24KFixoxo4da95//30zevRoc//995tjx44ZY4yZPHmycXFxMbGxscaYv1N+QECAcXFxMYMGDbK3NWHCBIfprly5YipXrmwCAwPN8OHDzaxZs0zXrl2NzWYzL7zwgn2+o0eP2rd3iRIlzBtvvGGmTJlijh8/bmbPnm3fl++++66ZNm2a6dGjh+nXr99dt9Pvv/9uJJm3337bYfjGjRuNzWYzCxcuNEeOHDEdOnQwpUqVMsYYc+7cOePv72+++eabu7ZtjDFjx451WNc7Sf7LctWqVeb8+fPm3Llz5tdffzXPPvuscXFxMStWrLBPO2LECOPm5mb++usvhzY+/fRTI8ls2LDhrstKy5mJvn37mocffti8/vrr5t133zU9evQwrq6u5rHHHnOYLjIy0nh6epoKFSqY7t27m5kzZ5p27doZSWbGjBn26RITE014eLhxdXU1ffr0Me+8845p2rSpqVKlipFk5syZY5+2fv36pn79+ilqioyMTPGXeeHChc3zzz9v3nnnHTN58mRTs2ZNIynFvunQoYORZJ588kkTFRVlOnToYF/2qFGj7NOdOXPGFC5c2ISGhpoxY8aYmTNnmtatWxtJZsqUKXfdZsb8vW0jIyPt75P3a7Vq1UyjRo3M9OnTzYsvvmhcXV1Nhw4d7tnerdJyZiIty5k3b56x2WzmoYceMtOnTzdvvvmmKVasmPH39zdHjx61T5e8b8uXL2969eploqKiTO3ate37q2DBguall14y06dPNxUqVDCurq7myJEj9vnT+r1OXpYkh+XfSbdu3Ywk07x5czN16lQzceJE06ZNGzN9+vQU7Vk9tt/ruGiMSfOxfvHixaZKlSpm5MiRZvbs2Wb48OEmICDAFC1a1Fy5cuWe651RCBP3EBsbaySZNm3apGn6Xbt2GUnm6aefdhg+aNAg+6WBZEWLFjWSzPfff+8wbfIHrkSJEg6nxpKSkkzp0qVNRESEw6nzq1evmuLFi5umTZvah3Xt2tW4uLikenoyeV5nLnN89tlnRpI5ePCgMcaYuLg44+npmeKAmLwOYWFhDpcLpk2bZiSZPXv2GGOM+fnnn40ks3jx4jsuc9u2bUaS+e6774wxxvzyyy9Gkmnfvr2pVauWfbrWrVubatWq2d+/9tprJnfu3ObAgQMO7Q0dOtS4urqaEydOGGP+L0z4+vqac+fOOUzbpk0bU6FChbRuHrtVq1YZSWbp0qUpxiWHOEkmb9689s9Ez549zUMPPZSm9hcuXGgkORxUUpP8n8HtLw8PjxSXp6Kjo40kM3PmTIfhrVu3NsWKFXP4zKUmLWEitVO948ePNzabzRw/ftw+LPmgPWbMGIdpkw/CyZYsWWIkOVxmTExMNI0aNbIUJm6v88aNG6ZixYqmUaNG9mE7duwwkkz//v0dpk3+T+nWMNGjRw9ToEAB8+effzpM26lTJ+Pn53fPU+B3ChNNmjRx2C8DBgwwrq6uJiYm5q7t3SotYeJey7l06ZLx9/c3PXv2dJj/zJkzxs/Pz2F48r59/fXX7cMuXrxovLy8jM1mM4sWLbIP379/f4ptmdbv9a3LuleYSL50m9ofCcnrnZHH9nsdF9NzrE/ts7N582YjycybN++u652RuMxxD8mXFtLawfC7776TJA0cONBh+Isvvijp746ctypevLgiIiJSbSsyMlJeXl7297t27dLBgwf1+OOP66+//tKff/6pP//8U1euXFHjxo21YcMGJSUlKSkpSV9++aVatWqlGjVqpGj31tPu6bVgwQLVqFFDpUqVkiT7qczULnVI0lNPPSV3d3f7+7p160r6uyOiJPn5+Un6u9Ph1atXU22jWrVq8vHx0YYNGyT9faq8cOHC6tq1q3bu3KmrV6/KGKMffvjB3r4kLV68WHXr1lVAQIB9W/35559q0qSJEhMT7e0la9euXYpOZ/7+/vr999+1bdu2NG8j6e9T75IUEBCQYty0adN0/Phxbd26VcePH1fDhg21a9cuzZs3T1OmTFFsbKyeeOIJFSpUSA0aNNC+fftStJHc7p9//pmmeqKiorRy5UqtXLlSH330kRo2bKinn35an3/+uX2aMmXKqFatWg778sKFC1q2bJm6dOli6XOT7NbP85UrV/Tnn3+qdu3aMsbo559/TjF9r169HN7XrVvX/tmRpO+//15ubm7q2bOnfZiLi4t69+6dYXVevHhRsbGxqlu3rnbu3OmwbEl6/vnnHea9/RKVMUZLlixRq1atZIxx+CxGREQoNjbWod30eOaZZxz2S926dZWYmJhhtyKndTkrV65UTEyMOnfu7LB+rq6uqlWrltauXZuizaefftr+b39/f5UtW1a5c+dWhw4d7MPLli0rf39/h32enu/13Llz7Zfw7mbJkiWy2WwaNWpUinHJ652Rx/Z7HRfTeqyXHD+rCQkJ+uuvv1SqVCn5+/s7/blyBndz3IOvr68k6dKlS2ma/vjx43JxcbH/Z5ssJCRE/v7+Kb7kxYsXv2Nbt49L7t0fGRl5x3liY2N148YNxcXFqWLFimmqOa1iYmL03XffqU+fPg7X9+rUqaMlS5bowIEDKlOmjMM8RYoUcXif/J/gxYsXJf29jgMHDtTkyZO1YMEC1a1bV61bt9YTTzxhDxqurq4KDw/Xxo0bJf0dJurWrasHH3xQiYmJ2rJli4KDg3XhwgWHMHHw4EH98ssvd+yVfu7cOYf3qe2LIUOGaNWqVapZs6ZKlSqlZs2a6fHHH1edOnXStM2MMakOL1KkiMO26devn3r16qVy5crpiSee0MmTJ/XVV1/pww8/VKtWrbR//357/4Zb203rf/A1a9Z0CJadO3dWtWrV1KdPH7Vs2dJ+YOvatav69Omj48ePq2jRolq8eLESEhL05JNPpmk593LixAmNHDlSX3/9tf0zkCy5j0yy5OvWtwoICHCY7/jx4ypQoIC8vb0dprv9+5de33zzjcaOHatdu3Y5XA+/dXsnf9dv/9zcvuzz588rJiZGs2fPvuMdX7d/FtPqXt+vjHKv5SQfmxo1apTq/MnH0WSp7Vs/Pz8VLlw4xWfaz8/PYX3S+71Oi8OHD6tgwYLKmzfvHafJyGN7WrfnvY71AQEBunbtmsaPH685c+bo1KlTDsec279TmYkwcQ++vr4qWLBguh8SlNaD/K2p8l7jkpPohAkTVLVq1VTn8fHx0YULF9JWZDotXrxY8fHxmjRpkiZNmpRi/IIFCzR69GiHYa6urqm2desHftKkSerWrZu++uorrVixQv369dP48eO1ZcsWFS5cWJL04IMPaty4cbp+/bo2btyoESNGyN/fXxUrVtTGjRsVHBwsSQ5hIikpSU2bNtXgwYNTreH24JPavggLC1N0dLS++eYbff/991qyZIlmzJihkSNHpljXWwUGBkpK20H9k08+0b59+/T1118rMTFRn376qVasWKEaNWqoQoUKeu+997RlyxY9+OCD9nmS282XL98920+Ni4uLGjZsqGnTpungwYOqUKGCJKlTp04aMGCAFixYoOHDh+ujjz5SjRo1VLZsWaeWc6vExEQ1bdpUFy5c0JAhQ1SuXDnlzp1bp06dUrdu3VJ0nrvTZ8dZNpst1XB3e4fOjRs3qnXr1qpXr55mzJihAgUKyM3NTXPmzElTx9vbJa/XE088ccf/HCpXrpzudqW0fb8ywr2Wk7yO8+fPV0hISIrpbg3Cd2svLeuT3u91RsuIY3tat+e9jvXS32fC5syZo/79+ys8PFx+fn6y2Wzq1KlTiu9UZiJMpEHLli01e/Zsbd68WeHh4XedtmjRokpKStLBgwcVFhZmH3727FnFxMQ4PLwovZKfKeDr66smTZrccbqgoCD5+vreMwCl97T1ggULVLFixVRPBb777rtauHDhXf+DvZtKlSqpUqVKevnll/Xjjz+qTp06mjVrlsaOHSvp75Bw48YNffzxxzp16pQ9NNSrV88eJsqUKWMPFdLf2+vy5ct33VZpkTt3bvuzIW7cuKFHH31U48aN07Bhw+Tp6ZnqPOXKlZMkHT169K5tX716VS+99JJee+01+fv76+zZs0pISFDBggUl/X1ACggI0KlTpxzmO3r0qFxcXCwdOG/evClJunz5sn1Y3rx57ZetunTpok2bNmnq1KlOL+NWe/bs0YEDB/Thhx+qa9eu9uErV650us2iRYtq7dq1unr1qsPZidR6xgcEBDicLk92+1+US5Yskaenp5YvXy4PDw/78Dlz5qRYdlJSko4eParSpUvfcdlBQUHKkyePEhMTLX8Ws6vkY1P+/PkzfR0z6nt9e5vLly/XhQsX7nh2IjOP7anVI937WC9Jn332mSIjIx3+wLt+/bpiYmIyrJ60oM9EGgwePFi5c+fW008/rbNnz6YYf/jwYU2bNk2S9PDDD0tSigPw5MmTJUktWrRwuo7q1aurZMmSmjhxosN/AMmSb9VycXFR27ZttXTp0lQfg5ucfnPnzi1JafrQnTx5Uhs2bFCHDh302GOPpXg99dRTOnTokLZu3ZqudYqLi7P/p5asUqVKcnFxcTi9XKtWLbm5uenNN99U3rx57X9J161bV1u2bNH69esdzkpIUocOHbR582aHB0Ili4mJSbHc1CT3fUjm7u6u8uXLyxhz19vNChUqpNDQ0Hs+hvjNN99UQECA/Zp/YGCgcuXKpf3790v6u0/E+fPnU/y1t2PHDlWoUMF+KSi9EhIStGLFCrm7uzscGCXpySef1N69e/XSSy/J1dVVnTp1cmoZt0v+a+zWvzKNMfbvjjMiIiKUkJCg9957zz4sKSnJfpvhrUqWLKn9+/c73NK4e/fuFLfaubq6ymazOZyxOHbsmL788ssUy5akGTNmOAyfPn16ivbatWunJUuWpBrwM+NWzn9aRESEfH199frrr6f6vcjIdUzP9zqtt4a2a9dOxphU/xhK/rxm5rH9dmk91kt/f75uPxM1ffr0FGfcMhtnJtKgZMmSWrhwoTp27KiwsDCHJ2D++OOPWrx4sf0e8CpVqigyMlKzZ89WTEyM6tevr59++kkffvih2rZtq4YNGzpdh4uLi95//301b95cFSpU0FNPPaVChQrp1KlTWrt2rXx9fbV06VJJ0uuvv64VK1aofv36euaZZxQWFqbTp09r8eLF+uGHH+Tv76+qVavK1dVVb775pmJjY+Xh4aFGjRopf/78KZa9cOFCGWPUunXrVGt7+OGHlStXLi1YsEC1atVK8zqtWbNGffr0Ufv27VWmTBndvHlT8+fPtx+Ak3l7e6t69erasmWL/RkT0t9nJq5cuaIrV66kCBMvvfSSvv76a7Vs2VLdunVT9erVdeXKFe3Zs0efffaZjh07ds/LBM2aNVNISIjq1Kmj4OBg7du3T++8845atGhxz065bdq00RdffCFjTKpngU6cOKEJEybo22+/tf9HmytXLrVp00b9+/fXiRMn9MUXX6hgwYIOZ8QSEhK0fv36FB3/7mbZsmX2gHLu3DktXLhQBw8e1NChQ1Ncz27RooUCAwO1ePFiNW/ePNXPw50cOnTIfjbpVtWqVVOzZs1UsmRJDRo0SKdOnZKvr6+WLFli6fp+27ZtVbNmTb344os6dOiQypUrp6+//tp+qe/W7d69e3dNnjxZERER6tGjh86dO6dZs2apQoUK9o7Wyes/efJkPfTQQ3r88cd17tw5RUVFqVSpUvrll1/s01WvXl3t2rXT1KlT9ddff+mBBx7Q+vXrdeDAgRTLfuONN7R27VrVqlVLPXv2VPny5XXhwgXt3LlTq1atyrRLk/8UX19fzZw5U08++aTuu+8+derUSUFBQTpx4oS+/fZb1alTR++8806GLCs93+thw4bpww8/1NGjR+/aCbNhw4Z68skn9fbbb+vgwYN66KGHlJSUpI0bN6phw4bq06dPph7bb5eeY33Lli01f/58+fn5qXz58tq8ebNWrVplv9T6j/nH7hv5Fzhw4IDp2bOnKVasmHF3dzd58uQxderUMdOnTzfXr1+3T5eQkGBGjx5tihcvbtzc3ExoaKgZNmyYwzTG3PlWuuTbh+50u+TPP/9sHn30URMYGGg8PDxM0aJFTYcOHczq1asdpjt+/Ljp2rWrCQoKMh4eHqZEiRKmd+/eDrckvffee6ZEiRLG1dX1rreJVqpUyRQpUuSu26dBgwYmf/78JiEh4Y7rkHwbZvIte0eOHDHdu3c3JUuWNJ6eniZv3rymYcOGZtWqVSnaf+mll4wk8+abbzoML1WqlJFkDh8+nGKeS5cumWHDhplSpUoZd3d3ky9fPlO7dm0zceJEc+PGDYeaJkyYkGL+d99919SrV8++rUuWLGleeumlez7fwRhjdu7caSSZjRs3pjq+ffv25tFHH00x/OzZs6ZVq1YmT5485r777jPbt293GL9s2TKH23PvJrVbQz09PU3VqlXNzJkz73i75/PPP28kmYULF95zGcmSb4dL7dWjRw9jjDF79+41TZo0MT4+PiZfvnymZ8+eZvfu3Slu44yMjDS5c+dOsYxRo0aZ2w9b58+fN48//rjJkyeP8fPzM926dTObNm0ykhxuMzTGmI8++siUKFHCuLu7m6pVq5rly5enemvoBx98YEqXLm08PDxMuXLlzJw5c1Jd9pUrV0zv3r1N3rx5jY+Pj2nbtq39Fts33njDYdqzZ8+a3r17m9DQUOPm5mZCQkJM48aNzezZs9O0bVO7NfT2W7+Tv3fpud3bmSdg3mk5a9euNREREcbPz894enqakiVLmm7dujl8hu+0b+vXr5/qbdipHSfT8r1OXpbS+JyJmzdvmgkTJphy5coZd3d3ExQUZJo3b2527Nhhnyazju23HxeTpeVYf/HiRfPUU0+ZfPnyGR8fHxMREWH279+f4jOT2WzGZHBPHQB2jRs3VsGCBVP8HoIVbdu2lc1m0xdffJFhbd5uwIAB+uCDD3TmzJkUd0rkBF9++aUeeeQR/fDDD2m+8yaj7Nq1S9WqVdNHH32kLl26/KPLBrIKYQLIRFu3blXdunV18ODBDOmgtW/fPlWqVEm7du3K8Ft/k12/fl2hoaFq2bJlik6H2dG1a9cces4nJiaqWbNm2r59u86cOXPXXvUZvWzp78dFz58/X8eOHVNoaGimLRvITugzAWSiWrVq6caNGxnWXlhYWJo6jjrj3LlzWrVqlT777DP99ddfDr83k5317dtX165dU3h4uOLj4/X555/rxx9/1Ouvv56pQUL6+3d7duzYoYYNGypXrlxatmyZli1bpmeeeYYggf8UwgQASX//JH2XLl2UP39+vf3223e8vz27adSokSZNmqRvvvlG169fV6lSpTR9+nT16dMn05ddu3ZtrVy5Uq+99pouX76sIkWK6NVXX9WIESMyfdlAdsJlDgAAYAnPmQAAAJYQJgAAgCX/+j4TSUlJ+uOPP5QnT54M+dVDAAD+K4wxunTpkgoWLCgXlzuff/jXh4k//viDXtUAAFhw8uRJ+w8vpuZfHyaSH3l88uTJFI8NBgAAdxYXF6fQ0NB7/nzAvz5MJF/a8PX1JUwAAOCEe3UToAMmAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLsjRMvPrqq7LZbA6vcuXK2cdfv35dvXv3VmBgoHx8fNSuXTudPXs2CysGAAC3y/IzExUqVNDp06ftrx9++ME+bsCAAVq6dKkWL16s9evX648//tCjjz6ahdUCAIDb5cryAnLlUkhISIrhsbGx+uCDD7Rw4UI1atRIkjRnzhyFhYVpy5YteuCBB/7pUgEAQCqy/MzEwYMHVbBgQZUoUUJdunTRiRMnJEk7duxQQkKCmjRpYp+2XLlyKlKkiDZv3nzH9uLj4xUXF+fwAgAAmSdLz0zUqlVLc+fOVdmyZXX69GmNHj1adevW1a+//qozZ87I3d1d/v7+DvMEBwfrzJkzd2xz/PjxGj16dCZXDiCrFBv6bVaX8K937I0WWV0CcpgsDRPNmze3/7ty5cqqVauWihYtqk8//VReXl5OtTls2DANHDjQ/j4uLk6hoaGWawUAAKnL8ssct/L391eZMmV06NAhhYSE6MaNG4qJiXGY5uzZs6n2sUjm4eEhX19fhxcAAMg82SpMXL58WYcPH1aBAgVUvXp1ubm5afXq1fbx0dHROnHihMLDw7OwSgAAcKssvcwxaNAgtWrVSkWLFtUff/yhUaNGydXVVZ07d5afn5969OihgQMHKm/evPL19VXfvn0VHh7OnRwAAGQjWRomfv/9d3Xu3Fl//fWXgoKC9OCDD2rLli0KCgqSJE2ZMkUuLi5q166d4uPjFRERoRkzZmRlyQAA4DY2Y4zJ6iIyU1xcnPz8/BQbG0v/CeBfgLs5Mh93cyBZWv8PzVZ9JgAAQM5DmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWJJtwsQbb7whm82m/v3724ddv35dvXv3VmBgoHx8fNSuXTudPXs264oEAAApZIswsW3bNr377ruqXLmyw/ABAwZo6dKlWrx4sdavX68//vhDjz76aBZVCQAAUpPlYeLy5cvq0qWL3nvvPQUEBNiHx8bG6oMPPtDkyZPVqFEjVa9eXXPmzNGPP/6oLVu2ZGHFAADgVlkeJnr37q0WLVqoSZMmDsN37NihhIQEh+HlypVTkSJFtHnz5ju2Fx8fr7i4OIcXAADIPLmycuGLFi3Szp07tW3bthTjzpw5I3d3d/n7+zsMDw4O1pkzZ+7Y5vjx4zV69OiMLjWFYkO/zfRl/Ncde6NFprTLvst8mbXvkLPx3ct8WfXdy7IzEydPntQLL7ygBQsWyNPTM8PaHTZsmGJjY+2vkydPZljbAAAgpSwLEzt27NC5c+d03333KVeuXMqVK5fWr1+vt99+W7ly5VJwcLBu3LihmJgYh/nOnj2rkJCQO7br4eEhX19fhxcAAMg8WXaZo3HjxtqzZ4/DsKeeekrlypXTkCFDFBoaKjc3N61evVrt2rWTJEVHR+vEiRMKDw/PipIBAEAqsixM5MmTRxUrVnQYljt3bgUGBtqH9+jRQwMHDlTevHnl6+urvn37Kjw8XA888EBWlAwAAFKRpR0w72XKlClycXFRu3btFB8fr4iICM2YMSOrywIAALfIVmFi3bp1Du89PT0VFRWlqKiorCkIAADcU5Y/ZwIAAORshAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJbmcmeno0aPauHGjjh8/rqtXryooKEjVqlVTeHi4PD09M7pGAACQjaUrTCxYsEDTpk3T9u3bFRwcrIIFC8rLy0sXLlzQ4cOH5enpqS5dumjIkCEqWrRoZtUMAACykTSHiWrVqsnd3V3dunXTkiVLFBoa6jA+Pj5emzdv1qJFi1SjRg3NmDFD7du3z/CCAQBA9pLmMPHGG28oIiLijuM9PDzUoEEDNWjQQOPGjdOxY8cyoj4AAJDNpTlM3C1I3C4wMFCBgYFOFQQAAHIWpzpg3urbb7/VunXrlJiYqDp16qhdu3YZURcAAMghLN0a+sorr2jw4MGy2WwyxmjAgAHq27dvRtUGAABygHSdmdi+fbtq1Khhf//JJ59o9+7d8vLykiR169ZNDRo00PTp0zO2SgAAkG2l68xEr1691L9/f129elWSVKJECU2aNEnR0dHas2ePZs6cqTJlymRKoQAAIHtKV5jYunWrChQooPvuu09Lly7V//73P/3888+qXbu26tatq99//10LFy7MrFoBAEA2lK7LHK6urhoyZIjat2+v5557Trlz59Y777yjggULZlZ9AAAgm3OqA2aJEiW0fPlyPfLII6pXr56ioqIyui4AAJBDpCtMxMTEaPDgwWrVqpVefvllPfLII9q6dau2bdumBx54QHv27MmsOgEAQDaVrjARGRmprVu3qkWLFoqOjtZzzz2nwMBAzZ07V+PGjVPHjh01ZMiQzKoVAABkQ+nqM7FmzRr9/PPPKlWqlHr27KlSpUrZxzVu3Fg7d+7UmDFjMrxIAACQfaXrzETp0qU1e/ZsHThwQLNmzUrxy6Cenp56/fXXM7RAAACQvaUrTPzvf//TmjVrVK1aNS1cuFAzZ87MrLoAAEAOka7LHFWrVtX27dszqxYAAJADpfnMhDEmM+sAAAA5VJrDRIUKFbRo0SLduHHjrtMdPHhQzz33nN544w3LxQEAgOwvzZc5pk+friFDhuj5559X06ZNVaNGDRUsWFCenp66ePGi9u7dqx9++EG//fab+vTpo+eeey4z6wYAANlEmsNE48aNtX37dv3www/65JNPtGDBAh0/flzXrl1Tvnz5VK1aNXXt2lVdunRRQEBAZtYMAACykXR1wJSkBx98UA8++GBm1AIAAHIgp36bAwAAIBlhAgAAWEKYAAAAlhAmAACAJYQJAABgiVNhYufOndqzZ4/9/VdffaW2bdtq+PDh93yoFQAA+HdxKkw8++yzOnDggCTpyJEj6tSpk7y9vbV48WINHjw4QwsEAADZm1Nh4sCBA6pataokafHixapXr54WLlyouXPnasmSJRlZHwAAyOacChPGGCUlJUmSVq1apYcffliSFBoaqj///DPjqgMAANmeU2GiRo0aGjt2rObPn6/169erRYsWkqSjR48qODg4ze3MnDlTlStXlq+vr3x9fRUeHq5ly5bZx1+/fl29e/dWYGCgfHx81K5dO509e9aZkgEAQCZxKkxMnTpVO3fuVJ8+fTRixAiVKlVKkvTZZ5+pdu3aaW6ncOHCeuONN7Rjxw5t375djRo1Ups2bfTbb79JkgYMGKClS5dq8eLFWr9+vf744w89+uijzpQMAAAySbp/myMxMVExMTHasGFDih/0mjBhglxdXdPcVqtWrRzejxs3TjNnztSWLVtUuHBhffDBB1q4cKEaNWokSZozZ47CwsK0ZcsWPfDAA+ktHQAAZIJ0n5lwdXVVs2bNFBMTk2Kcp6en3NzcnCokMTFRixYt0pUrVxQeHq4dO3YoISFBTZo0sU9Trlw5FSlSRJs3b75jO/Hx8YqLi3N4AQCAzOPUZY6KFSvqyJEjGVLAnj175OPjIw8PD/Xq1UtffPGFypcvrzNnzsjd3V3+/v4O0wcHB+vMmTN3bG/8+PHy8/Ozv0JDQzOkTgAAkDqnwsTYsWM1aNAgffPNNzp9+rSlMwFly5bVrl27tHXrVj333HOKjIzU3r17nSlLkjRs2DDFxsbaXydPnnS6LQAAcG/p7jMhyX4raOvWrWWz2ezDjTGy2WxKTExMc1vu7u72DpzVq1fXtm3bNG3aNHXs2FE3btxQTEyMw9mJs2fPKiQk5I7teXh4yMPDI51rBAAAnOVUmFi7dm1G12GXlJSk+Ph4Va9eXW5ublq9erXatWsnSYqOjtaJEycUHh6eacsHAADp41SYqF+/foYsfNiwYWrevLmKFCmiS5cuaeHChVq3bp2WL18uPz8/9ejRQwMHDlTevHnl6+urvn37Kjw8nDs5AADIRpwKE5K0ceNGvfvuuzpy5IgWL16sQoUKaf78+SpevLgefPDBNLVx7tw5de3aVadPn5afn58qV66s5cuXq2nTppKkKVOmyMXFRe3atVN8fLwiIiI0Y8YMZ0sGAACZwKkwsWTJEj355JPq0qWLdu7cqfj4eElSbGysXn/9dX333XdpaueDDz6463hPT09FRUUpKirKmTIBAMA/wOm7OWbNmqX33nvP4bkSderU0c6dOzOsOAAAkP05FSaio6NVr169FMP9/PxSfZgVAAD493IqTISEhOjQoUMphv/www8qUaKE5aIAAEDO4VSY6Nmzp1544QVt3bpVNptNf/zxhxYsWKBBgwbpueeey+gaAQBANuZUB8yhQ4cqKSlJjRs31tWrV1WvXj15eHho0KBB6tu3b0bXCAAAsjGnwoTNZtOIESP00ksv6dChQ7p8+bLKly8vHx+fjK4PAABkc06FiTVr1qh27dry9PRU+fLlM7omAACQgzgVJlq3bq2bN2/q/vvvV4MGDVS/fn3VqVNHXl5eGV0fAADI5pzqgHnx4kWtXr1azZs3108//aRHHnlE/v7+qlOnjl5++eWMrhEAAGRjToUJNzc31alTR8OHD9fy5cu1ZcsWde7cWT/99JPGjx+f0TUCAIBszKnLHAcOHNC6deu0bt06rV+/XvHx8apbt64mTpyoBg0aZHCJAAAgO3MqTJQrV05BQUF64YUXNHToUFWqVEk2my2jawMAADmAU5c5+vXrp0KFCmnMmDHq1auXRowYoRUrVujq1asZXR8AAMjmnAoTU6dO1c6dO3XmzBkNGzZMN27c0IgRI5QvXz7VqVMno2sEAADZmFNhIlliYqISEhIUHx+v69evKz4+XtHR0RlVGwAAyAGcvsxRuXJlBQcH69lnn9Uff/yhnj176ueff9b58+czukYAAJCNOdUB8/Tp03rmmWfUoEEDVaxYMaNrAgAAOYhTYWLx4sUZXQcAAMihnLrM8eGHH+rbb7+1vx88eLD8/f1Vu3ZtHT9+PMOKAwAA2Z9TYeL111+3/w7H5s2bFRUVpbfeekv58uXTgAEDMrRAAACQvTl1mePkyZMqVaqUJOnLL79Uu3bt9Mwzz6hOnTo8ARMAgP8Yp85M+Pj46K+//pIkrVixQk2bNpUkeXp66tq1axlXHQAAyPacOjPRtGlTPf3006pWrZoOHDighx9+WJL022+/qVixYhlZHwAAyOacOjMRFRWl8PBwnT9/XkuWLFFgYKAkaceOHercuXOGFggAALI3p85M+Pv765133kkxfPTo0ZYLAgAAOYtTYUKSYmJi9NNPP+ncuXNKSkqyD7fZbHryySczpDgAAJD9ORUmli5dqi5duujy5cvy9fV1+PlxwgQAAP8tTvWZePHFF9W9e3ddvnxZMTExunjxov114cKFjK4RAABkY06FiVOnTqlfv37y9vbO6HoAAEAO41SYiIiI0Pbt2zO6FgAAkAM51WeiRYsWeumll7R3715VqlRJbm5uDuNbt26dIcUBAIDsz6kw0bNnT0nSmDFjUoyz2WxKTEy0VhUAAMgxnAoTt94KCgAA/tuc6jNxJzExMak+zAoAAPx7ZUiYWL16tR5//HEVKFBAo0aNyogmAQBADuF0mDh58qTGjBmj4sWLq1mzZrLZbPriiy905syZjKwPAABkc+kKEwkJCVq8eLEiIiJUtmxZ7dq1SxMmTJCLi4tGjBihhx56KMWdHQAA4N8tXR0wCxUqpHLlyumJJ57QokWLFBAQIEn8UigAAP9h6TozcfPmTdlsNtlsNrm6umZWTQAAIAdJV5j4448/9Mwzz+jjjz9WSEiI2rVrpy+++MLhh74AAMB/S7rChKenp7p06aI1a9Zoz549CgsLU79+/XTz5k2NGzdOK1eu5IFVAAD8xzh9N0fJkiU1duxYHT9+XN9++63i4+PVsmVLBQcHZ2R9AAAgm3PqCZi3cnFxUfPmzdW8eXOdP39e8+fPz4i6AABADpGhT8AMCgrSwIEDM7JJAACQzWVomAAAAP89hAkAAGAJYQIAAFjiVJgYM2aMrl69mmL4tWvXNGbMGMtFAQCAnMOpMDF69Ghdvnw5xfCrV69q9OjRlosCAAA5h1NhwhiT6lMvd+/erbx581ouCgAA5Bzpes5EQECA/bc5ypQp4xAoEhMTdfnyZfXq1SvDiwQAANlXusLE1KlTZYxR9+7dNXr0aPn5+dnHubu7q1ixYgoPD8/wIgEAQPaVrjARGRkpSSpevLjq1KmjXLksP0ATAADkcE71mbhy5YpWr16dYvjy5cu1bNkyy0UBAICcw6kwMXTo0FR/HdQYo6FDh1ouCgAA5BxOhYmDBw+qfPnyKYaXK1dOhw4dslwUAADIOZwKE35+fjpy5EiK4YcOHVLu3LktFwUAAHIOp8JEmzZt1L9/fx0+fNg+7NChQ3rxxRfVunXrDCsOAABkf06Fibfeeku5c+dWuXLlVLx4cRUvXlxhYWEKDAzUxIkTM7pGAACQjTl1b6efn59+/PFHrVy5Urt375aXl5cqV66sevXqZXR9AAAgm3P6QRE2m03NmjVTvXr15OHhkerjtQEAwL+fU5c5kpKS9Nprr6lQoULy8fHR0aNHJUmvvPKKPvjggwwtEAAAZG9OhYmxY8dq7ty5euutt+Tu7m4fXrFiRb3//vsZVhwAAMj+nAoT8+bN0+zZs9WlSxe5urrah1epUkX79+/PsOIAAED251SYOHXqlEqVKpVieFJSkhISEiwXBQAAcg6nwkT58uW1cePGFMM/++wzVatWzXJRAAAg53Dqbo6RI0cqMjJSp06dUlJSkj7//HNFR0dr3rx5+uabbzK6RgAAkI05/QTMpUuXatWqVcqdO7dGjhypffv2aenSpWratGlG1wgAALKxdJ+ZuHnzpl5//XV1795dK1euzIyaAABADpLuMxO5cuXSW2+9pZs3b2ZGPQAAIIdx6jJH48aNtX79+oyuBQAA5EBOdcBs3ry5hg4dqj179qh69eopfnacXw4FAOC/w6kw8fzzz0uSJk+enGKczWZTYmKitaoAAECO4VSYSEpKyug6AABADpXuPhMJCQnKlSuXfv3118yoBwAA5DDpDhNubm4qUqQIlzIAAIAkJ+/mGDFihIYPH64LFy5kdD0AACCHcSpMvPPOO9qwYYMKFiyosmXL6r777nN4pdX48eN1//33K0+ePMqfP7/atm2r6Ohoh2muX7+u3r17KzAwUD4+PmrXrp3Onj3rTNkAACATONUBs23bthmy8PXr16t37966//77dfPmTQ0fPlzNmjXT3r177bebDhgwQN9++60WL14sPz8/9enTR48++qg2bdqUITUAAABrnAoTo0aNypCFf//99w7v586dq/z582vHjh2qV6+eYmNj9cEHH2jhwoVq1KiRJGnOnDkKCwvTli1b9MADD2RIHQAAwHlOhYlkO3bs0L59+yRJFSpUsPzz47GxsZKkvHnz2ttPSEhQkyZN7NOUK1dORYoU0ebNm1MNE/Hx8YqPj7e/j4uLs1QTAAC4O6fCxLlz59SpUyetW7dO/v7+kqSYmBg1bNhQixYtUlBQULrbTEpKUv/+/VWnTh1VrFhRknTmzBm5u7vbl5EsODhYZ86cSbWd8ePHa/To0elePgAAcI5THTD79u2rS5cu6bffftOFCxd04cIF/frrr4qLi1O/fv2cKqR379769ddftWjRIqfmTzZs2DDFxsbaXydPnrTUHgAAuDunzkx8//33WrVqlcLCwuzDypcvr6ioKDVr1izd7fXp00fffPONNmzYoMKFC9uHh4SE6MaNG4qJiXE4O3H27FmFhISk2paHh4c8PDzSXQMAAHCOU2cmkpKS5ObmlmK4m5tbuh61bYxRnz599MUXX2jNmjUqXry4w/jq1avLzc1Nq1evtg+Ljo7WiRMnFB4e7kzpAAAggzl1ZqJRo0Z64YUX9PHHH6tgwYKSpFOnTmnAgAFq3Lhxmtvp3bu3Fi5cqK+++kp58uSx94Pw8/OTl5eX/Pz81KNHDw0cOFB58+aVr6+v+vbtq/DwcO7kAAAgm3AqTLzzzjtq3bq1ihUrptDQUEnSyZMnVbFiRX300UdpbmfmzJmSpAYNGjgMnzNnjrp16yZJmjJlilxcXNSuXTvFx8crIiJCM2bMcKZsAACQCZwKE6Ghodq5c6dWrVql/fv3S5LCwsIcbuFMC2PMPafx9PRUVFSUoqKinCkVAABkMqefM2Gz2dS0aVM1bdo0I+sBAAA5TLo6YK5Zs0bly5dP9UFQsbGxqlChgjZu3JhhxQEAgOwvXWFi6tSp6tmzp3x9fVOM8/Pz07PPPqvJkydnWHEAACD7S1eY2L17tx566KE7jm/WrJl27NhhuSgAAJBzpCtMnD17NtXnSyTLlSuXzp8/b7koAACQc6QrTBQqVEi//vrrHcf/8ssvKlCggOWiAABAzpGuMPHwww/rlVde0fXr11OMu3btmkaNGqWWLVtmWHEAACD7S9etoS+//LI+//xzlSlTRn369FHZsmUlSfv371dUVJQSExM1YsSITCkUAABkT+kKE8HBwfrxxx/13HPPadiwYfaHTtlsNkVERCgqKkrBwcGZUigAAMie0v3QqqJFi+q7777TxYsXdejQIRljVLp0aQUEBGRGfQAAIJtz+gmYAQEBuv/++zOyFgAAkAM59RPkAAAAyQgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMCSLA0TGzZsUKtWrVSwYEHZbDZ9+eWXDuONMRo5cqQKFCggLy8vNWnSRAcPHsyaYgEAQKqyNExcuXJFVapUUVRUVKrj33rrLb399tuaNWuWtm7dqty5cysiIkLXr1//hysFAAB3kisrF968eXM1b9481XHGGE2dOlUvv/yy2rRpI0maN2+egoOD9eWXX6pTp07/ZKkAAOAOsm2fiaNHj+rMmTNq0qSJfZifn59q1aqlzZs333G++Ph4xcXFObwAAEDmybZh4syZM5Kk4OBgh+HBwcH2cakZP368/Pz87K/Q0NBMrRMAgP+6bBsmnDVs2DDFxsbaXydPnszqkgAA+FfLtmEiJCREknT27FmH4WfPnrWPS42Hh4d8fX0dXgAAIPNk2zBRvHhxhYSEaPXq1fZhcXFx2rp1q8LDw7OwMgAAcKssvZvj8uXLOnTokP390aNHtWvXLuXNm1dFihRR//79NXbsWJUuXVrFixfXK6+8ooIFC6pt27ZZVzQAAHCQpWFi+/btatiwof39wIEDJUmRkZGaO3euBg8erCtXruiZZ55RTEyMHnzwQX3//ffy9PTMqpIBAMBtsjRMNGjQQMaYO4632WwaM2aMxowZ8w9WBQAA0iPb9pkAAAA5A2ECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGBJjggTUVFRKlasmDw9PVWrVi399NNPWV0SAAD4/7J9mPjkk080cOBAjRo1Sjt37lSVKlUUERGhc+fOZXVpAABAOSBMTJ48WT179tRTTz2l8uXLa9asWfL29tb//ve/rC4NAABIypXVBdzNjRs3tGPHDg0bNsw+zMXFRU2aNNHmzZtTnSc+Pl7x8fH297GxsZKkuLi4DK0tKf5qhraHlDJ6nyVj32W+zNp3Evvvn8B3L+fK6H2X3J4x5q7TZesw8eeffyoxMVHBwcEOw4ODg7V///5U5xk/frxGjx6dYnhoaGim1IjM4zc1qyuAs9h3ORv7L+fKrH136dIl+fn53XF8tg4Tzhg2bJgGDhxof5+UlKQLFy4oMDBQNpstCyvLWnFxcQoNDdXJkyfl6+ub1eUgHdh3ORf7Ludi3/3NGKNLly6pYMGCd50uW4eJfPnyydXVVWfPnnUYfvbsWYWEhKQ6j4eHhzw8PByG+fv7Z1aJOY6vr+9/+ouRk7Hvci72Xc7FvtNdz0gky9YdMN3d3VW9enWtXr3aPiwpKUmrV69WeHh4FlYGAACSZeszE5I0cOBARUZGqkaNGqpZs6amTp2qK1eu6Kmnnsrq0gAAgHJAmOjYsaPOnz+vkSNH6syZM6pataq+//77FJ0ycXceHh4aNWpUiktAyP7YdzkX+y7nYt+lj83c634PAACAu8jWfSYAAED2R5gAAACWECYAAIAlhAlIkubOnZvm53GkZ1pknmPHjslms2nXrl1ZXQrwr9atWze1bdvW/r5Bgwbq379/muZNz7Q5Wba/mwP/jI4dO+rhhx/O6jJypAYNGqhq1aqaOnVqVpeCTNCtWzfFxMToyy+/zOpSkE18/vnncnNzy+oyshXCBCRJXl5e8vLyyuoygGwjMTHxP/0IftxZ3rx5s7qEbIfLHNnEZ599pkqVKsnLy0uBgYFq0qSJrly5Yj+9Nnr0aAUFBcnX11e9evXSjRs37PN+//33evDBB+Xv76/AwEC1bNlShw8fto9PPh3++eefq2HDhvL29laVKlUcfnn19ksXu3fvVsOGDZUnTx75+vqqevXq2r59u0PNy5cvV1hYmHx8fPTQQw/p9OnTmbeBsqlu3bpp/fr1mjZtmmw2m2w2mw4fPqwePXqoePHi8vLyUtmyZTVt2jSH+W7evKl+/frZ99mQIUMUGRnpcCr1Xvs1NevXr1fNmjXl4eGhAgUKaOjQobp586Z9/KVLl9SlSxflzp1bBQoU0JQpU/41p2EbNGigPn36qE+fPvLz81O+fPn0yiuv2H/t8OLFi+ratasCAgLk7e2t5s2b6+DBg/b5k78DX3/9tcqXLy8PDw91795dH374ob766iv7/l23bp3WrVsnm82mmJgY+/y7du2SzWbTsWPH7MPee+89hYaGytvbW4888ogmT57s8D27/fS5JPXv318NGjSwv09KStL48ePtn6cqVaros88+s4+/ePGiunTpoqCgIHl5eal06dKaM2eOffzJkyfVoUMH+fv7K2/evGrTpo1DjTnd3bZP8n5avXq1atSoIW9vb9WuXVvR0dEObYwdO1b58+dXnjx59PTTT2vo0KGqWrXqHZd5+3dmxowZKl26tDw9PRUcHKzHHnssRY2DBw9W3rx5FRISoldffTWjVj/bIExkA6dPn1bnzp3VvXt37du3T+vWrdOjjz5qPwiuXr3aPvzjjz/W559/7vDLqFeuXNHAgQO1fft2rV69Wi4uLnrkkUeUlJTksJwRI0Zo0KBB2rVrl8qUKaPOnTs7/Edzqy5duqhw4cLatm2bduzYoaFDhzqc1rt69aomTpyo+fPna8OGDTpx4oQGDRqUCVsne5s2bZrCw8PVs2dPnT59WqdPn1bhwoVVuHBhLV68WHv37tXIkSM1fPhwffrpp/b53nzzTS1YsEBz5szRpk2bFBcXl+I0elr3a7JTp07p4Ycf1v3336/du3dr5syZ+uCDDzR27Fj7NAMHDtSmTZv09ddfa+XKldq4caN27tyZKdsmK3z44YfKlSuXfvrpJ02bNk2TJ0/W+++/L+nv/7i3b9+ur7/+Wps3b5YxRg8//LASEhLs81+9elVvvvmm3n//ff322296++231aFDB3tYPn36tGrXrp2mWjZt2qRevXrphRde0K5du9S0aVONGzcu3es0fvx4zZs3T7NmzdJvv/2mAQMG6IknntD69eslSa+88or27t2rZcuWad++fZo5c6by5csnSUpISFBERITy5MmjjRs3atOmTfbwf+sfJDnZvbaP9Pexb9KkSdq+fbty5cql7t2728ctWLBA48aN05tvvqkdO3aoSJEimjlzZpqXv337dvXr109jxoxRdHS0vv/+e9WrV89hmg8//FC5c+fW1q1b9dZbb2nMmDFauXKl9ZXPTgyy3I4dO4wkc+zYsRTjIiMjTd68ec2VK1fsw2bOnGl8fHxMYmJiqu2dP3/eSDJ79uwxxhhz9OhRI8m8//779ml+++03I8ns27fPGGPMnDlzjJ+fn318njx5zNy5c1Ntf86cOUaSOXTokH1YVFSUCQ4OTvtK/4vUr1/fvPDCC3edpnfv3qZdu3b298HBwWbChAn29zdv3jRFihQxbdq0uWMbd9qvP//8szHGmOHDh5uyZcuapKQk+zxRUVH2z0pcXJxxc3Mzixcvto+PiYkx3t7e96w/J6hfv74JCwtzWP8hQ4aYsLAwc+DAASPJbNq0yT7uzz//NF5eXubTTz81xvzf53rXrl0O7UZGRqbYL2vXrjWSzMWLF+3Dfv75ZyPJHD161BhjTMeOHU2LFi0c5uvSpYvD9yy1tl944QVTv359Y4wx169fN97e3ubHH390mKZHjx6mc+fOxhhjWrVqZZ566qlUt8n8+fNTfCbi4+ONl5eXWb58earz5CT32j7J+2nVqlX2cd9++62RZK5du2aMMaZWrVqmd+/eDvPXqVPHVKlSxf7+9v1063d+yZIlxtfX18TFxaVaY/369c2DDz7oMOz+++83Q4YMSe/qZmucmcgGqlSposaNG6tSpUpq37693nvvPV28eNFhvLe3t/19eHi4Ll++rJMnT0qSDh48qM6dO6tEiRLy9fVVsWLFJEknTpxwWE7lypXt/y5QoIAk6dy5c6nWNHDgQD399NNq0qSJ3njjjRSn1729vVWyZEmH9u7U1n9RVFSUqlevrqCgIPn4+Gj27Nn2/REbG6uzZ8+qZs2a9uldXV1VvXp1hzbSul+T7du3T+Hh4Q7X+evUqaPLly/r999/15EjR5SQkOCwXD8/P5UtWzajVjvLPfDAAw7rHx4eroMHD2rv3r3KlSuXatWqZR8XGBiosmXLat++ffZh7u7uDt8TK6Kjox22taQU7+/l0KFDunr1qpo2bSofHx/7a968efbv5HPPPadFixapatWqGjx4sH788Uf7/Lt379ahQ4eUJ08e+7x58+bV9evX73nJLCdIy/aR7n7ss7qfmjZtqqJFi6pEiRJ68skntWDBAl29etVhmts/U//G4yUdMLMBV1dXrVy5Uj/++KNWrFih6dOna8SIEdq6dWua5m/VqpWKFi2q9957TwULFlRSUpIqVqyY4jTmrZcpkg+4dzpl/uqrr+rxxx/Xt99+q2XLlmnUqFFatGiRHnnkkRRtJbdneDK7JGnRokUaNGiQJk2apPDwcOXJk0cTJkxI8/5Mltb9iozj5eWVpk6XLi5//x1262f+1sslaeXi4pLie3NrO5cvX5YkffvttypUqJDDdMm/GdG8eXMdP35c3333nVauXKnGjRurd+/emjhxoi5fvqzq1atrwYIFKZYdFBSU7nqzm3ttn+RAkZ5jX3rlyZNHO3fu1Lp167RixQqNHDlSr776qrZt22bvH5Pa8TKjlp9dcGYim7DZbKpTp45Gjx6tn3/+We7u7vriiy8k/f3XxbVr1+zTbtmyRT4+PgoNDdVff/2l6Ohovfzyy2rcuLHCwsIczmpYUaZMGQ0YMEArVqzQo48+6tCpC//H3d1diYmJ9vebNm1S7dq19fzzz6tatWoqVaqUw19Jfn5+Cg4O1rZt2+zDEhMTHfouOLNfw8LC7H0Bbq0lT548Kly4sEqUKCE3NzeH5cbGxurAgQOW1j87uT2wbdmyRaVLl1b58uV18+ZNh/HJ27h8+fJ3bfP2/Sv933/Et3Y6vv15H2XLlnXY1pJSvA8KCkrRcfnWdpI7gp44cUKlSpVyeIWGhjq0ExkZqY8++khTp07V7NmzJUn33XefDh48qPz586eY38/P767rnROkdfvcTVr2073kypVLTZo00VtvvaVffvlFx44d05o1a9LVRk7HmYlsYOvWrVq9erWaNWum/Pnza+vWrTp//rzCwsL0yy+/6MaNG+rRo4defvllHTt2TKNGjVKfPn3k4uKigIAABQYGavbs2SpQoIBOnDihoUOHWqrn2rVreumll/TYY4+pePHi+v3337Vt2za1a9cug9b436VYsWLaunWrjh07Jh8fH5UuXVrz5s3T8uXLVbx4cc2fP1/btm1T8eLF7fP07dtX48ePV6lSpVSuXDlNnz5dFy9etP/V5Mx+ff755zV16lT17dtXffr0UXR0tEaNGqWBAwfKxcVFefLkUWRkpF566SXlzZtX+fPn16hRo+Ti4vKvuQXyxIkTGjhwoJ599lnt3LlT06dP16RJk1S6dGm1adNGPXv21Lvvvqs8efJo6NChKlSokNq0aXPXNosVK6bly5crOjpagYGB8vPzs/9n9eqrr2rcuHE6cOCAJk2a5DBf3759Va9ePU2ePFmtWrXSmjVrtGzZModt3ahRI02YMEHz5s1TeHi4PvroI/3666+qVq2apL//6h00aJAGDBigpKQkPfjgg4qNjdWmTZvk6+uryMhIjRw5UtWrV1eFChUUHx+vb775RmFhYZL+7kg9YcIEtWnTRmPGjFHhwoV1/Phxff755xo8eLAKFy6cwXvgn3Wv7VO0aNF7ttG3b1/17NlTNWrUUO3atfXJJ5/ol19+UYkSJdJUwzfffKMjR46oXr16CggI0HfffaekpKR/1eXDNMnaLhswxpi9e/eaiIgIExQUZDw8PEyZMmXM9OnTjTH/1/Fn5MiRJjAw0Pj4+JiePXua69ev2+dfuXKlCQsLMx4eHqZy5cpm3bp1RpL54osvjDEpO+oZY8zFixeNJLN27VpjjGMHzPj4eNOpUycTGhpq3N3dTcGCBU2fPn3sHZZu76xpjDFffPGF+a9+nKKjo80DDzxgvLy8jCSzf/9+061bN+Pn52f8/f3Nc889Z4YOHerQoSshIcH06dPH+Pr6moCAADNkyBDTvn1706lTJ/s0zuzXdevWmfvvv9+4u7ubkJAQM2TIEJOQkGAfHxcXZx5//HHj7e1tQkJCzOTJk03NmjXN0KFDM3szZbr69eub559/3vTq1cu+XYcPH27vfHjhwgXz5JNPGj8/P+Pl5WUiIiLMgQMH7POn9rk2xphz586Zpk2bGh8fH4fvzA8//GAqVapkPD09Td26dc3ixYsdOmAaY8zs2bNNoUKFjJeXl2nbtq0ZO3asCQkJcWh/5MiRJjg42Pj5+ZkBAwaYPn362DtgGmNMUlKSmTp1qilbtqxxc3MzQUFBJiIiwqxfv94YY8xrr71mwsLCjJeXl8mbN69p06aNOXLkiH3+06dPm65du5p8+fIZDw8PU6JECdOzZ08TGxtrcYtnD3fbPmnpKGuMMWPGjDH58uUzPj4+pnv37qZfv37mgQcesI+/WwfMjRs3mvr165uAgADj5eVlKleubD755JNUp03Wpk0bExkZmYFbIevxE+TZHE/f+29ISkpSWFiYOnTooNdee+0fW+6VK1dUqFAhTZo0ST169PjHlpsZcsKTSHv27Kn9+/dr48aNWV0K7qJp06YKCQnR/Pnzs7qUHIPLHEAWOH78uFasWKH69esrPj5e77zzjo4eParHH388U5f7888/a//+/apZs6ZiY2M1ZswYSbrnqX44Z+LEiWratKly586tZcuW6cMPP9SMGTOyuizc4urVq5o1a5YiIiLk6uqqjz/+WKtWrfr3PQcikxEmgCzg4uKiuXPnatCgQTLGqGLFilq1apX9WndmmjhxoqKjo+Xu7q7q1atr48aN9occIWP99NNPeuutt3Tp0iWVKFFCb7/9tp5++umsLgu3sNls+u677zRu3Dhdv35dZcuW1ZIlS9SkSZOsLi1H4TIHAACwhFtDAQCAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQL4D+vWrZvatm2b1WUAyOEIEwAAwBLCBIBUTZ48WZUqVVLu3LkVGhqq559/XpcvX7aPnzt3rvz9/bV8+XKFhYXJx8dHDz30kMNPat+8eVP9+vWTv7+/AgMDNWTIEEVGRjqcDSlWrFiK39OoWrWqXn311TTXIknvvfeeQkND5e3trUceeUSTJ0+Wv7+/wzRfffWV7rvvPnl6eqpEiRIaPXq0bt68aXlbAf91hAkAqXJxcdHbb7+t3377TR9++KHWrFmjwYMHO0xz9epVTZw4UfPnz9eGDRt04sQJDRo0yD7+zTff1IIFCzRnzhxt2rRJcXFxTv1o3b1q2bRpk3r16qUXXnhBu3btUtOmTTVu3DiHNjZu3KiuXbvqhRde0N69e/Xuu+9q7ty5KaYD4IQs/c1SAFnq9p9WvpvFixebwMBA+/s5c+YYSebQoUP2YVFRUSY4ONj+Pjg42EyYMMH+/ubNm6ZIkSIOyyxatKiZMmWKw7KqVKliRo0aleZaOnbsaFq0aOEwTZcuXRx+Urxx48bm9ddfd5hm/vz5pkCBAndcDoC04Ye+AKRq1apVGj9+vPbv36+4uDjdvHlT169f19WrV+Xt7S1J8vb2VsmSJe3zFChQQOfOnZMkxcbG6uzZs6pZs6Z9vKurq6pXr66kpKQMrSU6OlqPPPKIwzw1a9bUN998Y3+/e/dubdq0yeFMRGJiYop1ApB+XOYAkMKxY8fUsmVLVa5cWUuWLNGOHTsUFRUlSbpx44Z9Ojc3N4f5bDabTDp/O9DFxSXFPAkJCemu5V4uX76s0aNHa9euXfbXnj17dPDgQXl6eqarZgCOODMBIIUdO3YoKSlJkyZNkovL339zfPrpp+lqw8/PT8HBwdq2bZvq1asn6e8zATt37lTVqlXt0wUFBTl02oyLi9PRo0fTVUvZsmW1bds2h2G3v7/vvvsUHR2tUqVKpWs9ANwbYQL4j4uNjdWuXbschuXLl08JCQmaPn26WrVqpU2bNmnWrFnpbrtv374aP368SpUqpXLlymn69Om6ePGibDabfZpGjRpp7ty5atWqlfz9/TVy5Ei5urrax5cqVeqetfTt21f16tXT5MmT1apVK61Zs0bLli1zWM7IkSPVsmVLFSlSRI899phcXFy0e/du/frrrxo7dmy61w3ALbK60waArBMZGWkkpXj16NHDTJ482RQoUMB4eXmZiIgIM2/ePCPJXLx40RjzdwfMWzs4GmPMF198YW49rCQkJJg+ffoYX19fExAQYIYMGWLat29vOnXqZJ8mNjbWdOzY0fj6+prQ0FAzd+7cFB0w71WLMcbMnj3bFCpUyHh5eZm2bduasWPHmpCQEIf6vv/+e1O7dm3j5eVlfH19Tc2aNc3s2bMzbHsC/1U2Y9J5gRMAnJSUlKSwsDB16NBBr732WqYuq2fPntq/f782btyYqcsBwGUOAJno+PHjWrFiherXr6/4+Hi98847Onr0qB5//PEMX9bEiRPVtGlT5c6dW8uWLdOHH36oGTNmZPhyAKREmACQaVxcXDR37lwNGjRIxhhVrFhRq1atUlhYWIYv66efftJbb72lS5cuqUSJEnr77bf19NNPZ/hyAKTEZQ4AAGAJz5kAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWPL/AExoJ4EDpB7HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 embryology 1 1 1 1 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 2 50.0 50.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 50.0 50.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAIjCAYAAACu+wlAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbW0lEQVR4nO3dd1QU1/8+8GepS12KCKJIEQvYxaiIXZHYC7FHISpRI9bYTWyxF9Qo1vgRC8aEWBK7YiX2hrEidmNBjQKKgsDe3x/5MV/XRYV1R1zzvM7Zc9g7M3feu7PlYebOrEIIIUBERESkZ0YFXQARERF9mhgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoj+v2PHjsHMzAw3b97US38XLlyAiYkJzp07p5f+yDB4eHggNDT0g683KioKCoUCJ06c+ODr/lSFhobC2tq6oMvQcOPGDSgUCkRFRRV0KXnyyYaMq1evolevXvDy8oJSqYStrS0CAgIwd+5cvHjxoqDLy7cLFy5g3LhxuHHjRr6XHTZsGBQKBTp06KD/wj4ho0ePRqdOneDu7i61bdy4EWXKlIFKpUKLFi1w9+5dreVatmyJr7/+Wqvd19cXzZo1w5gxY/K0/pwviVdvhQsXRv369bFt2zbdH1guPDw80Lx5c732SfqV82WSl5sunwtEH4JJQRcghy1btqBdu3YwNzdHt27dUK5cObx8+RJ//vknhg4divPnz2PJkiUFXWa+XLhwAePHj0e9evXg4eGR5+WEEPj555/h4eGBTZs24enTp7CxsZGvUAMVHx+P2NhYHDp0SGq7du0aOnTogA4dOsDf3x9z5szBV199hR07dkjz7NixAwcOHEBiYmKu/fbu3RtNmzbF1atXUaJEiTzVMmHCBHh6ekIIgaSkJERFRaFp06bYtGkTg4EBSEhIgJHR+///5uTkhFWrVmm0zZo1C3///Tdmz56tNS/Rx+iTCxnXr19Hx44d4e7ujj179qBIkSLStL59++LKlSvYsmXLe69HCIH09HRYWFhoTUtPT4eZmZlePmje1759+/D3339jz549CAoKwvr16xESElLQZelVVlYW1Go1zMzMdO5j+fLlKF68OGrUqCG17dy5E8WKFcOKFSugUCjg4+ODBg0aID09HUqlEllZWRg0aBDGjBnzxg/5Ro0awd7eHitWrMCECRPyVEuTJk1QtWpV6X6PHj3g7OyMn3/+mSHDAJibm+ulHysrK3z55ZcabWvXrsWTJ0+02unjo4/PpU9BwX8L6tn06dPx7NkzLFu2TCNg5PD29saAAQOk+1lZWfjhhx9QokQJmJubw8PDA6NGjUJGRobGcjm7l3fs2IGqVavCwsICixcvxr59+6BQKLB27Vp89913KFq0KCwtLZGamgoAOHr0KD7//HOoVCpYWlqibt26OHjwoFZdd+7cQY8ePeDq6gpzc3N4enqiT58+ePnyJaKiotCuXTsAQP369aVdpPv27Xvn8xEdHQ1fX1/Ur18fjRo1QnR0tNY8OY/h119/xaRJk1CsWDEolUo0bNgQV65c0Zg3MTERwcHBcHFxgVKpRLFixdCxY0ekpKQAANq2bYsqVapoLNOiRQsoFAr88ccfUtvRo0ehUCg0DgMkJydj4MCBcHNzg7m5Oby9vTFt2jSo1WppnpxdyDNnzsScOXOk7XbhwgUAwLx581C2bFlYWlrC3t4eVatWxZo1a975PG3cuBENGjSAQqGQ2l68eAE7OzupzcHBAUII6XDb/PnzkZ2djX79+r2xX1NTU9SrVw+///77O2t4Ezs7O1hYWMDE5N//CYQQ8PDwQKtWrbTmTU9Ph0qlQq9evXReX464uDi0a9cOxYsXh7m5Odzc3DBo0CCtw405x63v3LmD1q1bw9raGk5OThgyZAiys7M15v3nn3/QtWtX2Nraws7ODiEhIThz5ozWMeZ69eqhXr16WjWFhoZq7cmbOXMmatasCUdHR1hYWMDPzw+//fab1rIvXrxA//79UahQIdjY2KBly5a4c+cOFAoFxo0bpzHvnTt30L17dzg7O8Pc3Bxly5bF//73vzw9b6+Pycg5DHbw4EEMHjwYTk5OsLKyQps2bfDw4cM89ZkfGRkZeVrPtm3bULt2bVhZWcHGxgbNmjXD+fPnNebJ2ba3bt1C8+bNYW1tjaJFiyIyMhIAcPbsWTRo0ABWVlZwd3fP9b2Wl/c1ANy7dw+XLl1CZmbmOx+jWq3GnDlzULZsWSiVSjg7O6NXr1548uSJxnw5n9v79u2TPrfLly8vfXauX78e5cuXh1KphJ+fH06fPp3r+q5du4agoCBYWVnB1dUVEyZMwKs/YP6mz6Vjx47ByspK4zsnx99//w1jY2NMmTJFYz3t2rWDg4MDLC0tUaNGjTz/U7xnzx5pe9rZ2aFVq1a4ePGi1nw5z4VSqUSJEiWwePFijBs3TuOzr27duqhYsWKu6yldujSCgoLyVBMAQHxiihYtKry8vPI8f0hIiAAgvvjiCxEZGSm6desmAIjWrVtrzOfu7i68vb2Fvb29GDFihFi0aJHYu3ev2Lt3rwAgfH19RaVKlURERISYMmWKSEtLE7t37xZmZmbC399fzJo1S8yePVtUqFBBmJmZiaNHj0p937lzR7i6ugpLS0sxcOBAsWjRIvH9998LHx8f8eTJE3H16lXRv39/AUCMGjVKrFq1SqxatUrcv3//rY8tPT1d2NnZiR9++EEIIcTKlSuFsbGxuHfvnsZ8OY+hcuXKws/PT8yePVuMGzdOWFpaimrVqknzZWRkCE9PT+Hq6iomTpwofvrpJzF+/Hjx2WefiRs3bgghhIiIiBBGRkYiJSVFCCGEWq0W9vb2wsjISAwZMkTqa8aMGRrzpaWliQoVKghHR0cxatQosWjRItGtWzehUCjEgAEDpOWuX78uPd9eXl5i6tSpYvbs2eLmzZtiyZIl0rZcvHixmDt3rujRo4fo37//W5+nv//+WwAQP/74o0Z7XFycUCgUYs2aNeLatWuiffv2wtvbWwghxIMHD4SdnZ3YvHnzW/sWQoiJEydqPNY3Wb58uQAgYmNjxcOHD8WDBw/EuXPnRK9evYSRkZHYuXOnNO/o0aOFqamp+OeffzT6+PXXXwUAceDAgbeuy93dXTRr1uyt8/Tr1080bdpUTJ48WSxevFj06NFDGBsbiy+++EJjvpCQEKFUKkXZsmVF9+7dxcKFC0VwcLAAIBYsWCDNl52dLfz9/YWxsbEIDw8X8+fPF4GBgaJixYoCgFi+fLk0b926dUXdunW1agoJCRHu7u4abcWKFRPffPONmD9/voiIiBDVqlUTALS2Tfv27QUA0bVrVxEZGSnat28vrXvs2LHSfPfv3xfFihUTbm5uYsKECWLhwoWiZcuWAoCYPXv2W58zIf59bkNCQqT7Odu1cuXKokGDBmLevHni22+/FcbGxqJ9+/bv7O9VzZo103r8uqxn5cqVQqFQiM8//1zMmzdPTJs2TXh4eAg7Oztx/fp1ab6cbevr6yt69+4tIiMjRc2aNaXt5erqKoYOHSrmzZsnypYtK4yNjcW1a9ek5fP6vs5ZFwCN9b9Jz549hYmJiQgLCxOLFi0Sw4cPF1ZWVuKzzz4TL1++lOZzd3cXpUuXFkWKFBHjxo0Ts2fPFkWLFhXW1tZi9erVonjx4mLq1Kli6tSpQqVSCW9vb5Gdna31+EuWLCm6du0q5s+fL5o3by4AiO+//16a722fS126dBHOzs4iKytL4zFMnz5dKBQKcfPmTSHEv687Z2dnYWNjI0aPHi0iIiJExYoVhZGRkVi/fr3Wul59v+zatUuYmJiIUqVKienTp4vx48eLQoUKCXt7e43n89SpU8Lc3Fx4eHiIqVOnikmTJglXV1fpfZBj6dKlAoA4e/asRs3Hjh0TAMTKlSvfuY1yfFIhIyUlRQAQrVq1ytP88fHxAoDo2bOnRvuQIUMEALFnzx6pzd3dXQAQ27dv15g35wvay8tLPH/+XGpXq9WiZMmSIigoSKjVaqn9+fPnwtPTUwQGBkpt3bp1E0ZGRuL48eNaNeYsGxMTIwCIvXv35umxCSHEb7/9JgCIxMREIYQQqampQqlUan1Q5jwGHx8fkZGRIbXPnTtX44V2+vRpAUDExMS8cZ3Hjx8XAMTWrVuFEEL89ddfAoBo166dqF69ujRfy5YtReXKlaX7P/zwg7CyshKXL1/W6G/EiBHC2NhY3Lp1Swjxf28wW1tb8eDBA415W7VqJcqWLZvXp0cSGxsrAIhNmzZpTcsJdwCEg4OD9JoICwsTn3/+eZ76X7NmjQCgESxzk/Ml8frN3NxcREVFacybkJAgAIiFCxdqtLds2VJ4eHhovOZyk5eQ8errOceUKVM0PhiF+L8vhwkTJmjMmxNac6xbt04AEHPmzJHasrOzRYMGDd4rZLxe58uXL0W5cuVEgwYNpLaTJ08KAGLgwIEa84aGhmqFjB49eogiRYqIR48eaczbsWNHoVKpcn1eXvWmkNGoUSON7TJo0CBhbGwskpOT39rfq/ISMt61nqdPnwo7OzsRFhamsfz9+/eFSqXSaM/ZtpMnT5banjx5IiwsLIRCoRBr166V2i9duqT1XOb1ff3qut4VMuLi4gQAER0drdG+fft2rfacz+1Dhw5JbTt27BAAhIWFhcbrePHixVqfsTk19evXT2pTq9WiWbNmwszMTDx8+FAI8fbPpZz1bdu2TaO9QoUKGq/xgQMHCgAiLi5Oanv69Knw9PQUHh4eUvjJLWRUqlRJFC5cWOOfjjNnzggjIyPRrVs3qa1FixbC0tJS3LlzR2pLTEwUJiYmGiEjOTlZKJVKMXz4cI2a+/fvL6ysrMSzZ89EXn1Sh0tyDlHkdWDj1q1bAQCDBw/WaP/2228BQGs3laen5xt3E4WEhGiMz4iPj0diYiI6d+6Mf/75B48ePcKjR4+QlpaGhg0b4sCBA1Cr1VCr1di4cSNatGihcRw+x6u7sPIrOjoaVatWhbe3NwBIu0RzO2QCAF999ZXG8cPatWsD+HcXHgCoVCoA/w52fP78ea59VK5cGdbW1jhw4ACAf3e5FytWDN26dcOpU6fw/PlzCCHw559/Sv0DQExMDGrXrg17e3vpuXr06BEaNWqE7Oxsqb8cwcHBWuMg7Ozs8Pfff+P48eN5fo6Af3fhA4C9vb3WtLlz5+LmzZs4evQobt68ifr16yM+Ph4rV67E7NmzkZKSgi+//BJFixZFvXr1ct09mdPvo0eP8lRPZGQkdu3ahV27dmH16tWoX78+evbsifXr10vzlCpVCtWrV9fYlo8fP8a2bdvQpUuX93rd5Hj19ZyWloZHjx6hZs2aEELkulu5d+/eGvdr164tvXYAYPv27TA1NUVYWJjUZmRkhL59++qtzidPniAlJQW1a9fGqVOnNNYNAN98843Gsq8f6hJCYN26dWjRogWEEBqvxaCgIKSkpGj0mx9ff/21xnapXbs2srOz9XbKdF7Xs2vXLiQnJ6NTp04aj8/Y2BjVq1fH3r17tfrs2bOn9LednR1Kly4NKysrtG/fXmovXbo07OzsNLZ5ft7XUVFR0qHAt4mJiYFKpUJgYKBGn35+frC2ttaq39fXF/7+/tL96tWrAwAaNGiA4sWLa7W/Wn+O8PBw6W+FQoHw8HC8fPkSsbGxGvPl9rnUqFEjuLq6arxXz507h7/++ktjbM3WrVtRrVo11KpVS2qztrbG119/jRs3bkiHhF937949xMfHIzQ0FA4ODlJ7hQoVEBgYKH3PZWdnIzY2Fq1bt4arq6s0n7e3N5o0aaLRp0qlQqtWrfDzzz9Lh4Wys7Pxyy+/oHXr1rCyssq1ltx8UgM/bW1tAQBPnz7N0/w3b96EkZGR9CWcw8XFBXZ2dlpvfk9Pzzf29fq0nLMN3jbIMiUlBS9fvkRqairKlSuXp5rzKjk5GVu3bkV4eLjGuIqAgACsW7cOly9fRqlSpTSWefUNB/zfl2POcU5PT08MHjwYERERiI6ORu3atdGyZUt8+eWXUgAxNjaGv78/4uLiAPwbMmrXro1atWohOzsbR44cgbOzMx4/fqwRMhITE/HXX3+9cQDlgwcPNO7nti2GDx+O2NhYVKtWDd7e3mjcuDE6d+6MgICAPD1nOW+m1xUvXlzjuenfvz969+6NMmXK4Msvv8Tt27fx+++/Y8WKFWjRogUuXbokjZ94td+8fvFXq1ZNI3B26tQJlStXRnh4OJo3by4FwW7duiE8PBw3b96Eu7s7YmJikJmZia5du+ZpPe9y69YtjBkzBn/88YfWse6cMTg5lEql1razt7fXWO7mzZsoUqQILC0tNeZ7/f2XX5s3b8bEiRMRHx+vMZbq1ec7573++uvm9XU/fPgQycnJWLJkyRvPQHv9tZhX73p/6cu71pPz2dSgQYNcl8/5HM2R27ZVqVQoVqyY1mtapVJpPJ78vq/zIjExESkpKShcuHCe+nz9+cj5rHJzc8u1/fXtYWRkBC8vL422nM/O108dzu1zycjICF26dMHChQvx/PlzWFpaIjo6GkqlUhprB/z7Gs0JOq/y8fGRpuf2PZHzPVW6dOlcl92xYwfS0tKQmpqKFy9e5Pp+y62tW7du+OWXXxAXF4c6deogNjYWSUlJ+f58+eRChqura74vfpTXD//cziR507ScQU0zZsxApUqVcl3G2toajx8/zluR+RQTE4OMjAzMmjULs2bN0poeHR2N8ePHa7QZGxvn2terX76zZs1CaGgofv/9d+zcuRP9+/fHlClTcOTIERQrVgwAUKtWLUyaNAnp6emIi4vD6NGjYWdnh3LlyiEuLg7Ozs4AoBEy1Go1AgMDMWzYsFxreD0Q5bYtfHx8kJCQgM2bN2P79u1Yt24dFixYgDFjxmg91lc5OjoCyNuH/S+//IKLFy/ijz/+QHZ2Nn799Vfs3LkTVatWRdmyZbF06VIcOXJE47+RnH4LFSr0zv5zY2RkhPr162Pu3LlITExE2bJlAQAdO3bEoEGDEB0djVGjRmH16tWoWrVqrh82+ZWdnY3AwEA8fvwYw4cPR5kyZWBlZYU7d+4gNDRUa9Dem147ulIoFLmGvtcHksbFxaFly5aoU6cOFixYgCJFisDU1BTLly/P04Df1+U8ri+//PKN/yBUqFAh3/0CeXt/6cO71pPzGFetWgUXFxet+V4NyG/rLy+PJ7/v67xQq9UoXLjwG/fIvh5o3qf+/HrTd0S3bt0wY8YMbNy4EZ06dcKaNWvQvHlzKdh8jIKCguDs7IzVq1ejTp06WL16NVxcXNCoUaN89fNJhQwAaN68OZYsWYLDhw9r7CLLjbu7O9RqNRITE6W0CABJSUlITk7WuChTfuVcE8HW1vatG8XJyQm2trbvDEb53f0dHR2NcuXKYezYsVrTFi9ejDVr1rz1i/dtypcvj/Lly+O7777DoUOHEBAQgEWLFmHixIkA/g0PL1++xM8//4w7d+5IYaJOnTpSyChVqpQUNoB/n69nz57l+wX8OisrK+naFi9fvkTbtm0xadIkjBw5EkqlMtdlypQpA+Df05/f5vnz5xg6dCh++OEH2NnZISkpCZmZmdKuRwsLC9jb2+POnTsay12/fh1GRkY6faDmyMrKAgA8e/ZManNwcJAOf3Xp0gUHDx7EnDlzdF7Hq86ePYvLly9jxYoV6Natm9S+a9cunft0d3fH3r17pf/mcrx+BhPw73/fue22fn3v4rp166BUKrFjxw6NU0eXL1+utW61Wo3r16+jZMmSb1y3k5MTbGxskJ2d/d6vxY9VzmdT4cKFZX+M+npfv95nbGwsAgIC3vqPn76o1Wpcu3ZN4/17+fJlAMjzNYvKlSuHypUrIzo6GsWKFcOtW7cwb948jXnc3d2RkJCgteylS5ek6bnJaX/TsoUKFYKVlRWUSiWUSmWu77fc2oyNjdG5c2dERUVh2rRp2LhxI8LCwvL9D8UnNSYD+PfqllZWVujZsyeSkpK0pl+9ehVz584FADRt2hQAtD6YIyIiAADNmjXTuQ4/Pz+UKFECM2fO1PhiyJFzSpmRkRFat26NTZs25Xo54JxUnXMMLDk5+Z3rvn37Ng4cOID27dvjiy++0Lp99dVXuHLlCo4ePZqvx5Samip92eUoX748jIyMNHZTV69eHaamppg2bRocHByk/7xr166NI0eOYP/+/Rp7MQCgffv2OHz4sMaFrnIkJydrrTc3OWMrcpiZmcHX1xdCiLeeFle0aFG4ubm983LM06ZNg729vTSmwNHRESYmJtKHwKNHj/Dw4UOt/w5PnjyJsmXL6vxfS2ZmJnbu3AkzMzONMAwAXbt2xYULFzB06FAYGxujY8eOOq3jdTkfJK/+VyeEkN47uggKCkJmZiaWLl0qtanVaul0yFeVKFECly5d0jj18syZM1qnfxsbG0OhUGjs4bhx4wY2btyotW4AWLBggUb76x/0xsbGCA4Oxrp163IN/nKccvqhBQUFwdbWFpMnT871faHPx5if93VeT2Ft3749srOz8cMPP2hNy8rKytNnZH7Nnz9f+lsIgfnz58PU1BQNGzbMcx9du3bFzp07MWfOHDg6OmqNg2jatCmOHTuGw4cPS21paWlYsmQJPDw84Ovrm2u/RYoUQaVKlbBixQqNx37u3Dns3LlT+p4zNjZGo0aNsHHjRo0rF1+5cuWNVxTu2rUrnjx5gl69euHZs2c6XZ/lk9uTUaJECaxZswYdOnSAj4+PxhU/Dx06hJiYGOkc9ooVKyIkJARLlixBcnIy6tati2PHjmHFihVo3bo16tevr3MdRkZG+Omnn9CkSROULVsWX331FYoWLYo7d+5g7969sLW1xaZNmwAAkydPxs6dO1G3bl18/fXX8PHxwb179xATE4M///wTdnZ2qFSpEoyNjTFt2jSkpKTA3NwcDRo0yPW45Jo1ayCEQMuWLXOtrWnTpjAxMUF0dHSuxwDfZM+ePQgPD0e7du1QqlQpZGVlYdWqVdIHcw5LS0v4+fnhyJEj0jUygH/3ZKSlpSEtLU0rZAwdOhR//PEHmjdvjtDQUPj5+SEtLQ1nz57Fb7/9hhs3brzzcEPjxo3h4uKCgIAAODs74+LFi5g/fz6aNWv2zsHArVq1woYNGyCEyHWv0a1btzBjxgxs2bJF+gI2MTFBq1atMHDgQNy6dQsbNmyAq6urxh60zMxM7N+/X2vA4dts27ZNCi4PHjzAmjVrkJiYiBEjRmgdL2/WrBkcHR0RExODJk2avPE4dW6uXLki7X16VeXKldG4cWOUKFECQ4YMwZ07d2Bra4t169a91/iB1q1bo1q1avj2229x5coVlClTBn/88Yd0yPDV57179+6IiIhAUFAQevTogQcPHmDRokUoW7asNMA75/FHRETg888/R+fOnfHgwQNERkbC29sbf/31lzSfn58fgoODMWfOHPzzzz+oUaMG9u/fL/1H+uq6p06dir1796J69eoICwuDr68vHj9+jFOnTiE2Nla2Q5wfiq2tLRYuXIiuXbuiSpUq6NixI5ycnHDr1i1s2bIFAQEBGl+q7yM/7+uRI0dixYoVuH79+lv3ENStWxe9evXClClTEB8fj8aNG8PU1BSJiYmIiYnB3Llz8cUXX+ilfuDfMSnbt29HSEgIqlevjm3btmHLli0YNWpUvq602rlzZwwbNgwbNmxAnz59YGpqqjF9xIgR+Pnnn9GkSRP0798fDg4O0vOxbt26t17cccaMGWjSpAn8/f3Ro0cPvHjxAvPmzYNKpdK4Bsy4ceOwc+dOBAQEoE+fPsjOzsb8+fNRrlw5xMfHa/VbuXJllCtXDjExMfDx8dG6BlKe5Pk8FANz+fJlERYWJjw8PISZmZmwsbERAQEBYt68eSI9PV2aLzMzU4wfP154enoKU1NT4ebmJkaOHKkxjxBvPuUv5/TPN53Wefr0adG2bVvh6OgozM3Nhbu7u2jfvr3YvXu3xnw3b94U3bp1E05OTsLc3Fx4eXmJvn37apxSunTpUuHl5SWMjY3fejpr+fLlRfHixd/6/NSrV08ULlxYZGZmvvExvH6q1LVr10T37t1FiRIlhFKpFA4ODqJ+/foiNjZWq/+hQ4cKAGLatGka7d7e3gKAuHr1qtYyT58+FSNHjhTe3t7CzMxMFCpUSNSsWVPMnDlTOvc9p6YZM2ZoLb948WJRp04d6bkuUaKEGDp06DuvTyHEv+eP47XTx17Vrl070bZtW632pKQk0aJFC2FjYyOqVKkiTpw4oTF927ZtGqcRv01up7AqlUpRqVIlsXDhwjeelvrNN98IAGLNmjXvXEeOnFP7crv16NFDCCHEhQsXRKNGjYS1tbUoVKiQCAsLE2fOnNE6fS4kJERYWVlprWPs2LHi9Y+Yhw8fis6dOwsbGxuhUqlEaGioOHjwoACgcTqkEEKsXr1aeHl5CTMzM1GpUiWxY8eOXE9hXbZsmShZsqQwNzcXZcqUEcuXL8913WlpaaJv377CwcFBWFtbi9atW0unAk+dOlVj3qSkJNG3b1/h5uYmTE1NhYuLi2jYsKFYsmRJnp7b3E5hff0U9Zz3XX5OS8/LKax5Xc/evXtFUFCQUKlUQqlUihIlSojQ0FCN1/Cbtm3dunVzPV08t8/JvLyvc9aFPF4nQwghlixZIvz8/ISFhYWwsbER5cuXF8OGDRN37959az1CCAFA9O3bV6Mtt8+WnMd/9epV0bhxY2FpaSmcnZ3F2LFjNa6n8bbPpVc1bdpU65TaV129elV88cUXws7OTiiVSlGtWjWt673kdgqrEP+eih8QECAsLCyEra2taNGihbhw4YLWOnbv3i0qV64szMzMRIkSJcRPP/0kvv32W6FUKnOtafr06VqnMeeHQgg9jzoiMlANGzaEq6ur1u9FvI/WrVtDoVBgw4YNeuvzdYMGDcKyZctw//59rTM3DMHGjRvRpk0b/Pnnn3k+E0hf4uPjUblyZaxevRpdunT5oOum/542bdrg7NmzuY6BKEitW7fG+fPnc/0Nprlz52LQoEG4ceOG1pk6efHJjckg0tXkyZPxyy+/6O26BRcvXsTmzZtzPXasL+np6Vi9ejWCg4MNImC8fkny7OxszJs3D7a2trrtin2PdQP/jscyMjJCnTp1ZF030b1797Blyxa9nWKuq9ffB4mJidi6dWuul/EXQmDZsmWoW7euTgED+ATHZBDpqnr16nj58qXe+vPx8cnTgFVdPHjwALGxsfjtt9/wzz//5PrbCB+jfv364cWLF/D390dGRgbWr1+PQ4cOYfLkybKfKTB9+nScPHkS9evXh4mJCbZt24Zt27bh66+/1rpmApG+XL9+HQcPHsRPP/0EU1NTvfyu0Pvw8vJCaGgovLy8cPPmTSxcuBBmZmYapxmnpaXhjz/+wN69e3H27Nn3+u2lT3ZMBtGnLOc4e+HChcW8efMKupw8i46OFlWqVBG2trbCzMxM+Pr6frD6d+7cKQICAoS9vb0wNTUVJUqUEOPGjROZmZkfZP3035QzVqZ48eJv/UmGDyU0NFS4u7sLc3NzYWtrK4KCgsTJkyc15skZ92FnZydGjRr1XuvjmAwiIiKSBcdkEBERkSwYMoiIiEgWn/zAT7Vajbt378LGxkYvv0xJRET0XyGEwNOnT+Hq6vrWC4K9yScfMu7evcuR40RERO/h9u3b0o9g5scnHzJyLid9+/ZtrUsyExER0ZulpqbCzc3tnT/N8CaffMjIOURia2vLkEFERKQDXYcbcOAnERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJIsCDRnjxo2DQqHQuJUpU0aanp6ejr59+8LR0RHW1tYIDg5GUlJSAVZMREREeVXgezLKli2Le/fuSbc///xTmjZo0CBs2rQJMTEx2L9/P+7evYu2bdsWYLVERESUVyYFXoCJCVxcXLTaU1JSsGzZMqxZswYNGjQAACxfvhw+Pj44cuQIatSo8aFLJSIionwo8D0ZiYmJcHV1hZeXF7p06YJbt24BAE6ePInMzEw0atRImrdMmTIoXrw4Dh8+/Mb+MjIykJqaqnEjIiKiD69A92RUr14dUVFRKF26NO7du4fx48ejdu3aOHfuHO7fvw8zMzPY2dlpLOPs7Iz79++/sc8pU6Zg/PjxMlcOeIzYIvs6/utuTG0mS7/cdvKTa9sB3H4fAt97hkvO954uCjRkNGnSRPq7QoUKqF69Otzd3fHrr7/CwsJCpz5HjhyJwYMHS/dTU1Ph5ub23rUSERFR/hT44ZJX2dnZoVSpUrhy5QpcXFzw8uVLJCcna8yTlJSU6xiOHObm5rC1tdW4ERER0Yf3UYWMZ8+e4erVqyhSpAj8/PxgamqK3bt3S9MTEhJw69Yt+Pv7F2CVRERElBcFerhkyJAhaNGiBdzd3XH37l2MHTsWxsbG6NSpE1QqFXr06IHBgwfDwcEBtra26NevH/z9/XlmCRERkQEo0JDx999/o1OnTvjnn3/g5OSEWrVq4ciRI3BycgIAzJ49G0ZGRggODkZGRgaCgoKwYMGCgiyZiIiI8qhAQ8batWvfOl2pVCIyMhKRkZEfqCIiIiLSl49qTAYRERF9OhgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyeKjCRlTp06FQqHAwIEDpbb09HT07dsXjo6OsLa2RnBwMJKSkgquSCIiIsqzjyJkHD9+HIsXL0aFChU02gcNGoRNmzYhJiYG+/fvx927d9G2bdsCqpKIiIjyo8BDxrNnz9ClSxcsXboU9vb2UntKSgqWLVuGiIgINGjQAH5+fli+fDkOHTqEI0eOFGDFRERElBcFHjL69u2LZs2aoVGjRhrtJ0+eRGZmpkZ7mTJlULx4cRw+fPiN/WVkZCA1NVXjRkRERB+eSUGufO3atTh16hSOHz+uNe3+/fswMzODnZ2dRruzszPu37//xj6nTJmC8ePH67tUIiIiyqcC25Nx+/ZtDBgwANHR0VAqlXrrd+TIkUhJSZFut2/f1lvfRERElHcFFjJOnjyJBw8eoEqVKjAxMYGJiQn279+PH3/8ESYmJnB2dsbLly+RnJyssVxSUhJcXFze2K+5uTlsbW01bkRERPThFdjhkoYNG+Ls2bMabV999RXKlCmD4cOHw83NDaampti9ezeCg4MBAAkJCbh16xb8/f0LomQiIiLKhwILGTY2NihXrpxGm5WVFRwdHaX2Hj16YPDgwXBwcICtrS369esHf39/1KhRoyBKJiIionwo0IGf7zJ79mwYGRkhODgYGRkZCAoKwoIFCwq6LCIiIsqDjypk7Nu3T+O+UqlEZGQkIiMjC6YgIiIi0lmBXyeDiIiIPk0MGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZGGiy0LXr19HXFwcbt68iefPn8PJyQmVK1eGv78/lEqlvmskIiIiA5SvkBEdHY25c+fixIkTcHZ2hqurKywsLPD48WNcvXoVSqUSXbp0wfDhw+Hu7i5XzURERGQA8hwyKleuDDMzM4SGhmLdunVwc3PTmJ6RkYHDhw9j7dq1qFq1KhYsWIB27drpvWAiIiIyDHkOGVOnTkVQUNAbp5ubm6NevXqoV68eJk2ahBs3buijPiIiIjJQeQ4ZbwsYr3N0dISjo6NOBREREdGnQaeBn6/asmUL9u3bh+zsbAQEBCA4OFgfdREREZGBe69TWL///nsMGzYMCoUCQggMGjQI/fr101dtREREZMDytSfjxIkTqFq1qnT/l19+wZkzZ2BhYQEACA0NRb169TBv3jz9VklEREQGJ197Mnr37o2BAwfi+fPnAAAvLy/MmjULCQkJOHv2LBYuXIhSpUrJUigREREZlnyFjKNHj6JIkSKoUqUKNm3ahP/97384ffo0atasidq1a+Pvv//GmjVr5KqViIiIDEi+DpcYGxtj+PDhaNeuHfr06QMrKyvMnz8frq6uctVHREREBkqngZ9eXl7YsWMH2rRpgzp16iAyMlLfdREREZGBy1fISE5OxrBhw9CiRQt89913aNOmDY4ePYrjx4+jRo0aOHv2rFx1EhERkYHJV8gICQnB0aNH0axZMyQkJKBPnz5wdHREVFQUJk2ahA4dOmD48OFy1UpEREQGJF9jMvbs2YPTp0/D29sbYWFh8Pb2lqY1bNgQp06dwoQJE/ReJBERERmefO3JKFmyJJYsWYLLly9j0aJFWr+0qlQqMXnyZL0WSERERIYpXyHjf//7H/bs2YPKlStjzZo1WLhwoVx1ERERkYHL1+GSSpUq4cSJE3LVQkRERJ+QPO/JEELIWQcRERF9YvIcMsqWLYu1a9fi5cuXb50vMTERffr0wdSpU9+7OCIiIjJceT5cMm/ePAwfPhzffPMNAgMDUbVqVbi6ukKpVOLJkye4cOEC/vzzT5w/fx7h4eHo06ePnHUTERHRRy7PIaNhw4Y4ceIE/vzzT/zyyy+Ijo7GzZs38eLFCxQqVAiVK1dGt27d0KVLF9jb28tZMxERERmAfA38BIBatWqhVq1actRCREREnxCdfruEiIiI6F0YMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREclCp5Bx6tQpnD17Vrr/+++/o3Xr1hg1atQ7L9ZFRERE/w06hYxevXrh8uXLAIBr166hY8eOsLS0RExMDIYNG6bXAomIiMgw6RQyLl++jEqVKgEAYmJiUKdOHaxZswZRUVFYt26dPusjIiIiA6VTyBBCQK1WAwBiY2PRtGlTAICbmxsePXqkv+qIiIjIYOkUMqpWrYqJEydi1apV2L9/P5o1awYAuH79OpydnfPcz8KFC1GhQgXY2trC1tYW/v7+2LZtmzQ9PT0dffv2haOjI6ytrREcHIykpCRdSiYiIqIPTKeQMWfOHJw6dQrh4eEYPXo0vL29AQC//fYbatasmed+ihUrhqlTp+LkyZM4ceIEGjRogFatWuH8+fMAgEGDBmHTpk2IiYnB/v37cffuXbRt21aXkomIiOgDy/dvl2RnZyM5ORkHDhzQ+iG0GTNmwNjYOM99tWjRQuP+pEmTsHDhQhw5cgTFihXDsmXLsGbNGjRo0AAAsHz5cvj4+ODIkSOoUaNGfksnIiKiDyjfezKMjY3RuHFjJCcna01TKpUwNTXVqZDs7GysXbsWaWlp8Pf3x8mTJ5GZmYlGjRpJ85QpUwbFixfH4cOH39hPRkYGUlNTNW5ERET04el0uKRcuXK4du2aXgo4e/YsrK2tYW5ujt69e2PDhg3w9fXF/fv3YWZmBjs7O435nZ2dcf/+/Tf2N2XKFKhUKunm5uamlzqJiIgof3QKGRMnTsSQIUOwefNm3Lt37732HJQuXRrx8fE4evQo+vTpg5CQEFy4cEGXsgAAI0eOREpKinS7ffu2zn0RERGR7vI9JgOAdMpqy5YtoVAopHYhBBQKBbKzs/Pcl5mZmTRw1M/PD8ePH8fcuXPRoUMHvHz5EsnJyRp7M5KSkuDi4vLG/szNzWFubp7PR0RERET6plPI2Lt3r77rkKjVamRkZMDPzw+mpqbYvXs3goODAQAJCQm4desW/P39ZVs/ERER6YdOIaNu3bp6WfnIkSPRpEkTFC9eHE+fPsWaNWuwb98+7NixAyqVCj169MDgwYPh4OAAW1tb9OvXD/7+/jyzhIiIyADoFDIAIC4uDosXL8a1a9cQExODokWLYtWqVfD09EStWrXy1MeDBw/QrVs33Lt3DyqVChUqVMCOHTsQGBgIAJg9ezaMjIwQHByMjIwMBAUFYcGCBbqWTERERB+QTiFj3bp16Nq1K7p06YJTp04hIyMDAJCSkoLJkydj69ateepn2bJlb52uVCoRGRmJyMhIXcokIiKiAqTz2SWLFi3C0qVLNa6LERAQgFOnTumtOCIiIjJcOoWMhIQE1KlTR6tdpVLlepEuIiIi+u/RKWS4uLjgypUrWu1//vknvLy83rsoIiIiMnw6hYywsDAMGDAAR48ehUKhwN27dxEdHY0hQ4agT58++q6RiIiIDJBOAz9HjBgBtVqNhg0b4vnz56hTpw7Mzc0xZMgQ9OvXT981EhERkQHSKWQoFAqMHj0aQ4cOxZUrV/Ds2TP4+vrC2tpa3/URERGRgdIpZOzZswc1a9aEUqmEr6+vvmsiIiKiT4BOIaNly5bIysrCZ599hnr16qFu3boICAiAhYWFvusjIiIiA6XTwM8nT55g9+7daNKkCY4dO4Y2bdrAzs4OAQEB+O677/RdIxERERkgnUKGqakpAgICMGrUKOzYsQNHjhxBp06dcOzYMUyZMkXfNRIREZEB0ulwyeXLl7Fv3z7s27cP+/fvR0ZGBmrXro2ZM2eiXr16ei6RiIiIDJFOIaNMmTJwcnLCgAEDMGLECJQvXx4KhULftREREZEB0+lwSf/+/VG0aFFMmDABvXv3xujRo7Fz5048f/5c3/URERGRgdIpZMyZMwenTp3C/fv3MXLkSLx8+RKjR49GoUKFEBAQoO8aiYiIyADpFDJyZGdnIzMzExkZGUhPT0dGRgYSEhL0VRsREREZMJ0Pl1SoUAHOzs7o1asX7t69i7CwMJw+fRoPHz7Ud41ERERkgHQa+Hnv3j18/fXXqFevHsqVK6fvmoiIiOgToFPIiImJ0XcdRERE9InR6XDJihUrsGXLFun+sGHDYGdnh5o1a+LmzZt6K46IiIgMl04hY/LkydLvlBw+fBiRkZGYPn06ChUqhEGDBum1QCIiIjJMOh0uuX37Nry9vQEAGzduRHBwML7++msEBATwip9EREQEQMc9GdbW1vjnn38AADt37kRgYCAAQKlU4sWLF/qrjoiIiAyWTnsyAgMD0bNnT1SuXBmXL19G06ZNAQDnz5+Hh4eHPusjIiIiA6XTnozIyEj4+/vj4cOHWLduHRwdHQEAJ0+eRKdOnfRaIBERERkmnfZk2NnZYf78+Vrt48ePf++CiIiI6NOgU8gAgOTkZBw7dgwPHjyAWq2W2hUKBbp27aqX4oiIiMhw6RQyNm3ahC5duuDZs2ewtbXV+Jl3hgwiIiICdByT8e2336J79+549uwZkpOT8eTJE+n2+PFjfddIREREBkinkHHnzh30798flpaW+q6HiIiIPhE6hYygoCCcOHFC37UQERHRJ0SnMRnNmjXD0KFDceHCBZQvXx6mpqYa01u2bKmX4oiIiMhw6RQywsLCAAATJkzQmqZQKJCdnf1+VREREZHB0ylkvHrKKhEREVFudBqT8SbJycm5XqSLiIiI/nv0EjJ2796Nzp07o0iRIhg7dqw+uiQiIiIDp3PIuH37NiZMmABPT080btwYCoUCGzZswP379/VZHxERERmofIWMzMxMxMTEICgoCKVLl0Z8fDxmzJgBIyMjjB49Gp9//rnWmSZERET035SvgZ9FixZFmTJl8OWXX2Lt2rWwt7cHAP7yKhEREWnJ156MrKwsKBQKKBQKGBsby1UTERERfQLyFTLu3r2Lr7/+Gj///DNcXFwQHByMDRs2aPxAGhERERGQz5ChVCrRpUsX7NmzB2fPnoWPjw/69++PrKwsTJo0Cbt27eKFuIiIiAjAe5xdUqJECUycOBE3b97Eli1bkJGRgebNm8PZ2Vmf9REREZGB0umKn68yMjJCkyZN0KRJEzx8+BCrVq3SR11ERERk4PR6xU8nJycMHjxYn10SERGRgdJryCAiIiLKwZBBREREsmDIICIiIlnoFDImTJiA58+fa7W/ePECEyZMeO+iiIiIyPDpFDLGjx+PZ8+eabU/f/4c48ePf++iiIiIyPDpFDKEELle5fPMmTNwcHB476KIiIjI8OXrOhn29vbSb5eUKlVKI2hkZ2fj2bNn6N27t96LJCIiIsOTr5AxZ84cCCHQvXt3jB8/HiqVSppmZmYGDw8P+Pv7671IIiIiMjz5ChkhISEAAE9PTwQEBMDE5L0vGEpERESfKJ3GZKSlpWH37t1a7Tt27MC2bdveuygiIiIyfDqFjBEjRuT6a6tCCIwYMeK9iyIiIiLDp1PISExMhK+vr1Z7mTJlcOXKlfcuioiIiAyfTiFDpVLh2rVrWu1XrlyBlZXVexdFREREhk+nkNGqVSsMHDgQV69eldquXLmCb7/9Fi1bttRbcURERGS4dAoZ06dPh5WVFcqUKQNPT094enrCx8cHjo6OmDlzpr5rJCIiIgOk0zmoKpUKhw4dwq5du3DmzBlYWFigQoUKqFOnjr7rIyIiIgOl84UuFAoFGjdujDp16sDc3DzXy4wTERHRf5dOh0vUajV++OEHFC1aFNbW1rh+/ToA4Pvvv8eyZcv0WiAREREZJp1CxsSJExEVFYXp06fDzMxMai9Xrhx++uknvRVHREREhkunkLFy5UosWbIEXbp0gbGxsdResWJFXLp0SW/FERERkeHSKWTcuXMH3t7eWu1qtRqZmZnvXRQREREZPp1Chq+vL+Li4rTaf/vtN1SuXPm9iyIiIiLDp9PZJWPGjEFISAju3LkDtVqN9evXIyEhAStXrsTmzZv1XSMREREZIJ2v+Llp0ybExsbCysoKY8aMwcWLF7Fp0yYEBgbqu0YiIiIyQPnek5GVlYXJkyeje/fu2LVrlxw1ERER0Scg33syTExMMH36dGRlZclRDxEREX0idDpc0rBhQ+zfv1/ftRAREdEnRKeBn02aNMGIESNw9uxZ+Pn5af28O3+JlYiIiHQKGd988w0AICIiQmuaQqFAdnb2+1VFREREBk+nkKFWq/VdBxEREX1i8j0mIzMzEyYmJjh37pwc9RAREdEnIt8hw9TUFMWLF+chESIiInornc4uGT16NEaNGoXHjx/rux4iIiL6ROgUMubPn48DBw7A1dUVpUuXRpUqVTRueTVlyhR89tlnsLGxQeHChdG6dWskJCRozJOeno6+ffvC0dER1tbWCA4ORlJSki5lExER0Qek08DP1q1b62Xl+/fvR9++ffHZZ58hKysLo0aNQuPGjXHhwgXptNhBgwZhy5YtiImJgUqlQnh4ONq2bYuDBw/qpQYiIiKSh04hY+zYsXpZ+fbt2zXuR0VFoXDhwjh58iTq1KmDlJQULFu2DGvWrEGDBg0AAMuXL4ePjw+OHDmCGjVq6KUOIiIi0j+dQkaOkydP4uLFiwCAsmXLvvfPvKekpAAAHBwcpP4zMzPRqFEjaZ4yZcqgePHiOHz4cK4hIyMjAxkZGdL91NTU96qJiIiIdKNTyHjw4AE6duyIffv2wc7ODgCQnJyM+vXrY+3atXBycsp3n2q1GgMHDkRAQADKlSsHALh//z7MzMykdeRwdnbG/fv3c+1nypQpGD9+fL7XT0RERPql08DPfv364enTpzh//jweP36Mx48f49y5c0hNTUX//v11KqRv3744d+4c1q5dq9PyOUaOHImUlBTpdvv27ffqj4iIiHSj056M7du3IzY2Fj4+PlKbr68vIiMj0bhx43z3Fx4ejs2bN+PAgQMoVqyY1O7i4oKXL18iOTlZY29GUlISXFxccu3L3Nwc5ubm+a6BiIiI9EunPRlqtRqmpqZa7aampvm65LgQAuHh4diwYQP27NkDT09Pjel+fn4wNTXF7t27pbaEhATcunUL/v7+upROREREH4hOezIaNGiAAQMG4Oeff4arqysA4M6dOxg0aBAaNmyY53769u2LNWvW4Pfff4eNjY00zkKlUsHCwgIqlQo9evTA4MGD4eDgAFtbW/Tr1w/+/v48s4SIiOgjp1PImD9/Plq2bAkPDw+4ubkBAG7fvo1y5cph9erVee5n4cKFAIB69epptC9fvhyhoaEAgNmzZ8PIyAjBwcHIyMhAUFAQFixYoEvZRERE9AHpFDLc3Nxw6tQpxMbG4tKlSwAAHx8fjVNN80II8c55lEolIiMjERkZqUupREREVEB0vk6GQqFAYGAgAgMD9VkPERERfSLyNfBzz5498PX1zfUCVykpKShbtizi4uL0VhwREREZrnyFjDlz5iAsLAy2trZa01QqFXr16oWIiAi9FUdERESGK18h48yZM/j888/fOL1x48Y4efLkexdFREREhi9fISMpKSnX62PkMDExwcOHD9+7KCIiIjJ8+QoZRYsWxblz5944/a+//kKRIkXeuygiIiIyfPkKGU2bNsX333+P9PR0rWkvXrzA2LFj0bx5c70VR0RERIYrX6ewfvfdd1i/fj1KlSqF8PBwlC5dGgBw6dIlREZGIjs7G6NHj5alUCIiIjIs+QoZzs7OOHToEPr06YORI0dKF9NSKBQICgpCZGQknJ2dZSmUiIiIDEu+L8bl7u6OrVu34smTJ7hy5QqEEChZsiTs7e3lqI+IiIgMlM5X/LS3t8dnn32mz1qIiIjoE6LTT70TERERvQtDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyaJAQ8aBAwfQokULuLq6QqFQYOPGjRrThRAYM2YMihQpAgsLCzRq1AiJiYkFUywRERHlS4GGjLS0NFSsWBGRkZG5Tp8+fTp+/PFHLFq0CEePHoWVlRWCgoKQnp7+gSslIiKi/DIpyJU3adIETZo0yXWaEAJz5szBd999h1atWgEAVq5cCWdnZ2zcuBEdO3b8kKUSERFRPn20YzKuX7+O+/fvo1GjRlKbSqVC9erVcfjw4Tcul5GRgdTUVI0bERERfXgfbci4f/8+AMDZ2Vmj3dnZWZqWmylTpkClUkk3Nzc3WeskIiKi3H20IUNXI0eOREpKinS7fft2QZdERET0n/TRhgwXFxcAQFJSkkZ7UlKSNC035ubmsLW11bgRERHRh/fRhgxPT0+4uLhg9+7dUltqaiqOHj0Kf3//AqyMiIiI8qJAzy559uwZrly5It2/fv064uPj4eDggOLFi2PgwIGYOHEiSpYsCU9PT3z//fdwdXVF69atC65oIiIiypMCDRknTpxA/fr1pfuDBw8GAISEhCAqKgrDhg1DWloavv76ayQnJ6NWrVrYvn07lEplQZVMREREeVSgIaNevXoQQrxxukKhwIQJEzBhwoQPWBURERHpw0c7JoOIiIgMG0MGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlEREQkC4YMIiIikgVDBhEREcmCIYOIiIhkwZBBREREsmDIICIiIlkwZBAREZEsGDKIiIhIFgwZREREJAuGDCIiIpIFQwYRERHJgiGDiIiIZMGQQURERLJgyCAiIiJZMGQQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWRhEyIiMjISHhweUSiWqV6+OY8eOFXRJRERE9A4ffcj45ZdfMHjwYIwdOxanTp1CxYoVERQUhAcPHhR0aURERPQWH33IiIiIQFhYGL766iv4+vpi0aJFsLS0xP/+97+CLo2IiIjewqSgC3ibly9f4uTJkxg5cqTUZmRkhEaNGuHw4cO5LpORkYGMjAzpfkpKCgAgNTVVr7WpM57rtT/Spu9tloPbTn5ybTuA2+9D4HvPcOl72+X0J4TQafmPOmQ8evQI2dnZcHZ21mh3dnbGpUuXcl1mypQpGD9+vFa7m5ubLDWSfFRzCroC0hW3nWHj9jNccm27p0+fQqVS5Xu5jzpk6GLkyJEYPHiwdF+tVuPx48dwdHSEQqEowMoKVmpqKtzc3HD79m3Y2toWdDmUD9x2hovbznBx2/1LCIGnT5/C1dVVp+U/6pBRqFAhGBsbIykpSaM9KSkJLi4uuS5jbm4Oc3NzjTY7Ozu5SjQ4tra2/+k3jCHjtjNc3HaGi9sOOu3ByPFRD/w0MzODn58fdu/eLbWp1Wrs3r0b/v7+BVgZERERvctHvScDAAYPHoyQkBBUrVoV1apVw5w5c5CWloavvvqqoEsjIiKit/joQ0aHDh3w8OFDjBkzBvfv30elSpWwfft2rcGg9Hbm5uYYO3as1qEk+vhx2xkubjvDxW2nHwqh63kpRERERG/xUY/JICIiIsPFkEFERESyYMggIiIiWTBkEAAgKioqz9cTyc+8JJ8bN25AoVAgPj6+oEsh+qSFhoaidevW0v169eph4MCBeVo2P/N+ij76s0vow+jQoQOaNm1a0GUYpHr16qFSpUqYM2dOQZdCMggNDUVycjI2btxY0KXQR2L9+vUwNTUt6DIMAkMGAQAsLCxgYWFR0GUQfTSys7P/0z9FQG/m4OBQ0CUYDB4u+Uj89ttvKF++PCwsLODo6IhGjRohLS1N2k03fvx4ODk5wdbWFr1798bLly+lZbdv345atWrBzs4Ojo6OaN68Oa5evSpNz9mtvn79etSvXx+WlpaoWLGixi/Zvn4I5MyZM6hfvz5sbGxga2sLPz8/nDhxQqPmHTt2wMfHB9bW1vj8889x7949+Z6gj1RoaCj279+PuXPnQqFQQKFQ4OrVq+jRowc8PT1hYWGB0qVLY+7cuRrLZWVloX///tI2Gz58OEJCQjR2yb5ru+Zm//79qFatGszNzVGkSBGMGDECWVlZ0vSnT5+iS5cusLKyQpEiRTB79uxPZnduvXr1EB4ejvDwcKhUKhQqVAjff/+99OuRT548Qbdu3WBvbw9LS0s0adIEiYmJ0vI574E//vgDvr6+MDc3R/fu3bFixQr8/vvv0vbdt28f9u3bB4VCgeTkZGn5+Ph4KBQK3LhxQ2pbunQp3NzcYGlpiTZt2iAiIkLjffb6bngAGDhwIOrVqyfdV6vVmDJlivR6qlixIn777Tdp+pMnT9ClSxc4OTnBwsICJUuWxPLly6Xpt2/fRvv27WFnZwcHBwe0atVKo0ZD97bnJ2c77d69G1WrVoWlpSVq1qyJhIQEjT4mTpyIwoULw8bGBj179sSIESNQqVKlN67z9ffMggULULJkSSiVSjg7O+OLL77QqnHYsGFwcHCAi4sLxo0bp6+H/9FjyPgI3Lt3D506dUL37t1x8eJF7Nu3D23btpU+HHfv3i21//zzz1i/fr3GL82mpaVh8ODBOHHiBHbv3g0jIyO0adMGarVaYz2jR4/GkCFDEB8fj1KlSqFTp04aX0Cv6tKlC4oVK4bjx4/j5MmTGDFihMbuwefPn2PmzJlYtWoVDhw4gFu3bmHIkCEyPDsft7lz58Lf3x9hYWG4d+8e7t27h2LFiqFYsWKIiYnBhQsXMGbMGIwaNQq//vqrtNy0adMQHR2N5cuX4+DBg0hNTdXaHZ/X7Zrjzp07aNq0KT777DOcOXMGCxcuxLJlyzBx4kRpnsGDB+PgwYP4448/sGvXLsTFxeHUqVOyPDcFYcWKFTAxMcGxY8cwd+5cRERE4KeffgLw7xf6iRMn8Mcff+Dw4cMQQqBp06bIzMyUln/+/DmmTZuGn376CefPn8ePP/6I9u3bSyH63r17qFmzZp5qOXjwIHr37o0BAwYgPj4egYGBmDRpUr4f05QpU7By5UosWrQI58+fx6BBg/Dll19i//79AIDvv/8eFy5cwLZt23Dx4kUsXLgQhQoVAgBkZmYiKCgINjY2iIuLw8GDB6V/Cl79R8WQvev5Af797Js1axZOnDgBExMTdO/eXZoWHR2NSZMmYdq0aTh58iSKFy+OhQsX5nn9J06cQP/+/TFhwgQkJCRg+/btqFOnjsY8K1asgJWVFY4ePYrp06djwoQJ2LVr1/s/eEMgqMCdPHlSABA3btzQmhYSEiIcHBxEWlqa1LZw4UJhbW0tsrOzc+3v4cOHAoA4e/asEEKI69evCwDip59+kuY5f/68ACAuXrwohBBi+fLlQqVSSdNtbGxEVFRUrv0vX75cABBXrlyR2iIjI4Wzs3PeH/QnpG7dumLAgAFvnadv374iODhYuu/s7CxmzJgh3c/KyhLFixcXrVq1emMfb9qup0+fFkIIMWrUKFG6dGmhVqulZSIjI6XXSmpqqjA1NRUxMTHS9OTkZGFpafnO+g1B3bp1hY+Pj8bjHz58uPDx8RGXL18WAMTBgwelaY8ePRIWFhbi119/FUL83+s6Pj5eo9+QkBCt7bJ3714BQDx58kRqO336tAAgrl+/LoQQokOHDqJZs2Yay3Xp0kXjfZZb3wMGDBB169YVQgiRnp4uLC0txaFDhzTm6dGjh+jUqZMQQogWLVqIr776KtfnZNWqVVqviYyMDGFhYSF27NiR6zKG5F3PT852io2NlaZt2bJFABAvXrwQQghRvXp10bdvX43lAwICRMWKFaX7r2+nV9/z69atE7a2tiI1NTXXGuvWrStq1aql0fbZZ5+J4cOH5/fhGiTuyfgIVKxYEQ0bNkT58uXRrl07LF26FE+ePNGYbmlpKd339/fHs2fPcPv2bQBAYmIiOnXqBC8vL9ja2sLDwwMAcOvWLY31VKhQQfq7SJEiAIAHDx7kWtPgwYPRs2dPNGrUCFOnTtXaTW9paYkSJUpo9Pemvv6LIiMj4efnBycnJ1hbW2PJkiXS9khJSUFSUhKqVasmzW9sbAw/Pz+NPvK6XXNcvHgR/v7+GuMIAgIC8OzZM/z999+4du0aMjMzNdarUqlQunRpfT3sAlejRg2Nx+/v74/ExERcuHABJiYmqF69ujTN0dERpUuXxsWLF6U2MzMzjffJ+0hISNB4rgFo3X+XK1eu4Pnz5wgMDIS1tbV0W7lypfSe7NOnD9auXYtKlSph2LBhOHTokLT8mTNncOXKFdjY2EjLOjg4ID09/Z2H3gxBXp4f4O2ffe+7nQIDA+Hu7g4vLy907doV0dHReP78ucY8r7+m/kuflxz4+REwNjbGrl27cOjQIezcuRPz5s3D6NGjcfTo0Twt36JFC7i7u2Pp0qVwdXWFWq1GuXLltHaHvnq4I+eD+E273seNG4fOnTtjy5Yt2LZtG8aOHYu1a9eiTZs2Wn3l9Cd4hXoAwNq1azFkyBDMmjUL/v7+sLGxwYwZM/K8PXPkdbuS/lhYWORpsKeR0b//n736mn/1sEteGRkZab1vXu3n2bNnAIAtW7agaNGiGvPl/KZGkyZNcPPmTWzduhW7du1Cw4YN0bdvX8ycORPPnj2Dn58foqOjtdbt5OSU73o/Nu96fnKCRn4++/LLxsYGp06dwr59+7Bz506MGTMG48aNw/Hjx6XxN7l9Xupr/R877sn4SCgUCgQEBGD8+PE4ffo0zMzMsGHDBgD//jfy4sULad4jR47A2toabm5u+Oeff5CQkIDvvvsODRs2hI+Pj8ZekPdRqlQpDBo0CDt37kTbtm01BpPR/zEzM0N2drZ0/+DBg6hZsya++eYbVK5cGd7e3hr/ValUKjg7O+P48eNSW3Z2tsbYCF22q4+PjzTW4NVabGxsUKxYMXh5ecHU1FRjvSkpKbh8+fJ7Pf6PyetB7siRIyhZsiR8fX2RlZWlMT3nOfb19X1rn69vX+D/vqBfHez8+vVKSpcurfFcA9C67+TkpDVg+tV+cgag3rp1C97e3ho3Nzc3jX5CQkKwevVqzJkzB0uWLAEAVKlSBYmJiShcuLDW8iqV6q2P2xDk9fl5m7xsp3cxMTFBo0aNMH36dPz111+4ceMG9uzZk68+PlXck/EROHr0KHbv3o3GjRujcOHCOHr0KB4+fAgfHx/89ddfePnyJXr06IHvvvsON27cwNixYxEeHg4jIyPY29vD0dERS5YsQZEiRXDr1i2MGDHivep58eIFhg4dii+++AKenp74+++/cfz4cQQHB+vpEX9aPDw8cPToUdy4cQPW1tYoWbIkVq5ciR07dsDT0xOrVq3C8ePH4enpKS3Tr18/TJkyBd7e3ihTpgzmzZuHJ0+eSP9l6bJdv/nmG8yZMwf9+vVDeHg4EhISMHbsWAwePBhGRkawsbFBSEgIhg4dCgcHBxQuXBhjx46FkZHRJ3Oq5q1btzB48GD06tULp06dwrx58zBr1iyULFkSrVq1QlhYGBYvXgwbGxuMGDECRYsWRatWrd7ap4eHB3bs2IGEhAQ4OjpCpVJJX2Ljxo3DpEmTcPnyZcyaNUtjuX79+qFOnTqIiIhAixYtsGfPHmzbtk3juW7QoAFmzJiBlStXwt/fH6tXr8a5c+dQuXJlAP/+lzxkyBAMGjQIarUatWrVQkpKCg4ePAhbW1uEhIRgzJgx8PPzQ9myZZGRkYHNmzfDx8cHwL8DuGfMmIFWrVphwoQJKFasGG7evIn169dj2LBhKFasmJ63wIf1rufH3d39nX3069cPYWFhqFq1KmrWrIlffvkFf/31F7y8vPJUw+bNm3Ht2jXUqVMH9vb22Lp1K9Rq9Sd1GPK9FOyQEBJCiAsXLoigoCDh5OQkzM3NRalSpcS8efOEEP834GjMmDHC0dFRWFtbi7CwMJGeni4tv2vXLuHj4yPMzc1FhQoVxL59+wQAsWHDBiGE9gBBIYR48uSJACD27t0rhNAc+JmRkSE6duwo3NzchJmZmXB1dRXh4eHSQKnXB4kKIcSGDRvEf/XllJCQIGrUqCEsLCwEAHHp0iURGhoqVCqVsLOzE3369BEjRozQGEiWmZkpwsPDha2trbC3txfDhw8X7dq1Ex07dpTm0WW77tu3T3z22WfCzMxMuLi4iOHDh4vMzExpempqqujcubOwtLQULi4uIiIiQlSrVk2MGDFC7qdJdnXr1hXffPON6N27t/S8jho1Shr0+PjxY9G1a1ehUqmEhYWFCAoKEpcvX5aWz+11LYQQDx48EIGBgcLa2lrjPfPnn3+K8uXLC6VSKWrXri1iYmI0Bn4KIcSSJUtE0aJFhYWFhWjdurWYOHGicHFx0eh/zJgxwtnZWahUKjFo0CARHh4uDfwUQgi1Wi3mzJkjSpcuLUxNTYWTk5MICgoS+/fvF0II8cMPPwgfHx9hYWEhHBwcRKtWrcS1a9ek5e/duye6desmChUqJMzNzYWXl5cICwsTKSkp7/mMfxze9vzkZYCuEEJMmDBBFCpUSFhbW4vu3buL/v37ixo1akjT3zbwMy4uTtStW1fY29sLCwsLUaFCBfHLL7/kOm+OVq1aiZCQED0+Cx8v/tT7R45XG/xvUKvV8PHxQfv27fHDDz98sPWmpaWhaNGimDVrFnr06PHB1isHQ7jyalhYGC5duoS4uLiCLoXeIjAwEC4uLli1alVBl2LweLiEqADcvHkTO3fuRN26dZGRkYH58+fj+vXr6Ny5s6zrPX36NC5duoRq1aohJSUFEyZMAIB3HjIg3cycOROBgYGwsrLCtm3bsGLFCixYsKCgy6JXPH/+HIsWLUJQUBCMjY3x888/IzY29r9zHQuZMWQQFQAjIyNERUVhyJAhEEKgXLlyiI2NlY6ly2nmzJlISEiAmZkZ/Pz8EBcXJ128ifTr2LFjmD59Op4+fQovLy/8+OOP6NmzZ0GXRa9QKBTYunUrJk2ahPT0dJQuXRrr1q1Do0aNCrq0TwIPlxAREZEseAorERERyYIhg4iIiGTBkEFERESyYMggIiIiWTBkEBERkSwYMoiIiEgWDBlE/2GhoaFo3bp1QZdBRJ8ohgwiIiKSBUMGEeUqIiIC5cuXh5WVFdzc3PDNN9/g2bNn0vSoqCjY2dlhx44d8PHxgbW1NT7//HONny7PyspC//79YWdnB0dHRwwfPhwhISEae088PDy0fm+kUqVKGDduXJ5rAYClS5fCzc0NlpaWaNOmDSIiImBnZ6cxz++//44qVapAqVTCy8sL48ePR1ZW1ns/V0SUO4YMIsqVkZERfvzxR5w/fx4rVqzAnj17MGzYMI15nj9/jpkzZ2LVqlU4cOAAbt26hSFDhkjTp02bhujoaCxfvhwHDx5EamqqTj/2965aDh48iN69e2PAgAGIj49HYGAgJk2apNFHXFwcunXrhgEDBuDChQtYvHgxoqKitOYjIj0q0N+AJaIC9fpPWL9NTEyMcHR0lO4vX75cABBXrlyR2iIjI4Wzs7N039nZWcyYMUO6n5WVJYoXL66xTnd3dzF79myNdVWsWFGMHTs2z7V06NBBNGvWTGOeLl26aPx0e8OGDcXkyZM15lm1apUoUqTIG9dDRO+HP5BGRLmKjY3FlClTcOnSJaSmpiIrKwvp6el4/vw5LC0tAQCWlpYoUaKEtEyRIkXw4MEDAEBKSgqSkpJQrVo1abqxsTH8/PygVqv1WktCQgLatGmjsUy1atWwefNm6f6ZM2dw8OBBjT0X2dnZWo+JiPSHh0uISMuNGzfQvHlzVKhQAevWrcPJkycRGRkJAHj58qU0n6mpqcZyCoUCIp+/uWhkZKS1TGZmZr5reZdnz55h/PjxiI+Pl25nz55FYmIilEplvmomorzhngwi0nLy5Emo1WrMmjULRkb//i/y66+/5qsPlUoFZ2dnHD9+HHXq1AHw756DU6dOoVKlStJ8Tk5OGoNFU1NTcf369XzVUrp0aRw/flyj7fX7VapUQUJCAry9vfP1OIhIdwwZRP9xKSkpiI+P12grVKgQMjMzMW/ePLRo0QIHDx7EokWL8t13v379MGXKFHh7e6NMmTKYN28enjx5AoVCIc3ToEEDREVFoUWLFrCzs8OYMWNgbGwsTff29n5nLf369UOdOnUQERGBFi1aYM+ePdi2bZvGesaMGYPmzZujePHi+OKLL2BkZIQzZ87g3LlzmDhxYr4fGxHlQUEPCiGighMSEiIAaN169OghIiIiRJEiRYSFhYUICgoSK1euFADEkydPhBD/Dvx8dWClEEJs2LBBvPqxkpmZKcLDw4Wtra2wt7cXw4cPF+3atRMdO3aU5klJSREdOnQQtra2ws3NTURFRWkN/HxXLUIIsWTJElG0aFFhYWEhWrduLSZOnChcXFw06tu+fbuoWbOmsLCwELa2tqJatWpiyZIlens+iUiTQoh8HkAlItKRWq2Gj48P2rdvjx9++EHWdYWFheHSpUuIi4uTdT1E9GY8XEJEsrl58yZ27tyJunXrIiMjA/Pnz8f169fRuXNnva9r5syZCAwMhJWVFbZt24YVK1ZgwYIFel8PEeUdQwYRycbIyAhRUVEYMmQIhBAoV64cYmNj4ePjo/d1HTt2DNOnT8fTp0/h5eWFH3/8ET179tT7eogo73i4hIiIiGTB62QQERGRLBgyiIiISBYMGURERCQLhgwiIiKSBUMGERERyYIhg4iIiGTBkEFERESyYMggIiIiWfw/29dVqolLNtAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 genetics 2 1 2 2 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 2 100.0 50.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIjCAYAAABI0sIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYXklEQVR4nO3dd1xW9f//8ecFsgQBRQVRVNw4UtM03DPKXaZZlpiGDUdqzkxNc+RMU9K0Pq40y8yWuXdm5s5ylytzlQJORHj//vDH9fUSVMDrpNDjfrtdtxvX+6zXOecaT855n3PZjDFGAAAAFnK53wUAAICsj8ABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAH8C37++We5u7vr6NGjTpnfnj17lC1bNv36669OmR8yh8KFC6t9+/b/+nJnzpwpm82mrVu3/uvLRvrYbDa9/fbb97uMVBE4MuD333/Xyy+/rCJFisjT01O+vr6qXr26Jk6cqCtXrtzv8tJtz549evvtt3XkyJF0T9unTx/ZbDY988wzzi8sCxkwYICeffZZFSpUyN721VdfqVSpUvLz81PTpk31119/pZiuWbNm6tSpU4r20qVLq3Hjxho0aFCalp/8hXHzI2/evKpbt66WLFmS8RVLReHChdWkSROnzhPOdeTIkRSvh9s9MvK5AGt9//33D2youJNs97uAzGbx4sVq1aqVPDw81K5dO5UtW1bXrl3TDz/8oN69e+u3337TtGnT7neZ6bJnzx4NGTJEderUUeHChdM8nTFGn376qQoXLqxvv/1WFy5cUI4cOawrNJPauXOnVq5cqR9//NHe9scff+iZZ57RM888o/DwcE2YMEEvvviili1bZh9n2bJlWr9+vQ4ePJjqfF955RU1atRIv//+u4oWLZqmWoYOHarQ0FAZY3T69GnNnDlTjRo10rfffktIyAT2798vF5d7/z8xT548mjNnjkPbuHHj9Oeff+q9995LMS4eLN9//72io6NTDR1XrlxRtmwP5lf7g1nVA+rw4cNq06aNChUqpNWrVytfvnz2YZ07d9ahQ4e0ePHie16OMUZXr16Vl5dXimFXr16Vu7u7Uz507tXatWv1559/avXq1YqIiNCXX36pyMjI+12WU12/fl1JSUlyd3fP8DxmzJihggUL6tFHH7W3LV++XAUKFNCsWbNks9kUFhamevXq6erVq/L09NT169fVo0cPDRo06LYf+A0aNFDOnDk1a9YsDR06NE21PPHEE6pcubL9eceOHRUYGKhPP/2UwJEJeHh4OGU+3t7eev755x3a5s+fr/Pnz6doR+bi6el5v0u4rfv/rZWJjB49WhcvXtTHH3/sEDaSFStWTK+//rr9+fXr1/XOO++oaNGi8vDwUOHChfXmm28qPj7eYbrkQ9DLli1T5cqV5eXlpQ8//FBr166VzWbT/Pnz9dZbbyl//vzKnj274uLiJEmbN2/W448/Lj8/P2XPnl21a9fWxo0bU9R14sQJdezYUcHBwfLw8FBoaKheffVVXbt2TTNnzlSrVq0kSXXr1rUfRl27du1dt8fcuXNVunRp1a1bVw0aNNDcuXNTjJO8Dp9//rmGDx+uAgUKyNPTU/Xr19ehQ4ccxj148KBatmypoKAgeXp6qkCBAmrTpo1iY2MlSU899ZQefvhhh2maNm0qm82mb775xt62efNm2Ww2h1MFMTEx6t69u0JCQuTh4aFixYpp1KhRSkpKso+TfJh57NixmjBhgn2/7dmzR5I0adIklSlTRtmzZ1fOnDlVuXJlzZs3767b6auvvlK9evVks9nsbVeuXJG/v7+9LVeuXDLG2E/JTZ48WYmJieratett5+vm5qY6dero66+/vmsNt+Pv7y8vLy/7f0TGGBUuXFjNmzdPMe7Vq1fl5+enl19+OcPLS7Zhwwa1atVKBQsWlIeHh0JCQtSjR48UpyTbt28vHx8fnThxQi1atJCPj4/y5MmjXr16KTEx0WHcf/75Ry+88IJ8fX3l7++vyMhI7dq1SzabTTNnzrSPV6dOHdWpUydFTe3bt09xhG/s2LGqVq2aAgIC5OXlpUqVKumLL75IMe2VK1fUrVs35c6dWzly5FCzZs104sSJVM+nnzhxQh06dFBgYKA8PDxUpkwZ/e9//0vTdru1D0fyqbKNGzeqZ8+eypMnj7y9vfXkk0/q7NmzaZpnesTHx6dpOUuWLFHNmjXl7e2tHDlyqHHjxvrtt98cxknet8eOHVOTJk3k4+Oj/PnzKzo6WpK0e/du1atXT97e3ipUqFCq77W0vK8l6eTJk9q3b58SEhLuuo5pfR1J0r59+/T0008rV65c8vT0VOXKlR0+i6T076O7bbv27dvbt9HNp76S3e41d7vvAElKSEjQkCFDVLx4cXl6eiogIEA1atTQihUr7rq90sUgzfLnz2+KFCmS5vEjIyONJPP000+b6Oho065dOyPJtGjRwmG8QoUKmWLFipmcOXOafv36malTp5o1a9aYNWvWGEmmdOnSpkKFCmb8+PFm5MiR5tKlS2bVqlXG3d3dhIeHm3Hjxpn33nvPPPTQQ8bd3d1s3rzZPu8TJ06Y4OBgkz17dtO9e3czdepUM3DgQBMWFmbOnz9vfv/9d9OtWzcjybz55ptmzpw5Zs6cOebUqVN3XLerV68af39/88477xhjjJk9e7ZxdXU1J0+edBgveR0qVqxoKlWqZN577z3z9ttvm+zZs5sqVarYx4uPjzehoaEmODjYDBs2zHz00UdmyJAh5pFHHjFHjhwxxhgzfvx44+LiYmJjY40xxiQlJZmcOXMaFxcX06tXL/u8xowZ4zDepUuXzEMPPWQCAgLMm2++aaZOnWratWtnbDabef311+3THT582L69ixQpYt59913z3nvvmaNHj5pp06bZ9+WHH35oJk6caDp27Gi6det2x+30559/Gknm/fffd2jfsGGDsdlsZt68eeaPP/4wrVu3NsWKFTPGGHPmzBnj7+9vvvvuuzvO2xhjhg0b5rCutzNjxgwjyaxcudKcPXvWnDlzxvz666/m5ZdfNi4uLmb58uX2cQcMGGDc3NzMP//84zCPzz//3Egy69evv+OyChUqZBo3bnzHcbp27WoaNWpkRowYYT788EPTsWNH4+rqap5++mmH8SIjI42np6cpU6aM6dChg5kyZYpp2bKlkWQ++OAD+3iJiYkmPDzcuLq6mi5dupjJkyebhg0bmvLlyxtJZsaMGfZxa9eubWrXrp2ipsjISFOoUCGHtgIFCpjXXnvNTJ482YwfP95UqVLFSEqxb1q3bm0kmRdeeMFER0eb1q1b25c9ePBg+3inTp0yBQoUMCEhIWbo0KFmypQpplmzZkaSee+99+64zYy5sW0jIyPtz5P3a8WKFU29evXMpEmTzBtvvGFcXV1N69at7zq/mzVu3DjF+mdkObNnzzY2m808/vjjZtKkSWbUqFGmcOHCxt/f3xw+fNg+XvK+LV26tHnllVdMdHS0qVatmn1/BQcHm969e5tJkyaZMmXKGFdXV/PHH3/Yp0/r+zp5WZIclp+a9LyOfv31V+Pn52dKly5tRo0aZSZPnmxq1aplbDab+fLLLy3bdj/++KNp2LChkWT/vJ4zZ459Hre+5u72HWCMMW+++aax2WwmKirKTJ8+3YwbN848++yz5t13373j9kovAkcaxcbGGkmmefPmaRp/586dRpJ56aWXHNp79eplJJnVq1fb2woVKmQkmaVLlzqMm/xlXaRIEXP58mV7e1JSkilevLiJiIgwSUlJ9vbLly+b0NBQ07BhQ3tbu3btjIuLi9myZUuKGpOnXbBggZFk1qxZk6Z1M8aYL774wkgyBw8eNMYYExcXZzw9PVN8aCavQ1hYmImPj7e3T5w40Ugyu3fvNsYYs2PHDiPJLFiw4LbL3LJli5Fkvv/+e2OMMb/88ouRZFq1amWqVq1qH69Zs2amYsWK9ufvvPOO8fb2NgcOHHCYX79+/Yyrq6s5duyYMeb/Aoevr685c+aMw7jNmzc3ZcqUSevmsVu5cqWRZL799tsUw5KDniSTK1cu+2siKirKPP7442ma/7x584wkh5CZmuQPvVsfHh4eZubMmQ7j7t+/30gyU6ZMcWhv1qyZKVy4sMNrLjVpCRw3v56TjRw50thsNnP06FF7W/IXxdChQx3GTQ6wyRYuXGgkmQkTJtjbEhMTTb169e4pcNxa57Vr10zZsmVNvXr17G3btm0zkkz37t0dxm3fvn2KD/+OHTuafPnymb///tth3DZt2hg/P79Ut8vNbhc4GjRo4LBfevToYVxdXU1MTMwd53eztASOuy3nwoULxt/f30RFRTlMf+rUKePn5+fQnrxvR4wYYW87f/688fLyMjabzcyfP9/evm/fvhTbMq3v65uXdbfAkZ7XUf369U25cuXM1atX7W1JSUmmWrVqpnjx4pZuu86dO5vbHS+4dTul5TugfPnyd33POgOnVNIo+TRGWjtFfv/995Kknj17OrS/8cYbkpSir0doaKgiIiJSnVdkZKRDf46dO3fq4MGDeu655/TPP//o77//1t9//61Lly6pfv36Wr9+vZKSkpSUlKSvvvpKTZs2dThvn+zmw3DpNXfuXFWuXFnFihWTJPuhv9ROq0jSiy++6NAPombNmpJudJ6UJD8/P0k3Okpevnw51XlUrFhRPj4+Wr9+vaQbh+ULFCigdu3aafv27bp8+bKMMfrhhx/s85ekBQsWqGbNmsqZM6d9W/39999q0KCBEhMT7fNL1rJlyxT9Jvz9/fXnn39qy5Ytad5G0o3Ds5KUM2fOFMMmTpyoo0ePavPmzTp69Kjq1q2rnTt3avbs2XrvvfcUGxur559/Xvnz51edOnW0d+/eFPNInu/ff/+dpnqio6O1YsUKrVixQp988onq1q2rl156SV9++aV9nBIlSqhq1aoO+/LcuXNasmSJ2rZte0+vm2Q3v54vXbqkv//+W9WqVZMxRjt27Egx/iuvvOLwvGbNmvbXjiQtXbpUbm5uioqKsre5uLioc+fOTqvz/Pnzio2NVc2aNbV9+3aHZUvSa6+95jDtrafDjDFauHChmjZtKmOMw2sxIiJCsbGxDvNNj06dOjnsl5o1ayoxMdFpl2GndTkrVqxQTEyMnn32WYf1c3V1VdWqVbVmzZoU83zppZfsf/v7+6tkyZLy9vZW69at7e0lS5aUv7+/wz5Pz/t65syZ9tOFd5LW19G5c+e0evVqtW7dWhcuXLAv+59//lFERIQOHjyoEydOWL7t7iat3wH+/v767bffbttB3VnoNJpGvr6+kqQLFy6kafyjR4/KxcXF/oWcLCgoSP7+/ik+CEJDQ287r1uHJb8o7tRBMzY2VteuXVNcXJzKli2bpprTKiYmRt9//726dOni0A+jevXqWrhwoQ4cOKASJUo4TFOwYEGH58lflOfPn5d0Yx179uyp8ePHa+7cuapZs6aaNWum559/3h5GXF1dFR4erg0bNki6EThq1qypGjVqKDExUT/99JMCAwN17tw5h8Bx8OBB/fLLL7ftfHnmzBmH56nti759+2rlypWqUqWKihUrpscee0zPPfecqlevnqZtduMfj5QKFizosG26deumV155RaVKldLzzz+v48eP6+uvv9asWbPUtGlT7du3z6EHevJ80xoCqlSp4vDB8+yzz6pixYrq0qWLmjRpYg+F7dq1U5cuXXT06FEVKlRICxYsUEJCgl544YU0Ledujh07pkGDBumbb76xvwaSJffZSebp6Zli3+XMmdNhuqNHjypfvnzKnj27w3i3vv/S67vvvtOwYcO0c+dOh75XN2/v5Pf6ra+bW5d99uxZxcTEaNq0abe9ku3W12Ja3e395Sx3W07yZ1O9evVSnT75czRZavvWz89PBQoUSPGa9vPzc1if9L6v0yKtr6NDhw7JGKOBAwdq4MCBt11+/vz57c+dve3S4uzZs2n6Dhg6dKiaN2+uEiVKqGzZsnr88cf1wgsv6KGHHkr3Mu+EwJFGvr6+Cg4OTveNltL6RZDaFSm3G5bcIWrMmDGqUKFCqtP4+Pjo3LlzaSsynRYsWKD4+HiNGzdO48aNSzF87ty5GjJkiEObq6trqvO6+Yt43Lhxat++vb7++mstX75c3bp108iRI/XTTz+pQIECkqQaNWpo+PDhunr1qjZs2KABAwbI399fZcuW1YYNGxQYGChJDoEjKSlJDRs2VJ8+fVKt4dZwlNq+CAsL0/79+/Xdd99p6dKlWrhwoT744AMNGjQoxbreLCAgQFLaPvg/++wz7d27V998840SExP1+eefa/ny5apcubLKlCmj6dOn66efflKNGjXs0yTPN3fu3Hedf2pcXFxUt25dTZw4UQcPHlSZMmUkSW3atFGPHj00d+5cvfnmm/rkk09UuXJllSxZMkPLuVliYqIaNmyoc+fOqW/fvipVqpS8vb114sQJtW/fPkWHv9u9djLKZrOlGgBv7YS6YcMGNWvWTLVq1dIHH3ygfPnyyc3NTTNmzEhTZ+FbJa/X888/f9t/FjL6AZ+W95cz3G05yes4Z84cBQUFpRjv1ss1bze/tKxPet/XzpS8nr169brtkelbQ4qzt50z1apVS7///rv9s/ejjz7Se++9p6lTpzocgbpXBI50aNKkiaZNm6ZNmzYpPDz8juMWKlRISUlJOnjwoMLCwuztp0+fVkxMjMMNoNIr+Z4Lvr6+atCgwW3Hy5Mnj3x9fe8aktJ7iHzu3LkqW7asBg8enGLYhx9+qHnz5t3xS/hOypUrp3Llyumtt97Sjz/+qOrVq2vq1KkaNmyYpBtB4tq1a/r000914sQJe7CoVauWPXCUKFHCHjykG9vr4sWLd9xWaeHt7W2/d8a1a9f01FNPafjw4erfv/9tL0UrVaqUpBuXVN/J5cuX1bt3b73zzjvy9/fX6dOnlZCQoODgYEk3QlDOnDlTHKY9fPiwXFxc7unD9fr165Kkixcv2tty5cplP0XWtm1bbdy4URMmTMjwMm62e/duHThwQLNmzVK7du3s7ffSI75QoUJas2aNLl++7PDf6a1XQkk3/rO8+dB8sluPOi5cuFCenp5atmyZw+WoM2bMSLHspKQkHT58WMWLF7/tsvPkyaMcOXIoMTHxnl+LD6rkz6a8efNavo7Oel/fLK2voyJFiki6caWYs5afnm2X1s/stH4HSDfe8y+++KJefPFFXbx4UbVq1dLbb7/t1MBBH4506NOnj7y9vfXSSy/p9OnTKYb//vvvmjhxoiSpUaNGkpTiQ3r8+PGSpMaNG2e4jkqVKqlo0aIaO3asw5dEsuRLrVxcXNSiRQt9++23qd6SODlZe3t7S7pxquRujh8/rvXr16t169Z6+umnUzxefPFFHTp0SJs3b07XOsXFxdm/+JKVK1dOLi4uDoeyq1atKjc3N40aNUq5cuWy/0des2ZN/fTTT1q3bp3D0Q1Jat26tTZt2uRwU61kMTExKZabmuS+GMnc3d1VunRpGWPueKld/vz5FRISctdbQo8aNUo5c+a0nzsOCAhQtmzZtG/fPkk3+micPXs2xX8+27ZtU5kyZeynndIrISFBy5cvl7u7u0MwlqQXXnhBe/bsUe/eveXq6qo2bdpkaBm3Sv5P7+b/Vo0x9vdORkRERCghIUHTp0+3tyUlJdkvH7xZ0aJFtW/fPodLEnft2pXiknJXV1fZbDaHIx9HjhzRV199lWLZkvTBBx84tE+aNCnF/Fq2bKmFCxem+gVgxWWs/7aIiAj5+vpqxIgRqb4vnLmO6Xlfp/Wy2LS+jvLmzas6deroww8/1MmTJ1PMJyPrmZ5tl9bP7LR+B9z6+ebj46NixYqluIXDveIIRzoULVpU8+bN0zPPPKOwsDCHO43++OOPWrBggf0a+fLlyysyMlLTpk1TTEyMateurZ9//lmzZs1SixYtVLdu3QzX4eLioo8++khPPPGEypQpoxdffFH58+fXiRMntGbNGvn6+urbb7+VJI0YMULLly9X7dq11alTJ4WFhenkyZNasGCBfvjhB/n7+6tChQpydXXVqFGjFBsbKw8PD9WrV0958+ZNsex58+bJGKNmzZqlWlujRo2ULVs2zZ07V1WrVk3zOq1evVpdunRRq1atVKJECV2/fl1z5syxf0gny549uypVqqSffvrJfg8O6cYRjkuXLunSpUspAkfv3r31zTffqEmTJmrfvr0qVaqkS5cuaffu3friiy905MiRu56SeOyxxxQUFKTq1asrMDBQe/fu1eTJk9W4ceO7diRu3ry5Fi1aJGNMqv+ZHDt2TGPGjNHixYvtX8bZsmVT8+bN1b17dx07dkyLFi1ScHCww5G1hIQErVu3LkVnxTtZsmSJPcScOXNG8+bN08GDB9WvX78U54gbN26sgIAALViwQE888USqr4fbOXTokP2o1M0qVqyoxx57TEWLFlWvXr104sQJ+fr6auHChffU36BFixaqUqWK3njjDR06dEilSpXSN998Yz+tePN279Chg8aPH6+IiAh17NhRZ86c0dSpU1WmTBl75/Dk9R8/frwef/xxPffcczpz5oyio6NVrFgx/fLLL/bxKlWqpJYtW2rChAn6559/9Oijj2rdunU6cOBAimW/++67WrNmjapWraqoqCiVLl1a586d0/bt27Vy5UrLToP+W3x9fTVlyhS98MILevjhh9WmTRvlyZNHx44d0+LFi1W9enVNnjzZKctKz/u6f//+mjVrlg4fPnzHjqPpeR1FR0erRo0aKleunKKiolSkSBGdPn1amzZt0p9//qldu3ala33Ss+0qVaok6Uafr4iIiDv+Q5CW74DSpUurTp06qlSpknLlyqWtW7fqiy++UJcuXdK1Dndl+XUwWdCBAwdMVFSUKVy4sHF3dzc5cuQw1atXN5MmTXK4RCohIcEMGTLEhIaGGjc3NxMSEmL69+/vMI4xt7+MMPmS0ttdKrpjxw7z1FNPmYCAAOPh4WEKFSpkWrdubVatWuUw3tGjR027du1Mnjx5jIeHhylSpIjp3Lmzw2Wq06dPN0WKFDGurq53vES2XLlypmDBgnfcPnXq1DF58+Y1CQkJt12H5EtQky8z++OPP0yHDh1M0aJFjaenp8mVK5epW7euWblyZYr59+7d20gyo0aNcmgvVqyYkWR+//33FNNcuHDB9O/f3xQrVsy4u7ub3Llzm2rVqpmxY8eaa9euOdQ0ZsyYFNN/+OGHplatWvZtXbRoUdO7d++73v/CGGO2b99uJJkNGzakOrxVq1bmqaeeStF++vRp07RpU5MjRw7z8MMPm61btzoMX7JkicOlyXeS2mWxnp6epkKFCmbKlCm3vdT1tddeM5LMvHnz7rqMZMmXeaf26NixozHGmD179pgGDRoYHx8fkzt3bhMVFWV27dqV4tLDyMhI4+3tnWIZgwcPTnFZ4NmzZ81zzz1ncuTIYfz8/Ez79u3Nxo0bjSSHSyyNMeaTTz4xRYoUMe7u7qZChQpm2bJlqV4W+/HHH5vixYsbDw8PU6pUKTNjxoxUl33p0iXTuXNnkytXLuPj42NatGhhv7z41nsZnD592nTu3NmEhIQYNzc3ExQUZOrXr2+mTZuWpm2b2mWxt17ymPy+S8+l7mm5LDaty1mzZo2JiIgwfn5+xtPT0xQtWtS0b9/e4TV8u31bu3btVC9BT+1zMi3v6+RlKQ2XxRqTvtfR77//btq1a2eCgoKMm5ubyZ8/v2nSpIn54osvLN12169fN127djV58uQxNpvN4fWoWy6LNebu3wHDhg0zVapUMf7+/sbLy8uUKlXKDB8+3GEbOoPt/xcIwEL169dXcHBwit+vuBctWrSQzWbTokWLnDbPW/Xo0UMff/yxTp06laLnfmbw1Vdf6cknn9QPP/yQ5iuKnGXnzp2qWLGiPvnkE7Vt2/ZfXTac636+jrISAgfwL9i8ebNq1qypgwcP3lOH4WR79+5VuXLltHPnTqdf9pzs6tWrCgkJUZMmTVJ0lHwQXblyxeEKo8TERD322GPaunWrTp06dccrwZy9bOnGLajnzJmjI0eOKCQkxLJlw7nu5+soq6MPB/AvqFq1qv13C5whLCwsTZ1dM+LMmTNauXKlvvjiC/3zzz8Ovw/0IOvatauuXLmi8PBwxcfH68svv9SPP/6oESNGWP4lMXr0aG3btk1169ZVtmzZtGTJEi1ZskSdOnUibGQy9/N1lOU59QQNgEwv+dxy3rx5zaRJk+53OWk2d+5c8/DDDxtfX1/j7u5uSpcu/a/Vv3z5clO9enWTM2dO4+bmZooWLWrefvttk5CQ8K8sH85zP19HWR2nVAAAgOW4DwcAALAcgQMAAFiOTqO6cSe5v/76Szly5HDKL2ECAPBfYYzRhQsXFBwcLBeX2x/HIHBI+uuvv+hJDgDAPTh+/Lj9hzZTQ+CQ7LemPn78eIZ+AhgAgP+quLg4hYSE3PVnHggc+r/74/v6+hI4AADIgLt1SaDTKAAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMBy9zVwrF+/Xk2bNlVwcLBsNpu++uorh+HGGA0aNEj58uWTl5eXGjRooIMHDzqMc+7cObVt21a+vr7y9/dXx44ddfHixX9xLQAAwN3c18Bx6dIllS9fXtHR0akOHz16tN5//31NnTpVmzdvlre3tyIiInT16lX7OG3bttVvv/2mFStW6LvvvtP69evVqVOnf2sVAABAGtiMMeZ+FyFJNptNixYtUosWLSTdOLoRHBysN954Q7169ZIkxcbGKjAwUDNnzlSbNm20d+9elS5dWlu2bFHlypUlSUuXLlWjRo30559/Kjg4OE3LjouLk5+fn2JjY+Xr62vJ+gEAkBWl9Tv0ge3DcfjwYZ06dUoNGjSwt/n5+alq1aratGmTJGnTpk3y9/e3hw1JatCggVxcXLR58+bbzjs+Pl5xcXEODwAAYJ1s97uA2zl16pQkKTAw0KE9MDDQPuzUqVPKmzevw/Bs2bIpV65c9nFSM3LkSA0ZMsTJFadUuN9iy5fxX3fk3cb3uwQ8YHjfWc/K9x37z3r363PzgT3CYaX+/fsrNjbW/jh+/Pj9LgkAgCztgQ0cQUFBkqTTp087tJ8+fdo+LCgoSGfOnHEYfv36dZ07d84+Tmo8PDzk6+vr8AAAANZ5YANHaGiogoKCtGrVKntbXFycNm/erPDwcElSeHi4YmJitG3bNvs4q1evVlJSkqpWrfqv1wwAAFJ3X/twXLx4UYcOHbI/P3z4sHbu3KlcuXKpYMGC6t69u4YNG6bixYsrNDRUAwcOVHBwsP1KlrCwMD3++OOKiorS1KlTlZCQoC5duqhNmzZpvkIFAABY774Gjq1bt6pu3br25z179pQkRUZGaubMmerTp48uXbqkTp06KSYmRjVq1NDSpUvl6elpn2bu3Lnq0qWL6tevLxcXF7Vs2VLvv//+v74uAADg9u5r4KhTp47udBsQm82moUOHaujQobcdJ1euXJo3b54V5QEAACd5YPtwAACArIPAAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5R7owJGYmKiBAwcqNDRUXl5eKlq0qN555x0ZY+zjGGM0aNAg5cuXT15eXmrQoIEOHjx4H6sGAAC3eqADx6hRozRlyhRNnjxZe/fu1ahRozR69GhNmjTJPs7o0aP1/vvva+rUqdq8ebO8vb0VERGhq1ev3sfKAQDAzbLd7wLu5Mcff1Tz5s3VuHFjSVLhwoX16aef6ueff5Z04+jGhAkT9NZbb6l58+aSpNmzZyswMFBfffWV2rRpc99qBwAA/+eBPsJRrVo1rVq1SgcOHJAk7dq1Sz/88IOeeOIJSdLhw4d16tQpNWjQwD6Nn5+fqlatqk2bNt12vvHx8YqLi3N4AAAA6zzQRzj69eunuLg4lSpVSq6urkpMTNTw4cPVtm1bSdKpU6ckSYGBgQ7TBQYG2oelZuTIkRoyZIh1hQMAAAcP9BGOzz//XHPnztW8efO0fft2zZo1S2PHjtWsWbPuab79+/dXbGys/XH8+HEnVQwAAFLzQB/h6N27t/r162fvi1GuXDkdPXpUI0eOVGRkpIKCgiRJp0+fVr58+ezTnT59WhUqVLjtfD08POTh4WFp7QAA4P880Ec4Ll++LBcXxxJdXV2VlJQkSQoNDVVQUJBWrVplHx4XF6fNmzcrPDz8X60VAADc3gN9hKNp06YaPny4ChYsqDJlymjHjh0aP368OnToIEmy2Wzq3r27hg0bpuLFiys0NFQDBw5UcHCwWrRocX+LBwAAdg904Jg0aZIGDhyo1157TWfOnFFwcLBefvllDRo0yD5Onz59dOnSJXXq1EkxMTGqUaOGli5dKk9Pz/tYOQAAuNkDHThy5MihCRMmaMKECbcdx2azaejQoRo6dOi/VxgAAEiXB7oPBwAAyBoIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFguW0YmOnz4sDZs2KCjR4/q8uXLypMnjypWrKjw8HB5eno6u0YAAJDJpStwzJ07VxMnTtTWrVsVGBio4OBgeXl56dy5c/r999/l6emptm3bqm/fvipUqJBVNQMAgEwmzYGjYsWKcnd3V/v27bVw4UKFhIQ4DI+Pj9emTZs0f/58Va5cWR988IFatWrl9IIBAEDmk+bA8e677yoiIuK2wz08PFSnTh3VqVNHw4cP15EjR5xRHwAAyALSHDjuFDZuFRAQoICAgAwVBAAAsp4MdRq92eLFi7V27VolJiaqevXqatmypTPqAgAAWcg9XRY7cOBA9enTRzabTcYY9ejRQ127dnVWbQAAIItI1xGOrVu3qnLlyvbnn332mXbt2iUvLy9JUvv27VWnTh1NmjTJuVUCAIBMLV1HOF555RV1795dly9fliQVKVJE48aN0/79+7V7925NmTJFJUqUsKRQAACQeaUrcGzevFn58uXTww8/rG+//Vb/+9//tGPHDlWrVk01a9bUn3/+qXnz5llVKwAAyKTSdUrF1dVVffv2VatWrfTqq6/K29tbkydPVnBwsFX1AQCALCBDnUaLFCmiZcuW6cknn1StWrUUHR3t7LoAAEAWkq7AERMToz59+qhp06Z666239OSTT2rz5s3asmWLHn30Ue3evduqOgEAQCaWrsARGRmpzZs3q3Hjxtq/f79effVVBQQEaObMmRo+fLieeeYZ9e3b16paAQBAJpWuPhyrV6/Wjh07VKxYMUVFRalYsWL2YfXr19f27ds1dOhQpxcJAAAyt3Qd4ShevLimTZumAwcOaOrUqSl+EdbT01MjRoxwaoEAACDzS1fg+N///qfVq1erYsWKmjdvnqZMmWJVXQAAIAtJ1ymVChUqaOvWrVbVAgAAsqg0H+EwxlhZBwAAyMLSHDjKlCmj+fPn69q1a3cc7+DBg3r11Vf17rvv3nNxAAAga0jzKZVJkyapb9++eu2119SwYUNVrlxZwcHB8vT01Pnz57Vnzx798MMP+u2339SlSxe9+uqrVtYNAAAykTQHjvr162vr1q364Ycf9Nlnn2nu3Lk6evSorly5oty5c6tixYpq166d2rZtq5w5c1pZMwAAyGTS1WlUkmrUqKEaNWpYUQsAAMiiMvRbKgAAAOlB4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIZChzbt2/X7t277c+//vprtWjRQm+++eZdbwwGAAD+ezIUOF5++WUdOHBAkvTHH3+oTZs2yp49uxYsWKA+ffo4tUAAAJD5ZShwHDhwQBUqVJAkLViwQLVq1dK8efM0c+ZMLVy40Jn1AQCALCBDgcMYo6SkJEnSypUr1ahRI0lSSEiI/v77b+dVBwAAsoQMBY7KlStr2LBhmjNnjtatW6fGjRtLkg4fPqzAwECnFnjixAk9//zzCggIkJeXl8qVK6etW7fahxtjNGjQIOXLl09eXl5q0KCBDh486NQaAADAvclQ4JgwYYK2b9+uLl26aMCAASpWrJgk6YsvvlC1atWcVtz58+dVvXp1ubm5acmSJdqzZ4/GjRvn8Fsto0eP1vvvv6+pU6dq8+bN8vb2VkREhK5eveq0OgAAwL1J92+pJCYmKiYmRuvXr0/xI21jxoyRq6ur04obNWqUQkJCNGPGDHtbaGio/W9jjCZMmKC33npLzZs3lyTNnj1bgYGB+uqrr9SmTRun1QIAADIu3Uc4XF1d9dhjjykmJibFME9PT7m5uTmjLknSN998o8qVK6tVq1bKmzevKlasqOnTp9uHHz58WKdOnVKDBg3sbX5+fqpatao2bdp02/nGx8crLi7O4QEAAKyToVMqZcuW1R9//OHsWlL4448/NGXKFBUvXlzLli3Tq6++qm7dumnWrFmSpFOnTklSin4jgYGB9mGpGTlypPz8/OyPkJAQ61YCAABkLHAMGzZMvXr10nfffaeTJ09adrQgKSlJDz/8sEaMGKGKFSuqU6dOioqK0tSpU+9pvv3791dsbKz9cfz4cSdVDAAAUpPuPhyS7JfBNmvWTDabzd5ujJHNZlNiYqJTisuXL59Kly7t0BYWFma/10dQUJAk6fTp08qXL599nNOnT9vvE5IaDw8PeXh4OKVGAABwdxkKHGvWrHF2HamqXr269u/f79B24MABFSpUSNKNDqRBQUFatWqVPWDExcVp8+bNevXVV/+VGgEAwN1lKHDUrl3b2XWkqkePHqpWrZpGjBih1q1b6+eff9a0adM0bdo0SZLNZlP37t01bNgwFS9eXKGhoRo4cKCCg4PVokWLf6VGAABwdxn+tdgNGzbo+eefV7Vq1XTixAlJ0pw5c/TDDz84rbhHHnlEixYt0qeffqqyZcvqnXfe0YQJE9S2bVv7OH369FHXrl3VqVMnPfLII7p48aKWLl0qT09Pp9UBAADuTYYCx8KFCxURESEvLy9t375d8fHxkqTY2FiNGDHCqQU2adJEu3fv1tWrV7V3715FRUU5DLfZbBo6dKhOnTqlq1evauXKlSpRooRTawAAAPcmw1epTJ06VdOnT3e470b16tW1fft2pxUHAACyhgwFjv3796tWrVop2v38/FK9IRgAAPhvy1DgCAoK0qFDh1K0//DDDypSpMg9FwUAALKWDAWOqKgovf7669q8ebNsNpv++usvzZ07V7169eJyVAAAkEKGLovt16+fkpKSVL9+fV2+fFm1atWSh4eHevXqpa5duzq7RgAAkMllKHDYbDYNGDBAvXv31qFDh3Tx4kWVLl1aPj4+zq4PAABkARkKHKtXr1a1atXk6emZ4tbjAAAAt8pQ4GjWrJmuX7+uRx55RHXq1FHt2rVVvXp1eXl5Obs+AACQBWSo0+j58+e1atUqPfHEE/r555/15JNPyt/fX9WrV9dbb73l7BoBAEAml6HA4ebmpurVq+vNN9/UsmXL9NNPP+nZZ5/Vzz//rJEjRzq7RgAAkMll6JTKgQMHtHbtWq1du1br1q1TfHy8atasqbFjx6pOnTpOLhEAAGR2GQocpUqVUp48efT666+rX79+KleunGw2m7NrAwAAWUSGTql069ZN+fPn19ChQ/XKK69owIABWr58uS5fvuzs+gAAQBaQocAxYcIEbd++XadOnVL//v117do1DRgwQLlz51b16tWdXSMAAMjkMhQ4kiUmJiohIUHx8fG6evWq4uPjtX//fmfVBgAAsogMn1J56KGHFBgYqJdffll//fWXoqKitGPHDp09e9bZNQIAgEwuQ51GT548qU6dOqlOnToqW7ass2sCAABZTIYCx4IFC5xdBwAAyMIydEpl1qxZWrx4sf15nz595O/vr2rVquno0aNOKw4AAGQNGQocI0aMsP9uyqZNmxQdHa3Ro0crd+7c6tGjh1MLBAAAmV+GTqkcP35cxYoVkyR99dVXatmypTp16qTq1atzp1EAAJBCho5w+Pj46J9//pEkLV++XA0bNpQkeXp66sqVK86rDgAAZAkZOsLRsGFDvfTSS6pYsaIOHDigRo0aSZJ+++03FS5c2Jn1AQCALCBDRziio6MVHh6us2fPauHChQoICJAkbdu2Tc8++6xTCwQAAJlfho5w+Pv7a/LkySnahwwZcs8FAQCArCdDgUOSYmJi9PPPP+vMmTNKSkqyt9tsNr3wwgtOKQ4AAGQNGQoc3377rdq2bauLFy/K19fX4afpCRwAAOBWGerD8cYbb6hDhw66ePGiYmJidP78efvj3Llzzq4RAABkchkKHCdOnFC3bt2UPXt2Z9cDAACyoAwFjoiICG3dutXZtQAAgCwqQ304GjdurN69e2vPnj0qV66c3NzcHIY3a9bMKcUBAICsIUOBIyoqSpI0dOjQFMNsNpsSExPvrSoAAJClZChw3HwZLAAAwN1kqA/H7cTExKR6QzAAAPDf5pTAsWrVKj333HPKly+fBg8e7IxZAgCALCTDgeP48eMaOnSoQkND9dhjj8lms2nRokU6deqUM+sDAABZQLoCR0JCghYsWKCIiAiVLFlSO3fu1JgxY+Ti4qIBAwbo8ccfT3HFCgAAQLo6jebPn1+lSpXS888/r/nz5ytnzpySxC/EIssp3G/x/S4hyzvybuP7XQKAf1G6jnBcv35dNptNNptNrq6uVtUEAACymHQFjr/++kudOnXSp59+qqCgILVs2VKLFi1y+PE2AACAW6UrcHh6eqpt27ZavXq1du/erbCwMHXr1k3Xr1/X8OHDtWLFCm76BQAAUsjwVSpFixbVsGHDdPToUS1evFjx8fFq0qSJAgMDnVkfAADIAjJ0p9Gbubi46IknntATTzyhs2fPas6cOc6oCwAAZCFOvdNonjx51LNnT2fOEgAAZAFODRwAAACpIXAAAADLETgAAIDlMhQ4hg4dqsuXL6dov3LlioYOHXrPRQEAgKwlQ4FjyJAhunjxYor2y5cva8iQIfdcFAAAyFoyFDiMManeXXTXrl3KlSvXPRcFAACylnTdhyNnzpz231IpUaKEQ+hITEzUxYsX9corrzi9SAAAkLmlK3BMmDBBxhh16NBBQ4YMkZ+fn32Yu7u7ChcurPDwcKcXCQAAMrd0BY7IyEhJUmhoqKpXr65s2e75RqUAAOA/IEN9OC5duqRVq1alaF+2bJmWLFlyz0UBAICsJUOBo1+/fqn+KqwxRv369bvnogAAQNaSocBx8OBBlS5dOkV7qVKldOjQoXsuCgAAZC0ZChx+fn76448/UrQfOnRI3t7e91wUAADIWjIUOJo3b67u3bvr999/t7cdOnRIb7zxhpo1a+a04gAAQNaQocAxevRoeXt7q1SpUgoNDVVoaKjCwsIUEBCgsWPHOrtGAACQyWXoulY/Pz/9+OOPWrFihXbt2iUvLy899NBDqlWrlrPrAwAAWUCGb6Rhs9n02GOPqVatWvLw8Ej1VucAAABSBk+pJCUl6Z133lH+/Pnl4+Ojw4cPS5IGDhyojz/+2KkFAgCAzC9DgWPYsGGaOXOmRo8eLXd3d3t72bJl9dFHHzmtOAAAkDVkKHDMnj1b06ZNU9u2beXq6mpvL1++vPbt2+e04gAAQNaQocBx4sQJFStWLEV7UlKSEhIS7rkoAACQtWQocJQuXVobNmxI0f7FF1+oYsWK91wUAADIWjJ0lcqgQYMUGRmpEydOKCkpSV9++aX279+v2bNn67vvvnN2jQAAIJPL8J1Gv/32W61cuVLe3t4aNGiQ9u7dq2+//VYNGzZ0do0AACCTS/cRjuvXr2vEiBHq0KGDVqxYYUVNAAAgi0n3EY5s2bJp9OjRun79uhX1AACALChDp1Tq16+vdevWObsWAACQRWWo0+gTTzyhfv36affu3apUqVKKn6TnF2MBAMDNMhQ4XnvtNUnS+PHjUwyz2WxKTEy8t6oAAECWkqHAkZSU5Ow6AABAFpbuPhwJCQnKli2bfv31VyvqAQAAWVC6A4ebm5sKFizIaRMAAJBmGbpKZcCAAXrzzTd17tw5Z9cDAACyoAwFjsmTJ2v9+vUKDg5WyZIl9fDDDzs8rPLuu+/KZrOpe/fu9rarV6+qc+fOCggIkI+Pj1q2bKnTp09bVgMAAEi/DHUabdGihZPLuLstW7boww8/1EMPPeTQ3qNHDy1evFgLFiyQn5+funTpoqeeekobN27812sEAACpy1DgGDx4sLPruKOLFy+qbdu2mj59uoYNG2Zvj42N1ccff6x58+apXr16kqQZM2YoLCxMP/30kx599NF/tU4AAJC6DJ1SSbZt2zZ98skn+uSTT7Rjxw5n1ZRC586d1bhxYzVo0CDF8hMSEhzaS5UqpYIFC2rTpk23nV98fLzi4uIcHgAAwDoZOsJx5swZtWnTRmvXrpW/v78kKSYmRnXr1tX8+fOVJ08epxU4f/58bd++XVu2bEkx7NSpU3J3d7fXkCwwMFCnTp267TxHjhypIUOGOK1GAABwZxk6wtG1a1dduHBBv/32m86dO6dz587p119/VVxcnLp16+a04o4fP67XX39dc+fOlaenp9Pm279/f8XGxtofx48fd9q8AQBAShk6wrF06VKtXLlSYWFh9rbSpUsrOjpajz32mNOK27Ztm86cOeNw5UtiYqLWr1+vyZMna9myZbp27ZpiYmIcjnKcPn1aQUFBt52vh4eHPDw8nFYnAAC4swzf2tzNzS1Fu5ubm1Nve16/fn3t3r3boe3FF19UqVKl1LdvX4WEhMjNzU2rVq1Sy5YtJUn79+/XsWPHFB4e7rQ6AADAvclQ4KhXr55ef/11ffrppwoODpYknThxQj169FD9+vWdVlyOHDlUtmxZhzZvb28FBATY2zt27KiePXsqV65c8vX1VdeuXRUeHs4VKgAAPEAyFDgmT56sZs2aqXDhwgoJCZF0o79F2bJl9cknnzi1wLt577335OLiopYtWyo+Pl4RERH64IMP/tUaAADAnWUocISEhGj79u1auXKl9u3bJ0kKCwtLcdmqFdauXevw3NPTU9HR0YqOjrZ82QAAIGMyFDgkyWazqWHDhmrYsKEz6wEAAFlQui6LXb16tUqXLp3qjbJiY2NVpkwZbdiwwWnFAQCArCFdgWPChAmKioqSr69vimF+fn56+eWXNX78eKcVBwAAsoZ0BY5du3bp8ccfv+3wxx57TNu2bbvnogAAQNaSrsBx+vTpVO+/kSxbtmw6e/bsPRcFAACylnQFjvz58+vXX3+97fBffvlF+fLlu+eiAABA1pKuwNGoUSMNHDhQV69eTTHsypUrGjx4sJo0aeK04gAAQNaQrsti33rrLX355ZcqUaKEunTpopIlS0qS9u3bp+joaCUmJmrAgAGWFAoAADKvdAWOwMBA/fjjj3r11VfVv39/GWMk3bgnR0REhKKjoxUYGGhJoQAAIPNK942/ChUqpO+//17nz5/XoUOHZIxR8eLFlTNnTivqAwAAWUCG7zSaM2dOPfLII86sBQAAZFHp6jQKAACQEQQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYLkHOnCMHDlSjzzyiHLkyKG8efOqRYsW2r9/v8M4V69eVefOnRUQECAfHx+1bNlSp0+fvk8VAwCA1DzQgWPdunXq3LmzfvrpJ61YsUIJCQl67LHHdOnSJfs4PXr00LfffqsFCxZo3bp1+uuvv/TUU0/dx6oBAMCtst3vAu5k6dKlDs9nzpypvHnzatu2bapVq5ZiY2P18ccfa968eapXr54kacaMGQoLC9NPP/2kRx999H6UDQAAbvFAH+G4VWxsrCQpV65ckqRt27YpISFBDRo0sI9TqlQpFSxYUJs2bbrtfOLj4xUXF+fwAAAA1sk0gSMpKUndu3dX9erVVbZsWUnSqVOn5O7uLn9/f4dxAwMDderUqdvOa+TIkfLz87M/QkJCrCwdAID/vEwTODp37qxff/1V8+fPv+d59e/fX7GxsfbH8ePHnVAhAAC4nQe6D0eyLl266LvvvtP69etVoEABe3tQUJCuXbummJgYh6Mcp0+fVlBQ0G3n5+HhIQ8PDytLBgAAN3mgj3AYY9SlSxctWrRIq1evVmhoqMPwSpUqyc3NTatWrbK37d+/X8eOHVN4ePi/XS4AALiNB/oIR+fOnTVv3jx9/fXXypEjh71fhp+fn7y8vOTn56eOHTuqZ8+eypUrl3x9fdW1a1eFh4dzhQoAAA+QBzpwTJkyRZJUp04dh/YZM2aoffv2kqT33ntPLi4uatmypeLj4xUREaEPPvjgX64UAADcyQMdOIwxdx3H09NT0dHRio6O/hcqAgAAGfFA9+EAAABZA4EDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLZZnAER0drcKFC8vT01NVq1bVzz//fL9LAgAA/1+WCByfffaZevbsqcGDB2v79u0qX768IiIidObMmftdGgAAUBYJHOPHj1dUVJRefPFFlS5dWlOnTlX27Nn1v//9736XBgAAJGW73wXcq2vXrmnbtm3q37+/vc3FxUUNGjTQpk2bUp0mPj5e8fHx9uexsbGSpLi4OKfWlhR/2anzQ0rO3mfJ2HfWY99lXlbtO4n9929w9v5Lnp8x5o7jZfrA8ffffysxMVGBgYEO7YGBgdq3b1+q04wcOVJDhgxJ0R4SEmJJjbCO34T7XQEyin2XebHvMjer9t+FCxfk5+d32+GZPnBkRP/+/dWzZ0/786SkJJ07d04BAQGy2Wz3sbL7Jy4uTiEhITp+/Lh8fX3vdzlIJ/Zf5sW+y7zYdzcYY3ThwgUFBwffcbxMHzhy584tV1dXnT592qH99OnTCgoKSnUaDw8PeXh4OLT5+/tbVWKm4uvr+59+42R27L/Mi32XebHvdMcjG8kyfadRd3d3VapUSatWrbK3JSUladWqVQoPD7+PlQEAgGSZ/giHJPXs2VORkZGqXLmyqlSpogkTJujSpUt68cUX73dpAABAWSRwPPPMMzp79qwGDRqkU6dOqUKFClq6dGmKjqS4PQ8PDw0ePDjFqSZkDuy/zIt9l3mx79LHZu52HQsAAMA9yvR9OAAAwIOPwAEAACxH4AAAAJYjcCBNZs6cmeZ7laRnXFjnyJEjstls2rlz5/0uBcjy2rdvrxYtWtif16lTR927d0/TtOkZNzPLElepwHrPPPOMGjVqdL/LyJTq1KmjChUqaMKECfe7FFigffv2iomJ0VdffXW/S8ED5Msvv5Sbm9v9LuOBQuBAmnh5ecnLy+t+lwE8MBITE/+zP4WAu8uVK9f9LuGBwymVTOKLL75QuXLl5OXlpYCAADVo0ECXLl2yH8YbMmSI8uTJI19fX73yyiu6du2afdqlS5eqRo0a8vf3V0BAgJo0aaLff//dPjz50PuXX36punXrKnv27CpfvrzDr+3eeppk165dqlu3rnLkyCFfX19VqlRJW7dudah52bJlCgsLk4+Pjx5//HGdPHnSug30gGrfvr3WrVuniRMnymazyWaz6ffff1fHjh0VGhoqLy8vlSxZUhMnTnSY7vr16+rWrZt9n/Xt21eRkZEOh2zvtl9Ts27dOlWpUkUeHh7Kly+f+vXrp+vXr9uHX7hwQW3btpW3t7fy5cun9957L8sc7q1Tp466dOmiLl26yM/PT7lz59bAgQPtv3B5/vx5tWvXTjlz5lT27Nn1xBNP6ODBg/bpk98D33zzjUqXLi0PDw916NBBs2bN0tdff23fv2vXrtXatWtls9kUExNjn37nzp2y2Ww6cuSIvW369OkKCQlR9uzZ9eSTT2r8+PEO77NbD9NLUvfu3VWnTh3786SkJI0cOdL+eipfvry++OIL+/Dz58+rbdu2ypMnj7y8vFS8eHHNmDHDPvz48eNq3bq1/P39lStXLjVv3tyhxqzgTtsoeV+tWrVKlStXVvbs2VWtWjXt37/fYR7Dhg1T3rx5lSNHDr300kvq16+fKlSocNtl3vq++eCDD1S8eHF5enoqMDBQTz/9dIoa+/Tpo1y5cikoKEhvv/22s1b/gUHgyAROnjypZ599Vh06dNDevXu1du1aPfXUU/YPylWrVtnbP/30U3355ZcOv4Z76dIl9ezZU1u3btWqVavk4uKiJ598UklJSQ7LGTBggHr16qWdO3eqRIkSevbZZx2+jG7Wtm1bFShQQFu2bNG2bdvUr18/h8OHly9f1tixYzVnzhytX79ex44dU69evSzYOg+2iRMnKjw8XFFRUTp58qROnjypAgUKqECBAlqwYIH27NmjQYMG6c0339Tnn39un27UqFGaO3euZsyYoY0bNyouLi7FIfu07tdkJ06cUKNGjfTII49o165dmjJlij7++GMNGzbMPk7Pnj21ceNGffPNN1qxYoU2bNig7du3W7Jt7odZs2YpW7Zs+vnnnzVx4kSNHz9eH330kaQbX+5bt27VN998o02bNskYo0aNGikhIcE+/eXLlzVq1Ch99NFH+u233/T++++rdevW9kB98uRJVatWLU21bNy4Ua+88opef/117dy5Uw0bNtTw4cPTvU4jR47U7NmzNXXqVP3222/q0aOHnn/+ea1bt06SNHDgQO3Zs0dLlizR3r17NWXKFOXOnVuSlJCQoIiICOXIkUMbNmzQxo0b7f8g3PxPS2Z3t20k3fj8GzdunLZu3aps2bKpQ4cO9mFz587V8OHDNWrUKG3btk0FCxbUlClT0rz8rVu3qlu3bho6dKj279+vpUuXqlatWg7jzJo1S97e3tq8ebNGjx6toUOHasWKFfe+8g8Sgwfetm3bjCRz5MiRFMMiIyNNrly5zKVLl+xtU6ZMMT4+PiYxMTHV+Z09e9ZIMrt37zbGGHP48GEjyXz00Uf2cX777Tcjyezdu9cYY8yMGTOMn5+ffXiOHDnMzJkzU53/jBkzjCRz6NAhe1t0dLQJDAxM+0pnIbVr1zavv/76Hcfp3Lmzadmypf15YGCgGTNmjP359evXTcGCBU3z5s1vO4/b7dcdO3YYY4x58803TcmSJU1SUpJ9mujoaPtrJS4uzri5uZkFCxbYh8fExJjs2bPftf7MoHbt2iYsLMxh/fv27WvCwsLMgQMHjCSzceNG+7C///7beHl5mc8//9wY83+v6507dzrMNzIyMsV+WbNmjZFkzp8/b2/bsWOHkWQOHz5sjDHmmWeeMY0bN3aYrm3btg7vs9Tm/frrr5vatWsbY4y5evWqyZ49u/nxxx8dxunYsaN59tlnjTHGNG3a1Lz44oupbpM5c+akeE3Ex8cbLy8vs2zZslSnyWzuto2S99XKlSvtwxYvXmwkmStXrhhjjKlatarp3Lmzw/TVq1c35cuXtz+/dV/d/L5fuHCh8fX1NXFxcanWWLt2bVOjRg2HtkceecT07ds3vav7QOMIRyZQvnx51a9fX+XKlVOrVq00ffp0nT9/3mF49uzZ7c/Dw8N18eJFHT9+XJJ08OBBPfvssypSpIh8fX1VuHBhSdKxY8cclvPQQw/Z/86XL58k6cyZM6nW1LNnT7300ktq0KCB3n333RSH8rNnz66iRYs6zO928/ovio6OVqVKlZQnTx75+Pho2rRp9v0RGxur06dPq0qVKvbxXV1dValSJYd5pHW/Jtu7d6/Cw8Md+h1Ur15dFy9e1J9//qk//vhDCQkJDsv18/NTyZIlnbXa992jjz7qsP7h4eE6ePCg9uzZo2zZsqlq1ar2YQEBASpZsqT27t1rb3N3d3d4n9yL/fv3O2xrSSme382hQ4d0+fJlNWzYUD4+PvbH7Nmz7e/JV199VfPnz1eFChXUp08f/fjjj/bpd+3apUOHDilHjhz2aXPlyqWrV6/e9fRcZpGWbSTd+fPvXvdVw4YNVahQIRUpUkQvvPCC5s6dq8uXLzuMc+vrKit+ZtJpNBNwdXXVihUr9OOPP2r58uWaNGmSBgwYoM2bN6dp+qZNm6pQoUKaPn26goODlZSUpLJly6Y4ZHrzKZHkD+XbHZ5/++239dxzz2nx4sVasmSJBg8erPnz5+vJJ59MMa/k+Rnuoi9Jmj9/vnr16qVx48YpPDxcOXLk0JgxY9K8P5Oldb/Ceby8vNLUUdTF5cb/cje/5m8+NZNWLi4uKd43N8/n4sWLkqTFixcrf/78DuMl/77HE088oaNHj+r777/XihUrVL9+fXXu3Fljx47VxYsXValSJc2dOzfFsvPkyZPueh9Ed9tGyaEjPZ9/6ZUjRw5t375da9eu1fLlyzVo0CC9/fbb2rJli73PTmqfmc5a/oOCIxyZhM1mU/Xq1TVkyBDt2LFD7u7uWrRokaQb/6VcuXLFPu5PP/0kHx8fhYSE6J9//tH+/fv11ltvqX79+goLC3M4OnIvSpQooR49emj58uV66qmnHDqi4f+4u7srMTHR/nzjxo2qVq2aXnvtNVWsWFHFihVz+E/Lz89PgYGB2rJli70tMTHRoS9FRvZrWFiYvW/CzbXkyJFDBQoUUJEiReTm5uaw3NjYWB04cOCe1v9Bcmuo++mnn1S8eHGVLl1a169fdxievI1Lly59x3neun+l//uyvrmj9K33QylZsqTDtpaU4nmePHlSdLa+eT7JnVePHTumYsWKOTxCQkIc5hMZGalPPvlEEyZM0LRp0yRJDz/8sA4ePKi8efOmmN7Pz++O651ZpHUb3Ula9tXdZMuWTQ0aNNDo0aP1yy+/6MiRI1q9enW65pHZcYQjE9i8ebNWrVqlxx57THnz5tXmzZt19uxZhYWF6ZdfftG1a9fUsWNHvfXWWzpy5IgGDx6sLl26yMXFRTlz5lRAQICmTZumfPny6dixY+rXr9891XPlyhX17t1bTz/9tEJDQ/Xnn39qy5YtatmypZPWOGspXLiwNm/erCNHjsjHx0fFixfX7NmztWzZMoWGhmrOnDnasmWLQkND7dN07dpVI0eOVLFixVSqVClNmjRJ58+ft//nlZH9+tprr2nChAnq2rWrunTpov3792vw4MHq2bOnXFxclCNHDkVGRqp3797KlSuX8ubNq8GDB8vFxSXLXP557Ngx9ezZUy+//LK2b9+uSZMmady4cSpevLiaN2+uqKgoffjhh8qRI4f69eun/Pnzq3nz5necZ+HChbVs2TLt379fAQEB8vPzs3+Zvf322xo+fLgOHDigcePGOUzXtWtX1apVS+PHj1fTpk21evVqLVmyxGFb16tXT2PGjNHs2bMVHh6uTz75RL/++qsqVqwo6cZ/zr169VKPHj2UlJSkGjVqKDY2Vhs3bpSvr68iIyM1aNAgVapUSWXKlFF8fLy+++47hYWFSbrR+XvMmDFq3ry5hg4dqgIFCujo0aP68ssv1adPHxUoUMDJe+Dfd7dtVKhQobvOo2vXroqKilLlypVVrVo1ffbZZ/rll19UpEiRNNXw3Xff6Y8//lCtWrWUM2dOff/990pKSspSpyvT5P52IUFa7Nmzx0RERJg8efIYDw8PU6JECTNp0iRjzP91VBo0aJAJCAgwPj4+Jioqyly9etU+/YoVK0xYWJjx8PAwDz30kFm7dq2RZBYtWmSMSdm50Bhjzp8/bySZNWvWGGMcO43Gx8ebNm3amJCQEOPu7m6Cg4NNly5d7B2sbu1gaowxixYtMv/Vl9v+/fvNo48+ary8vIwks2/fPtO+fXvj5+dn/P39zauvvmr69evn0AEtISHBdOnSxfj6+pqcOXOavn37mlatWpk2bdrYx8nIfl27dq155JFHjLu7uwkKCjJ9+/Y1CQkJ9uFxcXHmueeeM9mzZzdBQUFm/PjxpkqVKqZfv35WbybL1a5d27z22mvmlVdesW/XN998095h8ty5c+aFF14wfn5+xsvLy0RERJgDBw7Yp0/tdW2MMWfOnDENGzY0Pj4+Du+ZH374wZQrV854enqamjVrmgULFjh0GjXGmGnTppn8+fMbLy8v06JFCzNs2DATFBTkMP9BgwaZwMBA4+fnZ3r06GG6dOli7zRqjDFJSUlmwoQJpmTJksbNzc3kyZPHREREmHXr1hljjHnnnXdMWFiY8fLyMrly5TLNmzc3f/zxh336kydPmnbt2pncuXMbDw8PU6RIERMVFWViY2PvcYs/OO60jdLSwdcYY4YOHWpy585tfHx8TIcOHUy3bt3Mo48+ah9+p06jGzZsMLVr1zY5c+Y0Xl5e5qGHHjKfffZZquMma968uYmMjHTiVrj/+Hn6TI67HP43JCUlKSwsTK1bt9Y777zzry330qVLyp8/v8aNG6eOHTv+a8u1Qma442tUVJT27dunDRs23O9ScBcNGzZUUFCQ5syZc79LyTQ4pQI8gI4eParly5erdu3aio+P1+TJk3X48GE999xzli53x44d2rdvn6pUqaLY2FgNHTpUku56WgEZM3bsWDVs2FDe3t5asmSJZs2apQ8++OB+l4VbXL58WVOnTlVERIRcXV316aefauXKlVnvPhkWI3AADyAXFxfNnDlTvXr1kjFGZcuW1cqVK+3n3q00duxY7d+/X+7u7qpUqZI2bNhgv1EUnOvnn3/W6NGjdeHCBRUpUkTvv/++XnrppftdFm5hs9n0/fffa/jw4bp69apKliyphQsXqkGDBve7tEyFUyoAAMByXBYLAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgeAO2rfvr1atGhxv8sAkMkROAAAgOUIHAAybPz48SpXrpy8vb0VEhKi1157TRcvXrQPnzlzpvz9/bVs2TKFhYXJx8dHjz/+uMNPrl+/fl3dunWTv7+/AgIC1LdvX0VGRjocVSlcuHCK30CpUKGC3n777TTXIknTp09XSEiIsmfPrieffFLjx4+Xv7+/wzhff/21Hn74YXl6eqpIkSIaMmSIrl+/fs/bCvivI3AAyDAXFxe9//77+u233zRr1iytXr1affr0cRjn8uXLGjt2rObMmaP169fr2LFj6tWrl334qFGjNHfuXM2YMUMbN25UXFxchn6M8G61bNy4Ua+88opef/117dy5Uw0bNtTw4cMd5rFhwwa1a9dOr7/+uvbs2aMPP/xQM2fOTDEegAy4r79VC+CBd+vPbt/JggULTEBAgP35jBkzjCRz6NAhe1t0dLQJDAy0Pw8MDDRjxoyxP79+/bopWLCgwzILFSpk3nvvPYdllS9f3gwePDjNtTzzzDOmcePGDuO0bdvW4Sfn69evb0aMGOEwzpw5c0y+fPluuxwAacOPtwHIsJUrV2rkyJHat2+f4uLidP36dV29elWXL19W9uzZJUnZs2dX0aJF7dPky5dPZ86ckSTFxsbq9OnTqlKlin24q6urKlWqpKSkJKfWsn//fj355JMO01SpUkXfffed/fmuXbu0ceNGhyMaiYmJKdYJQPpxSgVAhhw5ckRNmjTRQw89pIULF2rbtm2Kjo6WJF27ds0+npubm8N0NptNJp2/Geni4pJimoSEhHTXcjcXL17UkCFDtHPnTvtj9+7dOnjwoDw9PdNVMwBHHOEAkCHbtm1TUlKSxo0bJxeXG/+7fP755+mah5+fnwIDA7VlyxbVqlVL0o0jCtu3b1eFChXs4+XJk8eho2lcXJwOHz6crlpKliypLVu2OLTd+vzhhx/W/v37VaxYsXStB4C7I3AAuKvY2Fjt3LnToS137txKSEjQpEmT1LRpU23cuFFTp05N97y7du2qkSNHqlixYipVqpQmTZqk8+fPy2az2cepV6+eZs6cqaZNm8rf31+DBg2Sq6urfXixYsXuWkvXrl1Vq1YtjR8/Xk2bNtXq1au1ZMkSh+UMGjRITZo0UcGCBfX000/LxcVFu3bt0q+//qphw4ale90A3OR+dyIB8GCLjIw0klI8OnbsaMaPH2/y5ctnvLy8TEREhJk9e7aRZM6fP2+MudFp9OZOmcYYs2jRInPzR09CQoLp0qWL8fX1NTlz5jR9+/Y1rVq1Mm3atLGPExsba5555hnj6+trQkJCzMyZM1N0Gr1bLcYYM23aNJM/f37j5eVlWrRoYYYNG2aCgoIc6lu6dKmpVq2a8fLyMr6+vqZKlSpm2rRpTtuewH+VzZh0nkwFAAslJSUpLCxMrVu31jvvvGPpsqKiorRv3z5t2LDB0uUA4JQKgPvs6NGjWr58uWrXrq34+HhNnjxZhw8f1nPPPef0ZY0dO1YNGzaUt7e3lixZolmzZumDDz5w+nIApETgAHBfubi4aObMmerVq5eMMSpbtqxWrlypsLAwpy/r559/1ujRo3XhwgUVKVJE77//vl566SWnLwdASpxSAQAAluM+HAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5f4fsRtOHWDLhrgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 glaucoma 7 7 7 8 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 9 77.777778 77.777778 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 77.777778 88.888889 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXjUlEQVR4nO3deZyN9f//8ecZzG4WgxnLYCwxlhARsi+TnaSIjMiWJWRNkS0RUhLx6YNEyhYqu8hSdlIYlC1ZY2YwjDHz/v3hN+frmMHMXDOfmcnjfrvNjfO+tte5ruuc8zzX9b6uYzPGGAEAAKSQU3oXAAAAMjfCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgSQDDt37pSzs7NOnTqVKvM7dOiQsmbNqt9++y1V5ofMoVChQurYseP/fLlz5syRzWbT7t27/+fLzqjeffdd2Wy29C4j03usw8Qff/yhbt26qXDhwnJ1dZWXl5eqVaumjz76SDdv3kzv8pLt0KFDevfdd3Xy5MlkTzto0CDZbDa99NJLqV/Yv8iwYcPUtm1bFSxY0N727bffqkSJEvL29lbTpk31999/J5iuWbNm6tq1a4L2kiVLqnHjxho+fHiSlh//YXDvX+7cuVW7dm2tWrUq5U8sEYUKFVKTJk1SdZ5IXSdPnkywPzzoLyXvC0BSZU3vAtLL999/r9atW8vFxUUdOnRQ6dKldfv2bW3dulUDBw7U77//rpkzZ6Z3mcly6NAhjRw5UrVq1VKhQoWSPJ0xRl999ZUKFSqklStX6tq1a8qePXvaFZpJ7d+/X+vXr9f27dvtbX/++adeeuklvfTSS6pSpYqmTJmiV199VWvWrLGPs2bNGv300086duxYovPt3r27GjVqpD/++ENFihRJUi2jRo1SUFCQjDG6cOGC5syZo0aNGmnlypUEgEwgLCxMTk7Wv8vlypVL8+bNc2ibNGmS/vrrL3344YcJxgXSymMZJk6cOKE2bdqoYMGC2rhxo/LkyWMf1rNnTx0/flzff/+95eUYY3Tr1i25ubklGHbr1i05OzunyhuKVZs2bdJff/2ljRs3KiQkREuXLlVoaGh6l5Wq7ty5o7i4ODk7O6d4HrNnz1aBAgX0zDPP2NvWrl2r/Pnza+7cubLZbAoODladOnV069Ytubq66s6dO+rXr5+GDx/+wDfzevXqydfXV3PnztWoUaOSVEvDhg1VsWJF++POnTvL399fX331FWEiE3BxcUmV+Xh4eKh9+/YObQsXLtTVq1cTtANpKf0/ydLBhAkTdP36dX3++ecOQSJe0aJF9cYbb9gf37lzR6NHj1aRIkXk4uKiQoUK6a233lJ0dLTDdPGHhdesWaOKFSvKzc1Nn332mTZt2iSbzaaFCxfq7bffVr58+eTu7q7IyEhJ0o4dO/Tcc8/J29tb7u7uqlmzprZt25agrrNnz6pz587KmzevXFxcFBQUpB49euj27duaM2eOWrduLUmqXbu2/dDmpk2bHrk+5s+fr5IlS6p27dqqV6+e5s+fn2Cc+OfwzTffaOzYscqfP79cXV1Vt25dHT9+3GHcY8eOqVWrVgoICJCrq6vy58+vNm3aKCIiQpL0/PPP66mnnnKYpmnTprLZbFqxYoW9bceOHbLZbA6H78PDw9W3b18FBgbKxcVFRYsW1fjx4xUXF2cfJ/7Q78SJEzVlyhT7djt06JAkaerUqSpVqpTc3d3l6+urihUrasGCBY9cT99++63q1KnjcH715s2b8vHxsbflyJFDxhj7abJPPvlEsbGx6t279wPnmy1bNtWqVUvLly9/ZA0P4uPjIzc3N2XNevf7gTFGhQoVUvPmzROMe+vWLXl7e6tbt24pXl68LVu2qHXr1ipQoIBcXFwUGBiofv36JThN2LFjR3l6eurs2bNq0aKFPD09lStXLg0YMECxsbEO4/7zzz965ZVX5OXlJR8fH4WGhurAgQOy2WyaM2eOfbxatWqpVq1aCWrq2LFjgiNzEydOVNWqVeXn5yc3NzdVqFBBixcvTjDtzZs31adPH+XMmVPZs2dXs2bNdPbsWdlsNr377rsO4549e1adOnWSv7+/XFxcVKpUKf33v/9N0nq7v89E/Omrbdu2qX///sqVK5c8PDzUsmVLXbp0KUnzTI7o6OgkLWfVqlWqXr26PDw8lD17djVu3Fi///67wzjx2/b06dNq0qSJPD09lS9fPk2bNk2SdPDgQdWpU0ceHh4qWLBgoq+1pLyuJencuXM6cuSIYmJiHvkck7ofJWb27NmqU6eOcufOLRcXF5UsWVLTp09PMF5i+4WUeJ+Y8PBw9evXT4UKFZKLi4vy58+vDh066PLly/ZxLl68aP9i4OrqqrJly2ru3LkO87n3/W3atGkqXLiw3N3d1aBBA505c0bGGI0ePVr58+eXm5ubmjdvritXrjjMY/ny5WrcuLH9s6RIkSIaPXp0gtdicjyWRyZWrlypwoULq2rVqkka/7XXXtPcuXP1wgsv6M0339SOHTs0btw4HT58WMuWLXMYNywsTG3btlW3bt3UpUsXFS9e3D5s9OjRcnZ21oABAxQdHS1nZ2dt3LhRDRs2VIUKFTRixAg5OTnZd+QtW7aoUqVKkqS///5blSpVUnh4uLp27aoSJUro7NmzWrx4saKiolSjRg316dNHH3/8sd566y0FBwdLkv3fB4mOjtaSJUv05ptvSpLatm2rV199VefPn1dAQECC8d9//305OTlpwIABioiI0IQJE9SuXTvt2LFDknT79m2FhIQoOjpavXv3VkBAgM6ePavvvvtO4eHh8vb2VvXq1bV8+XJFRkbKy8tLxhht27ZNTk5O2rJli5o1aybp7geVk5OTqlWrJkmKiopSzZo1dfbsWXXr1k0FChTQ9u3bNXToUJ07d05TpkxxqHX27Nm6deuWunbtKhcXF+XIkUOzZs1Snz599MILL+iNN97QrVu39Ouvv2rHjh16+eWXH7iezp49q9OnTycIQU8//bTefPNNffXVV3rmmWc0duxYFS1aVL6+vrp06ZJGjhypL7/8UtmyZXvodqhQoYLDOnmUiIgIXb58WcYYXbx4UVOnTtX169ft30ZtNpvat2+vCRMm6MqVK8qRI4d92pUrVyoyMjJVvrkuWrRIUVFR6tGjh/z8/LRz505NnTpVf/31lxYtWuQwbmxsrEJCQlS5cmVNnDhR69ev16RJk1SkSBH16NFDkhQXF6emTZtq586d6tGjh0qUKKHly5dbPlL20UcfqVmzZmrXrp1u376thQsXqnXr1vruu+/UuHFj+3gdO3bUN998o1deeUXPPPOMNm/e7DA83oULF/TMM8/IZrOpV69eypUrl1atWqXOnTsrMjJSffv2TVGdvXv3lq+vr0aMGKGTJ09qypQp6tWrl77++uuUPvUUL2fevHkKDQ1VSEiIxo8fr6ioKE2fPl3PPvus9u3b5xDYYmNj1bBhQ9WoUUMTJkzQ/Pnz1atXL3l4eGjYsGFq166dnn/+ec2YMUMdOnRQlSpVFBQUJCl5r+uhQ4dq7ty5OnHixENP5Vrdj6ZPn65SpUqpWbNmypo1q1auXKnXX39dcXFx6tmzZ7LWtSRdv35d1atX1+HDh9WpUyc99dRTunz5slasWKG//vpLOXPm1M2bN1WrVi0dP35cvXr1UlBQkBYtWqSOHTsqPDzc4QuudPdL4O3bt9W7d29duXJFEyZM0Isvvqg6depo06ZNGjx4sI4fP66pU6dqwIABDkF3zpw58vT0VP/+/eXp6amNGzdq+PDhioyM1AcffJDs5ydJMo+ZiIgII8k0b948SePv37/fSDKvvfaaQ/uAAQOMJLNx40Z7W8GCBY0ks3r1aodxf/zxRyPJFC5c2ERFRdnb4+LiTLFixUxISIiJi4uzt0dFRZmgoCBTv359e1uHDh2Mk5OT2bVrV4Ia46ddtGiRkWR+/PHHJD03Y4xZvHixkWSOHTtmjDEmMjLSuLq6mg8//DDR5xAcHGyio6Pt7R999JGRZA4ePGiMMWbfvn1Gklm0aNEDl7lr1y4jyfzwww/GGGN+/fVXI8m0bt3aVK5c2T5es2bNTPny5e2PR48ebTw8PMzRo0cd5jdkyBCTJUsWc/r0aWOMMSdOnDCSjJeXl7l48aLDuM2bNzelSpVK6uqxW79+vZFkVq5cmWBYnz59jCQjyeTIkcO+T3Tp0sU899xzSZr/ggULjCSzY8eOh443e/Zs+7Lu/XNxcTFz5sxxGDcsLMxIMtOnT3dob9asmSlUqJDDPpeYggULmsaNGz90nHv353jjxo0zNpvNnDp1yt4WGhpqJJlRo0Y5jFu+fHlToUIF++MlS5YYSWbKlCn2ttjYWFOnTh0jycyePdveXrNmTVOzZs0Eyw8NDTUFCxZ8aJ23b982pUuXNnXq1LG37dmzx0gyffv2dRi3Y8eORpIZMWKEva1z584mT5485vLlyw7jtmnTxnh7eye6Xu5VsGBBExoaan8cv13r1avnsF369etnsmTJYsLDwx86v3s1btw4wfNP7nKuXbtmfHx8TJcuXRymP3/+vPH29nZoj9+27733nr3t6tWrxs3NzdhsNrNw4UJ7+5EjRxKsy6S+ru9d1okTJx66DpKzH40YMcLc/1GY2PYLCQkxhQsXdmi7/7nEu3/7Dh8+3EgyS5cuTTBu/HaYMmWKkWS+/PJL+7Dbt2+bKlWqGE9PTxMZGWmM+b/3t1y5cjnsF0OHDjWSTNmyZU1MTIy9vW3btsbZ2dncunXroc+vW7duxt3d3WG85HjsTnPEn1pIagfDH374QZLUv39/h/b4b/L3960ICgpSSEhIovMKDQ116D+xf/9+HTt2TC+//LL++ecfXb58WZcvX9aNGzdUt25d/fTTT4qLi1NcXJy+/fZbNW3a1OE8eTwrlzXNnz9fFStWVNGiRSXJfigzsVMdkvTqq6869DuoXr26pLsdESXJ29tb0t1Oh1FRUYnOo3z58vL09NRPP/0k6e4RiPhDfnv37lVUVJSMMdq6dat9/tLdb8HVq1eXr6+vfV1dvnxZ9erVU2xsrH1+8Vq1apWgn4KPj4/++usv7dq1K8nrSLp7yFSSfH19Ewz76KOPdOrUKe3YsUOnTp1S7dq1tX//fn3xxRf68MMPFRERofbt2ytfvnyqVauWDh8+nGAe8fO995Dnw0ybNk3r1q3TunXr9OWXX6p27dp67bXXtHTpUvs4TzzxhCpXruywLa9cuaJVq1apXbt2qXI53L37840bN3T58mVVrVpVxhjt27cvwfjdu3d3eFy9enX7viNJq1evVrZs2dSlSxd7m5OTU4q+DT6ozqtXryoiIkLVq1fX3r17HZYtSa+//rrDtPefojLGaMmSJWratKmMMQ77YkhIiCIiIhzmmxxdu3Z12C7Vq1dXbGxsql2KnNTlrFu3TuHh4Wrbtq3D88uSJYsqV66sH3/8McE8X3vtNfv/fXx8VLx4cXl4eOjFF1+0txcvXlw+Pj4O2zw5r+s5c+bYT+E9jNX96N79Jf4oYM2aNfXnn3/aT9cmx5IlS1S2bFm1bNkywbD47fDDDz8oICBAbdu2tQ/Lli2b+vTpo+vXr2vz5s0O07Vu3dr+fitJlStXliS1b9/efrozvv327ds6e/Zsos/v2rVrunz5sqpXr66oqCgdOXIk2c9PegxPc8QfQr527VqSxj916pScnJzsH7bxAgIC5OPjk+BFHn/oLjH3D4vv3f+wQ28RERG6ffu2IiMjVbp06STVnFTh4eH64Ycf1KtXL4d+D9WqVdOSJUt09OhRPfHEEw7TFChQwOFx/Ifg1atXJd19jv3799fkyZM1f/58Va9eXc2aNVP79u3tO36WLFlUpUoVbdmyRdLdMFG9enU9++yzio2N1S+//CJ/f39duXLFIUwcO3ZMv/766wM7Ml68eNHhcWLbYvDgwVq/fr0qVaqkokWLqkGDBnr55Zftp1IexRiTaHuBAgUc1k2fPn3UvXt3lShRQu3bt9eZM2e0fPlyzZ07V02bNtWRI0ccXvDx803qB3ylSpUcgmXbtm1Vvnx59erVS02aNLEHvg4dOqhXr146deqUChYsqEWLFikmJkavvPJKkpbzKKdPn9bw4cO1YsUK+z4Q7/43XVdX1wTbztfX12G6U6dOKU+ePHJ3d3cY7/7XX3J99913GjNmjPbv3+/Q1+ne9R3/Wr9/v7l/2ZcuXVJ4eLhmzpz5wCu+7t8Xk+pRr6/U8qjlxL831alTJ9Hp7z8Vl9i29fb2Vv78+RPs097e3g7PJ7mv66Swuh9t27ZNI0aM0M8//5zgS1FERITDh3hS/PHHH2rVqtUjay5WrFiCTvnxp6rv/6y5fxvG1xQYGJho+73r/Pfff9fbb7+tjRs32r9gx0tJWJIe0zCRN2/eZN8kKKlv8oldufGgYfGdiz744AOVK1cu0Wk8PT0TdJ5JLYsWLVJ0dLQmTZqkSZMmJRg+f/58jRw50qEtS5Ysic7r3g/ZSZMmqWPHjlq+fLnWrl2rPn36aNy4cfrll1+UP39+SdKzzz6rsWPH6tatW9qyZYuGDRsmHx8flS5dWlu2bJG/v78kOYSJuLg41a9fX4MGDUq0hvuDT2LbIjg4WGFhYfruu++0evVqLVmyRJ9++qmGDx+e4Lney8/PT1LS3tS//vprHT58WCtWrFBsbKy++eYbrV27VhUrVlSpUqU0a9Ys/fLLL3r22Wft08TPN2fOnI+cf2KcnJxUu3ZtffTRRzp27JhKlSolSWrTpo369eun+fPn66233tKXX36pihUrOvTlSanY2FjVr19fV65c0eDBg1WiRAl5eHjo7Nmz6tixY4LOcw/ad1LKZrMlGu7u70QW3w+nRo0a+vTTT5UnTx5ly5ZNs2fPTlLH2/vFP6/27ds/8IvAk08+mez5Skl7faWGRy0n/jnOmzcv0b5T9wbhh80vKc8nua/rtPbHH3+obt26KlGihCZPnqzAwEA5Ozvrhx9+0Icffphgv06MlY6MSZXSdR4eHq6aNWvKy8tLo0aNUpEiReTq6qq9e/dq8ODBSXp+iXnswoQkNWnSRDNnztTPP/+sKlWqPHTcggULKi4uTseOHXPozHjhwgWFh4c73LwoueLvKeDl5aV69eo9cLxcuXLJy8vrkQEouYet58+fr9KlS2vEiBEJhn322WdasGDBQz9gH6ZMmTIqU6aM3n77bW3fvl3VqlXTjBkzNGbMGEl3Q8Lt27f11Vdf6ezZs/bQUKNGDXuYeOKJJ+yhQrq7vq5fv/7QdZUUHh4e9ntD3L59W88//7zGjh2roUOHytXVNdFpSpQoIenuZcUPExUVpYEDB2r06NHy8fHRhQsXFBMTo7x580q6G3B8fX0dDjnGz9fJycnSG+edO3ck3e3sFS9Hjhz201bt2rXTtm3bEnRUTamDBw/q6NGjmjt3rjp06GBvX7duXYrnWbBgQf3444+Kiopy+FZ5/xVD0t1v0/ceLo93/ze4JUuWyNXVVWvWrHG4JHP27NkJlh0XF6cTJ06oWLFiD1x2rly5lD17dsXGxlreFzOq+Pem3Llzp/lzTK3X9b2Ssx/db+XKlYqOjtaKFSscvv0ndmrH19dX4eHhDm23b9/WuXPnHNqKFCnyyPfvggUL6tdff1VcXJzD0Yn40w5WPmvutWnTJv3zzz9aunSpatSoYW9/1Hvbozx2fSaku3d79PDw0GuvvaYLFy4kGP7HH3/oo48+kiQ1atRIkhK8AU+ePFmSEu3pnVQVKlRQkSJFNHHiRIcPgHjxl2o5OTmpRYsWWrlyZaK3wY1PnB4eHpKUYOdOzJkzZ/TTTz/pxRdf1AsvvJDg79VXX9Xx48ftV2kkVWRkpP1DLV6ZMmXk5OTkcHi5cuXKypYtm8aPH68cOXLYv0lXr15dv/zyizZv3uxwVEKSXnzxRf38888ON4SKFx4enmC5iYnv+xDP2dlZJUuWlDHmoZeb5cuXT4GBgY+8DfH48ePl6+trP1fr5+enrFmz2t8QLl++rEuXLiX4trdnzx6VKlUq2YdP48XExGjt2rVydnZOcAXPK6+8okOHDmngwIHKkiWL2rRpk6Jl3C/+G9C93zKNMfbXTkqEhIQoJiZGs2bNsrfFxcXZLzO8V5EiRXTkyBGHSxoPHDiQ4LLqLFmyyGazOXxbPHnypL799tsEy5akTz/91KF96tSpCebXqlUrLVmyJNEPiLS4lPN/LSQkRF5eXnrvvfcSfV2k5nNMzus6qZeGJmc/ul9i+3VERESC8Cnd3Qfv76s1c+bMBEcmWrVqpQMHDiS4+u/e5TRq1Ejnz593uKLmzp07mjp1qjw9PVWzZs1H1p4UiT2/27dvJ9jvk+uxPDJRpEgRLViwQC+99JKCg4Md7oC5fft2++U4klS2bFmFhoZq5syZ9sNDO3fu1Ny5c9WiRQvVrl07xXU4OTnpP//5jxo2bKhSpUrp1VdfVb58+XT27Fn9+OOP8vLy0sqVKyVJ7733ntauXauaNWuqa9euCg4O1rlz57Ro0SJt3bpVPj4+KleunLJkyaLx48crIiJCLi4u9mul77dgwQIZY+yXYd6vUaNGypo1q+bPn2/v2JMUGzduVK9evdS6dWs98cQTunPnjubNm2d/A47n7u6uChUq6JdffrHfY0K6e2Tixo0bunHjRoIwMXDgQK1YsUJNmjRRx44dVaFCBd24cUMHDx7U4sWLdfLkyUeeJmjQoIECAgJUrVo1+fv76/Dhw/rkk0/UuHHjR3bKbd68uZYtWyZjTKJHgU6fPq0PPvhA33//vf0FmzVrVjVv3lx9+/bV6dOntWzZMuXNm9fhiFhMTIw2b96coOPfw6xatcoeUC5evKgFCxbo2LFjGjJkSILz2Y0bN5afn58WLVqkhg0bJro/PMjx48ftR5PuVb58eTVo0EBFihTRgAEDdPbsWXl5eWnJkiWWzu+3aNFClSpV0ptvvqnjx4+rRIkSWrFihf1U373rvVOnTpo8ebJCQkLUuXNnXbx4UTNmzFCpUqUczgM3btxYkydP1nPPPaeXX35ZFy9e1LRp01S0aFH9+uuv9vEqVKigVq1aacqUKfrnn3/sl4YePXo0wbLff/99/fjjj6pcubK6dOmikiVL6sqVK9q7d6/Wr1+fZqcm/1e8vLw0ffp0vfLKK3rqqafUpk0b5cqVS6dPn9b333+vatWq6ZNPPkmVZSXndZ3US0OTsx/dr0GDBnJ2dlbTpk3VrVs3Xb9+XbNmzVLu3LkTHHF47bXX1L17d7Vq1Ur169fXgQMHtGbNmgTvQwMHDtTixYvVunVrderUSRUqVNCVK1e0YsUKzZgxQ2XLllXXrl312WefqWPHjtqzZ48KFSqkxYsX248mptZdiatWrSpfX1+FhoaqT58+stlsmjdvnvVTaSm6BuRf4ujRo6ZLly6mUKFCxtnZ2WTPnt1Uq1bNTJ061eHymJiYGDNy5EgTFBRksmXLZgIDA83QoUMTXELzoEvp4i+rfNDlkvv27TPPP/+88fPzMy4uLqZgwYLmxRdfNBs2bHAY79SpU6ZDhw4mV65cxsXFxRQuXNj07NnT4VLNWbNmmcKFC5ssWbI89DLRMmXKmAIFCjx0/dSqVcvkzp3bxMTEPPA5xF+mFH+p1Z9//mk6depkihQpYlxdXU2OHDlM7dq1zfr16xPMf+DAgUaSGT9+vEN70aJFjSTzxx9/JJjm2rVrZujQoaZo0aLG2dnZ5MyZ01StWtVMnDjR3L5926GmDz74IMH0n332malRo4Z9XRcpUsQMHDjQREREPHRdGGPM3r17jSSzZcuWRIe3bt3aPP/88wnaL1y4YJo2bWqyZ89unnrqKbN7926H4atWrXK4PPdhErs01NXV1ZQrV85Mnz79gZd7vv7660aSWbBgwSOXES/+UufE/jp37myMMebQoUOmXr16xtPT0+TMmdN06dLFHDhwIMHld6GhocbDwyPBMhK7LO/SpUvm5ZdfNtmzZzfe3t6mY8eOZtu2bUaSw2WGxhjz5ZdfmsKFCxtnZ2dTrlw5s2bNmkQvDf38889NsWLFjIuLiylRooSZPXt2osu+ceOG6dmzp8mRI4fx9PQ0LVq0sF9i+/777zuMe+HCBdOzZ08TGBhosmXLZgICAkzdunXNzJkzk7RuE7s09P5Lv+Nfd8m53Dspl4YmdTk//vijCQkJMd7e3sbV1dUUKVLEdOzY0WEfftC2rVmzZqKXYSf2PpmU13X8spSES0ONSfp+lNh+sGLFCvPkk08aV1dXU6hQITN+/Hjz3//+N8GyY2NjzeDBg03OnDmNu7u7CQkJMcePH0+wfY0x5p9//jG9evUy+fLlM87OziZ//vwmNDTU4fLiCxcumFdffdXkzJnTODs7mzJlyji8jox58Pvbg96jE9vm27ZtM88884xxc3MzefPmNYMGDTJr1qxJ9r52L5sxqdyzB/gXq1u3rvLmzZvg9xCsaNGihWw2W6KHQFNLv3799Pnnn+v8+fMJerhnBt9++61atmyprVu3JvnKm9Syf/9+lS9fXl9++aXatWv3P102Uld67kf/doQJIBl27Nih6tWr69ixY6nSIerw4cMqU6aM9u/fn+qX/sa7deuWAgMD1aRJk0TP+2Y0N2/edLgSJzY2Vg0aNNDu3bt1/vz5h14xldrLlu7eFXPevHk6efJkgsvukHGl5370OHos+0wAKRV/A5jUEhwcnKSOoylx8eJFrV+/XosXL9Y///yT4Ha8GVXv3r118+ZNValSRdHR0Vq6dKm2b9+u9957L80/ACZMmKA9e/aodu3aypo1q1atWqVVq1apa9euBIlMJj33o8dSik6OAMjw4s+h5s6d20ydOjW9y0my+fPnm6eeesp4eXkZZ2dnU7Jkyf9Z/WvXrjXVqlUzvr6+Jlu2bKZIkSLm3Xffdbg9MTKH9NyPHkec5gAAAJY8lveZAAAAqYcwAQAALPnXd8CMi4vT33//rezZs6fKryQCAPC4MMbo2rVryps3b4IfIbvXvz5M/P333/TCBgDAgjNnzth/qDEx//owEX8L0jNnziS4zTAAAHiwyMhIBQYGPvJ23v/6MBF/asPLy4swAQBACjyqmwAdMAEAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYkjW9CwAAPB4KDfk+vUv41zv5fuN0WS5HJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWJKuYSI2NlbvvPOOgoKC5ObmpiJFimj06NEyxtjHMcZo+PDhypMnj9zc3FSvXj0dO3YsHasGAAD3StcwMX78eE2fPl2ffPKJDh8+rPHjx2vChAmaOnWqfZwJEybo448/1owZM7Rjxw55eHgoJCREt27dSsfKAQBAvKzpufDt27erefPmaty4sSSpUKFC+uqrr7Rz505Jd49KTJkyRW+//baaN28uSfriiy/k7++vb7/9Vm3atEm32gEAwF3pemSiatWq2rBhg44ePSpJOnDggLZu3aqGDRtKkk6cOKHz58+rXr169mm8vb1VuXJl/fzzz4nOMzo6WpGRkQ5/AAAg7aTrkYkhQ4YoMjJSJUqUUJYsWRQbG6uxY8eqXbt2kqTz589Lkvz9/R2m8/f3tw+737hx4zRy5Mi0LRwAANil65GJb775RvPnz9eCBQu0d+9ezZ07VxMnTtTcuXNTPM+hQ4cqIiLC/nfmzJlUrBgAANwvXY9MDBw4UEOGDLH3fShTpoxOnTqlcePGKTQ0VAEBAZKkCxcuKE+ePPbpLly4oHLlyiU6TxcXF7m4uKR57QAA4K50PTIRFRUlJyfHErJkyaK4uDhJUlBQkAICArRhwwb78MjISO3YsUNVqlT5n9YKAAASl65HJpo2baqxY8eqQIECKlWqlPbt26fJkyerU6dOkiSbzaa+fftqzJgxKlasmIKCgvTOO+8ob968atGiRXqWDgAA/r90DRNTp07VO++8o9dff10XL15U3rx51a1bNw0fPtw+zqBBg3Tjxg117dpV4eHhevbZZ7V69Wq5urqmY+UAACCezdx7u8l/ocjISHl7eysiIkJeXl7pXQ4APLYKDfk+vUv41zv5fuNUnV9SP0P5bQ4AAGAJYQIAAFhCmAAAAJYQJgAAgCXpejVHZkZHorSX2h2J4rHt0l5abTuJ7fe/kJbbD/9OHJkAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgSbqHibNnz6p9+/by8/OTm5ubypQpo927d9uHG2M0fPhw5cmTR25ubqpXr56OHTuWjhUDAIB7ZU3JRCdOnNCWLVt06tQpRUVFKVeuXCpfvryqVKkiV1fXJM/n6tWrqlatmmrXrq1Vq1YpV65cOnbsmHx9fe3jTJgwQR9//LHmzp2roKAgvfPOOwoJCdGhQ4eStSwAAJA2khUm5s+fr48++ki7d++Wv7+/8ubNKzc3N125ckV//PGHXF1d1a5dOw0ePFgFCxZ85PzGjx+vwMBAzZ49294WFBRk/78xRlOmTNHbb7+t5s2bS5K++OIL+fv769tvv1WbNm2SUz4AAEgDST7NUb58eX388cfq2LGjTp06pXPnzmnPnj3aunWrDh06pMjISC1fvlxxcXGqWLGiFi1a9Mh5rlixQhUrVlTr1q2VO3dulS9fXrNmzbIPP3HihM6fP6969erZ27y9vVW5cmX9/PPPic4zOjpakZGRDn8AACDtJDlMvP/++9qxY4def/11BQYGJhju4uKiWrVqacaMGTpy5IgKFy78yHn++eefmj59uooVK6Y1a9aoR48e6tOnj+bOnStJOn/+vCTJ39/fYTp/f3/7sPuNGzdO3t7e9r/EagUAAKknyac5QkJCkjxTPz8/+fn5PXK8+KMY7733nqS7Rz9+++03zZgxQ6GhoUle3r2GDh2q/v372x9HRkYSKAAASEMp6oB5r++//16bNm1SbGysqlWrplatWiV52jx58qhkyZIObcHBwVqyZIkkKSAgQJJ04cIF5cmTxz7OhQsXVK5cuUTn6eLiIhcXl2Q+CwAAkFKWLg195513NGjQINlsNhlj1K9fP/Xu3TvJ01erVk1hYWEObUePHrV33gwKClJAQIA2bNhgHx4ZGakdO3aoSpUqVkoHAACpJFlHJnbv3q2KFSvaH3/99dc6cOCA3NzcJEkdO3ZUrVq1NHXq1CTNr1+/fqpataree+89vfjii9q5c6dmzpypmTNnSpJsNpv69u2rMWPGqFixYvZLQ/PmzasWLVokp3QAAJBGknVkonv37urbt6+ioqIkSYULF9akSZMUFhamgwcPavr06XriiSeSPL+nn35ay5Yt01dffaXSpUtr9OjRmjJlitq1a2cfZ9CgQerdu7e6du2qp59+WtevX9fq1au5xwQAABlEssLEjh07lCdPHj311FNauXKl/vvf/2rfvn2qWrWqqlevrr/++ksLFixIVgFNmjTRwYMHdevWLR0+fFhdunRxGG6z2TRq1CidP39et27d0vr165MVWAAAQNpK1mmOLFmyaPDgwWrdurV69OghDw8PffLJJ8qbN29a1QcAADK4FHXALFy4sNasWaOWLVuqRo0amjZtWmrXBQAAMolkhYnw8HANGjRITZs21dtvv62WLVtqx44d2rVrl5555hkdPHgwreoEAAAZVLLCRGhoqHbs2KHGjRsrLCxMPXr0kJ+fn+bMmaOxY8fqpZde0uDBg9OqVgAAkAElq8/Exo0btW/fPhUtWlRdunRR0aJF7cPq1q2rvXv3atSoUaleJAAAyLiSdWSiWLFimjlzpo4ePaoZM2Yk+GVQV1dX+62xAQDA4yFZYeK///2vNm7cqPLly2vBggWaPn16WtUFAAAyiWSd5ihXrpx2796dVrUAAIBMKMlHJowxaVkHAADIpJIcJkqVKqWFCxfq9u3bDx3v2LFj6tGjh95//33LxQEAgIwvyac5pk6dqsGDB+v1119X/fr1VbFiReXNm1eurq66evWqDh06pK1bt+r3339Xr1691KNHj7SsGwAAZBBJDhN169bV7t27tXXrVn399deaP3++Tp06pZs3bypnzpwqX768OnTooHbt2snX1zctawYAABlIsjpgStKzzz6rZ599Ni1qAQAAmVCKfpsDAAAgHmECAABYQpgAAACWECYAAIAlhAkAAGBJisLE3r17dfDgQfvj5cuXq0WLFnrrrbceeVMrAADw75KiMNGtWzcdPXpUkvTnn3+qTZs2cnd316JFizRo0KBULRAAAGRsKQoTR48eVbly5SRJixYtUo0aNbRgwQLNmTNHS5YsSc36AABABpeiMGGMUVxcnCRp/fr1atSokSQpMDBQly9fTr3qAABAhpeiMFGxYkWNGTNG8+bN0+bNm9W4cWNJ0okTJ+Tv75+qBQIAgIwtRWFiypQp2rt3r3r16qVhw4apaNGikqTFixeratWqqVogAADI2JL92xyxsbEKDw/XTz/9lOAHvT744ANlyZIl1YoDAAAZX7KPTGTJkkUNGjRQeHh4gmGurq7Kli1batQFAAAyiRSd5ihdurT+/PPP1K4FAABkQikKE2PGjNGAAQP03Xff6dy5c4qMjHT4AwAAj49k95mQZL8UtFmzZrLZbPZ2Y4xsNptiY2NTpzoAAJDhpShM/Pjjj6ldBwAAyKRSFCZq1qyZ2nUAAIBMKsW/Grplyxa1b99eVatW1dmzZyVJ8+bN09atW1OtOAAAkPGlKEwsWbJEISEhcnNz0969exUdHS1JioiI0HvvvZeqBQIAgIwtxVdzzJgxQ7NmzXK4r0S1atW0d+/eVCsOAABkfCkKE2FhYapRo0aCdm9v70RvZgUAAP69UhQmAgICdPz48QTtW7duVeHChS0XBQAAMo8UhYkuXbrojTfe0I4dO2Sz2fT3339r/vz5GjBggHr06JHaNQIAgAwsRZeGDhkyRHFxcapbt66ioqJUo0YNubi4aMCAAerdu3dq1wgAADKwFIUJm82mYcOGaeDAgTp+/LiuX7+ukiVLytPTM7XrAwAAGVyKwsTGjRtVtWpVubq6qmTJkqldEwAAyERSFCaaNWumO3fu6Omnn1atWrVUs2ZNVatWTW5ubqldHwAAyOBS1AHz6tWr2rBhgxo2bKidO3eqZcuW8vHxUbVq1fT222+ndo0AACADS1GYyJYtm6pVq6a33npLa9as0S+//KK2bdtq586dGjduXGrXCAAAMrAUneY4evSoNm3apE2bNmnz5s2Kjo5W9erVNXHiRNWqVSuVSwQAABlZisJEiRIllCtXLr3xxhsaMmSIypQpI5vNltq1AQCATCBFpzn69OmjfPnyadSoUerevbuGDRumtWvXKioqKrXrAwAAGVyKwsSUKVO0d+9enT9/XkOHDtXt27c1bNgw5cyZU9WqVUvtGgEAQAaWojARLzY2VjExMYqOjtatW7cUHR2tsLCw1KoNAABkAik+zfHkk0/K399f3bp1099//60uXbpo3759unTpUmrXCAAAMrAUdcA8d+6cunbtqlq1aql06dKpXRMAAMhEUhQmFi1alNp1AACATCpFpznmzp2r77//3v540KBB8vHxUdWqVXXq1KlUKw4AAGR8KQoT7733nv13OH7++WdNmzZNEyZMUM6cOdWvX79ULRAAAGRsKTrNcebMGRUtWlSS9O2336pVq1bq2rWrqlWrxh0wAQB4zKToyISnp6f++ecfSdLatWtVv359SZKrq6tu3ryZetUBAIAML0VHJurXr6/XXntN5cuX19GjR9WoUSNJ0u+//65ChQqlZn0AACCDS9GRiWnTpqlKlSq6dOmSlixZIj8/P0nSnj171LZt21QtEAAAZGwpOjLh4+OjTz75JEH7yJEjLRcEAAAylxSFCUkKDw/Xzp07dfHiRcXFxdnbbTabXnnllVQpDgAAZHwpChMrV65Uu3btdP36dXl5eTn8/DhhAgCAx0uK+ky8+eab6tSpk65fv67w8HBdvXrV/nflypXUrhEAAGRgKQoTZ8+eVZ8+feTu7p7a9QAAgEwmRWEiJCREu3fvTu1aAABAJpSiPhONGzfWwIEDdejQIZUpU0bZsmVzGN6sWbNUKQ4AAGR8KQoTXbp0kSSNGjUqwTCbzabY2FhrVQEAgEwjRWHi3ktBAQDA4y1FfSYeJDw8PNGbWQEAgH+vVAkTGzZs0Msvv6w8efJoxIgRqTFLAACQSaQ4TJw5c0ajRo1SUFCQGjRoIJvNpmXLlun8+fOpWR8AAMjgkhUmYmJitGjRIoWEhKh48eLav3+/PvjgAzk5OWnYsGF67rnnElzZAQAA/t2S1QEzX758KlGihNq3b6+FCxfK19dXkvilUAAAHmPJOjJx584d2Ww22Ww2ZcmSJa1qAgAAmUiywsTff/+trl276quvvlJAQIBatWqlZcuWOfzQFwAAeLwkK0y4urqqXbt22rhxow4ePKjg4GD16dNHd+7c0dixY7Vu3TpuWAUAwGMmxVdzFClSRGPGjNGpU6f0/fffKzo6Wk2aNJG/v39q1gcAADK4FN0B815OTk5q2LChGjZsqEuXLmnevHmpURcAAMgkUvUOmLly5VL//v1Tc5YAACCDS9UwAQAAHj+ECQAAYAlhAgAAWJKiMDFq1ChFRUUlaL9586ZGjRpluSgAAJB5pChMjBw5UtevX0/QHhUVpZEjR1ouCgAAZB4pChPGmETvenngwAHlyJHDclEAACDzSNZ9Jnx9fe2/zfHEE084BIrY2Fhdv35d3bt3T/UiAQBAxpWsMDFlyhQZY9SpUyeNHDlS3t7e9mHOzs4qVKiQqlSpkupFAgCAjCtZYSI0NFSSFBQUpGrVqilrVss30AQAAJlcivpM3LhxQxs2bEjQvmbNGq1atcpyUQAAIPNIUZgYMmRIor8OaozRkCFDLBcFAAAyjxSFiWPHjqlkyZIJ2kuUKKHjx4+nqJD3339fNptNffv2tbfdunVLPXv2lJ+fnzw9PdWqVStduHAhRfMHAABpI0VhwtvbW3/++WeC9uPHj8vDwyPZ89u1a5c+++wzPfnkkw7t/fr108qVK7Vo0SJt3rxZf//9t55//vmUlAwAANJIisJE8+bN1bdvX/3xxx/2tuPHj+vNN99Us2bNkjWv69evq127dpo1a5Z8fX3t7REREfr88881efJk1alTRxUqVNDs2bO1fft2/fLLLykpGwAApIEUhYkJEybIw8NDJUqUUFBQkIKCghQcHCw/Pz9NnDgxWfPq2bOnGjdurHr16jm079mzRzExMQ7tJUqUUIECBfTzzz8/cH7R0dGKjIx0+AMAAGknRdd2ent7a/v27Vq3bp0OHDggNzc3Pfnkk6pRo0ay5rNw4ULt3btXu3btSjDs/PnzcnZ2lo+Pj0O7v7+/zp8//8B5jhs3jlt6AwDwP5TiG0XYbDY1aNBANWrUkIuLS6K3136YM2fO6I033tC6devk6uqa0jISGDp0qPr3729/HBkZqcDAwFSbPwAAcJSi0xxxcXEaPXq08uXLJ09PT504cUKS9M477+jzzz9P0jz27Nmjixcv6qmnnlLWrFmVNWtWbd68WR9//LGyZs0qf39/3b59W+Hh4Q7TXbhwQQEBAQ+cr4uLi7y8vBz+AABA2klRmBgzZozmzJmjCRMmyNnZ2d5eunRp/ec//0nSPOrWrauDBw9q//799r+KFSuqXbt29v9ny5bN4eZYYWFhOn36NLfsBgAgA0nRaY4vvvhCM2fOVN26dR1+2Kts2bI6cuRIkuaRPXt2lS5d2qHNw8NDfn5+9vbOnTurf//+ypEjh7y8vNS7d29VqVJFzzzzTErKBgAAaSBFYeLs2bMqWrRogva4uDjFxMRYLirehx9+KCcnJ7Vq1UrR0dEKCQnRp59+mmrzBwAA1qUoTJQsWVJbtmxRwYIFHdoXL16s8uXLp7iYTZs2OTx2dXXVtGnTNG3atBTPEwAApK0UhYnhw4crNDRUZ8+eVVxcnJYuXaqwsDB98cUX+u6771K7RgAAkIGl+A6YK1eu1Pr16+Xh4aHhw4fr8OHDWrlyperXr5/aNQIAgAws2Ucm7ty5o/fee0+dOnXSunXr0qImAACQiST7yETWrFk1YcIE3blzJy3qAQAAmUyKTnPUrVtXmzdvTu1aAABAJpSiDpgNGzbUkCFDdPDgQVWoUCHBz44n95dDAQBA5pWiMPH6669LkiZPnpxgmM1mU2xsrLWqAABAppGiMBEXF5fadQAAgEwq2X0mYmJilDVrVv32229pUQ8AAMhkkh0msmXLpgIFCnAqAwAASErh1RzDhg3TW2+9pStXrqR2PQAAIJNJUZ+JTz75RMePH1fevHlVsGDBBFdz7N27N1WKAwAAGV+KwkSLFi1SuQwAAJBZpShMjBgxIrXrAAAAmVSKwkS8PXv26PDhw5KkUqVKWfr5cQAAkDmlKExcvHhRbdq00aZNm+Tj4yNJCg8PV+3atbVw4ULlypUrNWsEAAAZWIqu5ujdu7euXbum33//XVeuXNGVK1f022+/KTIyUn369EntGgEAQAaWoiMTq1ev1vr16xUcHGxvK1mypKZNm6YGDRqkWnEAACDjS9GRibi4OGXLli1Be7Zs2bjVNgAAj5kUhYk6derojTfe0N9//21vO3v2rPr166e6deumWnEAACDjS1GY+OSTTxQZGalChQqpSJEiKlKkiIKCghQZGampU6emdo0AACADS1GficDAQO3du1fr16/XkSNHJEnBwcGqV69eqhYHAAAyvhTfZ8Jms6l+/fqqX79+atYDAAAymWSd5ti4caNKliypyMjIBMMiIiJUqlQpbdmyJdWKAwAAGV+ywsSUKVPUpUsXeXl5JRjm7e2tbt26afLkyalWHAAAyPiSFSYOHDig55577oHDGzRooD179lguCgAAZB7JChMXLlxI9P4S8bJmzapLly5ZLgoAAGQeyQoT+fLl02+//fbA4b/++qvy5MljuSgAAJB5JCtMNGrUSO+8845u3bqVYNjNmzc1YsQINWnSJNWKAwAAGV+yLg19++23tXTpUj3xxBPq1auXihcvLkk6cuSIpk2bptjYWA0bNixNCgUAABlTssKEv7+/tm/frh49emjo0KEyxki6e8+JkJAQTZs2Tf7+/mlSKAAAyJiSfdOqggUL6ocfftDVq1d1/PhxGWNUrFgx+fr6pkV9AAAgg0vxHTB9fX319NNPp2YtAAAgE0rRD30BAADEI0wAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwJJ0DRPjxo3T008/rezZsyt37txq0aKFwsLCHMa5deuWevbsKT8/P3l6eqpVq1a6cOFCOlUMAADul65hYvPmzerZs6d++eUXrVu3TjExMWrQoIFu3LhhH6dfv35auXKlFi1apM2bN+vvv//W888/n45VAwCAe2VNz4WvXr3a4fGcOXOUO3du7dmzRzVq1FBERIQ+//xzLViwQHXq1JEkzZ49W8HBwfrll1/0zDPPpEfZAADgHhmqz0RERIQkKUeOHJKkPXv2KCYmRvXq1bOPU6JECRUoUEA///xzovOIjo5WZGSkwx8AAEg7GSZMxMXFqW/fvqpWrZpKly4tSTp//rycnZ3l4+PjMK6/v7/Onz+f6HzGjRsnb29v+19gYGBalw4AwGMtw4SJnj176rffftPChQstzWfo0KGKiIiw/505cyaVKgQAAIlJ1z4T8Xr16qXvvvtOP/30k/Lnz29vDwgI0O3btxUeHu5wdOLChQsKCAhIdF4uLi5ycXFJ65IBAMD/l65HJowx6tWrl5YtW6aNGzcqKCjIYXiFChWULVs2bdiwwd4WFham06dPq0qVKv/rcgEAQCLS9chEz549tWDBAi1fvlzZs2e394Pw9vaWm5ubvL291blzZ/Xv3185cuSQl5eXevfurSpVqnAlBwAAGUS6honp06dLkmrVquXQPnv2bHXs2FGS9OGHH8rJyUmtWrVSdHS0QkJC9Omnn/6PKwUAAA+SrmHCGPPIcVxdXTVt2jRNmzbtf1ARAABIrgxzNQcAAMicCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACzJFGFi2rRpKlSokFxdXVW5cmXt3LkzvUsCAAD/X4YPE19//bX69++vESNGaO/evSpbtqxCQkJ08eLF9C4NAAAoE4SJyZMnq0uXLnr11VdVsmRJzZgxQ+7u7vrvf/+b3qUBAABJWdO7gIe5ffu29uzZo6FDh9rbnJycVK9ePf3888+JThMdHa3o6Gj744iICElSZGRkqtYWFx2VqvNDQqm9zeKx7dJeWm07ie33v8BrL/NK7W0XPz9jzEPHy9Bh4vLly4qNjZW/v79Du7+/v44cOZLoNOPGjdPIkSMTtAcGBqZJjUg73lPSuwKkFNsuc2P7ZV5pte2uXbsmb2/vBw7P0GEiJYYOHar+/fvbH8fFxenKlSvy8/OTzWZLx8rSV2RkpAIDA3XmzBl5eXmldzlIBrZd5sW2y7zYdncZY3Tt2jXlzZv3oeNl6DCRM2dOZcmSRRcuXHBov3DhggICAhKdxsXFRS4uLg5tPj4+aVVipuPl5fVYvzAyM7Zd5sW2y7zYdnroEYl4GboDprOzsypUqKANGzbY2+Li4rRhwwZVqVIlHSsDAADxMvSRCUnq37+/QkNDVbFiRVWqVElTpkzRjRs39Oqrr6Z3aQAAQJkgTLz00ku6dOmShg8frvPnz6tcuXJavXp1gk6ZeDgXFxeNGDEiwSkgZHxsu8yLbZd5se2Sx2Yedb0HAADAQ2ToPhMAACDjI0wAAABLCBMAAMASwgQkSXPmzEny/TiSMy7SzsmTJ2Wz2bR///70LgX4V+vYsaNatGhhf1yrVi317ds3SdMmZ9zMLMNfzYH/jZdeekmNGjVK7zIypVq1aqlcuXKaMmVKepeCNNCxY0eFh4fr22+/Te9SkEEsXbpU2bJlS+8yMhTCBCRJbm5ucnNzS+8ygAwjNjb2sb4FPx4sR44c6V1ChsNpjgxi8eLFKlOmjNzc3OTn56d69erpxo0b9sNrI0eOVK5cueTl5aXu3bvr9u3b9mlXr16tZ599Vj4+PvLz81OTJk30xx9/2IfHHw5funSpateuLXd3d5UtW9bhl1fvP3Vx4MAB1a5dW9mzZ5eXl5cqVKig3bt3O9S8Zs0aBQcHy9PTU88995zOnTuXdisog+rYsaM2b96sjz76SDabTTabTX/88Yc6d+6soKAgubm5qXjx4vroo48cprtz54769Olj32aDBw9WaGiow6HUR23XxGzevFmVKlWSi4uL8uTJoyFDhujOnTv24deuXVO7du3k4eGhPHny6MMPP/zXHIatVauWevXqpV69esnb21s5c+bUO++8Y/+1w6tXr6pDhw7y9fWVu7u7GjZsqGPHjtmnj38NrFixQiVLlpSLi4s6deqkuXPnavny5fbtu2nTJm3atEk2m03h4eH26ffv3y+bzaaTJ0/a22bNmqXAwEC5u7urZcuWmjx5ssPr7P7D55LUt29f1apVy/44Li5O48aNs+9PZcuW1eLFi+3Dr169qnbt2ilXrlxyc3NTsWLFNHv2bPvwM2fO6MUXX5SPj49y5Mih5s2bO9SY2T1s/cRvpw0bNqhixYpyd3dX1apVFRYW5jCPMWPGKHfu3MqePbtee+01DRkyROXKlXvgMu9/zXz66acqVqyYXF1d5e/vrxdeeCFBjYMGDVKOHDkUEBCgd999N7WefoZBmMgAzp07p7Zt26pTp046fPiwNm3apOeff97+JrhhwwZ7+1dffaWlS5c6/DLqjRs31L9/f+3evVsbNmyQk5OTWrZsqbi4OIflDBs2TAMGDND+/fv1xBNPqG3btg4fNPdq166d8ufPr127dmnPnj0aMmSIw2G9qKgoTZw4UfPmzdNPP/2k06dPa8CAAWmwdjK2jz76SFWqVFGXLl107tw5nTt3Tvnz51f+/Pm1aNEiHTp0SMOHD9dbb72lb775xj7d+PHjNX/+fM2ePVvbtm1TZGRkgsPoSd2u8c6ePatGjRrp6aef1oEDBzR9+nR9/vnnGjNmjH2c/v37a9u2bVqxYoXWrVunLVu2aO/evWmybtLD3LlzlTVrVu3cuVMfffSRJk+erP/85z+S7n5w7969WytWrNDPP/8sY4waNWqkmJgY+/RRUVEaP368/vOf/+j333/Xxx9/rBdffNEels+dO6eqVasmqZZt27ape/fueuONN7R//37Vr19fY8eOTfZzGjdunL744gvNmDFDv//+u/r166f27dtr8+bNkqR33nlHhw4d0qpVq3T48GFNnz5dOXPmlCTFxMQoJCRE2bNn15YtW7Rt2zZ7+L/3C0lm9qj1I91975s0aZJ2796trFmzqlOnTvZh8+fP19ixYzV+/Hjt2bNHBQoU0PTp05O8/N27d6tPnz4aNWqUwsLCtHr1atWoUcNhnLlz58rDw0M7duzQhAkTNGrUKK1bt876k89IDNLdnj17jCRz8uTJBMNCQ0NNjhw5zI0bN+xt06dPN56eniY2NjbR+V26dMlIMgcPHjTGGHPixAkjyfznP/+xj/P7778bSebw4cPGGGNmz55tvL297cOzZ89u5syZk+j8Z8+ebSSZ48eP29umTZtm/P39k/6k/0Vq1qxp3njjjYeO07NnT9OqVSv7Y39/f/PBBx/YH9+5c8cUKFDANG/e/IHzeNB23bdvnzHGmLfeessUL17cxMXF2aeZNm2afV+JjIw02bJlM4sWLbIPDw8PN+7u7o+sPzOoWbOmCQ4Odnj+gwcPNsHBwebo0aNGktm2bZt92OXLl42bm5v55ptvjDH/t1/v37/fYb6hoaEJtsuPP/5oJJmrV6/a2/bt22ckmRMnThhjjHnppZdM48aNHaZr166dw+sssXm/8cYbpmbNmsYYY27dumXc3d3N9u3bHcbp3Lmzadu2rTHGmKZNm5pXX3010XUyb968BPtEdHS0cXNzM2vWrEl0mszkUesnfjutX7/ePuz77783kszNmzeNMcZUrlzZ9OzZ02H6atWqmbJly9of37+d7n3NL1myxHh5eZnIyMhEa6xZs6Z59tlnHdqefvppM3jw4OQ+3QyNIxMZQNmyZVW3bl2VKVNGrVu31qxZs3T16lWH4e7u7vbHVapU0fXr13XmzBlJ0rFjx9S2bVsVLlxYXl5eKlSokCTp9OnTDst58skn7f/PkyePJOnixYuJ1tS/f3+99tprqlevnt5///0Eh9fd3d1VpEgRh/k9aF6Po2nTpqlChQrKlSuXPD09NXPmTPv2iIiI0IULF1SpUiX7+FmyZFGFChUc5pHU7Rrv8OHDqlKlisN5/mrVqun69ev666+/9OeffyomJsZhud7e3ipevHhqPe1098wzzzg8/ypVqujYsWM6dOiQsmbNqsqVK9uH+fn5qXjx4jp8+LC9zdnZ2eF1YkVYWJjDupaU4PGjHD9+XFFRUapfv748PT3tf1988YX9NdmjRw8tXLhQ5cqV06BBg7R9+3b79AcOHNDx48eVPXt2+7Q5cuTQrVu3HnnKLDNIyvqRHv7eZ3U71a9fXwULFlThwoX1yiuvaP78+YqKinIY5/596t/4fkkHzAwgS5YsWrdunbZv3661a9dq6tSpGjZsmHbs2JGk6Zs2baqCBQtq1qxZyps3r+Li4lS6dOkEhzHvPU0R/4b7oEPm7777rl5++WV9//33WrVqlUaMGKGFCxeqZcuWCeYVPz/DndklSQsXLtSAAQM0adIkValSRdmzZ9cHH3yQ5O0ZL6nbFanHzc0tSZ0unZzufg+7d5+/93RJUjk5OSV43dw7n+vXr0uSvv/+e+XLl89hvPjfjGjYsKFOnTqlH374QevWrVPdunXVs2dPTZw4UdevX1eFChU0f/78BMvOlStXsuvNaB61fuIDRXLe+5Ire/bs2rt3rzZt2qS1a9dq+PDhevfdd7Vr1y57/5jE3i9Ta/kZBUcmMgibzaZq1app5MiR2rdvn5ydnbVs2TJJd79d3Lx50z7uL7/8Ik9PTwUGBuqff/5RWFiY3n77bdWtW1fBwcEORzWseOKJJ9SvXz+tXbtWzz//vEOnLvwfZ2dnxcbG2h9v27ZNVatW1euvv67y5curaNGiDt+SvL295e/vr127dtnbYmNjHfoupGS7BgcH2/sC3FtL9uzZlT9/fhUuXFjZsmVzWG5ERISOHj1q6flnJPcHtl9++UXFihVTyZIldefOHYfh8eu4ZMmSD53n/dtX+r8P4ns7Hd9/v4/ixYs7rGtJCR7nypUrQcfle+cT3xH09OnTKlq0qMNfYGCgw3xCQ0P15ZdfasqUKZo5c6Yk6amnntKxY8eUO3fuBNN7e3s/9HlnBkldPw+TlO30KFmzZlW9evU0YcIE/frrrzp58qQ2btyYrHlkdhyZyAB27NihDRs2qEGDBsqdO7d27NihS5cuKTg4WL/++qtu376tzp076+2339bJkyc1YsQI9erVS05OTvL19ZWfn59mzpypPHny6PTp0xoyZIilem7evKmBAwfqhRdeUFBQkP766y/t2rVLrVq1SqVn/O9SqFAh7dixQydPnpSnp6eKFSumL774QmvWrFFQUJDmzZunXbt2KSgoyD5N7969NW7cOBUtWlQlSpTQ1KlTdfXqVfu3ppRs19dff11TpkxR79691atXL4WFhWnEiBHq37+/nJyclD17doWGhmrgwIHKkSOHcufOrREjRsjJyelfcwnk6dOn1b9/f3Xr1k179+7V1KlTNWnSJBUrVkzNmzdXly5d9Nlnnyl79uwaMmSI8uXLp+bNmz90noUKFdKaNWsUFhYmPz8/eXt72z+s3n33XY0dO1ZHjx7VpEmTHKbr3bu3atSoocmTJ6tp06bauHGjVq1a5bCu69Spow8++EBffPGFqlSpoi+//FK//fabypcvL+nut94BAwaoX79+iouL07PPPquIiAht27ZNXl5eCg0N1fDhw1WhQgWVKlVK0dHR+u677xQcHCzpbkfqDz74QM2bN9eoUaOUP39+nTp1SkuXLtWgQYOUP3/+VN4C/1uPWj8FCxZ85Dx69+6tLl26qGLFiqpataq+/vpr/frrrypcuHCSavjuu+/0559/qkaNGvL19dUPP/yguLi4f9XpwyRJ3y4bMMaYQ4cOmZCQEJMrVy7j4uJinnjiCTN16lRjzP91/Bk+fLjx8/Mznp6epkuXLubWrVv26detW2eCg4ONi4uLefLJJ82mTZuMJLNs2TJjTMKOesYYc/XqVSPJ/Pjjj8YYxw6Y0dHRpk2bNiYwMNA4OzubvHnzml69etk7LN3fWdMYY5YtW2Ye190pLCzMPPPMM8bNzc1IMkeOHDEdO3Y03t7exsfHx/To0cMMGTLEoUNXTEyM6dWrl/Hy8jK+vr5m8ODBpnXr1qZNmzb2cVKyXTdt2mSefvpp4+zsbAICAszgwYNNTEyMfXhkZKR5+eWXjbu7uwkICDCTJ082lSpVMkOGDEnr1ZTmatasaV5//XXTvXt3+3p966237J0Pr1y5Yl555RXj7e1t3NzcTEhIiDl69Kh9+sT2a2OMuXjxoqlfv77x9PR0eM1s3brVlClTxri6uprq1aubRYsWOXTANMaYmTNnmnz58hk3NzfTokULM2bMGBMQEOAw/+HDhxt/f3/j7e1t+vXrZ3r16mXvgGmMMXFxcWbKlCmmePHiJlu2bCZXrlwmJCTEbN682RhjzOjRo01wcLBxc3MzOXLkMM2bNzd//vmnffpz586ZDh06mJw5cxoXFxdTuHBh06VLFxMREWFxjWcMD1s/Sekoa4wxo0aNMjlz5jSenp6mU6dOpk+fPuaZZ56xD39YB8wtW7aYmjVrGl9fX+Pm5maefPJJ8/XXXyc6brzmzZub0NDQVFwL6Y+fIM/guPve4yEuLk7BwcF68cUXNXr06P/Zcm/cuKF8+fJp0qRJ6ty58/9suWkhM9yJtEuXLjpy5Ii2bNmS3qXgIerXr6+AgADNmzcvvUvJNDjNAaSDU6dOae3atapZs6aio6P1ySef6MSJE3r55ZfTdLn79u3TkSNHVKlSJUVERGjUqFGS9MhD/UiZiRMnqn79+vLw8NCqVas0d+5cffrpp+ldFu4RFRWlGTNmKCQkRFmyZNFXX32l9evX//vuA5HGCBNAOnByctKcOXM0YMAAGWNUunRprV+/3n6uOy1NnDhRYWFhcnZ2VoUKFbRlyxb7TY6Qunbu3KkJEybo2rVrKly4sD7++GO99tpr6V0W7mGz2fTDDz9o7NixunXrlooXL64lS5aoXr166V1apsJpDgAAYAmXhgIAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIE8Bjr2LGjWrRokd5lAMjkCBMAAMASwgSARE2ePFllypSRh4eHAgMD9frrr+v69ev24XPmzJGPj4/WrFmj4OBgeXp66rnnnnP4Se07d+6oT58+8vHxkZ+fnwYPHqzQ0FCHoyGFChVK8Hsa5cqV07vvvpvkWiRp1qxZCgwMlLu7u1q2bKnJkyfLx8fHYZzly5frqaeekqurqwoXLqyRI0fqzp07ltcV8LgjTABIlJOTkz7++GP9/vvvmjt3rjZu3KhBgwY5jBMVFaWJEydq3rx5+umnn3T69GkNGDDAPnz8+PGaP3++Zs+erW3btikyMjJFP1r3qFq2bdum7t2764033tD+/ftVv359jR071mEeW7ZsUYcOHfTGG2/o0KFD+uyzzzRnzpwE4wFIgXT9zVIA6er+n1Z+mEWLFhk/Pz/749mzZxtJ5vjx4/a2adOmGX9/f/tjf39/88EHH9gf37lzxxQoUMBhmQULFjQffvihw7LKli1rRowYkeRaXnrpJdO4cWOHcdq1a+fwk+J169Y17733nsM48+bNM3ny5HngcgAkDT/0BSBR69ev17hx43TkyBFFRkbqzp07unXrlqKiouTu7i5Jcnd3V5EiRezT5MmTRxcvXpQkRURE6MKFC6pUqZJ9eJYsWVShQgXFxcWlai1hYWFq2bKlwzSVKlXSd999Z3984MABbdu2zeFIRGxsbILnBCD5OM0BIIGTJ0+qSZMmevLJJ7VkyRLt2bNH06ZNkyTdvn3bPl62bNkcprPZbDLJ/O1AJyenBNPExMQku5ZHuX79ukaOHKn9+/fb/w4ePKhjx47J1dU1WTUDcMSRCQAJ7NmzR3FxcZo0aZKcnO5+5/jmm2+SNQ9vb2/5+/tr165dqlGjhqS7RwL27t2rcuXK2cfLlSuXQ6fNyMhInThxIlm1FC9eXLt27XJou//xU089pbCwMBUtWjRZzwPAoxEmgMdcRESE9u/f79CWM2dOxcTEaOrUqWratKm2bdumGTNmJHvevXv31rhx41S0aFGVKFFCU6dO1dWrV2Wz2ezj1KlTR3PmzFHTpk3l4+Oj4cOHK0uWLPbhRYsWfWQtvXv3Vo0aNTR58mQ1bdpUGzdu1KpVqxyWM3z4cDVp0kQFChTQCy+8ICcnJx04cEC//fabxowZk+znBuAe6d1pA0D6CQ0NNZIS/HXu3NlMnjzZ5MmTx7i5uZmQkBDzxRdfGEnm6tWrxpi7HTDv7eBojDHLli0z976txMTEmF69ehkvLy/j6+trBg8ebFq3bm3atGljHyciIsK89NJLxsvLywQGBpo5c+Yk6ID5qFqMMWbmzJkmX758xs3NzbRo0cKMGTPGBAQEONS3evVqU7VqVePm5ma8vLxMpUqVzMyZM1NtfQKPK5sxyTzBCQApFBcXp+DgYL344osaPXp0mi6rS5cuOnLkiLZs2ZKmywHAaQ4AaejUqVNau3atatasqejoaH3yySc6ceKEXn755VRf1sSJE1W/fn15eHho1apVmjt3rj799NNUXw6AhAgTANKMk5OT5syZowEDBsgYo9KlS2v9+vUKDg5O9WXt3LlTEyZM0LVr11S4cGF9/PHHeu2111J9OQAS4jQHAACwhPtMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACz5fyZ/2L7yCuX0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 oncology 1 1 1 1 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 100.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIjCAYAAABI0sIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaqUlEQVR4nO3dd1QU5/s28GtBegeRokgRC3bUaBC7ILGgGGOJJkJUjAVr7MaGLTbEIGo0+YoFNTGW2AtWbNiNsSA2NEZQI0VAkPK8f/gyP9dFgXVHhVyfc/Yc9pl2z8yWi5lnZhVCCAEiIiIiGWl96AKIiIio9GPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CCS0enTp6Grq4v4+HiNzO/q1asoU6YM/vrrL43Mj0oGJycnBAQEvPflRkREQKFQ4OzZs+992fR/7t69C4VCgYiIiA9dyjth4CiGW7du4dtvv4WLiwv09fVhamoKT09PLFq0CM+fP//Q5RXb1atXMXXqVNy9e7fY044ZMwYKhQLdu3fXfGGlyMSJE/Hll1/C0dFRatu6dSuqVasGMzMz+Pr64p9//lGZrmPHjujfv79Ke/Xq1dG+fXtMnjy5SMvP/8J49VGuXDm0bNkSu3fvVn/FCuDk5IQOHTpodJ6kWflfXEV5qPO5QPQ2ZT50ASXFzp070bVrV+jp6aF3796oWbMmXrx4gWPHjmH06NG4cuUKli9f/qHLLJarV69i2rRpaNGiBZycnIo8nRAC69evh5OTE7Zv345nz57BxMREvkJLqIsXLyIqKgonTpyQ2m7fvo3u3buje/fu8PDwQGhoKL755hvs3btXGmfv3r04evQo4uLiCpzvgAED0K5dO9y6dQuVKlUqUi3BwcFwdnaGEAKJiYmIiIhAu3btsH37doaEEiA2NhZaWu/+/6G1tTXWrFmj1LZgwQL8/fffWLhwocq4RJrEwFEEd+7cQY8ePeDo6IiDBw/Czs5OGjZ48GDcvHkTO3fufOflCCGQmZkJAwMDlWGZmZnQ1dXVyIfOuzp8+DD+/vtvHDx4ED4+Pti8eTP8/f0/dFkalZOTg7y8POjq6qo9j5UrV6JixYr49NNPpbZ9+/ahQoUKWLVqFRQKBdzc3NCqVStkZmZCX18fOTk5GDFiBCZPnvzGD3wvLy9YWFhg1apVCA4OLlItbdu2RYMGDaTnffv2hY2NDdavX8/AUQLo6elpZD5GRkb46quvlNo2bNiApKQklXYiTfvw314lwNy5c5GWloZffvlFKWzkc3V1xbBhw6TnOTk5mD59OipVqgQ9PT04OTlhwoQJyMrKUpou/xD03r170aBBAxgYGOCnn37C4cOHoVAosGHDBnz//fcoX748DA0NkZqaCgCIiYnBZ599BjMzMxgaGqJ58+Y4fvy4Sl0PHjxA3759YW9vDz09PTg7O2PgwIF48eIFIiIi0LVrVwBAy5YtpcOohw8fLnR7REZGonr16mjZsiW8vLwQGRmpMk7+Ovz222+YOXMmKlSoAH19fbRu3Ro3b95UGjcuLg5dunSBra0t9PX1UaFCBfTo0QMpKSkAgM8//xz16tVTmsbX1xcKhQLbtm2T2mJiYqBQKJROFSQnJ2P48OFwcHCAnp4eXF1dMWfOHOTl5Unj5B9mnj9/PkJDQ6X9dvXqVQBAWFgYatSoAUNDQ1hYWKBBgwZYt25dodtp69ataNWqFRQKhdT2/PlzmJubS22WlpYQQkin5BYvXozc3FwMGTLkjfPV0dFBixYt8McffxRaw5uYm5vDwMAAZcq8/J9DCAEnJyd06tRJZdzMzEyYmZnh22+/VXt5+aKjo9G1a1dUrFgRenp6cHBwwIgRI1ROSQYEBMDY2BgPHjyAn58fjI2NYW1tjVGjRiE3N1dp3H///Rdff/01TE1NYW5uDn9/f1y6dEnlnHeLFi3QokULlZoCAgJUjvDNnz8fjRs3hpWVFQwMDFC/fn38/vvvKtM+f/4cQ4cORdmyZWFiYoKOHTviwYMHUCgUmDp1qtK4Dx48QJ8+fWBjYwM9PT3UqFED//vf/4q03V7vw5F/quz48eMYOXIkrK2tYWRkhM6dO+Px48dFmmdxZGVlFWk5u3fvRtOmTWFkZAQTExO0b98eV65cURonf9/eu3cPHTp0gLGxMcqXL4/w8HAAwOXLl9GqVSsYGRnB0dGxwPdaUd7XAPDw4UNcv34d2dnZha5jeno6vvvuO2meVatWxfz58/H6D6orFAoEBQVh69atqFmzprQv9+zZozLPt30G57t9+za6du0KS0tLGBoa4tNPPy3yP7AHDx6Utre5uTk6deqEa9euqYx3+PBhNGjQAPr6+qhUqRJ++uknTJ06VemzqXnz5qhTp06By6latSp8fHyKVNNbCSpU+fLlhYuLS5HH9/f3FwDEF198IcLDw0Xv3r0FAOHn56c0nqOjo3B1dRUWFhZi3LhxYtmyZeLQoUPi0KFDAoCoXr26qFu3rggJCRGzZ88W6enp4sCBA0JXV1d4eHiIBQsWiIULF4ratWsLXV1dERMTI837wYMHwt7eXhgaGorhw4eLZcuWiUmTJgk3NzeRlJQkbt26JYYOHSoAiAkTJog1a9aINWvWiISEhLeuW2ZmpjA3NxfTp08XQgixevVqoa2tLR4+fKg0Xv46uLu7i/r164uFCxeKqVOnCkNDQ9GwYUNpvKysLOHs7Czs7e3FjBkzxM8//yymTZsmPvnkE3H37l0hhBAhISFCS0tLpKSkCCGEyMvLExYWFkJLS0uMGjVKmte8efOUxktPTxe1a9cWVlZWYsKECWLZsmWid+/eQqFQiGHDhknT3blzR9reLi4u4ocffhALFy4U8fHxYvny5dK+/Omnn8SiRYtE3759xdChQ9+6nf7++28BQPz4449K7dHR0UKhUIh169aJ27dvi27duglXV1chhBCPHj0S5ubmYseOHW+dtxBCzJgxQ2ld32TlypUCgIiKihKPHz8Wjx49En/99Zf49ttvhZaWlti3b5807sSJE4WOjo74999/lebx22+/CQDi6NGjb12Wo6OjaN++/VvHGTJkiGjXrp2YNWuW+Omnn0Tfvn2Ftra2+OKLL5TG8/f3F/r6+qJGjRqiT58+YunSpaJLly4CgFiyZIk0Xm5urvDw8BDa2toiKChILF68WHh7e4s6deoIAGLlypXSuM2bNxfNmzdXqcnf3184OjoqtVWoUEEMGjRILF68WISEhIiGDRsKACr7plu3bgKA+Prrr0V4eLjo1q2btOwpU6ZI4yUkJIgKFSoIBwcHERwcLJYuXSo6duwoAIiFCxe+dZsJ8XLb+vv7S8/z96u7u7to1aqVCAsLE999953Q1tYW3bp1K3R+r2rfvr3K+quznNWrVwuFQiE+++wzERYWJubMmSOcnJyEubm5uHPnjjRe/r6tXr26GDBggAgPDxeNGzeW9pe9vb0YPXq0CAsLEzVq1BDa2tri9u3b0vRFfV/nLwuA0vILkpeXJ1q1aiUUCoXo16+fWLx4sfD19RUAxPDhw5XGBSDq1Kkj7OzsxPTp00VoaKhwcXERhoaG4smTJ9J4hX0GC/HydWFjYyNMTEzExIkTRUhIiKhTp47Q0tISmzdvluaV/xn16ut5//79okyZMqJKlSpi7ty5Ytq0aaJs2bLCwsJCaX3Pnz8v9PT0hJOTk/jhhx/EzJkzhb29vfQ6zbdixQoBQFy+fFlpfU+fPi0AiNWrV791GxYFA0chUlJSBADRqVOnIo1/8eJFAUD069dPqX3UqFECgDh48KDU5ujoKACIPXv2KI2b/2Xt4uIiMjIypPa8vDxRuXJl4ePjI/Ly8qT2jIwM4ezsLLy9vaW23r17Cy0tLXHmzBmVGvOn3bhxowAgDh06VKR1E0KI33//XQAQcXFxQgghUlNThb6+vsqHZv46uLm5iaysLKl90aJFSi/qCxcuCABi48aNb1zmmTNnBACxa9cuIYQQf/75pwAgunbtKho1aiSN17FjR+Hu7i49nz59ujAyMhI3btxQmt+4ceOEtra2uHfvnhDi/97Mpqam4tGjR0rjdurUSdSoUaOom0cSFRUlAIjt27erDMsPegCEpaWl9JoIDAwUn332WZHmv27dOgFAKWQWJP8L4/WHnp6eiIiIUBo3NjZWABBLly5Vau/YsaNwcnJSes0VpCiB49XXc77Zs2cLhUIh4uPjpbb8L4rg4GClcfMDbL5NmzYJACI0NFRqy83NFa1atXqnwPF6nS9evBA1a9YUrVq1ktrOnTtX4BdSQECASuDo27evsLOzU/pCEkKIHj16CDMzswK3y6veFDi8vLyU9suIESOEtra2SE5Ofuv8XlWUwFHYcp49eybMzc1FYGCg0vQJCQnCzMxMqT1/386aNUtqS0pKEgYGBkKhUIgNGzZI7devX1fZlkV9X7+6rMICx9atWwUAMWPGDKX2L774QigUCnHz5k2pDYDQ1dVVart06ZIAIMLCwqS2onwGDx8+XAAQ0dHR0rBnz54JZ2dn4eTkJHJzc4UQBQeOunXrinLlyin9g3Dp0iWhpaUlevfuLbX5+voKQ0ND8eDBA6ktLi5OlClTRilwJCcnC319fTF27FilWocOHSqMjIxEWlraG7Ze0fGUSiHyT2MUtVPkrl27AAAjR45Uav/uu+8AQOVQmbOz8xsPVfn7+yv157h48SLi4uLQs2dP/Pvvv3jy5AmePHmC9PR0tG7dGkePHkVeXh7y8vKwdetW+Pr6Kp23z/fqYbTiioyMRIMGDeDq6goA0mHTgk6rAMA333yj1A+iadOmAF4eRgQAMzMzAC87SmZkZBQ4D3d3dxgbG+Po0aMAXh6Wr1ChAnr37o3z588jIyMDQggcO3ZMmj8AbNy4EU2bNoWFhYW0rZ48eQIvLy/k5uZK88vXpUsXlX4T5ubm+Pvvv3HmzJkibyPg5WF+ALCwsFAZtmjRIsTHxyMmJgbx8fFo2bIlLl68iNWrV2PhwoVISUnBV199hfLly6NFixYFHiLNn++TJ0+KVE94eDj279+P/fv3Y+3atWjZsiX69euHzZs3S+NUqVIFjRo1UtqXT58+xe7du9GrV693et3ke/X1nJ6ejidPnqBx48YQQuDChQsq4w8YMEDpedOmTaXXDgDs2bMHOjo6CAwMlNq0tLQwePBgjdWZlJSElJQUNG3aFOfPn1daNgAMGjRIadrXT4cJIbBp0yb4+vpCCKH0WvTx8UFKSorSfIujf//+SvuladOmyM3N1dhl2EVdzv79+5GcnIwvv/xSaf20tbXRqFEjHDp0SGWe/fr1k/42NzdH1apVYWRkhG7dukntVatWhbm5udI+L877OiIiQjpd+Da7du2CtrY2hg4dqtT+3XffQQihckWXl5eXUoft2rVrw9TUVKqzqJ/Bu3btQsOGDdGkSRNpmLGxMfr374+7d+9Kp3Vf9/DhQ1y8eBEBAQGwtLRUqsPb21v6HsrNzUVUVBT8/Pxgb28vjefq6oq2bdsqzdPMzAydOnXC+vXrpdNIubm5+PXXX+Hn5wcjI6M3bL2iY6fRQpiamgIAnj17VqTx4+PjoaWlJX0h57O1tYW5ubnKB4Gzs/Mb5/X6sPyrFt7WQTMlJQUvXrxAamoqatasWaSaiyo5ORm7du1CUFCQUj8MT09PbNq0CTdu3ECVKlWUpqlYsaLS8/wvyqSkJAAv13HkyJEICQlBZGQkmjZtio4dO+Krr76Swoi2tjY8PDwQHR0N4GXgaNq0KZo0aYLc3FycOnUKNjY2ePr0qVLgiIuLw59//vnGzpePHj1Sel7Qvhg7diyioqLQsGFDuLq6ok2bNujZsyc8PT2LtM3y37ivq1ixotK2GTp0KAYMGIBq1arhq6++wv379/HHH39g1apV8PX1xfXr16X+Fq/Ot6ghoGHDhkoffF9++SXc3d0RFBSEDh06SKGwd+/eCAoKQnx8PBwdHbFx40ZkZ2fj66+/LtJyCnPv3j1MnjwZ27Ztk14D+fL77OTT19dX2XcWFhZK08XHx8POzg6GhoZK473+/iuuHTt2YMaMGbh48aJS36tXt3f+e/31183ry378+DGSk5OxfPnyN17J9vprsagKe39pSmHLyf9satWqVYHT53+O5ito35qZmaFChQoqr2kzMzOl9Snu+7oo4uPjYW9vr/KPpZubmzT8Va9vD0D5tfn48eMifQbHx8ejUaNGKu2vLregeeTXU7Vq1QKn3bt3L9LT05Gamornz58X+H4oqK1379749ddfER0djWbNmiEqKgqJiYkae/8zcBTC1NQU9vb2xb7RUlG/CAq6IuVNw/I7RM2bNw9169YtcBpjY2M8ffq0aEUW08aNG5GVlYUFCxZgwYIFKsMjIyMxbdo0pTZtbe0C5/XqF/GCBQsQEBCAP/74A/v27cPQoUMxe/ZsnDp1ChUqVAAANGnSBDNnzkRmZiaio6MxceJEmJubo2bNmoiOjoaNjQ0AKAWOvLw8eHt7Y8yYMQXW8Ho4KmhfuLm5ITY2Fjt27MCePXuwadMmLFmyBJMnT1ZZ11dZWVkBKNoH/6+//opr165h27ZtyM3NxW+//YZ9+/ahQYMGqFGjBlasWIFTp04p/ReUP9+yZcsWOv+CaGlpoWXLlli0aBHi4uJQo0YNAECPHj0wYsQIREZGYsKECVi7di0aNGhQ4AdbceXm5sLb2xtPnz7F2LFjUa1aNRgZGeHBgwcICAhQ6fD3pteOuhQKRYEB8PVOqNHR0ejYsSOaNWuGJUuWwM7ODjo6Oli5cmWROgu/Ln+9vvrqqzf+s1C7du1izxco2vtLEwpbTv46rlmzBra2tirjvRqW3za/oqxPcd/Xcnhf2/198/HxgY2NDdauXYtmzZph7dq1sLW1hZeXl0bmz8BRBB06dMDy5ctx8uRJeHh4vHVcR0dH5OXlIS4uTkqpAJCYmIjk5GSlG0AVV/4hPFNT07e+AKytrWFqalpoSCruIfLIyEjUrFkTU6ZMURn2008/Yd26dW/9En6bWrVqoVatWvj+++9x4sQJeHp6YtmyZZgxYwaAl0HixYsXWL9+PR48eCAFi2bNmkmBo0qVKlLwAF5ur7S0tHd+sxgZGUn3znjx4gU+//xzzJw5E+PHj4e+vn6B01SrVg3Ay0uq3yYjIwOjR4/G9OnTYW5ujsTERGRnZ0uHPw0MDGBhYYEHDx4oTXfnzh1oaWm904drTk4OACAtLU1qs7S0lE6R9erVC8ePH0doaKjay3jV5cuXcePGDaxatQq9e/eW2vfv36/2PB0dHXHo0CFkZGQoHeV4/Uoo4OV/oK8ems/3+n+vmzZtgr6+Pvbu3at0OerKlStVlp2Xl4c7d+6gcuXKb1y2tbU1TExMkJubq7EP7o9N/mdTuXLlZF9HTb2vX+Xo6IioqCiVewpdv35dGl4cRf0MdnR0RGxsrEp7YcvNb3/TtGXLloWRkRH09fWhr69f4PuhoDZtbW307NkTERERmDNnDrZu3YrAwECNhX/24SiCMWPGwMjICP369UNiYqLK8Fu3bmHRokUAgHbt2gGAyod0SEgIAKB9+/Zq11G/fn1UqlQJ8+fPV/qSyJd/mZqWlhb8/Pywffv2Am9JnJ/C88/JJScnF7rs+/fv4+jRo+jWrRu++OILlcc333yDmzdvIiYmpljrlJqaKn3x5atVqxa0tLSUDmU3atQIOjo6mDNnDiwtLaX/yJs2bYpTp07hyJEjSkc3AKBbt244efKk0k218iUnJ6sstyD5fTHy6erqonr16hBCvPVSu/Lly8PBwaHQW0LPmTMHFhYWUh8EKysrlClTRvrAefLkCR4/fqzyX+O5c+dQo0YN6bRTcWVnZ2Pfvn3Q1dVVCsYA8PXXX+Pq1asYPXo0tLW10aNHD7WW8br8D61X/wsUQkjvHXX4+PggOzsbK1askNry8vKkSyxfValSJVy/fl3pcs5Lly6pXFKura0NhUKhdOTj7t272Lp1q8qyAWDJkiVK7WFhYSrz69KlCzZt2lTgF5Acl7G+bz4+PjA1NcWsWbMKfF9och2L874u6mWx7dq1Q25uLhYvXqzUvnDhQigUCpX+DoUp6mdwu3btcPr0aZw8eVIalp6ejuXLl8PJyQnVq1cvcP52dnaoW7cuVq1apfT5/ddff2Hfvn3S95C2tja8vLywdetWpTsa37x58413Gv7666+RlJSEb7/9FmlpaRq9PwuPcBRBpUqVsG7dOnTv3h1ubm5Kdxo9ceIENm7cKF0jX6dOHfj7+2P58uVITk5G8+bNcfr0aaxatQp+fn5o2bKl2nVoaWnh559/Rtu2bVGjRg188803KF++PB48eIBDhw7B1NQU27dvBwDMmjUL+/btQ/PmzdG/f3+4ubnh4cOH2LhxI44dOwZzc3PUrVsX2tramDNnDlJSUqCnp4dWrVqhXLlyKstet24dhBDo2LFjgbW1a9cOZcqUQWRkZIHnJN/k4MGDCAoKQteuXVGlShXk5ORgzZo10od0PkNDQ9SvXx+nTp2S7sEBvDzCkZ6ejvT0dJXAMXr0aGzbtg0dOnRAQEAA6tevj/T0dFy+fBm///477t69W+gpiTZt2sDW1haenp6wsbHBtWvXsHjxYrRv377QjsSdOnXCli1bIIQo8GjSvXv3MG/ePOzcuVP6Mi5Tpgw6deqE4cOH4969e9iyZQvs7e2VjqxlZ2fjyJEjKp0V32b37t1SiHn06BHWrVuHuLg4jBs3TuX8evv27WFlZYWNGzeibdu2Bb4e3uTmzZvSUalXubu7o02bNqhUqRJGjRqFBw8ewNTUFJs2bXqn/gZ+fn5o2LAhvvvuO9y8eRPVqlXDtm3bpNOKr273Pn36ICQkBD4+Pujbty8ePXqEZcuWoUaNGlLn8Pz1DwkJwWeffYaePXvi0aNHCA8Ph6urK/78809pvPr166NLly4IDQ3Fv//+i08//RRHjhzBjRs3VJb9ww8/4NChQ2jUqBECAwNRvXp1PH36FOfPn0dUVJRsp0HfF1NTUyxduhRff/016tWrhx49esDa2hr37t3Dzp074enpqfJlrq7ivK/Hjx+PVatW4c6dO2/tOOrr64uWLVti4sSJuHv3LurUqYN9+/bhjz/+wPDhw4t8R99XFeUzeNy4cVi/fj3atm2LoUOHwtLSUqp306ZNb73R47x589C2bVt4eHigb9++eP78OcLCwmBmZqZ0D5ipU6di37598PT0xMCBA6VgVbNmTVy8eFFlvu7u7qhZsyY2btwINzc3lXsgvZN3vs7lP+TGjRsiMDBQODk5CV1dXWFiYiI8PT1FWFiYyMzMlMbLzs4W06ZNE87OzkJHR0c4ODiI8ePHK40jxJsvI8y/pPRNl4peuHBBfP7558LKykro6ekJR0dH0a1bN3HgwAGl8eLj40Xv3r2FtbW10NPTEy4uLmLw4MFKl6muWLFCuLi4CG1t7bdeIlurVi1RsWLFt26fFi1aiHLlyons7Ow3rsPrl3fdvn1b9OnTR1SqVEno6+sLS0tL0bJlSxEVFaUy/9GjRwsAYs6cOUrtrq6uAoC4deuWyjTPnj0T48ePF66urkJXV1eULVtWNG7cWMyfP1+8ePFCqaZ58+apTP/TTz+JZs2aSdu6UqVKYvTo0YXe/0KIl9e/47VL3l7VtWtX8fnnn6u0JyYmCl9fX2FiYiLq1asnzp49qzR89+7dSpcmv01Bl8Xq6+uLunXriqVLl77xUtdBgwYJAGLdunWFLiNf/mXeBT369u0rhBDi6tWrwsvLSxgbG4uyZcuKwMBA6ZLCVy/58/f3F0ZGRirLmDJlinj9Y+vx48eiZ8+ewsTERJiZmYmAgABx/PhxAUDpEkshhFi7dq1wcXERurq6om7dumLv3r0FXhb7yy+/iMqVKws9PT1RrVo1sXLlygKXnZ6eLgYPHiwsLS2FsbGx8PPzky4v/uGHH5TGTUxMFIMHDxYODg5CR0dH2NraitatW4vly5cXadsWdFns65dc5r/vinOpe1Euiy3qcg4dOiR8fHyEmZmZ0NfXF5UqVRIBAQFKr+E37dvmzZsXeAl6QZ+TRXlf5y8LRbgsNn+eI0aMEPb29kJHR0dUrlxZzJs3T+U9AkAMHjy4wDpf3UdCFO0z+NatW+KLL74Q5ubmQl9fXzRs2FDlfi8FXRYrxMvL7z09PYWBgYEwNTUVvr6+4urVqyq1HThwQLi7uwtdXV1RqVIl8fPPP4vvvvtO6OvrF7gt5s6dq3LpsiYohCjhvVyIPmKtW7eGvb29yu9XvAs/Pz8oFAps2bJFY/N83YgRI/DLL78gISFB5QqQkmDr1q3o3Lkzjh07VuQrijTl4sWLcHd3x9q1a9GrV6/3umyiovLz88OVK1cK/M2mRYsWYcSIEbh7926BV+Soi304iGQ0a9Ys/Prrrxq7L8K1a9ewY8cOTJ8+XSPzK0hmZibWrl2LLl26lIiw8fpt0XNzcxEWFgZTU1PNHg4uwrKBl/23tLS00KxZM1mXTVRUr79O4+LisGvXrgJv9S+EwC+//ILmzZtrNGwA7MNBJKtGjRop/W7Cu3JzcytSZ1d1PHr0CFFRUfj999/x77//Kv0+0MdsyJAheP78OTw8PJCVlYXNmzfjxIkTmDVr1lsvO9eEuXPn4ty5c2jZsiXKlCmD3bt3Y/fu3ejfvz8cHBxkXTZRUbm4uCAgIAAuLi6Ij4/H0qVLoaurq3RpcXp6OrZt24ZDhw7h8uXL7/RbTW+k0RM0RFRi5Z+XL1eunNItmj92kZGRol69esLU1FTo6uqK6tWrv7f69+3bJzw9PYWFhYXQ0dERlSpVElOnThXZ2dnvZflERREQECAcHR2Fnp6eMDU1FT4+PuLcuXNK4+T3EzE3NxcTJkyQpQ724SAiIiLZsQ8HERERyY6Bg4iIiGTHTqN4eWfCf/75ByYmJhr5RUwiIqL/CiEEnj17Bnt7+7ferIyBA8A///zDHuVERETv4P79+9IPbhaEgQOQblF9//59lds8ExER0ZulpqbCwcGh0J97YODA//3mgampKQMHERGRGgrrksBOo0RERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsPmjgOHr0KHx9fWFvbw+FQoGtW7cqDRdCYPLkybCzs4OBgQG8vLwQFxenNM7Tp0/Rq1cvmJqawtzcHH379kVaWtp7XAsiIiIqzAcNHOnp6ahTpw7Cw8MLHD537lz8+OOPWLZsGWJiYmBkZAQfHx9kZmZK4/Tq1QtXrlzB/v37sWPHDhw9ehT9+/d/X6tARERERaAQQogPXQQAKBQKbNmyBX5+fgBeHt2wt7fHd999h1GjRgEAUlJSYGNjg4iICPTo0QPXrl1D9erVcebMGTRo0AAAsGfPHrRr1w5///037O3ti7Ts1NRUmJmZISUlBaamprKsHxERUWlU1O/Qj7YPx507d5CQkAAvLy+pzczMDI0aNcLJkycBACdPnoS5ubkUNgDAy8sLWlpaiImJeeO8s7KykJqaqvQgIiIi+ZT50AW8SUJCAgDAxsZGqd3GxkYalpCQgHLlyikNL1OmDCwtLaVxCjJ79mxMmzZNwxWrchq3U/Zl/Nfd/aG9LPPlvpMf913JJde+A7j/3gc599/bfLRHOOQ0fvx4pKSkSI/79+9/6JKIiIhKtY82cNja2gIAEhMTldoTExOlYba2tnj06JHS8JycHDx9+lQapyB6enowNTVVehAREZF8PtrA4ezsDFtbWxw4cEBqS01NRUxMDDw8PAAAHh4eSE5Oxrlz56RxDh48iLy8PDRq1Oi910xEREQF+6B9ONLS0nDz5k3p+Z07d3Dx4kVYWlqiYsWKGD58OGbMmIHKlSvD2dkZkyZNgr29vXQli5ubGz777DMEBgZi2bJlyM7ORlBQEHr06FHkK1SIiIhIfh80cJw9exYtW7aUno8cORIA4O/vj4iICIwZMwbp6eno378/kpOT0aRJE+zZswf6+vrSNJGRkQgKCkLr1q2hpaWFLl264Mcff3zv60JERERv9kEDR4sWLfC224AoFAoEBwcjODj4jeNYWlpi3bp1cpRHREREGvLR9uEgIiKi0oOBg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkew+6sCRm5uLSZMmwdnZGQYGBqhUqRKmT58OIYQ0jhACkydPhp2dHQwMDODl5YW4uLgPWDURERG97qMOHHPmzMHSpUuxePFiXLt2DXPmzMHcuXMRFhYmjTN37lz8+OOPWLZsGWJiYmBkZAQfHx9kZmZ+wMqJiIjoVWU+dAFvc+LECXTq1Ant27cHADg5OWH9+vU4ffo0gJdHN0JDQ/H999+jU6dOAIDVq1fDxsYGW7duRY8ePT5Y7URERPR/PuojHI0bN8aBAwdw48YNAMClS5dw7NgxtG3bFgBw584dJCQkwMvLS5rGzMwMjRo1wsmTJ98436ysLKSmpio9iIiISD4f9RGOcePGITU1FdWqVYO2tjZyc3Mxc+ZM9OrVCwCQkJAAALCxsVGazsbGRhpWkNmzZ2PatGnyFU5ERERKPuojHL/99hsiIyOxbt06nD9/HqtWrcL8+fOxatWqd5rv+PHjkZKSIj3u37+voYqJiIioIB/1EY7Ro0dj3LhxUl+MWrVqIT4+HrNnz4a/vz9sbW0BAImJibCzs5OmS0xMRN26dd84Xz09Pejp6claOxEREf2fj/oIR0ZGBrS0lEvU1tZGXl4eAMDZ2Rm2trY4cOCANDw1NRUxMTHw8PB4r7USERHRm33URzh8fX0xc+ZMVKxYETVq1MCFCxcQEhKCPn36AAAUCgWGDx+OGTNmoHLlynB2dsakSZNgb28PPz+/D1s8ERERST7qwBEWFoZJkyZh0KBBePToEezt7fHtt99i8uTJ0jhjxoxBeno6+vfvj+TkZDRp0gR79uyBvr7+B6yciIiIXvVRBw4TExOEhoYiNDT0jeMoFAoEBwcjODj4/RVGRERExfJR9+EgIiKi0oGBg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7MqoM9GdO3cQHR2N+Ph4ZGRkwNraGu7u7vDw8IC+vr6mayQiIqISrliBIzIyEosWLcLZs2dhY2MDe3t7GBgY4OnTp7h16xb09fXRq1cvjB07Fo6OjnLVTERERCVMkQOHu7s7dHV1ERAQgE2bNsHBwUFpeFZWFk6ePIkNGzagQYMGWLJkCbp27arxgomIiKjkKXLg+OGHH+Dj4/PG4Xp6emjRogVatGiBmTNn4u7du5qoj4iIiEqBIgeOt4WN11lZWcHKykqtgoiIiKj0UavT6Kt27tyJw4cPIzc3F56enujSpYsm6iIiIqJS5J0ui500aRLGjBkDhUIBIQRGjBiBIUOGaKo2IiIiKiWKdYTj7NmzaNCggfT8119/xaVLl2BgYAAACAgIQIsWLRAWFqbZKomIiKhEK9YRjgEDBmD48OHIyMgAALi4uGDBggWIjY3F5cuXsXTpUlSpUkWWQomIiKjkKlbgiImJgZ2dHerVq4ft27fjf//7Hy5cuIDGjRujadOm+Pvvv7Fu3Tq5aiUiIqISqlinVLS1tTF27Fh07doVAwcOhJGRERYvXgx7e3u56iMiIqJSQK1Ooy4uLti7dy86d+6MZs2aITw8XNN1ERERUSlSrMCRnJyMMWPGwNfXF99//z06d+6MmJgYnDlzBp9++ikuX74sV51ERERUghUrcPj7+yMmJgbt27dHbGwsBg4cCCsrK0RERGDmzJno3r07xo4dK1etREREVEIVqw/HwYMHceHCBbi6uiIwMBCurq7SsNatW+P8+fMIDg7WeJFERERUshXrCEflypWxfPly3LhxA8uWLVP5RVh9fX3MmjVLowUSERFRyVeswPG///0PBw8ehLu7O9atW4elS5fKVRcRERGVIsU6pVK3bl2cPXtWrlqIiIiolCryEQ4hhJx1EBERUSlW5MBRo0YNbNiwAS9evHjreHFxcRg4cCB++OGHdy6OiIiISocin1IJCwvD2LFjMWjQIHh7e6NBgwawt7eHvr4+kpKScPXqVRw7dgxXrlxBUFAQBg4cKGfdREREVIIUOXC0bt0aZ8+exbFjx/Drr78iMjIS8fHxeP78OcqWLQt3d3f07t0bvXr1goWFhZw1ExERUQlTrE6jANCkSRM0adJEjlqIiIiolFLrt1SIiIiIioOBg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkezUChznz5/H5cuXped//PEH/Pz8MGHChEJvDEZERET/PWoFjm+//RY3btwAANy+fRs9evSAoaEhNm7ciDFjxmi0QCIiIir51AocN27cQN26dQEAGzduRLNmzbBu3TpERERg06ZNmqyPiIiISgG1AocQAnl5eQCAqKgotGvXDgDg4OCAJ0+eaK46IiIiKhXUChwNGjTAjBkzsGbNGhw5cgTt27cHANy5cwc2NjYaLfDBgwf46quvYGVlBQMDA9SqVQtnz56VhgshMHnyZNjZ2cHAwABeXl6Ii4vTaA1ERET0btQKHKGhoTh//jyCgoIwceJEuLq6AgB+//13NG7cWGPFJSUlwdPTEzo6Oti9ezeuXr2KBQsWKP1Wy9y5c/Hjjz9i2bJliImJgZGREXx8fJCZmamxOoiIiOjdFPu3VHJzc5GcnIyjR4+q/EjbvHnzoK2trbHi5syZAwcHB6xcuVJqc3Z2lv4WQiA0NBTff/89OnXqBABYvXo1bGxssHXrVvTo0UNjtRAREZH6in2EQ1tbG23atEFycrLKMH19fejo6GiiLgDAtm3b0KBBA3Tt2hXlypWDu7s7VqxYIQ2/c+cOEhIS4OXlJbWZmZmhUaNGOHny5Bvnm5WVhdTUVKUHERERyUetUyo1a9bE7du3NV2Litu3b2Pp0qWoXLky9u7di4EDB2Lo0KFYtWoVACAhIQEAVPqN2NjYSMMKMnv2bJiZmUkPBwcH+VaCiIiI1AscM2bMwKhRo7Bjxw48fPhQtqMFeXl5qFevHmbNmgV3d3f0798fgYGBWLZs2TvNd/z48UhJSZEe9+/f11DFREREVJBi9+EAIF0G27FjRygUCqldCAGFQoHc3FyNFGdnZ4fq1asrtbm5uUn3+rC1tQUAJCYmws7OThonMTFRuk9IQfT09KCnp6eRGomIiKhwagWOQ4cOabqOAnl6eiI2Nlap7caNG3B0dATwsgOpra0tDhw4IAWM1NRUxMTEYODAge+lRiIiIiqcWoGjefPmmq6jQCNGjEDjxo0xa9YsdOvWDadPn8by5cuxfPlyAIBCocDw4cMxY8YMVK5cGc7Ozpg0aRLs7e3h5+f3XmokIiKiwqn9a7HR0dH46quv0LhxYzx48AAAsGbNGhw7dkxjxX3yySfYsmUL1q9fj5o1a2L69OkIDQ1Fr169pHHGjBmDIUOGoH///vjkk0+QlpaGPXv2QF9fX2N1EBER0btRK3Bs2rQJPj4+MDAwwPnz55GVlQUASElJwaxZszRaYIcOHXD58mVkZmbi2rVrCAwMVBquUCgQHByMhIQEZGZmIioqClWqVNFoDURERPRu1L5KZdmyZVixYoXSfTc8PT1x/vx5jRVHREREpYNagSM2NhbNmjVTaTczMyvwhmBERET036ZW4LC1tcXNmzdV2o8dOwYXF5d3LoqIiIhKF7UCR2BgIIYNG4aYmBgoFAr8888/iIyMxKhRo3g5KhEREalQ67LYcePGIS8vD61bt0ZGRgaaNWsGPT09jBo1CkOGDNF0jURERFTCqRU4FAoFJk6ciNGjR+PmzZtIS0tD9erVYWxsrOn6iIiIqBRQK3AcPHgQjRs3hr6+vsqtx4mIiIhep1bg6NixI3JycvDJJ5+gRYsWaN68OTw9PWFgYKDp+oiIiKgUUKvTaFJSEg4cOIC2bdvi9OnT6Ny5M8zNzeHp6Ynvv/9e0zUSERFRCadW4NDR0YGnpycmTJiAvXv34tSpU/jyyy9x+vRpzJ49W9M1EhERUQmn1imVGzdu4PDhwzh8+DCOHDmCrKwsNG3aFPPnz0eLFi00XCIRERGVdGoFjmrVqsHa2hrDhg3DuHHjUKtWLSgUCk3XRkRERKWEWqdUhg4divLlyyM4OBgDBgzAxIkTsW/fPmRkZGi6PiIiIioF1AocoaGhOH/+PBISEjB+/Hi8ePECEydORNmyZeHp6anpGomIiKiEUytw5MvNzUV2djaysrKQmZmJrKwsxMbGaqo2IiIiKiXUPqVSu3Zt2NjY4Ntvv8U///yDwMBAXLhwAY8fP9Z0jURERFTCqdVp9OHDh+jfvz9atGiBmjVraromIiIiKmXUChwbN27UdB1ERERUiql1SmXVqlXYuXOn9HzMmDEwNzdH48aNER8fr7HiiIiIqHRQK3DMmjVL+t2UkydPIjw8HHPnzkXZsmUxYsQIjRZIREREJZ9ap1Tu378PV1dXAMDWrVvRpUsX9O/fH56enrzTKBEREalQ6wiHsbEx/v33XwDAvn374O3tDQDQ19fH8+fPNVcdERERlQpqHeHw9vZGv3794O7ujhs3bqBdu3YAgCtXrsDJyUmT9REREVEpoNYRjvDwcHh4eODx48fYtGkTrKysAADnzp3Dl19+qdECiYiIqORT6wiHubk5Fi9erNI+bdq0dy6IiIiISh+1AgcAJCcn4/Tp03j06BHy8vKkdoVCga+//lojxREREVHpoFbg2L59O3r16oW0tDSYmpoq/TQ9AwcRERG9Tq0+HN999x369OmDtLQ0JCcnIykpSXo8ffpU0zUSERFRCadW4Hjw4AGGDh0KQ0NDTddDREREpZBagcPHxwdnz57VdC1ERERUSqnVh6N9+/YYPXo0rl69ilq1akFHR0dpeMeOHTVSHBEREZUOagWOwMBAAEBwcLDKMIVCgdzc3HerioiIiEoVtQLHq5fBEhERERVGrT4cb5KcnFzgDcGIiIjov00jgePAgQPo2bMn7OzsMGXKFE3MkoiIiEoRtQPH/fv3ERwcDGdnZ7Rp0wYKhQJbtmxBQkKCJusjIiKiUqBYgSM7OxsbN26Ej48PqlatiosXL2LevHnQ0tLCxIkT8dlnn6lcsUJERERUrE6j5cuXR7Vq1fDVV19hw4YNsLCwAAD+QiwRERG9VbGOcOTk5EChUEChUEBbW1uumoiIiKiUKVbg+Oeff9C/f3+sX78etra26NKlC7Zs2aL0421ERERErytW4NDX10evXr1w8OBBXL58GW5ubhg6dChycnIwc+ZM7N+/nzf9IiIiIhVqX6VSqVIlzJgxA/Hx8di5cyeysrLQoUMH2NjYaLI+IiIiKgXUutPoq7S0tNC2bVu0bdsWjx8/xpo1azRRFxEREZUiGr3TqLW1NUaOHKnJWRIREVEpoNHAQURERFQQBg4iIiKSHQMHERERyU6twBEcHIyMjAyV9ufPnyM4OPidiyIiIqLSRa3AMW3aNKSlpam0Z2RkYNq0ae9cFBEREZUuagUOIUSBdxe9dOkSLC0t37koIiIiKl2KdR8OCwsL6bdUqlSpohQ6cnNzkZaWhgEDBmi8SCIiIirZihU4QkNDIYRAnz59MG3aNJiZmUnDdHV14eTkBA8PD40XSURERCVbsQKHv78/AMDZ2Rmenp4oU+adb1RKRERE/wFq9eFIT0/HgQMHVNr37t2L3bt3v3NRREREVLqoFTjGjRtX4K/CCiEwbty4dy6KiIiIShe1AkdcXByqV6+u0l6tWjXcvHnznYsiIiKi0kWtwGFmZobbt2+rtN+8eRNGRkbvXBQRERGVLmoFjk6dOmH48OG4deuW1Hbz5k1899136Nixo8aKIyIiotJBrcAxd+5cGBkZoVq1anB2doazszPc3NxgZWWF+fPna7pGIiIiKuHUuq7VzMwMJ06cwP79+3Hp0iUYGBigdu3aaNasmabrIyIiolJA7RtpKBQKtGnTBs2aNYOenl6BtzonIiIiAtQ8pZKXl4fp06ejfPnyMDY2xp07dwAAkyZNwi+//KLRAomIiKjkUytwzJgxAxEREZg7dy50dXWl9po1a+Lnn3/WWHFERERUOqgVOFavXo3ly5ejV69e0NbWltrr1KmD69eva6w4IiIiKh3UChwPHjyAq6urSnteXh6ys7PfuSgiIiIqXdQKHNWrV0d0dLRK+++//w53d/d3LoqIiIhKF7WuUpk8eTL8/f3x4MED5OXlYfPmzYiNjcXq1auxY8cOTddIREREJZzadxrdvn07oqKiYGRkhMmTJ+PatWvYvn07vL29NV0jERERlXDFPsKRk5ODWbNmoU+fPti/f78cNREREVEpU+wjHGXKlMHcuXORk5MjRz1ERERUCql1SqV169Y4cuSIpmshIiKiUkqtTqNt27bFuHHjcPnyZdSvX1/lJ+n5i7FERET0KrUCx6BBgwAAISEhKsMUCgVyc3PfrSoiIiIqVdQKHHl5eZqug4iIiEqxYvfhyM7ORpkyZfDXX3/JUQ8RERGVQsUOHDo6OqhYsSJPmxAREVGRqXWVysSJEzFhwgQ8ffpU0/UQERFRKaRW4Fi8eDGOHj0Ke3t7VK1aFfXq1VN6yOWHH36AQqHA8OHDpbbMzEwMHjwYVlZWMDY2RpcuXZCYmChbDURERFR8anUa9fPz03AZhTtz5gx++ukn1K5dW6l9xIgR2LlzJzZu3AgzMzMEBQXh888/x/Hjx997jURERFQwtQLHlClTNF3HW6WlpaFXr15YsWIFZsyYIbWnpKTgl19+wbp169CqVSsAwMqVK+Hm5oZTp07h008/fa91EhERUcHUOqWS79y5c1i7di3Wrl2LCxcuaKomFYMHD0b79u3h5eWlsvzs7Gyl9mrVqqFixYo4efLkG+eXlZWF1NRUpQcRERHJR60jHI8ePUKPHj1w+PBhmJubAwCSk5PRsmVLbNiwAdbW1horcMOGDTh//jzOnDmjMiwhIQG6urpSDflsbGyQkJDwxnnOnj0b06ZN01iNRERE9HZqHeEYMmQInj17hitXruDp06d4+vQp/vrrL6SmpmLo0KEaK+7+/fsYNmwYIiMjoa+vr7H5jh8/HikpKdLj/v37Gps3ERERqVLrCMeePXsQFRUFNzc3qa169eoIDw9HmzZtNFbcuXPn8OjRI6UrX3Jzc3H06FEsXrwYe/fuxYsXL5CcnKx0lCMxMRG2trZvnK+enh709PQ0VicRERG9ndq3NtfR0VFp19HR0ehtz1u3bo3Lly8rtX3zzTeoVq0axo4dCwcHB+jo6ODAgQPo0qULACA2Nhb37t2Dh4eHxuogIiKid6NW4GjVqhWGDRuG9evXw97eHgDw4MEDjBgxAq1bt9ZYcSYmJqhZs6ZSm5GREaysrKT2vn37YuTIkbC0tISpqSmGDBkCDw8PXqFCRET0EVErcCxevBgdO3aEk5MTHBwcALzsb1GzZk2sXbtWowUWZuHChdDS0kKXLl2QlZUFHx8fLFmy5L3WQERERG+nVuBwcHDA+fPnERUVhevXrwMA3NzcVC5blcPhw4eVnuvr6yM8PBzh4eGyL5uIiIjUo1bgAACFQgFvb294e3trsh4iIiIqhYp1WezBgwdRvXr1Am+UlZKSgho1aiA6OlpjxREREVHpUKzAERoaisDAQJiamqoMMzMzw7fffouQkBCNFUdERESlQ7ECx6VLl/DZZ5+9cXibNm1w7ty5dy6KiIiISpdiBY7ExMQC77+Rr0yZMnj8+PE7F0VERESlS7ECR/ny5fHXX3+9cfiff/4JOzu7dy6KiIiISpdiBY527dph0qRJyMzMVBn2/PlzTJkyBR06dNBYcURERFQ6FOuy2O+//x6bN29GlSpVEBQUhKpVqwIArl+/jvDwcOTm5mLixImyFEpEREQlV7ECh42NDU6cOIGBAwdi/PjxEEIAeHlPDh8fH4SHh8PGxkaWQomIiKjkKvaNvxwdHbFr1y4kJSXh5s2bEEKgcuXKsLCwkKM+IiIiKgXUvtOohYUFPvnkE03WQkRERKVUsTqNEhEREamDgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGT3UQeO2bNn45NPPoGJiQnKlSsHPz8/xMbGKo2TmZmJwYMHw8rKCsbGxujSpQsSExM/UMVERERUkI86cBw5cgSDBw/GqVOnsH//fmRnZ6NNmzZIT0+XxhkxYgS2b9+OjRs34siRI/jnn3/w+eeff8CqiYiI6HVlPnQBb7Nnzx6l5xEREShXrhzOnTuHZs2aISUlBb/88gvWrVuHVq1aAQBWrlwJNzc3nDp1Cp9++umHKJuIiIhe81Ef4XhdSkoKAMDS0hIAcO7cOWRnZ8PLy0sap1q1aqhYsSJOnjz5xvlkZWUhNTVV6UFERETyKTGBIy8vD8OHD4enpydq1qwJAEhISICuri7Mzc2VxrWxsUFCQsIb5zV79myYmZlJDwcHBzlLJyIi+s8rMYFj8ODB+Ouvv7Bhw4Z3ntf48eORkpIiPe7fv6+BComIiOhNPuo+HPmCgoKwY8cOHD16FBUqVJDabW1t8eLFCyQnJysd5UhMTIStre0b56enpwc9PT05SyYiIqJXfNRHOIQQCAoKwpYtW3Dw4EE4OzsrDa9fvz50dHRw4MABqS02Nhb37t2Dh4fH+y6XiIiI3uCjPsIxePBgrFu3Dn/88QdMTEykfhlmZmYwMDCAmZkZ+vbti5EjR8LS0hKmpqYYMmQIPDw8eIUKERHRR+SjDhxLly4FALRo0UKpfeXKlQgICAAALFy4EFpaWujSpQuysrLg4+ODJUuWvOdKiYiI6G0+6sAhhCh0HH19fYSHhyM8PPw9VERERETq+Kj7cBAREVHpwMBBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdqUmcISHh8PJyQn6+vpo1KgRTp8+/aFLIiIiov+vVASOX3/9FSNHjsSUKVNw/vx51KlTBz4+Pnj06NGHLo2IiIhQSgJHSEgIAgMD8c0336B69epYtmwZDA0N8b///e9Dl0ZEREQAynzoAt7VixcvcO7cOYwfP15q09LSgpeXF06ePFngNFlZWcjKypKep6SkAABSU1M1WlteVoZG50eqNL3P8nHfyY/7ruSSa98B3H/vg6b3X/78hBBvHa/EB44nT54gNzcXNjY2Su02Nja4fv16gdPMnj0b06ZNU2l3cHCQpUaSj1noh66A1MV9V3Jx35Vscu2/Z8+ewczM7I3DS3zgUMf48eMxcuRI6XleXh6ePn0KKysrKBSKD1jZh5OamgoHBwfcv38fpqamH7ocKibuv5KL+67k4r57SQiBZ8+ewd7e/q3jlfjAUbZsWWhrayMxMVGpPTExEba2tgVOo6enBz09PaU2c3NzuUosUUxNTf/Tb5ySjvuv5OK+K7m47/DWIxv5SnynUV1dXdSvXx8HDhyQ2vLy8nDgwAF4eHh8wMqIiIgoX4k/wgEAI0eOhL+/Pxo0aICGDRsiNDQU6enp+Oabbz50aURERIRSEji6d++Ox48fY/LkyUhISEDdunWxZ88elY6k9GZ6enqYMmWKyqkmKhm4/0ou7ruSi/uueBSisOtYiIiIiN5Rie/DQURERB8/Bg4iIiKSHQMHERERyY6Bg4okIiKiyPcqKc64JJ+7d+9CoVDg4sWLH7oUolIvICAAfn5+0vMWLVpg+PDhRZq2OOOWZKXiKhWSX/fu3dGuXbsPXUaJ1KJFC9StWxehoaEfuhSSQUBAAJKTk7F169YPXQp9RDZv3gwdHZ0PXcZHhYGDisTAwAAGBgYfugyij0Zubu5/9qcQqHCWlpYfuoSPDk+plBC///47atWqBQMDA1hZWcHLywvp6enSYbxp06bB2toapqamGDBgAF68eCFNu2fPHjRp0gTm5uawsrJChw4dcOvWLWl4/qH3zZs3o2XLljA0NESdOnWUfm339dMkly5dQsuWLWFiYgJTU1PUr18fZ8+eVap57969cHNzg7GxMT777DM8fPhQvg30kQoICMCRI0ewaNEiKBQKKBQK3Lp1C3379oWzszMMDAxQtWpVLFq0SGm6nJwcDB06VNpnY8eOhb+/v9Ih28L2a0GOHDmChg0bQk9PD3Z2dhg3bhxycnKk4c+ePUOvXr1gZGQEOzs7LFy4sNQc7m3RogWCgoIQFBQEMzMzlC1bFpMmTZJ+4TIpKQm9e/eGhYUFDA0N0bZtW8TFxUnT578Htm3bhurVq0NPTw99+vTBqlWr8Mcff0j79/Dhwzh8+DAUCgWSk5Ol6S9evAiFQoG7d+9KbStWrICDgwMMDQ3RuXNnhISEKL3PXj9MDwDDhw9HixYtpOd5eXmYPXu29HqqU6cOfv/9d2l4UlISevXqBWtraxgYGKBy5cpYuXKlNPz+/fvo1q0bzM3NYWlpiU6dOinVWBq8bRvl76sDBw6gQYMGMDQ0ROPGjREbG6s0jxkzZqBcuXIwMTFBv379MG7cONStW/eNy3z9fbNkyRJUrlwZ+vr6sLGxwRdffKFS45gxY2BpaQlbW1tMnTpVU6v/0WDgKAEePnyIL7/8En369MG1a9dw+PBhfP7559IH5YEDB6T29evXY/PmzUq/hpueno6RI0fi7NmzOHDgALS0tNC5c2fk5eUpLWfixIkYNWoULl68iCpVquDLL79U+jJ6Va9evVChQgWcOXMG586dw7hx45QOH2ZkZGD+/PlYs2YNjh49inv37mHUqFEybJ2P26JFi+Dh4YHAwEA8fPgQDx8+RIUKFVChQgVs3LgRV69exeTJkzFhwgT89ttv0nRz5sxBZGQkVq5ciePHjyM1NVXlkH1R92u+Bw8eoF27dvjkk09w6dIlLF26FL/88gtmzJghjTNy5EgcP34c27Ztw/79+xEdHY3z58/Lsm0+hFWrVqFMmTI4ffo0Fi1ahJCQEPz8888AXn65nz17Ftu2bcPJkychhEC7du2QnZ0tTZ+RkYE5c+bg559/xpUrV/Djjz+iW7duUqB++PAhGjduXKRajh8/jgEDBmDYsGG4ePEivL29MXPmzGKv0+zZs7F69WosW7YMV65cwYgRI/DVV1/hyJEjAIBJkybh6tWr2L17N65du4alS5eibNmyAIDs7Gz4+PjAxMQE0dHROH78uPQPwqv/tJR0hW0j4OXn34IFC3D27FmUKVMGffr0kYZFRkZi5syZmDNnDs6dO4eKFSti6dKlRV7+2bNnMXToUAQHByM2NhZ79uxBs2bNlMZZtWoVjIyMEBMTg7lz5yI4OBj79+9/95X/mAj66J07d04AEHfv3lUZ5u/vLywtLUV6errUtnTpUmFsbCxyc3MLnN/jx48FAHH58mUhhBB37twRAMTPP/8sjXPlyhUBQFy7dk0IIcTKlSuFmZmZNNzExEREREQUOP+VK1cKAOLmzZtSW3h4uLCxsSn6SpcizZs3F8OGDXvrOIMHDxZdunSRntvY2Ih58+ZJz3NyckTFihVFp06d3jiPN+3XCxcuCCGEmDBhgqhatarIy8uTpgkPD5deK6mpqUJHR0ds3LhRGp6cnCwMDQ0Lrb8kaN68uXBzc1Na/7Fjxwo3Nzdx48YNAUAcP35cGvbkyRNhYGAgfvvtNyHE/72uL168qDRff39/lf1y6NAhAUAkJSVJbRcuXBAAxJ07d4QQQnTv3l20b99eabpevXopvc8KmvewYcNE8+bNhRBCZGZmCkNDQ3HixAmlcfr27Su+/PJLIYQQvr6+4ptvvilwm6xZs0blNZGVlSUMDAzE3r17C5ympClsG+Xvq6ioKGnYzp07BQDx/PlzIYQQjRo1EoMHD1aa3tPTU9SpU0d6/vq+evV9v2nTJmFqaipSU1MLrLF58+aiSZMmSm2ffPKJGDt2bHFX96PGIxwlQJ06ddC6dWvUqlULXbt2xYoVK5CUlKQ03NDQUHru4eGBtLQ03L9/HwAQFxeHL7/8Ei4uLjA1NYWTkxMA4N69e0rLqV27tvS3nZ0dAODRo0cF1jRy5Ej069cPXl5e+OGHH1QO5RsaGqJSpUpK83vTvP6LwsPDUb9+fVhbW8PY2BjLly+X9kdKSgoSExPRsGFDaXxtbW3Ur19faR5F3a/5rl27Bg8PD6V+B56enkhLS8Pff/+N27dvIzs7W2m5ZmZmqFq1qqZW+4P79NNPldbfw8MDcXFxuHr1KsqUKYNGjRpJw6ysrFC1alVcu3ZNatPV1VV6n7yL2NhYpW0NQOV5YW7evImMjAx4e3vD2NhYeqxevVp6Tw4cOBAbNmxA3bp1MWbMGJw4cUKa/tKlS7h58yZMTEykaS0tLZGZmVno6bmSoijbCHj759+77itvb284OjrCxcUFX3/9NSIjI5GRkaE0zuuvq9L4mclOoyWAtrY29u/fjxMnTmDfvn0ICwvDxIkTERMTU6TpfX194ejoiBUrVsDe3h55eXmoWbOmyiHTV0+J5H8ov+nw/NSpU9GzZ0/s3LkTu3fvxpQpU7BhwwZ07txZZV758xO8iz4AYMOGDRg1ahQWLFgADw8PmJiYYN68eUXen/mKul9JcwwMDIrUUVRL6+X/cq++5l89NVNUWlpaKu+bV+eTlpYGANi5cyfKly+vNF7+73u0bdsW8fHx2LVrF/bv34/WrVtj8ODBmD9/PtLS0lC/fn1ERkaqLNva2rrY9X6MCttG+aGjOJ9/xWViYoLz58/j8OHD2LdvHyZPnoypU6fizJkzUp+dgj4zNbX8jwWPcJQQCoUCnp6emDZtGi5cuABdXV1s2bIFwMv/Up4/fy6Ne+rUKRgbG8PBwQH//vsvYmNj8f3336N169Zwc3NTOjryLqpUqYIRI0Zg3759+Pzzz5U6otH/0dXVRW5urvT8+PHjaNy4MQYNGgR3d3e4uroq/adlZmYGGxsbnDlzRmrLzc1V6kuhzn51c3OT+ia8WouJiQkqVKgAFxcX6OjoKC03JSUFN27ceKf1/5i8HupOnTqFypUro3r16sjJyVEanr+Nq1ev/tZ5vr5/gf/7sn61o/Tr90OpWrWq0rYGoPLc2tpapbP1q/PJ77x67949uLq6Kj0cHByU5uPv74+1a9ciNDQUy5cvBwDUq1cPcXFxKFeunMr0ZmZmb13vkqKo2+htirKvClOmTBl4eXlh7ty5+PPPP3H37l0cPHiwWPMo6XiEowSIiYnBgQMH0KZNG5QrVw4xMTF4/Pgx3Nzc8Oeff+LFixfo27cvvv/+e9y9exdTpkxBUFAQtLS0YGFhASsrKyxfvhx2dna4d+8exo0b9071PH/+HKNHj8YXX3wBZ2dn/P333zhz5gy6dOmioTUuXZycnBATE4O7d+/C2NgYlStXxurVq7F37144OztjzZo1OHPmDJydnaVphgwZgtmzZ8PV1RXVqlVDWFgYkpKSpP+81NmvgwYNQmhoKIYMGYKgoCDExsZiypQpGDlyJLS0tGBiYgJ/f3+MHj0alpaWKFeuHKZMmQItLa1Sc/nnvXv3MHLkSHz77bc4f/48wsLCsGDBAlSuXBmdOnVCYGAgfvrpJ5iYmGDcuHEoX748OnXq9NZ5Ojk5Ye/evYiNjYWVlRXMzMykL7OpU6di5syZuHHjBhYsWKA03ZAhQ9CsWTOEhITA19cXBw8exO7du5W2datWrTBv3jysXr0aHh4eWLt2Lf766y+4u7sDePmf86hRozBixAjk5eWhSZMmSElJwfHjx2Fqagp/f39MnjwZ9evXR40aNZCVlYUdO3bAzc0NwMvO3/PmzUOnTp0QHByMChUqID4+Hps3b8aYMWNQoUIFDe+B96+wbeTo6FjoPIYMGYLAwEA0aNAAjRs3xq+//oo///wTLi4uRaphx44duH37Npo1awYLCwvs2rULeXl5pep0ZZF82C4kVBRXr14VPj4+wtraWujp6YkqVaqIsLAwIcT/dVSaPHmysLKyEsbGxiIwMFBkZmZK0+/fv1+4ubkJPT09Ubt2bXH48GEBQGzZskUIodq5UAghkpKSBABx6NAhIYRyp9GsrCzRo0cP4eDgIHR1dYW9vb0ICgqSOli93sFUCCG2bNki/qsvt9jYWPHpp58KAwMDAUBcv35dBAQECDMzM2Fubi4GDhwoxo0bp9QBLTs7WwQFBQlTU1NhYWEhxo4dK7p27Sp69OghjaPOfj18+LD45JNPhK6urrC1tRVjx44V2dnZ0vDU1FTRs2dPYWhoKGxtbUVISIho2LChGDdunNybSXbNmzcXgwYNEgMGDJC264QJE6QOk0+fPhVff/21MDMzEwYGBsLHx0fcuHFDmr6g17UQQjx69Eh4e3sLY2NjpffMsWPHRK1atYS+vr5o2rSp2Lhxo1KnUSGEWL58uShfvrwwMDAQfn5+YsaMGcLW1lZp/pMnTxY2NjbCzMxMjBgxQgQFBUmdRoUQIi8vT4SGhoqqVasKHR0dYW1tLXx8fMSRI0eEEEJMnz5duLm5CQMDA2FpaSk6deokbt++LU3/8OFD0bt3b1G2bFmhp6cnXFxcRGBgoEhJSXnHLf7xeNs2KkoHXyGECA4OFmXLlhXGxsaiT58+YujQoeLTTz+Vhr+t02h0dLRo3ry5sLCwEAYGBqJ27dri119/LXDcfJ06dRL+/v4a3AofHn+evoTjXQ7/G/Ly8uDm5oZu3bph+vTp72256enpKF++PBYsWIC+ffu+t+XKoSTc8TUwMBDXr19HdHT0hy6FCuHt7Q1bW1usWbPmQ5dSYvCUCtFHKD4+Hvv27UPz5s2RlZWFxYsX486dO+jZs6esy71w4QKuX7+Ohg0bIiUlBcHBwQBQ6GkFUs/8+fPh7e0NIyMj7N69G6tWrcKSJUs+dFn0moyMDCxbtgw+Pj7Q1tbG+vXrERUVVfrukyEzBg6ij5CWlhYiIiIwatQoCCFQs2ZNREVFSefe5TR//nzExsZCV1cX9evXR3R0tHSjKNKs06dPY+7cuXj27BlcXFzw448/ol+/fh+6LHqNQqHArl27MHPmTGRmZqJq1arYtGkTvLy8PnRpJQpPqRAREZHseFksERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxE9FYBAQHw8/P70GUQUQnHwEFERESyY+AgIrWFhISgVq1aMDIygoODAwYNGoS0tDRpeEREBMzNzbF37164ubnB2NgYn332mdJPrufk5GDo0KEwNzeHlZUVxo4dC39/f6WjKk5OTiq/gVK3bl1MnTq1yLUAwIoVK+Dg4ABDQ0N07twZISEhMDc3Vxrnjz/+QL169aCvrw8XFxdMmzYNOTk577ytiP7rGDiISG1aWlr48ccfceXKFaxatQoHDx7EmDFjlMbJyMjA/PnzsWbNGhw9ehT37t3DqFGjpOFz5sxBZGQkVq5ciePHjyM1NVWtHyMsrJbjx49jwIABGDZsGC5evAhvb2/MnDlTaR7R0dHo3bs3hg0bhqtXr+Knn35CRESEynhEpIYP+lu1RPTRe/1nt99m48aNwsrKSnq+cuVKAUDcvHlTagsPDxc2NjbScxsbGzFv3jzpeU5OjqhYsaLSMh0dHcXChQuVllWnTh0xZcqUItfSvXt30b59e6VxevXqpfST861btxazZs1SGmfNmjXCzs7ujcshoqLhj7cRkdqioqIwe/ZsXL9+HampqcjJyUFmZiYyMjJgaGgIADA0NESlSpWkaezs7PDo0SMAQEpKChITE9GwYUNpuLa2NurXr4+8vDyN1hIbG4vOnTsrTdOwYUPs2LFDen7p0iUcP35c6YhGbm6uyjoRUfHxlAoRqeXu3bvo0KEDateujU2bNuHcuXMIDw8HALx48UIaT0dHR2k6hUIBUczfjNTS0lKZJjs7u9i1FCYtLQ3Tpk3DxYsXpcfly5cRFxcHfX39YtVMRMp4hIOI1HLu3Dnk5eVhwYIF0NJ6+b/Lb7/9Vqx5mJmZwcbGBmfOnEGzZs0AvDyicP78edStW1caz9raWqmjaWpqKu7cuVOsWqpWrYozZ84otb3+vF69eoiNjYWrq2ux1oOICsfAQUSFSklJwcWLF5XaypYti+zsbISFhcHX1xfHjx/HsmXLij3vIUOGYPbs2XB1dUW1atUQFhaGpKQkKBQKaZxWrVohIiICvr6+MDc3x+TJk6GtrS0Nd3V1LbSWIUOGoFmzZggJCYGvry8OHjyI3bt3Ky1n8uTJ6NChAypWrIgvvvgCWlpauHTpEv766y/MmDGj2OtGRK/40J1IiOjj5u/vLwCoPPr27StCQkKEnZ2dMDAwED4+PmL16tUCgEhKShJCvOw0+mqnTCGE2LJli3j1oyc7O1sEBQUJU1NTYWFhIcaOHSu6du0qevToIY2TkpIiunfvLkxNTYWDg4OIiIhQ6TRaWC1CCLF8+XJRvnx5YWBgIPz8/MSMGTOEra2tUn179uwRjRs3FgYGBsLU1FQ0bNhQLF++XGPbk+i/SiFEMU+mEhHJKC8vD25ubujWrRumT58u67ICAwNx/fp1REdHy7ocIuIpFSL6wOLj47Fv3z40b94cWVlZWLx4Me7cuYOePXtqfFnz58+Ht7c3jIyMsHv3bqxatQpLlizR+HKISBUDBxF9UFpaWoiIiMCoUaMghEDNmjURFRUFNzc3jS/r9OnTmDt3Lp49ewYXFxf8+OOP6Nevn8aXQ0SqeEqFiIiIZMf7cBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZ/T+BXU15r1ok0AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 pharmacology 8 7 8 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 8 9 88.888889 77.777778 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 88.888889 88.888889 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAIjCAYAAADRKhuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZAElEQVR4nO3dd3iN9//H8ddJZIksEbGCGCVGS62iNk1trVa1WlGqpbaa1VK7NiWl2n6t0qFKp72K1h7VImitqtWSxIxIPr8/euX8HAmS4+hNPB/XlevKucfnfp97nLxy35/7PjZjjBEAAIBF3KwuAAAAPNgIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjyPQ2b94sT09PHTlyxCXt7dmzR1myZNGvv/7qkvZwfyhYsKDatGnzny935syZstls2rp163++7HtVmzZtlC1bNqvLuKe1adNGBQsWtLqMdLvvwsjvv/+u1157TYUKFZK3t7f8/f1VtWpVTZo0SZcvX7a6vAzbs2eP3nnnHR0+fDjD8/bp00c2m03PPfec6wvLRAYMGKDnn39eBQoUsA9btGiRihcvroCAADVu3Fh//fVXqvmaNGmiV199NdXwEiVKqGHDhho4cGC6lp/yx+T6n5w5c6pWrVpavHix828sDQULFlSjRo1c2iZc6/Dhw6n2h5v9OPO5ANyPslhdQEZ8//33evbZZ+Xl5aXWrVurVKlSunr1qtavX6/evXvrt99+0/Tp060uM0P27NmjwYMHq2bNmhlKscYYffrppypYsKC+/fZbnT9/Xn5+fnev0PvUzp07tWLFCv3000/2YX/88Yeee+45Pffcc6pcubImTpyol19+WUuXLrVPs3TpUv344486cOBAmu126NBBDRo00O+//67ChQunq5YhQ4YoPDxcxhidOnVKM2fOVIMGDfTtt98SIO4DMTExcnO78//fQkJCNGfOHIdh48aN059//qkJEyakmhZ4ENw3YeTQoUNq2bKlChQooFWrVil37tz2cZ06ddLBgwf1/fff3/FyjDG6cuWKfHx8Uo27cuWKPD09XfKBdKfWrFmjP//8U6tWrVJkZKS++uorRUVFWV2WS127dk3Jycny9PR0uo0ZM2Yof/78euyxx+zDli1bpnz58mnWrFmy2WyKiIhQ7dq1deXKFXl7e+vatWvq0aOHBg4ceNM/BnXr1lVQUJBmzZqlIUOGpKuW+vXrq3z58vbX7dq1U2hoqD799FPCyH3Ay8vLJe34+vrqxRdfdBj22Wef6dy5c6mGwzrJycm6evWqvL29rS7lgWD9X9V0Gj16tC5cuKCPP/7YIYikKFKkiLp162Z/fe3aNQ0dOlSFCxeWl5eXChYsqDfffFMJCQkO86Wc1l66dKnKly8vHx8fffDBB1qzZo1sNps+++wzvfXWW8qbN6+yZs2q+Ph4SdKmTZv05JNPKiAgQFmzZlWNGjW0YcOGVHUdP35c7dq1U548eeTl5aXw8HB17NhRV69e1cyZM/Xss89KkmrVqmU/NbtmzZrbro+5c+eqRIkSqlWrlurWrau5c+emmiblPXzxxRcaPny48uXLJ29vb9WpU0cHDx50mPbAgQNq3ry5cuXKJW9vb+XLl08tW7ZUXFycJOnpp5/Wo48+6jBP48aNZbPZ9M0339iHbdq0STabzeHyQ2xsrLp3766wsDB5eXmpSJEiGjVqlJKTk+3TpJy6Hjt2rCZOnGjfbnv27JEkTZ48WSVLllTWrFkVFBSk8uXLa968ebddT4sWLVLt2rVls9nswy5fvqzAwED7sOzZs8sYY7/MN2XKFCUlJalLly43bdfDw0M1a9bU119/fdsabiYwMFA+Pj7KkuXf/wmMMSpYsKCaNm2aatorV64oICBAr732mtPLS7Fu3To9++yzyp8/v7y8vBQWFqYePXqkusyZcl3++PHjatasmbJly6aQkBD16tVLSUlJDtP+888/eumll+Tv76/AwEBFRUVp165dstlsmjlzpn26mjVrqmbNmqlqSuv69tixY1WlShUFBwfLx8dH5cqV05dffplq3suXL6tr167KkSOH/Pz81KRJEx0/flw2m03vvPOOw7THjx9X27ZtFRoaKi8vL5UsWVL/+9//0rXebuwzknL5bcOGDerZs6dCQkLk6+urp556SmfOnElXmxmRkJCQruUsXrxY1apVk6+vr/z8/NSwYUP99ttvDtOkbNujR4+qUaNGypYtm/Lmzavo6GhJ0u7du1W7dm35+vqqQIECaR5r6TmuJenEiRPat2+fEhMTb/n+rv8MmDBhggoUKCAfHx/VqFHjpv2z0rNvpnc/stls6ty5s+bOnauSJUvKy8tLS5YssW/n9evXq2vXrgoJCVFgYKBee+01Xb16VbGxsWrdurWCgoIUFBSkPn36yBjjVA2S9Mknn6hixYr2z7rq1atr2bJlDtO8//779hrz5MmjTp06KTY29pbrV5IuXryoN954w77NihUrprFjx6aqNz3H1OrVq2Wz2bRw4cJUy5k3b55sNpt+/vnn29ZkZ+4TefPmNYUKFUr39FFRUUaSeeaZZ0x0dLRp3bq1kWSaNWvmMF2BAgVMkSJFTFBQkOnXr5+ZNm2aWb16tVm9erWRZEqUKGHKlCljxo8fb0aOHGkuXrxoVq5caTw9PU3lypXNuHHjzIQJE8zDDz9sPD09zaZNm+xtHz9+3OTJk8dkzZrVdO/e3UybNs28/fbbJiIiwpw7d878/vvvpmvXrkaSefPNN82cOXPMnDlzzMmTJ2/53q5cuWICAwPN0KFDjTHGzJ4927i7u5sTJ044TJfyHsqWLWvKlStnJkyYYN555x2TNWtWU7FiRft0CQkJJjw83OTJk8cMGzbMfPTRR2bw4MGmQoUK5vDhw8YYY8aPH2/c3NxMXFycMcaY5ORkExQUZNzc3EyvXr3sbY0ZM8ZhuosXL5qHH37YBAcHmzfffNNMmzbNtG7d2thsNtOtWzf7fIcOHbKv70KFCpl3333XTJgwwRw5csRMnz7dvi0/+OADM2nSJNOuXTvTtWvXW66nP//800gy7733nsPwdevWGZvNZubNm2f++OMP06JFC1OkSBFjjDGnT582gYGB5rvvvrtl28YYM2zYMIf3ejMzZswwksyKFSvMmTNnzOnTp82vv/5qXnvtNePm5maWLVtmn3bAgAHGw8PD/PPPPw5tfPHFF0aS+fHHH2+5rAIFCpiGDRvecpouXbqYBg0amBEjRpgPPvjAtGvXzri7u5tnnnnGYbqoqCjj7e1tSpYsadq2bWumTp1qmjdvbiSZ999/3z5dUlKSqVy5snF3dzedO3c2U6ZMMfXq1TOPPPKIkWRmzJhhn7ZGjRqmRo0aqWqKiooyBQoUcBiWL18+8/rrr5spU6aY8ePHm4oVKxpJqbZNixYtjCTz0ksvmejoaNOiRQv7sgcNGmSf7uTJkyZfvnwmLCzMDBkyxEydOtU0adLESDITJky45Toz5t91GxUVZX+dsl3Lli1rateubSZPnmzeeOMN4+7ublq0aHHb9q7XsGHDVO/fmeXMnj3b2Gw28+STT5rJkyebUaNGmYIFC5rAwEBz6NAh+3Qp27ZEiRKmQ4cOJjo62lSpUsW+vfLkyWN69+5tJk+ebEqWLGnc3d3NH3/8YZ8/vcd1yrIkOSw/LSmfAaVLlzYFCxY0o0aNMoMHDzbZs2c3ISEhDp+L6d03jUn/fiTJREREmJCQEDN48GATHR1tduzYYV//ZcqUMU8++aSJjo42L730kpFk+vTpYx5//HHzwgsvmPfff980atTISDKzZs1yqoZ33nnHSDJVqlQxY8aMMZMmTTIvvPCC6du3r32aQYMGGUmmbt26ZvLkyaZz587G3d3dVKhQwVy9etVhHV2/TyUnJ5vatWsbm81mXnnlFTNlyhTTuHFjI8l0797doY70HFPJyckmLCzMNG/ePNW2bNCggSlcuPAttnZq90UYiYuLM5JM06ZN0zX9zp07jSTzyiuvOAzv1auXkWRWrVplH1agQAEjySxZssRh2pQ/5IUKFTKXLl2yD09OTjZFixY1kZGRJjk52T780qVLJjw83NSrV88+rHXr1sbNzc1s2bIlVY0p886fP99IMqtXr07XezPGmC+//NJIMgcOHDDGGBMfH2+8vb1TfaCmvIeIiAiTkJBgHz5p0iQjyezevdsYY8yOHTuMJDN//vybLnPLli1Gkvnhhx+MMcb88ssvRpJ59tlnTaVKlezTNWnSxJQtW9b+eujQocbX19fs37/fob1+/foZd3d3c/ToUWPM/38Q+fv7m9OnTztM27RpU1OyZMn0rh67FStWGEnm22+/TTUuJQRKMtmzZ7fvE+3btzdPPvlkutqfN2+ekeQQQNOS8mF244+Xl5eZOXOmw7QxMTFGkpk6darD8CZNmpiCBQs67HNpSU8YuX5/TjFy5Ehjs9nMkSNH7MNS/ogMGTLEYdqUcJtiwYIFRpKZOHGifVhSUpKpXbv2HYWRG+u8evWqKVWqlKldu7Z92LZt29L8MG3Tpk2qMNKuXTuTO3du8/fffztM27JlSxMQEJDmernezcJI3bp1HbZLjx49jLu7u4mNjb1le9dLTxi53XLOnz9vAgMDTfv27R3mP3nypAkICHAYnrJtR4wYYR927tw54+PjY2w2m/nss8/sw/ft25dqXab3uL5+WekNIz4+PubPP/+0D9+0aZORZHr06JGqzdvtm8akbz8y5t8w4ubmZn777TeH4Snr/8bP/MqVKxubzWY6dOhgH3bt2jWTL1++VPt4emo4cOCAcXNzM0899ZRJSkpymD5luadPnzaenp7miSeecJhmypQpRpL53//+57COrt+nFi1aZCSZYcOGObT9zDPPGJvNZg4ePGiMydgx1b9/f+Pl5eWwr58+fdpkyZLFYbr0uC8u06RcGklvB80ffvhBktSzZ0+H4W+88YYkpepbEh4ersjIyDTbioqKcug/snPnTh04cEAvvPCC/vnnH/3999/6+++/dfHiRdWpU0c//vijkpOTlZycrEWLFqlx48YO/QRSXH/ZIKPmzp2r8uXLq0iRIpJkPxWb1qUaSXr55Zcd+l1Uq1ZN0r8dOSUpICBA0r+dNi9dupRmG2XLllW2bNn0448/Svr3VH++fPnUunVrbd++XZcuXZIxRuvXr7e3L0nz589XtWrVFBQUZF9Xf//9t+rWraukpCR7eymaN2+eqp9GYGCg/vzzT23ZsiXd60j699KBJAUFBaUaN2nSJB05ckSbNm3SkSNHVKtWLe3cuVOzZ8/WhAkTFBcXpxdffFF58+ZVzZo1tXfv3lRtpLT7999/p6ue6OhoLV++XMuXL9cnn3yiWrVq6ZVXXtFXX31ln+ahhx5SpUqVHLbl2bNntXjxYrVq1eqO9psU1+/PFy9e1N9//60qVarIGKMdO3akmr5Dhw4Or6tVq2bfdyRpyZIl8vDwUPv27e3D3Nzc1KlTJ5fVee7cOcXFxalatWravn27w7Il6fXXX3eY98ZLbMYYLViwQI0bN5YxxmFfjIyMVFxcnEO7GfHqq686bJdq1aopKSnJZbeSp3c5y5cvV2xsrJ5//nmH9+fu7q5KlSpp9erVqdp85ZVX7L8HBgaqWLFi8vX1VYsWLezDixUrpsDAQIdtnpHjeubMmfZLkOnRrFkz5c2b1/66YsWKqlSpkv1z/Xq32zel9O1HKWrUqKESJUqkWVe7du0c1n+lSpVkjFG7du3sw9zd3VW+fHmnali0aJGSk5M1cODAVP0SU5a7YsUKXb16Vd27d3eYpn379vL3979lv8kffvhB7u7u6tq1q8PwN954Q8YY+6X19B5TktS6dWslJCQ4XHL6/PPPde3atQz3f7ovOrD6+/tLks6fP5+u6Y8cOSI3Nzf7H+sUuXLlUmBgYKoPifDw8Ju2deO4lLsrbtVZNC4uTlevXlV8fLxKlSqVrprTKzY2Vj/88IM6d+7s0O+jatWqWrBggfbv36+HHnrIYZ78+fM7vE75I3ru3DlJ/77Hnj17avz48Zo7d66qVaumJk2a6MUXX7QHFXd3d1WuXFnr1q2T9G8YqVatmh5//HElJSVp48aNCg0N1dmzZx3CyIEDB/TLL7/ctCPo6dOnHV6ntS369u2rFStWqGLFiipSpIieeOIJvfDCC6patWq61pm54Xpoivz58zusm65du6pDhw4qXry4XnzxRR07dkxff/21Zs2apcaNG2vfvn32/h3Xt5vegFCxYkWHYPr888+rbNmy6ty5sxo1amQPjK1bt1bnzp115MgRFShQQPPnz1diYqJeeumldC3ndo4ePaqBAwfqm2++se8DKVL6CKXw9vZOte2CgoIc5jty5Ihy586trFmzOkx34/GXUd99952GDRumnTt3OvT1un59pxzrN+43Ny77zJkzio2N1fTp0296x92N+2J63e74cpXbLSfls6l27dppzp/yOZoirW0bEBCgfPnypdqnAwICHN5PRo/rjChatGiqYQ899JC++OILh2Hp2Tel9O1HKW71t+DG9Z/y2RgWFpZquDM1/P7773Jzc7tpGJJk/9tVrFgxh+Genp4qVKjQLQPwkSNHlCdPnlT/1EdERDi0nd5jSpKKFy+uChUqaO7cufZQNnfuXD322GMZPv7vmzCSJ0+eDD9kKr1/JNK6c+Zm41I6Z40ZM0ZlypRJc55s2bLp7Nmz6Ssyg+bPn6+EhASNGzdO48aNSzV+7ty5Gjx4sMMwd3f3NNu6/o/0uHHj1KZNG3399ddatmyZunbtqpEjR2rjxo3Kly+fJOnxxx/X8OHDdeXKFa1bt04DBgxQYGCgSpUqpXXr1ik0NFSSHMJIcnKy6tWrpz59+qRZw43BKa1tERERoZiYGH333XdasmSJFixYoPfff18DBw5M9V6vFxwcLCl9fxQ+//xz7d27V998842SkpL0xRdfaNmyZSpfvrxKliypDz/8UBs3btTjjz9unyel3Rw5cty2/bS4ubmpVq1amjRpkg4cOKCSJUtKklq2bKkePXpo7ty5evPNN/XJJ5+ofPnyqT6AnJGUlKR69erp7Nmz6tu3r4oXLy5fX18dP35cbdq0SdX58Gb7jrNsNlua4fDGTofr1q1TkyZNVL16db3//vvKnTu3PDw8NGPGjHR1XL5Ryvt68cUXb/qPxMMPP5zhdqX0HV+ucLvlpLzHOXPmKFeuXKmmuz5I36q99LyfjB7Xd0N69s2M7ke3+luQkfV1/bpy9b58r2ndurW6deumP//8UwkJCdq4caOmTJmS4XbuizAiSY0aNdL06dP1888/q3LlyrectkCBAkpOTtaBAwfsqU+STp06pdjYWIeHX2VUyjMl/P39Vbdu3ZtOFxISIn9//9sGqIyedp87d65KlSqlQYMGpRr3wQcfaN68ebf8A30rpUuXVunSpfXWW2/pp59+UtWqVTVt2jQNGzZM0r8h4+rVq/r00091/Phxe+ioXr26PYw89NBD9lAi/bu+Lly4cMt1lR6+vr72Z4NcvXpVTz/9tIYPH67+/fvf9Na74sWLS/r3tvBbuXTpknr37q2hQ4cqMDBQp06dUmJiovLkySPp3w+ooKAgHT9+3GG+Q4cOyc3N7Y4+eK9duyZJunDhgn1Y9uzZ7ZfdWrVqpQ0bNmjixIlOL+N6u3fv1v79+zVr1iy1bt3aPnz58uVOt1mgQAGtXr1aly5dcjg7cuMdW9K//7neeApbUqr/6BYsWCBvb28tXbrU4ZbaGTNmpFp2cnKyDh065PAf9Y3LDgkJkZ+fn5KSku54X7xXpXw25cyZ866/R1cd12lJ69k++/fvd+ppoundj+6m9NZQuHBhJScna8+ePTf9Rzflb1dMTIwKFSpkH3716lUdOnToltujQIECWrFiRapnUu3bt8+h7fQeUylatmypnj176tNPP9Xly5fl4eHh1IM474s+I9K/Txv19fXVK6+8olOnTqUa//vvv2vSpEmSpAYNGkhSqg/w8ePHS5IaNmzodB3lypVT4cKFNXbsWIc/IClSbrVzc3NTs2bN9O2336b5GOeU5Ozr6ytJ6bot69ixY/rxxx/VokULPfPMM6l+Xn75ZR08eFCbNm3K0HuKj4+3/1FMUbp0abm5uTmcUqxUqZI8PDw0atQoZc+e3f6ffLVq1bRx40atXbvW4ayIJLVo0UI///yzwwPFUsTGxqZablpS+n6k8PT0VIkSJWSMueXtgnnz5lVYWNhtH6M9atQoBQUF2fs8BAcHK0uWLPaD9O+//9aZM2dS/be5bds2lSxZ0n66NqMSExO1bNkyeXp6OoRmSXrppZe0Z88e9e7dW+7u7mrZsqVTy7hRyn9x1//nZoyxHzvOiIyMVGJioj788EP7sOTkZPttotcrXLiw9u3b53BL6q5du1LdFu/u7i6bzeZwxuTw4cNatGhRqmVL/97qeL3Jkyenaq958+ZasGBBmv8g3I1bcf9rkZGR8vf314gRI9I8Llz5HjNyXKf31t4UixYtcgj+mzdv1qZNm1S/fv0M15ne/ehuSm8NzZo1k5ubm4YMGZLqDGXK8Vq3bl15enrqvffecziGP/74Y8XFxd3yb1uDBg2UlJSU6qzFhAkTZLPZ7Os3vcdUihw5cqh+/fr65JNPNHfuXD355JNOnS2+b86MFC5cWPPmzdNzzz2niIgIhyew/vTTT5o/f779GQCPPPKIoqKiNH36dMXGxqpGjRravHmzZs2apWbNmqlWrVpO1+Hm5qaPPvpI9evXV8mSJfXyyy8rb968On78uFavXi1/f399++23kqQRI0Zo2bJlqlGjhl599VVFREToxIkTmj9/vtavX6/AwECVKVNG7u7uGjVqlOLi4uTl5aXatWsrZ86cqZY9b948GWPUpEmTNGtr0KCBsmTJorlz56pSpUrpfk+rVq1S586d9eyzz+qhhx7StWvXNGfOHPsHeIqsWbOqXLly2rhxo/0ZI9K/Z0YuXryoixcvpgojvXv31jfffKNGjRqpTZs2KleunC5evKjdu3fryy+/1OHDh2+74z7xxBPKlSuXqlatqtDQUO3du1dTpkxRw4YNb9upuWnTplq4cKGMMWmehTp69KjGjBmj77//3v6HOkuWLGratKm6d++uo0ePauHChcqTJ4/DGbnExEStXbs2VSevW1m8eLE94Jw+fVrz5s3TgQMH1K9fv1TX8xs2bKjg4GDNnz9f9evXT3N/uJmDBw/az2Zdr2zZsnriiSdUuHBh9erVS8ePH5e/v78WLFhwR/0bmjVrpooVK+qNN97QwYMHVbx4cX3zzTf2S5XXr/e2bdtq/PjxioyMVLt27XT69GlNmzZNJUuWtHdUT3n/48eP15NPPqkXXnhBp0+fVnR0tIoUKaJffvnFPl25cuXUvHlzTZw4Uf/8848ee+wxrV27Vvv370+17HfffVerV69WpUqV1L59e5UoUUJnz57V9u3btWLFirt2afW/4u/vr6lTp+qll17So48+qpYtWyokJERHjx7V999/r6pVqzp1+jwtGTmu+/fvr1mzZunQoUPpOrtRpEgRPf744+rYsaMSEhI0ceJEBQcH3/SS0K2kdz+6m9JbQ5EiRTRgwAANHTpU1apV09NPPy0vLy9t2bJFefLk0ciRIxUSEqL+/ftr8ODBevLJJ9WkSRPFxMTo/fffV4UKFW7ZabRx48aqVauWBgwYoMOHD+uRRx7RsmXL9PXXX6t79+72M2sZOaZStG7dWs8884wkaejQoc6tqAzde3MP2L9/v2nfvr0pWLCg8fT0NH5+fqZq1apm8uTJ5sqVK/bpEhMTzeDBg014eLjx8PAwYWFhpn///g7TGHPzWyFTbou92e2uO3bsME8//bQJDg42Xl5epkCBAqZFixZm5cqVDtMdOXLEtG7d2oSEhBgvLy9TqFAh06lTJ4dbbT/88ENTqFAh4+7ufsvbfEuXLm3y589/y/VTs2ZNkzNnTpOYmHjT95ByC13KLZd//PGHadu2rSlcuLDx9vY22bNnN7Vq1TIrVqxI1X7v3r2NJDNq1CiH4UWKFDGSzO+//55qnvPnz5v+/fubIkWKGE9PT5MjRw5TpUoVM3bsWPt98Sk1jRkzJtX8H3zwgalevbp9XRcuXNj07t37ts/3MMaY7du3G0lm3bp1aY5/9tlnzdNPP51q+KlTp0zjxo2Nn5+fefTRR83WrVsdxi9evNjh9upbSevWXm9vb1OmTBkzderUm96u+/rrrxtJZt68ebddRoqUW9XT+mnXrp0xxpg9e/aYunXrmmzZspkcOXKY9u3bm127dqW6DTcqKsr4+vqmWkbKcw6ud+bMGfPCCy8YPz8/ExAQYNq0aWM2bNhgJDncJmqMMZ988okpVKiQ8fT0NGXKlDFLly5N89bejz/+2BQtWtR4eXmZ4sWLmxkzZqS57IsXL5pOnTqZ7Nmzm2zZsplmzZrZb5F+9913HaY9deqU6dSpkwkLCzMeHh4mV65cpk6dOmb69OnpWrdp3dp74637KcddRm7XT8+tveldzurVq01kZKQJCAgw3t7epnDhwqZNmzYO+/DNtm2NGjXSvI0+rc/J9BzXKctSBm7tHTNmjBk3bpwJCwszXl5eplq1ambXrl0O02Zk30zvfiTJdOrUKVWbN1v/KW2cOXPmtrWltwZjjPnf//5nypYta7y8vExQUJCpUaOGWb58ucM0U6ZMMcWLFzceHh4mNDTUdOzY0Zw7dy5VHTfuU+fPnzc9evQwefLkMR4eHqZo0aJmzJgxqT6DMnJMGfPvs6qCgoJMQECAuXz5cqrx6XHfhREgo2rXrm1efPFFl7bZtGnTVA/Qc7Xu3bsbPz8/c/Hixbu6nLtl4cKFRpJZv379f77slGfnfPLJJ//5suGcW/1DAuvd6phKTEw0ISEhpm3btk63f9/0GQGcNWLECH3++ecue+7D3r179d133zl/OjIdrly5ok8++UTNmzdPdcvsvejGR8knJSVp8uTJ8vf3T/U1And72dK//cXc3NxUvXr1u7psIDPK6DG1aNEinTlzxqFTfEbdN31GAGdVqlRJV69edVl7ERER6ep464zTp09rxYoV+vLLL/XPP/84fN/SvaxLly66fPmyKleurISEBH311Vf66aefNGLEiFveLukKo0eP1rZt21SrVi1lyZJFixcv1uLFi/Xqq6+megYEgNtL7zG1adMm/fLLLxo6dKjKli2rGjVqOL/QOzltA8C1UvoB5MyZ00yePNnqctJt7ty55tFHHzX+/v7G09PTlChR4j+rf9myZaZq1aomKCjIeHh4mMKFC5t33nnHJCYm/ifLh2twmebekd5jKioqyri7u5ty5crZv17EWTZjXPxkHgAAgAygzwgAALAUYQQAAFgq03dgTU5O1l9//SU/Pz+XfOMpAAAPCmOMzp8/rzx58qT6NmFXyvRh5K+//qJHPQAAd+DYsWP2L029GzJ9GEl5XPixY8dSPXIbAADcXHx8vMLCwm771Rt3KtOHkZRLM/7+/oQRAACccLe7OdCBFQAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJbKYnUB96uC/b63uoRM7/C7Da0uAfcgjr27724de2y7u+9+/dzkzAgAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUpaGkaSkJL399tsKDw+Xj4+PChcurKFDh8oYY5/GGKOBAwcqd+7c8vHxUd26dXXgwAELqwYAAK5kaRgZNWqUpk6dqilTpmjv3r0aNWqURo8ercmTJ9unGT16tN577z1NmzZNmzZtkq+vryIjI3XlyhULKwcAAK6SxcqF//TTT2ratKkaNmwoSSpYsKA+/fRTbd68WdK/Z0UmTpyot956S02bNpUkzZ49W6GhoVq0aJFatmxpWe0AAMA1LD0zUqVKFa1cuVL79++XJO3atUvr169X/fr1JUmHDh3SyZMnVbduXfs8AQEBqlSpkn7++ec020xISFB8fLzDDwAAuHdZemakX79+io+PV/HixeXu7q6kpCQNHz5crVq1kiSdPHlSkhQaGuowX2hoqH3cjUaOHKnBgwff3cIBAIDLWHpm5IsvvtDcuXM1b948bd++XbNmzdLYsWM1a9Ysp9vs37+/4uLi7D/Hjh1zYcUAAMDVLD0z0rt3b/Xr18/e96N06dI6cuSIRo4cqaioKOXKlUuSdOrUKeXOnds+36lTp1SmTJk02/Ty8pKXl9ddrx0AALiGpWdGLl26JDc3xxLc3d2VnJwsSQoPD1euXLm0cuVK+/j4+Hht2rRJlStX/k9rBQAAd4elZ0YaN26s4cOHK3/+/CpZsqR27Nih8ePHq23btpIkm82m7t27a9iwYSpatKjCw8P19ttvK0+ePGrWrJmVpQMAABexNIxMnjxZb7/9tl5//XWdPn1aefLk0WuvvaaBAwfap+nTp48uXryoV199VbGxsXr88ce1ZMkSeXt7W1g5AABwFUvDiJ+fnyZOnKiJEyfedBqbzaYhQ4ZoyJAh/11hAADgP8N30wAAAEsRRgAAgKUIIwAAwFKEEQAAYClLO7ACVijY73urS8j0Dr/b0OoSANxHODMCAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEtZHkaOHz+uF198UcHBwfLx8VHp0qW1detW+3hjjAYOHKjcuXPLx8dHdevW1YEDByysGAAAuFIWZ2Y6dOiQ1q1bpyNHjujSpUsKCQlR2bJlVblyZXl7e6e7nXPnzqlq1aqqVauWFi9erJCQEB04cEBBQUH2aUaPHq333ntPs2bNUnh4uN5++21FRkZqz549GVoWAAC4N2UojMydO1eTJk3S1q1bFRoaqjx58sjHx0dnz57V77//Lm9vb7Vq1Up9+/ZVgQIFbtveqFGjFBYWphkzZtiHhYeH2383xmjixIl666231LRpU0nS7NmzFRoaqkWLFqlly5YZKR8AANyD0n2ZpmzZsnrvvffUpk0bHTlyRCdOnNC2bdu0fv167dmzR/Hx8fr666+VnJys8uXLa/78+bdt85tvvlH58uX17LPPKmfOnCpbtqw+/PBD+/hDhw7p5MmTqlu3rn1YQECAKlWqpJ9//jnNNhMSEhQfH+/wAwAA7l3pDiPvvvuuNm3apNdff11hYWGpxnt5ealmzZqaNm2a9u3bp0KFCt22zT/++ENTp05V0aJFtXTpUnXs2FFdu3bVrFmzJEknT56UJIWGhjrMFxoaah93o5EjRyogIMD+k1atAADg3pHuyzSRkZHpbjQ4OFjBwcG3nS7lLMqIESMk/Xv25ddff9W0adMUFRWV7uVdr3///urZs6f9dXx8PIEEAIB7mFMdWK/3/fffa82aNUpKSlLVqlXVvHnzdM+bO3dulShRwmFYRESEFixYIEnKlSuXJOnUqVPKnTu3fZpTp06pTJkyabbp5eUlLy+vDL4LAABglTu6tfftt99Wnz59ZLPZZIxRjx491KVLl3TPX7VqVcXExDgM279/v73za3h4uHLlyqWVK1fax8fHx2vTpk2qXLnynZQOAADuERk6M7J161aVL1/e/vrzzz/Xrl275OPjI0lq06aNatasqcmTJ6ervR49eqhKlSoaMWKEWrRooc2bN2v69OmaPn26JMlms6l79+4aNmyYihYtar+1N0+ePGrWrFlGSgcAAPeoDJ0Z6dChg7p3765Lly5JkgoVKqRx48YpJiZGu3fv1tSpU/XQQw+lu70KFSpo4cKF+vTTT1WqVCkNHTpUEydOVKtWrezT9OnTR126dNGrr76qChUq6MKFC1qyZAnPGAEAIJPIUBjZtGmTcufOrUcffVTffvut/ve//2nHjh2qUqWKqlWrpj///FPz5s3LUAGNGjXS7t27deXKFe3du1ft27d3GG+z2TRkyBCdPHlSV65c0YoVKzIUeAAAwL0tQ5dp3N3d1bdvXz377LPq2LGjfH19NWXKFOXJk+du1QcAADI5pzqwFipUSEuXLtVTTz2l6tWrKzo62tV1AQCAB0SGwkhsbKz69Omjxo0b66233tJTTz2lTZs2acuWLXrssce0e/fuu1UnAADIpDIURqKiorRp0yY1bNhQMTEx6tixo4KDgzVz5kwNHz5czz33nPr27Xu3agUAAJlQhvqMrFq1Sjt27FCRIkXUvn17FSlSxD6uTp062r59u4YMGeLyIgEAQOaVoTMjRYsW1fTp07V//35NmzYt1Tfzent72x/tDgAAkB4ZCiP/+9//tGrVKpUtW1bz5s3T1KlT71ZdAADgAZGhyzRlypTR1q1b71YtAADgAZTuMyPGmLtZBwAAeEClO4yULFlSn332ma5evXrL6Q4cOKCOHTvq3XffvePiAABA5pfuyzSTJ09W37599frrr6tevXoqX7688uTJI29vb507d0579uzR+vXr9dtvv6lz587q2LHj3awbAABkEukOI3Xq1NHWrVu1fv16ff7555o7d66OHDmiy5cvK0eOHCpbtqxat26tVq1aKSgo6G7WDAAAMpEMdWCVpMcff1yPP/743agFAAA8gJz6bhoAAABXIYwAAABLEUYAAIClCCMAAMBShBEAAGApp8LI9u3btXv3bvvrr7/+Ws2aNdObb75524eiAQAAXM+pMPLaa69p//79kqQ//vhDLVu2VNasWTV//nz16dPHpQUCAIDMzakwsn//fpUpU0aSNH/+fFWvXl3z5s3TzJkztWDBAlfWBwAAMjmnwogxRsnJyZKkFStWqEGDBpKksLAw/f33366rDgAAZHpOhZHy5ctr2LBhmjNnjtauXauGDRtKkg4dOqTQ0FCXFggAADI3p8LIxIkTtX37dnXu3FkDBgxQkSJFJElffvmlqlSp4tICAQBA5pbh76ZJSkpSbGysfvzxx1RfiDdmzBi5u7u7rDgAAJD5ZfjMiLu7u5544gnFxsamGuft7S0PDw9X1AUAAB4QTl2mKVWqlP744w9X1wIAAB5AToWRYcOGqVevXvruu+904sQJxcfHO/wAAACkV4b7jEiy38rbpEkT2Ww2+3BjjGw2m5KSklxTHQAAyPScCiOrV692dR0AAOAB5VQYqVGjhqvrAAAADyinv7V33bp1evHFF1WlShUdP35ckjRnzhytX7/eZcUBAIDMz6kwsmDBAkVGRsrHx0fbt29XQkKCJCkuLk4jRoxwaYEAACBzc/pummnTpunDDz90eK5I1apVtX37dpcVBwAAMj+nwkhMTIyqV6+eanhAQECaD0MDAAC4GafCSK5cuXTw4MFUw9evX69ChQrdcVEAAODB4VQYad++vbp166ZNmzbJZrPpr7/+0ty5c9WrVy917NjR1TUCAIBMzKlbe/v166fk5GTVqVNHly5dUvXq1eXl5aVevXqpS5curq4RAABkYk6FEZvNpgEDBqh37946ePCgLly4oBIlSihbtmyurg8AAGRyToWRVatWqUqVKvL29laJEiVcXRMAAHiAOBVGmjRpomvXrqlChQqqWbOmatSooapVq8rHx8fV9QEAgEzOqQ6s586d08qVK1W/fn1t3rxZTz31lAIDA1W1alW99dZbrq4RAABkYk6FEQ8PD1WtWlVvvvmmli5dqo0bN+r555/X5s2bNXLkSFfXCAAAMjGnLtPs379fa9as0Zo1a7R27VolJCSoWrVqGjt2rGrWrOniEgEAQGbmVBgpXry4QkJC1K1bN/Xr10+lS5eWzWZzdW0AAOAB4NRlmq5duypv3rwaMmSIOnTooAEDBmjZsmW6dOmSq+sDAACZnFNhZOLEidq+fbtOnjyp/v376+rVqxowYIBy5MihqlWrurpGAACQiTkVRlIkJSUpMTFRCQkJunLlihISEhQTE+Oq2gAAwAPA6cs0Dz/8sEJDQ/Xaa6/pr7/+Uvv27bVjxw6dOXPG1TUCAIBMzKkOrCdOnNCrr76qmjVrqlSpUq6uCQAAPECcCiPz5893dR0AAOAB5dRlmlmzZun777+3v+7Tp48CAwNVpUoVHTlyxGXFAQCAzM+pMDJixAj799D8/PPPio6O1ujRo5UjRw716NHDpQUCAIDMzanLNMeOHVORIkUkSYsWLVLz5s316quvqmrVqjyBFQAAZIhTZ0ayZcumf/75R5K0bNky1atXT5Lk7e2ty5cvu646AACQ6Tl1ZqRevXp65ZVXVLZsWe3fv18NGjSQJP32228qWLCgK+sDAACZnFNnRqKjo1W5cmWdOXNGCxYsUHBwsCRp27Ztev75511aIAAAyNycOjMSGBioKVOmpBo+ePDgOy4IAAA8WJwKI5IUGxurzZs36/Tp00pOTrYPt9lseumll1xSHAAAyPycCiPffvutWrVqpQsXLsjf3182m80+jjACAAAywqk+I2+88Ybatm2rCxcuKDY2VufOnbP/nD171tU1AgCATMypMHL8+HF17dpVWbNmdXU9AADgAeNUGImMjNTWrVtdXQsAAHgAOdVnpGHDhurdu7f27Nmj0qVLy8PDw2F8kyZNXFIcAADI/JwKI+3bt5ckDRkyJNU4m82mpKSkO6sKAAA8MJwKI9ffygsAAHAnnOozcjOxsbFpPgwNAADgZlwSRlauXKkXXnhBuXPn1qBBg1zRJAAAeEA4HUaOHTumIUOGKDw8XE888YRsNpsWLlyokydPurI+AACQyWUojCQmJmr+/PmKjIxUsWLFtHPnTo0ZM0Zubm4aMGCAnnzyyVR31gAAANxKhjqw5s2bV8WLF9eLL76ozz77TEFBQZLEN/UCAACnZejMyLVr12Sz2WSz2eTu7n63agIAAA+QDIWRv/76S6+++qo+/fRT5cqVS82bN9fChQsdvigPAAAgIzIURry9vdWqVSutWrVKu3fvVkREhLp27apr165p+PDhWr58OQ88AwAAGeL03TSFCxfWsGHDdOTIEX3//fdKSEhQo0aNFBoa6sr6AABAJufUE1iv5+bmpvr166t+/fo6c+aM5syZ44q6AADAA8KlT2ANCQlRz549XdkkAADI5FwaRgAAADKKMAIAACxFGAEAAJZyKowMGTJEly5dSjX88uXLGjJkyB0XBQAAHhxOhZHBgwfrwoULqYZfunRJgwcPvuOiAADAg8OpMGKMSfOpq7t27VL27NnvuCgAAPDgyNBzRoKCguzfTfPQQw85BJKkpCRduHBBHTp0cHmRAAAg88pQGJk4caKMMWrbtq0GDx6sgIAA+zhPT08VLFhQlStXdnmRAAAg88pQGImKipIkhYeHq2rVqsqS5Y4f4AoAAB5wTvUZuXjxolauXJlq+NKlS7V48eI7LgoAADw4nAoj/fr1S/PbeY0x6tev3x0XBQAAHhxOhZEDBw6oRIkSqYYXL15cBw8edKqQd999VzabTd27d7cPu3Llijp16qTg4GBly5ZNzZs316lTp5xqHwAA3JucCiMBAQH6448/Ug0/ePCgfH19M9zeli1b9MEHH+jhhx92GN6jRw99++23mj9/vtauXau//vpLTz/9tDMlAwCAe5RTYaRp06bq3r27fv/9d/uwgwcP6o033lCTJk0y1NaFCxfUqlUrffjhhwoKCrIPj4uL08cff6zx48erdu3aKleunGbMmKGffvpJGzdudKZsAABwD3IqjIwePVq+vr4qXry4wsPDFR4eroiICAUHB2vs2LEZaqtTp05q2LCh6tat6zB827ZtSkxMdBhevHhx5c+fXz///PNN20tISFB8fLzDDwAAuHc5dW9uQECAfvrpJy1fvly7du2Sj4+PHn74YVWvXj1D7Xz22Wfavn27tmzZkmrcyZMn5enpqcDAQIfhoaGhOnny5E3bHDlyJI+kBwDgPuL0g0JsNpueeOIJVa9eXV5eXmk+Hv5Wjh07pm7dumn58uXy9vZ2toxU+vfvr549e9pfx8fHKywszGXtAwAA13LqMk1ycrKGDh2qvHnzKlu2bDp06JAk6e2339bHH3+crja2bdum06dP69FHH1WWLFmUJUsWrV27Vu+9956yZMmi0NBQXb16VbGxsQ7znTp1Srly5bppu15eXvL393f4AQAA9y6nwsiwYcM0c+ZMjR49Wp6envbhpUqV0kcffZSuNurUqaPdu3dr586d9p/y5curVatW9t89PDwcHq4WExOjo0eP8sh5AAAyEacu08yePVvTp09XnTp1HL4Y75FHHtG+ffvS1Yafn59KlSrlMMzX11fBwcH24e3atVPPnj2VPXt2+fv7q0uXLqpcubIee+wxZ8oGAAD3IKfCyPHjx1WkSJFUw5OTk5WYmHjHRaWYMGGC3Nzc1Lx5cyUkJCgyMlLvv/++y9oHAADWcyqMlChRQuvWrVOBAgUchn/55ZcqW7as08WsWbPG4bW3t7eio6MVHR3tdJsAAODe5lQYGThwoKKionT8+HElJyfrq6++UkxMjGbPnq3vvvvO1TUCAIBMzOknsH777bdasWKFfH19NXDgQO3du1fffvut6tWr5+oaAQBAJpbhMyPXrl3TiBEj1LZtWy1fvvxu1AQAAB4gGT4zkiVLFo0ePVrXrl27G/UAAIAHjFOXaerUqaO1a9e6uhYAAPAAcqoDa/369dWvXz/t3r1b5cqVk6+vr8P4jH5zLwAAeHA5FUZef/11SdL48eNTjbPZbEpKSrqzqgAAwAPDqTCSnJzs6joAAMADKsN9RhITE5UlSxb9+uuvd6MeAADwgMlwGPHw8FD+/Pm5FAMAAFzCqbtpBgwYoDfffFNnz551dT0AAOAB41SfkSlTpujgwYPKkyePChQokOpumu3bt7ukOAAAkPk5FUaaNWvm4jIAAMCDyqkwMmjQIFfXAQAAHlBOhZEU27Zt0969eyVJJUuWVNmyZV1SFAAAeHA4FUZOnz6tli1bas2aNQoMDJQkxcbGqlatWvrss88UEhLiyhoBAEAm5tTdNF26dNH58+f122+/6ezZszp79qx+/fVXxcfHq2vXrq6uEQAAZGJOnRlZsmSJVqxYoYiICPuwEiVKKDo6Wk888YTLigMAAJmfU2dGkpOT5eHhkWq4h4cHj4oHAAAZ4lQYqV27trp166a//vrLPuz48ePq0aOH6tSp47LiAABA5udUGJkyZYri4+NVsGBBFS5cWIULF1Z4eLji4+M1efJkV9cIAAAyMaf6jISFhWn79u1asWKF9u3bJ0mKiIhQ3bp1XVocAADI/Jx+zojNZlO9evVUr149V9YDAAAeMBm6TLNq1SqVKFFC8fHxqcbFxcWpZMmSWrduncuKAwAAmV+GwsjEiRPVvn17+fv7pxoXEBCg1157TePHj3dZcQAAIPPLUBjZtWuXnnzyyZuOf+KJJ7Rt27Y7LgoAADw4MhRGTp06lebzRVJkyZJFZ86cueOiAADAgyNDYSRv3rz69ddfbzr+l19+Ue7cue+4KAAA8ODIUBhp0KCB3n77bV25ciXVuMuXL2vQoEFq1KiRy4oDAACZX4Zu7X3rrbf01Vdf6aGHHlLnzp1VrFgxSdK+ffsUHR2tpKQkDRgw4K4UCgAAMqcMhZHQ0FD99NNP6tixo/r37y9jjKR/nzkSGRmp6OhohYaG3pVCAQBA5pThh54VKFBAP/zwg86dO6eDBw/KGKOiRYsqKCjobtQHAAAyOaefwBoUFKQKFSq4shYAAPAAcuqL8gAAAFyFMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYClLw8jIkSNVoUIF+fn5KWfOnGrWrJliYmIcprly5Yo6deqk4OBgZcuWTc2bN9epU6csqhgAALiapWFk7dq16tSpkzZu3Kjly5crMTFRTzzxhC5evGifpkePHvr22281f/58rV27Vn/99ZeefvppC6sGAACulMXKhS9ZssTh9cyZM5UzZ05t27ZN1atXV1xcnD7++GPNmzdPtWvXliTNmDFDERER2rhxox577DErygYAAC50T/UZiYuLkyRlz55dkrRt2zYlJiaqbt269mmKFy+u/Pnz6+eff06zjYSEBMXHxzv8AACAe9c9E0aSk5PVvXt3Va1aVaVKlZIknTx5Up6engoMDHSYNjQ0VCdPnkyznZEjRyogIMD+ExYWdrdLBwAAd+CeCSOdOnXSr7/+qs8+++yO2unfv7/i4uLsP8eOHXNRhQAA4G6wtM9Iis6dO+u7777Tjz/+qHz58tmH58qVS1evXlVsbKzD2ZFTp04pV65cabbl5eUlLy+vu10yAABwEUvPjBhj1LlzZy1cuFCrVq1SeHi4w/hy5crJw8NDK1eutA+LiYnR0aNHVbly5f+6XAAAcBdYemakU6dOmjdvnr7++mv5+fnZ+4EEBATIx8dHAQEBateunXr27Kns2bPL399fXbp0UeXKlbmTBgCATMLSMDJ16lRJUs2aNR2Gz5gxQ23atJEkTZgwQW5ubmrevLkSEhIUGRmp999//z+uFAAA3C2WhhFjzG2n8fb2VnR0tKKjo/+DigAAwH/tnrmbBgAAPJgIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABL3RdhJDo6WgULFpS3t7cqVaqkzZs3W10SAABwkXs+jHz++efq2bOnBg0apO3bt+uRRx5RZGSkTp8+bXVpAADABe75MDJ+/Hi1b99eL7/8skqUKKFp06Ypa9as+t///md1aQAAwAWyWF3ArVy9elXbtm1T//797cPc3NxUt25d/fzzz2nOk5CQoISEBPvruLg4SVJ8fLxLa0tOuOTS9pCaq7dZCrbd3Xe3tp3E9vsvcOzdv1y97VLaM8a4tN0b3dNh5O+//1ZSUpJCQ0MdhoeGhmrfvn1pzjNy5EgNHjw41fCwsLC7UiPunoCJVlcAZ7Ht7m9sv/vX3dp258+fV0BAwN1pXPd4GHFG//791bNnT/vr5ORknT17VsHBwbLZbBZWZq34+HiFhYXp2LFj8vf3t7ocZADb7v7Ftrt/se3+ZYzR+fPnlSdPnru6nHs6jOTIkUPu7u46deqUw/BTp04pV65cac7j5eUlLy8vh2GBgYF3q8T7jr+//wN9YN3P2Hb3L7bd/Yttp7t6RiTFPd2B1dPTU+XKldPKlSvtw5KTk7Vy5UpVrlzZwsoAAICr3NNnRiSpZ8+eioqKUvny5VWxYkVNnDhRFy9e1Msvv2x1aQAAwAXu+TDy3HPP6cyZMxo4cKBOnjypMmXKaMmSJak6teLWvLy8NGjQoFSXsHDvY9vdv9h29y+23X/LZu72/ToAAAC3cE/3GQEAAJkfYQQAAFiKMAIAACxFGIEkaebMmel+HktGpsXdc/jwYdlsNu3cudPqUoBMrU2bNmrWrJn9dc2aNdW9e/d0zZuRaR9k9/zdNPhvPPfcc2rQoIHVZdyXatasqTJlymjixIlWl4K7oE2bNoqNjdWiRYusLgX3iK+++koeHh5Wl5GpEEYgSfLx8ZGPj4/VZQD3jKSkpAf6KyRwc9mzZ7e6hEyHyzT3iC+//FKlS5eWj4+PgoODVbduXV28eNF+enDw4MEKCQmRv7+/OnTooKtXr9rnXbJkiR5//HEFBgYqODhYjRo10u+//24fn3I6/6uvvlKtWrWUNWtWPfLIIw7ffHzjpZddu3apVq1a8vPzk7+/v8qVK6etW7c61Lx06VJFREQoW7ZsevLJJ3XixIm7t4LuUW3atNHatWs1adIk2Ww22Ww2/f7772rXrp3Cw8Pl4+OjYsWKadKkSQ7zXbt2TV27drVvs759+yoqKsrhVPDttmta1q5dq4oVK8rLy0u5c+dWv379dO3aNfv48+fPq1WrVvL19VXu3Lk1YcKETHMauWbNmurcubM6d+6sgIAA5ciRQ2+//bb920bPnTun1q1bKygoSFmzZlX9+vV14MAB+/wpx8A333yjEiVKyMvLS23bttWsWbP09ddf27fvmjVrtGbNGtlsNsXGxtrn37lzp2w2mw4fPmwf9uGHHyosLExZs2bVU089pfHjxzscZzee/pek7t27q2bNmvbXycnJGjlypH1/euSRR/Tll1/ax587d06tWrVSSEiIfHx8VLRoUc2YMcM+/tixY2rRooUCAwOVPXt2NW3a1KHG+92t1k/Kdlq5cqXKly+vrFmzqkqVKoqJiXFoY9iwYcqZM6f8/Pz0yiuvqF+/fipTpsxNl3njMfP++++raNGi8vb2VmhoqJ555plUNfbp00fZs2dXrly59M4777jq7WcahJF7wIkTJ/T888+rbdu22rt3r9asWaOnn37a/iG6cuVK+/BPP/1UX331lcM3E1+8eFE9e/bU1q1btXLlSrm5uempp55ScnKyw3IGDBigXr16aefOnXrooYf0/PPPO/yhul6rVq2UL18+bdmyRdu2bVO/fv0cTkteunRJY8eO1Zw5c/Tjjz/q6NGj6tWr111YO/e2SZMmqXLlymrfvr1OnDihEydOKF++fMqXL5/mz5+vPXv2aODAgXrzzTf1xRdf2OcbNWqU5s6dqxkzZmjDhg2Kj49PdRkgvds1xfHjx9WgQQNVqFBBu3bt0tSpU/Xxxx9r2LBh9ml69uypDRs26JtvvtHy5cu1bt06bd++/a6sGyvMmjVLWbJk0ebNmzVp0iSNHz9eH330kaR///Bv3bpV33zzjX7++WcZY9SgQQMlJiba57906ZJGjRqljz76SL/99pvee+89tWjRwh62T5w4oSpVqqSrlg0bNqhDhw7q1q2bdu7cqXr16mn48OEZfk8jR47U7NmzNW3aNP3222/q0aOHXnzxRa1du1aS9Pbbb2vPnj1avHix9u7dq6lTpypHjhySpMTEREVGRsrPz0/r1q3Thg0b7P88XP8Pzf3sdutH+vezb9y4cdq6dauyZMmitm3b2sfNnTtXw4cP16hRo7Rt2zblz59fU6dOTffyt27dqq5du2rIkCGKiYnRkiVLVL16dYdpZs2aJV9fX23atEmjR4/WkCFDtHz58jt/85mJgeW2bdtmJJnDhw+nGhcVFWWyZ89uLl68aB82depUky1bNpOUlJRme2fOnDGSzO7du40xxhw6dMhIMh999JF9mt9++81IMnv37jXGGDNjxgwTEBBgH+/n52dmzpyZZvszZswwkszBgwftw6Kjo01oaGj633QmUqNGDdOtW7dbTtOpUyfTvHlz++vQ0FAzZswY++tr166Z/Pnzm6ZNm960jZtt1x07dhhjjHnzzTdNsWLFTHJysn2e6Oho+74SHx9vPDw8zPz58+3jY2NjTdasWW9b//2gRo0aJiIiwuH99+3b10RERJj9+/cbSWbDhg32cX///bfx8fExX3zxhTHm//frnTt3OrQbFRWVarusXr3aSDLnzp2zD9uxY4eRZA4dOmSMMea5554zDRs2dJivVatWDsdZWm1369bN1KhRwxhjzJUrV0zWrFnNTz/95DBNu3btzPPPP2+MMaZx48bm5ZdfTnOdzJkzJ9U+kZCQYHx8fMzSpUvTnOd+crv1k7KdVqxYYR/3/fffG0nm8uXLxhhjKlWqZDp16uQwf9WqVc0jjzxif33jdrr+mF+wYIHx9/c38fHxadZYo0YN8/jjjzsMq1Chgunbt29G326mxpmRe8AjjzyiOnXqqHTp0nr22Wf14Ycf6ty5cw7js2bNan9duXJlXbhwQceOHZMkHThwQM8//7wKFSokf39/FSxYUJJ09OhRh+U8/PDD9t9z584tSTp9+nSaNfXs2VOvvPKK6tatq3fffTfV5YGsWbOqcOHCDu3drK0HUXR0tMqVK6eQkBBly5ZN06dPt2+PuLg4nTp1ShUrVrRP7+7urnLlyjm0kd7tmmLv3r2qXLmyQz+HqlWr6sKFC/rzzz/1xx9/KDEx0WG5AQEBKlasmKvetuUee+wxh/dfuXJlHThwQHv27FGWLFlUqVIl+7jg4GAVK1ZMe/futQ/z9PR0OE7uRExMjMO6lpTq9e0cPHhQly5dUr169ZQtWzb7z+zZs+3HZMeOHfXZZ5+pTJky6tOnj3766Sf7/Lt27dLBgwfl5+dnnzd79uy6cuXKbS/53Q/Ss36kW3/23el2qlevngoUKKBChQrppZde0ty5c3Xp0iWHaW7cp/i8TI0OrPcAd3d3LV++XD/99JOWLVumyZMna8CAAdq0aVO65m/cuLEKFCigDz/8UHny5FFycrJKlSqV6jTs9ZdZUj6wb3bK/5133tELL7yg77//XosXL9agQYP02Wef6amnnkrVVkp7hm8WkCR99tln6tWrl8aNG6fKlSvLz89PY8aMSff2TJHe7QrX8fHxSVenVTe3f/+Pu36fv/5yT3q5ubmlOm6ub+fChQuSpO+//1558+Z1mC7lO1Pq16+vI0eO6IcfftDy5ctVp04dderUSWPHjtWFCxdUrlw5zZ07N9WyQ0JCMlzvveZ26yclkGTksy+j/Pz8tH37dq1Zs0bLli3TwIED9c4772jLli32/kFpfV66avmZBWdG7hE2m01Vq1bV4MGDtWPHDnl6emrhwoWS/v3v5vLly/ZpN27cqGzZsiksLEz//POPYmJi9NZbb6lOnTqKiIhwOKtyJx566CH16NFDy5Yt09NPP+3QKQ7/z9PTU0lJSfbXGzZsUJUqVfT666+rbNmyKlKkiMN/aQEBAQoNDdWWLVvsw5KSkhz6bjizXSMiIux9Ia6vxc/PT/ny5VOhQoXk4eHhsNy4uDjt37//jt7/veTGwLdx40YVLVpUJUqU0LVr1xzGp6zjEiVK3LLNG7ev9P9/yK/vtH3j816KFSvmsK4lpXodEhKSquP39e2kdKQ9evSoihQp4vATFhbm0E5UVJQ++eQTTZw4UdOnT5ckPfroozpw4IBy5syZav6AgIBbvu/7QXrXz62kZzvdTpYsWVS3bl2NHj1av/zyiw4fPqxVq1ZlqI0HHWdG7gGbNm3SypUr9cQTTyhnzpzatGmTzpw5o4iICP3yyy+6evWq2rVrp7feekuHDx/WoEGD1LlzZ7m5uSkoKEjBwcGaPn26cufOraNHj6pfv353VM/ly5fVu3dvPfPMMwoPD9eff/6pLVu2qHnz5i56x5lLwYIFtWnTJh0+fFjZsmVT0aJFNXv2bC1dulTh4eGaM2eOtmzZovDwcPs8Xbp00ciRI1WkSBEVL15ckydP1rlz5+z/tTmzXV9//XVNnDhRXbp0UefOnRUTE6NBgwapZ8+ecnNzk5+fn6KiotS7d29lz55dOXPm1KBBg+Tm5pZpbmE9evSoevbsqddee03bt2/X5MmTNW7cOBUtWlRNmzZV+/bt9cEHH8jPz0/9+vVT3rx51bRp01u2WbBgQS1dulQxMTEKDg5WQECA/Y/dO++8o+HDh2v//v0aN26cw3xdunRR9erVNX78eDVu3FirVq3S4sWLHdZ17dq1NWbMGM2ePVuVK1fWJ598ol9//VVly5aV9O9/3b169VKPHj2UnJysxx9/XHFxcdqwYYP8/f0VFRWlgQMHqly5cipZsqQSEhL03XffKSIiQtK/HdHHjBmjpk2basiQIcqXL5+OHDmir776Sn369FG+fPlcvAX+W7dbPwUKFLhtG126dFH79u1Vvnx5ValSRZ9//rl++eUXFSpUKF01fPfdd/rjjz9UvXp1BQUF6YcfflBycnKmuvz5n7C2ywqMMWbPnj0mMjLShISEGC8vL/PQQw+ZyZMnG2P+v+PUwIEDTXBwsMmWLZtp3769uXLlin3+5cuXm4iICOPl5WUefvhhs2bNGiPJLFy40BiTuqOjMcacO3fOSDKrV682xjh2YE1ISDAtW7Y0YWFhxtPT0+TJk8d07tzZ3uHrxs6uxhizcOFC86DuTjExMeaxxx4zPj4+RpLZt2+fadOmjQkICDCBgYGmY8eOpl+/fg4d4hITE03nzp2Nv7+/CQoKMn379jXPPvusadmypX0aZ7brmjVrTIUKFYynp6fJlSuX6du3r0lMTLSPj4+PNy+88ILJmjWryZUrlxk/frypWLGi6dev391eTXddjRo1zOuvv246dOhgX69vvvmmvfPm2bNnzUsvvWQCAgKMj4+PiYyMNPv377fPn9Z+bYwxp0+fNvXq1TPZsmVzOGbWr19vSpcubby9vU21atXM/PnzHTqwGmPM9OnTTd68eY2Pj49p1qyZGTZsmMmVK5dD+wMHDjShoaEmICDA9OjRw3Tu3NnegdUYY5KTk83EiRNNsWLFjIeHhwkJCTGRkZFm7dq1xhhjhg4daiIiIoyPj4/Jnj27adq0qfnjjz/s8584ccK0bt3a5MiRw3h5eZlChQqZ9u3bm7i4uDtc4/eGW62f9HQ0NsaYIUOGmBw5cphs2bKZtm3bmq5du5rHHnvMPv5WHVjXrVtnatSoYYKCgoyPj495+OGHzeeff57mtCmaNm1qoqKiXLgW7n82Y7jQfy/j6Y8PhuTkZEVERKhFixYaOnTof7bcixcvKm/evBo3bpzatWv3ny33brgfnoTbvn177du3T+vWrbO6FNxCvXr1lCtXLs2ZM8fqUh4YXKYBLHDkyBEtW7ZMNWrUUEJCgqZMmaJDhw7phRdeuKvL3bFjh/bt26eKFSsqLi5OQ4YMkaTbXqqAc8aOHat69erJ19dXixcv1qxZs/T+++9bXRauc+nSJU2bNk2RkZFyd3fXp59+qhUrVvAckP8YYQSwgJubm2bOnKlevXrJGKNSpUppxYoV9mv9d9PYsWMVExMjT09PlStXTuvWrbM/JAuutXnzZo0ePVrnz59XoUKF9N577+mVV16xuixcx2az6YcfftDw4cN15coVFStWTAsWLFDdunWtLu2BwmUaAABgKW7tBQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEeIC1adNGzZo1s7oMAA84wggAALAUYQRAmsaPH6/SpUvL19dXYWFhev3113XhwgX7+JkzZyowMFBLly5VRESEsmXLpieffFInTpywT3Pt2jV17dpVgYGBCg4OVt++fRUVFeVwNqZgwYKpvk+mTJkyeuedd9JdiyR9+OGHCgsLU9asWfXUU09p/PjxCgwMdJjm66+/1qOPPipvb28VKlRIgwcP1rVr1+54XQG4M4QRAGlyc3PTe++9p99++02zZs3SqlWr1KdPH4dpLl26pLFjx2rOnDn68ccfdfToUfXq1cs+ftSoUZo7d65mzJihDRs2KD4+3qkvfbxdLRs2bFCHDh3UrVs37dy5U/Xq1dPw4cMd2li3bp1at26tbt26ac+ePfrggw80c+bMVNMBsICl3xkMwFI3fjX6rcyfP98EBwfbX8+YMcNIMgcPHrQPi46ONqGhofbXoaGhZsyYMfbX165dM/nz53dYZoECBcyECRMclvXII4+YQYMGpbuW5557zjRs2NBhmlatWpmAgAD76zp16pgRI0Y4TDNnzhyTO3fumy4HwH+DL8oDkKYVK1Zo5MiR2rdvn+Lj43Xt2jVduXJFly5dUtasWSVJWbNmVeHChe3z5M6dW6dPn5YkxcXF6dSpU6pYsaJ9vLu7u8qVK6fk5GSX1hITE6OnnnrKYZ6KFSvqu+++s7/etWuXNmzY4HAmJCkpKdV7AvDf4zINgFQOHz6sRo0a6eGHH9aCBQu0bds2RUdHS5KuXr1qn87Dw8NhPpvNJpPB7950c3NLNU9iYmKGa7mdCxcuaPDgwdq5c6f9Z/fu3Tpw4IC8vb0zVDMA1+LMCIBUtm3bpuTkZI0bN05ubv/+z/LFF19kqI2AgACFhoZqy5Ytql69uqR/z0Rs375dZcqUsU8XEhLi0Ok1Pj5ehw4dylAtxYoV05YtWxyG3fj60UcfVUxMjIoUKZKh9wHg7iOMAA+4uLg47dy502FYjhw5lJiYqMmTJ6tx48basGGDpk2bluG2u3TpopEjR6pIkSIqXry4Jk+erHPnzslms9mnqV27tmbOnKnGjRsrMDBQAwcOlLu7u318kSJFbltLly5dVL16dY0fP16NGzfWqlWrtHjxYoflDBw4UI0aNVL+/Pn1zDPPyM3NTbt27dKvv/6qYcOGZfi9AXAhqzutALBOVFSUkZTqp127dmb8+PEmd+7cxsfHx0RGRprZs2cbSebcuXPGmH87sF7fQdQYYxYuXGiu/1hJTEw0nTt3Nv7+/iYoKMj07dvXPPvss6Zly5b2aeLi4sxzzz1n/P39TVhYmJk5c2aqDqy3q8UYY6ZPn27y5s1rfHx8TLNmzcywYcNMrly5HOpbsmSJqVKlivHx8TH+/v6mYsWKZvr06S5bnwCcYzMmgxd4AcBJycnJioiIUIsWLTR06NC7uqz27dtr3759Wrdu3V1dDoA7x2UaAHfNkSNHtGzZMtWoUUMJCQmaMmWKDh06pBdeeMHlyxo7dqzq1asnX19fLV68WLNmzdL777/v8uUAcD3CCIC7xs3NTTNnzlSvXr1kjFGpUqW0YsUKRUREuHxZmzdv1ujRo3X+/HkVKlRI7733nl555RWXLweA63GZBgAAWIrnjAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAlvo/961eU1EXk1wAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 refraction 14 11 13 12 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 31 45.16129 35.483871 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 41.935484 38.709677 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWQElEQVR4nO3de3zP9f//8ft77GSzjWFzmLOYQ4ho5HxYzqeElDmkklFESBE5RIgkRX2QSDlVkhwjOZ9TGMopOcY2zGa25++Pfnt/vW3Y3q9pW27Xy+V94f18nR7v1+v9fu3+fr2er9fbZowxAgAAcJJLRhcAAACyNsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBJAG27dvl5ubm06cOJEu8ztw4ICyZ8+uX3/9NV3mh6yhaNGi6tq167++3NmzZ8tms2nnzp3/+rKzoiNHjqhx48by9fWVzWbT119/ndElSZLq1q2runXrZnQZDh7oMPH777/rhRdeUPHixeXh4SEfHx/VrFlTU6ZM0fXr1zO6vDQ7cOCA3nrrLR0/fjzN07722muy2Wzq0KFD+hf2HzJ06FB16tRJRYoUsbd9/fXXKlOmjHx9fdWiRQv99ddfyaZr2bKlnn/++WTtZcuWVbNmzTRs2LBULT/pj8Gtj3z58qlevXpasWKF8y8sBUWLFlXz5s3TdZ5IX8ePH0/2frjTw5n9woMuLCxM+/fv1+jRozV37lxVrVr1X1u2lf15Rsie0QVklOXLl6t9+/Zyd3dXly5dVL58ed24cUM///yzBg4cqN9++00zZszI6DLT5MCBAxoxYoTq1q2rokWLpno6Y4y++OILFS1aVMuWLdOVK1eUM2fO+1doFrV3716tWbNGmzdvtrf98ccf6tChgzp06KCQkBBNnjxZ3bp108qVK+3jrFy5Uj/99JOOHDmS4nxffPFFNW3aVL///rtKlCiRqlpGjhypYsWKyRijc+fOafbs2WratKmWLVtGAMgCIiIi5OJi/btc3rx5NXfuXIe2iRMn6s8//9R7772XbFyk3vXr17VlyxYNHTpU4eHh//ry77Y/X7Vq1b9ez708kGHi2LFj6tixo4oUKaJ169Ypf/789mG9e/fW0aNHtXz5csvLMcYoNjZWnp6eyYbFxsbKzc0tXXYoVq1fv15//vmn1q1bp9DQUC1ZskRhYWEZXVa6unnzphITE+Xm5ub0PGbNmqXChQvrscces7etWrVKhQoV0pw5c2Sz2RQcHKz69esrNjZWHh4eunnzpvr166dhw4bdcWfesGFD5cqVS3PmzNHIkSNTVUuTJk0cviX16NFDAQEB+uKLLwgTWYC7u3u6zMfLy0vPPPOMQ9uCBQt0+fLlZO0PurTuAy5cuCBJ8vPzu+e4165dk5eXl5Xy0sTKfux+yfi/ZBlg/Pjxunr1qj799FOHIJGkZMmSevnll+3Pb968qbffflslSpSQu7u7ihYtqtdff11xcXEO0yUdFl65cqWqVq0qT09Pffzxx1q/fr1sNpsWLFigN954QwULFlSOHDkUHR0tSdq2bZueeOIJ+fr6KkeOHKpTp442bdqUrK7Tp0+rR48eKlCggNzd3VWsWDH16tVLN27c0OzZs9W+fXtJUr169eyHNtevX3/P9TFv3jyVLVtW9erVU8OGDTVv3rxk4yS9hq+++kqjR49WoUKF5OHhoQYNGujo0aMO4x45ckTt2rVTYGCgPDw8VKhQIXXs2FFRUVGSpLZt2+qRRx5xmKZFixay2Wz69ttv7W3btm2TzWZzOHwfGRmpV155RUFBQXJ3d1fJkiU1btw4JSYm2sdJOvQ7YcIETZ482b7dDhw4IEmaOnWqypUrpxw5cihXrlyqWrWq5s+ff8/19PXXX6t+/fqy2Wz2tuvXr8vPz8/eljt3bhlj7KfJPvjgAyUkJKhPnz53nK+rq6vq1q2rb7755p413Imfn588PT2VPfs/3w+MMSpatKhatWqVbNzY2Fj5+vrqhRdecHp5STZu3Kj27durcOHCcnd3V1BQkPr165fsNGHXrl3l7e2t06dPq3Xr1vL29lbevHk1YMAAJSQkOIz7999/69lnn5WPj4/8/PwUFhamffv2yWazafbs2fbx7nTeuGvXrsm+yU2YMEE1atSQv7+/PD09VaVKFS1atCjZtNevX1ffvn2VJ08e5cyZUy1bttTp06dls9n01ltvOYx7+vRpde/eXQEBAXJ3d1e5cuX0v//9L1Xr7fY+E0mnrzZt2qT+/fsrb9688vLyUps2bex/1NJTXFxcqpazYsUK1apVS15eXsqZM6eaNWum3377zWGcpG178uRJNW/eXN7e3ipYsKCmTZsmSdq/f7/q168vLy8vFSlSJMXPWmo+15J05swZHTp0SPHx8Xd9fffaBxw6dEhPPvmkcufOLQ8PD1WtWtVh3/PWW2/ZT2UOHDhQNpvN/p566623ZLPZdODAAT399NPKlSuXHn/8cUnSL7/8oq5du9pPnQcGBqp79+76+++/k9VoZX+e0nv//Pnz9i8VHh4eqlixoubMmXPH9TJjxgz7enn00Ue1Y8eOu67Te3kgj0wsW7ZMxYsXV40aNVI1/nPPPac5c+boySef1Kuvvqpt27Zp7NixOnjwoJYuXeowbkREhDp16qQXXnhBPXv2VOnSpe3D3n77bbm5uWnAgAGKi4uTm5ub1q1bpyZNmqhKlSoaPny4XFxcNGvWLNWvX18bN25UtWrVJEl//fWXqlWrpsjISD3//PMqU6aMTp8+rUWLFikmJka1a9dW37599f777+v1119XcHCwJNn/vZO4uDgtXrxYr776qiSpU6dO6tatm86ePavAwMBk47/zzjtycXHRgAEDFBUVpfHjx6tz587atm2bJOnGjRsKDQ1VXFyc+vTpo8DAQJ0+fVrfffedIiMj5evrq1q1aumbb75RdHS0fHx8ZIzRpk2b5OLioo0bN6ply5aS/vlD5eLiopo1a0qSYmJiVKdOHZ0+fVovvPCCChcurM2bN2vIkCE6c+aMJk+e7FDrrFmzFBsbq+eff17u7u7KnTu3Zs6cqb59++rJJ5/Uyy+/rNjYWP3yyy/atm2bnn766Tuup9OnT+vkyZPJQtCjjz6qV199VV988YUee+wxjR49WiVLllSuXLl04cIFjRgxQp9//rlcXV3vuh2qVKnisE7uJSoqShcvXpQxRufPn9fUqVN19epV+7dRm82mZ555RuPHj9elS5eUO3du+7TLli1TdHR0unxzXbhwoWJiYtSrVy/5+/tr+/btmjp1qv78808tXLjQYdyEhASFhoaqevXqmjBhgtasWaOJEyeqRIkS6tWrlyQpMTFRLVq00Pbt29WrVy+VKVNG33zzjeUjZVOmTFHLli3VuXNn3bhxQwsWLFD79u313XffqVmzZvbxunbtqq+++krPPvusHnvsMW3YsMFheJJz587psccek81mU3h4uPLmzasVK1aoR48eio6O1iuvvOJUnX369FGuXLk0fPhwHT9+XJMnT1Z4eLi+/PJLZ1+608uZO3euwsLCFBoaqnHjxikmJkbTp0/X448/rj179jgEtoSEBDVp0kS1a9fW+PHjNW/ePIWHh8vLy0tDhw5V586d1bZtW3300Ufq0qWLQkJCVKxYMUlp+1wPGTJEc+bM0bFjx1J1KjelfcBvv/2mmjVrqmDBgho8eLC8vLz01VdfqXXr1lq8eLHatGmjtm3bys/PT/369VOnTp3UtGlTeXt7O8y7ffv2KlWqlMaMGSNjjCRp9erV+uOPP9StWzcFBgbaT5f/9ttv2rp1q/1LR3rvz69fv666devq6NGjCg8PV7FixbRw4UJ17dpVkZGRDl+OJWn+/Pm6cuWKXnjhBdlsNo0fP15t27bVH3/8cc991R2ZB0xUVJSRZFq1apWq8ffu3Wskmeeee86hfcCAAUaSWbdunb2tSJEiRpL54YcfHMb98ccfjSRTvHhxExMTY29PTEw0pUqVMqGhoSYxMdHeHhMTY4oVK2YaNWpkb+vSpYtxcXExO3bsSFZj0rQLFy40ksyPP/6YqtdmjDGLFi0yksyRI0eMMcZER0cbDw8P895776X4GoKDg01cXJy9fcqUKUaS2b9/vzHGmD179hhJZuHChXdc5o4dO4wk8/333xtjjPnll1+MJNO+fXtTvXp1+3gtW7Y0lStXtj9/++23jZeXlzl8+LDD/AYPHmyyZctmTp48aYwx5tixY0aS8fHxMefPn3cYt1WrVqZcuXKpXT12a9asMZLMsmXLkg3r27evkWQkmdy5c9vfEz179jRPPPFEquY/f/58I8ls27btruPNmjXLvqxbH+7u7mb27NkO40ZERBhJZvr06Q7tLVu2NEWLFnV4z6WkSJEiplmzZncd59b3c5KxY8cam81mTpw4YW8LCwszkszIkSMdxq1cubKpUqWK/fnixYuNJDN58mR7W0JCgqlfv76RZGbNmmVvr1OnjqlTp06y5YeFhZkiRYrctc4bN26Y8uXLm/r169vbdu3aZSSZV155xWHcrl27Gklm+PDh9rYePXqY/Pnzm4sXLzqM27FjR+Pr65vierlVkSJFTFhYmP150nZt2LChw3bp16+fyZYtm4mMjLzr/G7VrFmzZK8/rcu5cuWK8fPzMz179nSY/uzZs8bX19ehPWnbjhkzxt52+fJl4+npaWw2m1mwYIG9/dChQ8nWZWo/17cu69ixY3ddB3fbBzRo0MBUqFDBxMbG2tsSExNNjRo1TKlSpZLN491333WYfvjw4UaS6dSpU7LlprTdv/jiCyPJ/PTTT/Y2q/vz29/7kydPNpLM559/bm+7ceOGCQkJMd7e3iY6OtrhNfn7+5tLly7Zx/3mm2/uuH9LrQfuNEfSqYXUdjD8/vvvJUn9+/d3aE/6Jn9734pixYopNDQ0xXmFhYU59J/Yu3evjhw5oqefflp///23Ll68qIsXL+ratWtq0KCBfvrpJyUmJioxMVFff/21WrRokWJv4lsPu6fVvHnzVLVqVZUsWVKS7IcyUzrVIUndunVzOF9Xq1YtSf90RJQkX19fSf90OoyJiUlxHpUrV5a3t7d++uknSf8cgShUqJC6dOmi3bt3KyYmRsYY/fzzz/b5S/98C65Vq5Zy5cplX1cXL15Uw4YNlZCQYJ9fknbt2iXrp+Dn56c///wzzYf0kg5T5sqVK9mwKVOm6MSJE9q2bZtOnDihevXqae/evfrss8/03nvvKSoqSs8884wKFiyounXr6uDBg8nmkTTfixcvpqqeadOmafXq1Vq9erU+//xz1atXT88995yWLFliH+ehhx5S9erVHbblpUuXtGLFCnXu3NnS+ybJre/na9eu6eLFi6pRo4aMMdqzZ0+y8V988UWH57Vq1bK/dyTphx9+kKurq3r27Glvc3FxUe/evdOtzsuXLysqKkq1atXS7t27HZYtSS+99JLDtLefojLGaPHixWrRooWMMQ7vxdDQUEVFRTnMNy2ef/55h+1Sq1YtJSQkpNulyKldzurVqxUZGalOnTo5vL5s2bKpevXq+vHHH5PN87nnnrP/38/PT6VLl5aXl5eeeuope3vp0qXl5+fnsM3T8rmePXu2/RReaty+D7h06ZLWrVunp556SleuXLEv6++//1ZoaKiOHDmi06dPp2ret7+XJcf3WWxsrC5evGjvY5X0nrgf+/Pvv/9egYGB6tSpk73N1dVVffv21dWrV7VhwwaH8Tt06OCwL7t9P+6MB+40R9Ih5CtXrqRq/BMnTsjFxcX+xzZJYGCg/Pz8kn3Ikw7dpeT2YUm9++92CDcqKko3btxQdHS0ypcvn6qaUysyMlLff/+9wsPDHfo91KxZU4sXL9bhw4f10EMPOUxTuHBhh+dJb8jLly9L+uc19u/fX5MmTdK8efNUq1YttWzZUs8884w9aGTLlk0hISHauHGjpH/CRK1atfT4448rISFBW7duVUBAgC5duuQQJo4cOaJffvnljh0Zz58/7/A8pW0xaNAgrVmzRtWqVVPJkiXVuHFjPf300/ZTKfdi/v/hzNsVLlzYYd307dtXL774osqUKaNnnnlGp06d0jfffKM5c+aoRYsWOnTokL1/w63zTe2OpFq1ag47ok6dOqly5coKDw9X8+bN7YGvS5cuCg8P14kTJ1SkSBEtXLhQ8fHxevbZZ1O1nHs5efKkhg0bpm+//db+HkiS1EcmiYeHR7JtlytXLofpTpw4ofz58ytHjhwO493++Uur7777TqNGjdLevXsd+jrdur6TPuu3v29uX/aFCxcUGRmpGTNm3PGKr9vfi6l1r89XernXcpL2TfXr109x+ttPxaW0bX19fVWoUKFk72lfX1+H15PWz3Va3L4tjx49KmOM3nzzTb355pt3XF7BggXTPG/pn7AyYsQILViwIFndSZ+HCxcupPv+/MSJEypVqlSyDv1Jp0Vu/zt1P95nD2SYKFCgQJpvEpTanXxKV27caVhS56J3331XlSpVSnEab29vXbp0KXVFptHChQsVFxeniRMnauLEicmGz5s3TyNGjHBoy5YtW4rzuvWP7MSJE9W1a1d98803WrVqlfr27auxY8dq69atKlSokCTp8ccf1+jRoxUbG6uNGzdq6NCh8vPzU/ny5bVx40YFBARIkkOYSExMVKNGjfTaa6+lWMPtwSelbREcHKyIiAh99913+uGHH7R48WJ9+OGHGjZsWLLXeit/f39Jqfuwffnllzp48KC+/fZbJSQk6KuvvtKqVatUtWpVlStXTjNnztTWrVvtnbZunW+ePHnuOf+UuLi4qF69epoyZYqOHDmicuXKSZI6duyofv36ad68eXr99df1+eefq2rVqg59eZyVkJCgRo0a6dKlSxo0aJDKlCkjLy8vnT59Wl27dk3Wee5O7x1n2Wy2FMPd7R06k/rh1K5dWx9++KHy588vV1dXzZo1K1Udb2+X9LqeeeaZO34RePjhh9M8Xyl1n6/0cK/lJL3GuXPnpth36tYgfLf5peb1pPVznRZ32ucOGDDgjkeQUxtcU9q/PPXUU9q8ebMGDhyoSpUqydvbW4mJiXriiSeSfR4y0v14nz1wYUKSmjdvrhkzZmjLli0KCQm567hFihRRYmKijhw54tD55dy5c4qMjHS4eVFaJd1TwMfHRw0bNrzjeHnz5pWPj889A1BaD4/NmzdP5cuX1/Dhw5MN+/jjjzV//vy7/oG9mwoVKqhChQp64403tHnzZtWsWVMfffSRRo0aJemfkHDjxg198cUXOn36tD001K5d2x4mHnroIXuokP5ZX1evXr3rukoNLy8v+70hbty4obZt22r06NEaMmSIPDw8UpymTJkykv65rPhuYmJiNHDgQL399tvy8/PTuXPnFB8frwIFCkj6ZweUK1euZIdSjx07JhcXF0s7zps3b0qSrl69am/LnTu3/bRV586dtWnTpmQdVZ21f/9+HT58WHPmzFGXLl3s7atXr3Z6nkWKFNGPP/6omJgYh6MTt18xJP3zbSqlw7K3fwtbvHixPDw8tHLlSodLMmfNmpVs2YmJiTp27JhKlSp1x2XnzZtXOXPmVEJCguX3YmaVtG/Kly/ffX+N6fW5To3ixYtL+ucUQHov7/Lly1q7dq1GjBjhcBO62+8vcz/250WKFNEvv/yixMREh6MThw4dsg+/3x64PhPSP3d79PLy0nPPPadz584lG/77779rypQpkqSmTZtKUrId8KRJkyQpxZ7eqVWlShWVKFFCEyZMcPgDkCTpUi0XFxe1bt1ay5YtS/E2uElpMuk658jIyHsu+9SpU/rpp5/01FNP6cknn0z26Natm44ePWq/SiO1oqOj7X/UklSoUEEuLi4Oh5erV68uV1dXjRs3Trlz57Z/k65Vq5a2bt2qDRs2OByVkP5J/Vu2bHG4IVSSyMjIZMtNye2XaLm5uals2bIyxtz1crOCBQsqKCjonrchHjdunHLlymU/5+/v76/s2bPbP9QXL17UhQsXkn3b27Vrl8qVK2c/FZRW8fHxWrVqldzc3JL1+H722Wd14MABDRw4UNmyZVPHjh2dWsbtkr7d3Pptxhhj/+w4IzQ0VPHx8Zo5c6a9LTEx0X6Z4a1KlCihQ4cOOVzSuG/fvmSXVWfLlk02m83hiMXx48eT3Ro56Zvqhx9+6NA+derUZPNr166dFi9enOIfhPtxKee/LTQ0VD4+PhozZkyKn4v0fI1p+Vyn9tLQO8mXL5/q1q2rjz/+WGfOnEk23MrrSunzICX/23E/9udNmzbV2bNnHa7GuXnzpqZOnSpvb2/VqVMnLS/FKQ/kkYkSJUpo/vz56tChg4KDgx3ugLl582b7JTWSVLFiRYWFhWnGjBmKjIxUnTp1tH37ds2ZM0etW7dWvXr1nK7DxcVFn3zyiZo0aaJy5cqpW7duKliwoE6fPq0ff/xRPj4+WrZsmSRpzJgxWrVqlerUqaPnn39ewcHBOnPmjBYuXKiff/5Zfn5+qlSpkrJly6Zx48YpKipK7u7uql+/vvLly5ds2fPnz5cxxn4Z5u2aNm2q7Nmza968eapevXqqX9O6desUHh6u9u3b66GHHtLNmzc1d+5c+w44SY4cOVSlShVt3brVfo8J6Z8jE9euXdO1a9eShYmBAwfq22+/VfPmzdW1a1dVqVJF165d0/79+7Vo0SIdP378nqcJGjdurMDAQNWsWVMBAQE6ePCgPvjgAzVr1uyenXJbtWqlpUuXyhiT4reGkydP6t1339Xy5cvtO5bs2bOrVatWeuWVV3Ty5EktXbpUBQoUcDgiFh8frw0bNiTr+Hc3K1assAeU8+fPa/78+Tpy5IgGDx6c7Hx2s2bN5O/vr4ULF6pJkyYpvh/u5OjRo/ajSbeqXLmyGjdurBIlSmjAgAE6ffq0fHx8tHjxYkvnXVu3bq1q1arp1Vdf1dGjR1WmTBl9++239lN9t6737t27a9KkSQoNDVWPHj10/vx5ffTRRypXrpy9o3XS6580aZKeeOIJPf300zp//rymTZumkiVL6pdffrGPV6VKFbVr106TJ0/W33//bb809PDhw8mW/c477+jHH39U9erV1bNnT5UtW1aXLl3S7t27tWbNmvt2avLf4uPjo+nTp+vZZ5/VI488oo4dOypv3rw6efKkli9frpo1a+qDDz5Il2Wl5XOd1ktDUzJt2jQ9/vjjqlChgnr27KnixYvr3Llz2rJli/7880/t27fPqfn6+PjYL42Nj49XwYIFtWrVqhSPZqb3/vz555/Xxx9/rK5du2rXrl0qWrSoFi1aZD8S+a/c0djp60D+Aw4fPmx69uxpihYtatzc3EzOnDlNzZo1zdSpUx0uG4qPjzcjRowwxYoVM66uriYoKMgMGTLEYRxj7nwpXdJllXe6XHLPnj2mbdu2xt/f37i7u5siRYqYp556yqxdu9ZhvBMnTpguXbqYvHnzGnd3d1O8eHHTu3dvh0s1Z86caYoXL26yZct218tEK1SoYAoXLnzX9VO3bl2TL18+Ex8ff8fXkHSpUdIle3/88Yfp3r27KVGihPHw8DC5c+c29erVM2vWrEk2/4EDBxpJZty4cQ7tJUuWNJLM77//nmyaK1eumCFDhpiSJUsaNzc3kydPHlOjRg0zYcIEc+PGDYeabr+kyxhjPv74Y1O7dm37ui5RooQZOHCgiYqKuuu6MMaY3bt3G0lm48aNKQ5v3769adu2bbL2c+fOmRYtWpicOXOaRx55xOzcudNh+IoVKxwuz72blC4N9fDwMJUqVTLTp0+/4+WeL730kpFk5s+ff89lJEm61DmlR48ePYwxxhw4cMA0bNjQeHt7mzx58piePXuaffv2JbuMMywszHh5eSVbRtJldre6cOGCefrpp03OnDmNr6+v6dq1q9m0aZOR5HCZoTHGfP7556Z48eLGzc3NVKpUyaxcuTLFS0M//fRTU6pUKePu7m7KlCljZs2aleKyr127Znr37m1y585tvL29TevWre2X2L7zzjsO4547d8707t3bBAUFGVdXVxMYGGgaNGhgZsyYkap1m9KlobdfKpj0uUvL5d6puTQ0tcv58ccfTWhoqPH19TUeHh6mRIkSpmvXrg7v4Ttt2zp16qR4GXZK+8nUfK6TlqU0XBqa0j7AGGN+//1306VLFxMYGGhcXV1NwYIFTfPmzc2iRYvuOY+k982FCxeSzffPP/80bdq0MX5+fsbX19e0b9/e/PXXX8kuhzXG2v48pcuiz507Z7p162by5Mlj3NzcTIUKFRw+g/daLynVmBa2/z8TAKnQoEEDFShQINnvIVjRunVr2Wy2ZDdAS0/9+vXTp59+qrNnzya7UiIr+Prrr9WmTRv9/PPPqb7yJr3s3btXlStX1ueff67OnTv/q8sGsgrCBJAG27ZtU61atXTkyJF06dR08OBBVahQQXv37k33S3+TxMbGKigoSM2bN0/W6TAzun79ukNP+YSEBDVu3Fg7d+7U2bNn73rFVHovW/rnrphz587V8ePHFRQUdN+WDWRlD2SfCcBZ1atX140bN9JtfsHBwanqOOqM8+fPa82aNVq0aJH+/vvvZLfUzaz69Omj69evKyQkRHFxcVqyZIk2b96sMWPG3NcgIf3zuz27du1SvXr1lD17dq1YsUIrVqzQ888/T5AA7oIwAfxHHThwQJ07d1a+fPn0/vvv3/FeJplN/fr1NXHiRH333XeKjY1VyZIlNXXq1H/lZ6Br1Kih1atX6+2339bVq1dVuHBhvfXWWxo6dOh9XzaQlXGaAwAAWPJA3mcCAACkH8IEAACw5D/fZyIxMVF//fWXcubMmS6/kggAwIPCGKMrV66oQIECyX5I7Fb/+TDx119/0QsbAAALTp06Zf+hxpT858NE0m1ET506lew2wwAA4M6io6MVFBR0z1ty/+fDRNKpDR8fH8IEAABOuFc3ATpgAgAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALAke0YXkFUVHbw8o0v4zzv+TrOMLgEAkAocmQAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJdkzugAASIuig5dndAn/ecffaZbRJSCL4cgEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsyTRh4p133pHNZtMrr7xib4uNjVXv3r3l7+8vb29vtWvXTufOncu4IgEAQDKZIkzs2LFDH3/8sR5++GGH9n79+mnZsmVauHChNmzYoL/++ktt27bNoCoBAEBKMjxMXL16VZ07d9bMmTOVK1cue3tUVJQ+/fRTTZo0SfXr11eVKlU0a9Ysbd68WVu3bs3AigEAwK0yPEz07t1bzZo1U8OGDR3ad+3apfj4eIf2MmXKqHDhwtqyZcsd5xcXF6fo6GiHBwAAuH+yZ+TCFyxYoN27d2vHjh3Jhp09e1Zubm7y8/NzaA8ICNDZs2fvOM+xY8dqxIgR6V0qAAC4gww7MnHq1Cm9/PLLmjdvnjw8PNJtvkOGDFFUVJT9cerUqXSbNwAASC7DwsSuXbt0/vx5PfLII8qePbuyZ8+uDRs26P3331f27NkVEBCgGzduKDIy0mG6c+fOKTAw8I7zdXd3l4+Pj8MDAADcPxl2mqNBgwbav3+/Q1u3bt1UpkwZDRo0SEFBQXJ1ddXatWvVrl07SVJERIROnjypkJCQjCgZAACkIMPCRM6cOVW+fHmHNi8vL/n7+9vbe/Toof79+yt37tzy8fFRnz59FBISosceeywjSgYAACnI0A6Y9/Lee+/JxcVF7dq1U1xcnEJDQ/Xhhx9mdFkAAOAWmSpMrF+/3uG5h4eHpk2bpmnTpmVMQQAA4J4y/D4TAAAgayNMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLMtWloQCA/66ig5dndAn/ecffaZYhy+XIBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsyZ7RBQD/tqKDl2d0Cf95x99pltElAPgXcWQCAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWJLdmYmOHTumjRs36sSJE4qJiVHevHlVuXJlhYSEyMPDI71rBAAAmViawsS8efM0ZcoU7dy5UwEBASpQoIA8PT116dIl/f777/Lw8FDnzp01aNAgFSlS5H7VDAAAMpFUh4nKlSvLzc1NXbt21eLFixUUFOQwPC4uTlu2bNGCBQtUtWpVffjhh2rfvn26FwwAADKXVIeJd955R6GhoXcc7u7urrp166pu3boaPXq0jh8/nh71AQCATC7VHTDvFiRu5+/vrypVqtxzvOnTp+vhhx+Wj4+PfHx8FBISohUrVtiHx8bGqnfv3vL395e3t7fatWunc+fOpboOAABw/znVAfNWy5cv1/r165WQkKCaNWuqXbt2qZ62UKFCeuedd1SqVCkZYzRnzhy1atVKe/bsUbly5dSvXz8tX75cCxculK+vr8LDw9W2bVtt2rTJatkAACCdWAoTb775ppYsWaJmzZrJGKN+/fpp/fr1mjp1aqqmb9GihcPz0aNHa/r06dq6dasKFSqkTz/9VPPnz1f9+vUlSbNmzVJwcLC2bt2qxx57LMV5xsXFKS4uzv48OjrayVcHAABSI033mdi5c6fD8y+//FI7d+7U+PHj9d5772nZsmX6/PPPnSokISFBCxYs0LVr1xQSEqJdu3YpPj5eDRs2tI9TpkwZFS5cWFu2bLnjfMaOHStfX1/74/aOogAAIH2lKUy8+OKLeuWVVxQTEyNJKl68uCZOnKiIiAjt379f06dP10MPPZSmAvbv3y9vb2+5u7vrxRdf1NKlS1W2bFmdPXtWbm5u8vPzcxg/ICBAZ8+eveP8hgwZoqioKPvj1KlTaaoHAACkTZrCxLZt25Q/f3498sgjWrZsmf73v/9pz549qlGjhmrVqqU///xT8+fPT1MBpUuX1t69e7Vt2zb16tVLYWFhOnDgQJrmcSt3d3d7h86kBwAAuH/S1GciW7ZsGjRokNq3b69evXrJy8tLH3zwgQoUKOB0AW5ubipZsqQkqUqVKtqxY4emTJmiDh066MaNG4qMjHQ4OnHu3DkFBgY6vTwAAJC+nPptjuLFi2vlypVq06aNateurWnTpqVbQYmJiYqLi1OVKlXk6uqqtWvX2odFRETo5MmTCgkJSbflAQAAa9J0ZCIyMlJjxozRwYMHVbFiRQ0ePFhNmzbVq6++qscee0wzZ85UhQoVUj2/IUOGqEmTJipcuLCuXLmi+fPna/369Vq5cqV8fX3Vo0cP9e/fX7lz55aPj4/69OmjkJCQO17JAQAA/n1pChNhYWGKjIxUp06dtHbtWvXq1Utz587V7NmztXbtWnXo0EEtWrTQuHHjUjW/8+fPq0uXLjpz5ox8fX318MMPa+XKlWrUqJEk6b333pOLi4vatWunuLg4hYaG6sMPP0z7qwQAAPdNmsLEunXrtGfPHpUsWVI9e/a093WQpAYNGmj37t0aOXJkquf36aef3nW4h4eHpk2blq6nUQAAQPpKU5+JUqVKacaMGTp8+LA++uijZL8M6uHhoTFjxqRrgQAAIHNLU5j43//+p3Xr1qly5cqaP3++pk+ffr/qAgAAWUSaTnNUqlQp2V0wAQDAgy3VRyaMMfezDgAAkEWlOkyUK1dOCxYs0I0bN+463pEjR9SrVy+98847losDAACZX6pPc0ydOlWDBg3SSy+9pEaNGqlq1aoqUKCAPDw8dPnyZR04cEA///yzfvvtN4WHh6tXr173s24AAJBJpDpMNGjQQDt37tTPP/+sL7/8UvPmzdOJEyd0/fp15cmTR5UrV1aXLl3UuXNn5cqV637WDAAAMpE0dcCUpMcff1yPP/74/agFAABkQU79NgcAAEASwgQAALCEMAEAACwhTAAAAEsIEwAAwBKnwsTu3bu1f/9++/NvvvlGrVu31uuvv37Pm1oBAID/FqfCxAsvvKDDhw9Lkv744w917NhROXLk0MKFC/Xaa6+la4EAACBzcypMHD58WJUqVZIkLVy4ULVr19b8+fM1e/ZsLV68OD3rAwAAmZxTYcIYo8TEREnSmjVr1LRpU0lSUFCQLl68mH7VAQCATM+pMFG1alWNGjVKc+fO1YYNG9SsWTNJ0rFjxxQQEJCuBQIAgMzNqTAxefJk7d69W+Hh4Ro6dKhKliwpSVq0aJFq1KiRrgUCAIDMLc2/zZGQkKDIyEj99NNPyX7Q691331W2bNnSrTgAAJD5pfnIRLZs2dS4cWNFRkYmG+bh4SFXV9f0qAsAAGQRTp3mKF++vP7444/0rgUAAGRBToWJUaNGacCAAfruu+905swZRUdHOzwAAMCDI819JiTZLwVt2bKlbDabvd0YI5vNpoSEhPSpDgAAZHpOhYkff/wxvesAAABZlFNhok6dOuldBwAAyKKc/tXQjRs36plnnlGNGjV0+vRpSdLcuXP1888/p1txAAAg83MqTCxevFihoaHy9PTU7t27FRcXJ0mKiorSmDFj0rVAAACQuTl9NcdHH32kmTNnOtxXombNmtq9e3e6FQcAADI/p8JERESEateunazd19c3xZtZAQCA/y6nwkRgYKCOHj2arP3nn39W8eLFLRcFAACyDqfCRM+ePfXyyy9r27Ztstls+uuvvzRv3jwNGDBAvXr1Su8aAQBAJubUpaGDBw9WYmKiGjRooJiYGNWuXVvu7u4aMGCA+vTpk941AgCATMypMGGz2TR06FANHDhQR48e1dWrV1W2bFl5e3und30AACCTcypMrFu3TjVq1JCHh4fKli2b3jUBAIAsxKkw0bJlS928eVOPPvqo6tatqzp16qhmzZry9PRM7/oAAEAm51QHzMuXL2vt2rVq0qSJtm/frjZt2sjPz081a9bUG2+8kd41AgCATMypMOHq6qqaNWvq9ddf18qVK7V161Z16tRJ27dv19ixY9O7RgAAkIk5dZrj8OHDWr9+vdavX68NGzYoLi5OtWrV0oQJE1S3bt10LhEAAGRmToWJMmXKKG/evHr55Zc1ePBgVahQQTabLb1rAwAAWYBTpzn69u2rggULauTIkXrxxRc1dOhQrVq1SjExMeldHwAAyOScChOTJ0/W7t27dfbsWQ0ZMkQ3btzQ0KFDlSdPHtWsWTO9awQAAJmYU2EiSUJCguLj4xUXF6fY2FjFxcUpIiIivWoDAABZgNOnOR5++GEFBATohRde0F9//aWePXtqz549unDhQnrXCAAAMjGnOmCeOXNGzz//vOrWravy5cund00AACALcSpMLFy4ML3rAAAAWZRTpznmzJmj5cuX25+/9tpr8vPzU40aNXTixIl0Kw4AAGR+ToWJMWPG2H+HY8uWLZo2bZrGjx+vPHnyqF+/fulaIAAAyNycOs1x6tQplSxZUpL09ddfq127dnr++edVs2ZN7oAJAMADxqkjE97e3vr7778lSatWrVKjRo0kSR4eHrp+/Xr6VQcAADI9p45MNGrUSM8995wqV66sw4cPq2nTppKk3377TUWLFk3P+gAAQCbn1JGJadOmKSQkRBcuXNDixYvl7+8vSdq1a5c6deqUrgUCAIDMzakjE35+fvrggw+StY8YMcJyQQAAIGtxKkxIUmRkpLZv367z588rMTHR3m6z2fTss8+mS3EAACDzcypMLFu2TJ07d9bVq1fl4+Pj8PPjhAkAAB4sTvWZePXVV9W9e3ddvXpVkZGRunz5sv1x6dKl9K4RAABkYk6FidOnT6tv377KkSNHetcDAACyGKfCRGhoqHbu3JnetQAAgCzIqT4TzZo108CBA3XgwAFVqFBBrq6uDsNbtmyZLsUBAIDMz6kw0bNnT0nSyJEjkw2z2WxKSEiwVhUAAMgynAoTt14KCgAAHmxO9Zm4k8jIyBRvZgUAAP670iVMrF27Vk8//bTy58+v4cOHp8csAQBAFuF0mDh16pRGjhypYsWKqXHjxrLZbFq6dKnOnj2bnvUBAIBMLk1hIj4+XgsXLlRoaKhKly6tvXv36t1335WLi4uGDh2qJ554ItmVHQAA4L8tTR0wCxYsqDJlyuiZZ57RggULlCtXLknil0IBAHiApenIxM2bN2Wz2WSz2ZQtW7b7VRMAAMhC0hQm/vrrLz3//PP64osvFBgYqHbt2mnp0qUOP/QFAAAeLGkKEx4eHurcubPWrVun/fv3Kzg4WH379tXNmzc1evRorV69mhtWAQDwgHH6ao4SJUpo1KhROnHihJYvX664uDg1b95cAQEB6VkfAADI5Jy6A+atXFxc1KRJEzVp0kQXLlzQ3Llz06MuAACQRaTrHTDz5s2r/v37p+csAQBAJpeuYQIAADx4CBMAAMASwgQAALDEqTAxcuRIxcTEJGu/fv26Ro4cabkoAACQdTgVJkaMGKGrV68ma4+JidGIESMsFwUAALIOp8KEMSbFu17u27dPuXPntlwUAADIOtJ0n4lcuXLZf5vjoYcecggUCQkJunr1ql588cV0LxIAAGReaQoTkydPljFG3bt314gRI+Tr62sf5ubmpqJFiyokJCTdiwQAAJlXmsJEWFiYJKlYsWKqWbOmsme3fANNAACQxTnVZ+LatWtau3ZtsvaVK1dqxYoVlosCAABZh1NhYvDgwSn+OqgxRoMHD7ZcFAAAyDqcChNHjhxR2bJlk7WXKVNGR48etVwUAADIOpwKE76+vvrjjz+StR89elReXl6WiwIAAFmHU2GiVatWeuWVV/T777/b244ePapXX31VLVu2TLfiAABA5udUmBg/fry8vLxUpkwZFStWTMWKFVNwcLD8/f01YcKEVM9n7NixevTRR5UzZ07ly5dPrVu3VkREhMM4sbGx6t27t/z9/eXt7a127drp3LlzzpQNAADuA6eu7fT19dXmzZu1evVq7du3T56ennr44YdVu3btNM1nw4YN6t27tx599FHdvHlTr7/+uho3bqwDBw7YT5f069dPy5cv18KFC+Xr66vw8HC1bdtWmzZtcqZ0AACQzpy+UYTNZlPjxo1Vu3Ztubu7p3h77Xv54YcfHJ7Pnj1b+fLl065du1S7dm1FRUXp008/1fz581W/fn1J0qxZsxQcHKytW7fqsccec7Z8AACQTpw6zZGYmKi3335bBQsWlLe3t44dOyZJevPNN/Xpp586XUxUVJQk2X/fY9euXYqPj1fDhg3t45QpU0aFCxfWli1bUpxHXFycoqOjHR4AAOD+cSpMjBo1SrNnz9b48ePl5uZmby9fvrw++eQTpwpJTEzUK6+8opo1a6p8+fKSpLNnz8rNzU1+fn4O4wYEBOjs2bMpzmfs2LHy9fW1P4KCgpyqBwAApI5TYeKzzz7TjBkz1LlzZ2XLls3eXrFiRR06dMipQnr37q1ff/1VCxYscGr6JEOGDFFUVJT9cerUKUvzAwAAd+dUn4nTp0+rZMmSydoTExMVHx+f5vmFh4fru+++008//aRChQrZ2wMDA3Xjxg1FRkY6HJ04d+6cAgMDU5yXu7u73N3d01wDAABwjlNHJsqWLauNGzcma1+0aJEqV66c6vkYYxQeHq6lS5dq3bp1KlasmMPwKlWqyNXV1eF3QCIiInTy5El+nRQAgEzCqSMTw4YNU1hYmE6fPq3ExEQtWbJEERER+uyzz/Tdd9+lej69e/fW/Pnz9c033yhnzpz2fhC+vr7y9PSUr6+vevToof79+yt37tzy8fFRnz59FBISwpUcAABkEk7fAXPZsmVas2aNvLy8NGzYMB08eFDLli1To0aNUj2f6dOnKyoqSnXr1lX+/Pntjy+//NI+znvvvafmzZurXbt2ql27tgIDA7VkyRJnygYAAPdBmo9M3Lx5U2PGjFH37t21evVqSws3xtxzHA8PD02bNk3Tpk2ztCwAAHB/pPnIRPbs2TV+/HjdvHnzftQDAACyGKdOczRo0EAbNmxI71oAAEAW5FQHzCZNmmjw4MHav3+/qlSpkuxnx/nlUAAAHhxOhYmXXnpJkjRp0qRkw2w2mxISEqxVBQAAsgynwkRiYmJ61wEAALKoNPeZiI+PV/bs2fXrr7/ej3oAAEAWk+Yw4erqqsKFC3MqAwAASHLyao6hQ4fq9ddf16VLl9K7HgAAkMU41Wfigw8+0NGjR1WgQAEVKVIk2dUcu3fvTpfiAABA5udUmGjdunU6lwEAALIqp8LE8OHD07sOAACQRTkVJpLs2rVLBw8elCSVK1cuTT8/DgAA/hucChPnz59Xx44dtX79evn5+UmSIiMjVa9ePS1YsEB58+ZNzxoBAEAm5tTVHH369NGVK1f022+/6dKlS7p06ZJ+/fVXRUdHq2/fvuldIwAAyMScOjLxww8/aM2aNQoODra3lS1bVtOmTVPjxo3TrTgAAJD5OXVkIjExUa6ursnaXV1dudU2AAAPGKfCRP369fXyyy/rr7/+sredPn1a/fr1U4MGDdKtOAAAkPk5FSY++OADRUdHq2jRoipRooRKlCihYsWKKTo6WlOnTk3vGgEAQCbmVJ+JoKAg7d69W2vWrNGhQ4ckScHBwWrYsGG6FgcAADI/p+8zYbPZ1KhRIzVq1Cg96wEAAFlMmk5zrFu3TmXLllV0dHSyYVFRUSpXrpw2btyYbsUBAIDML01hYvLkyerZs6d8fHySDfP19dULL7ygSZMmpVtxAAAg80tTmNi3b5+eeOKJOw5v3Lixdu3aZbkoAACQdaQpTJw7dy7F+0skyZ49uy5cuGC5KAAAkHWkKUwULFhQv/766x2H//LLL8qfP7/logAAQNaRpjDRtGlTvfnmm4qNjU027Pr16xo+fLiaN2+ebsUBAIDML02Xhr7xxhtasmSJHnroIYWHh6t06dKSpEOHDmnatGlKSEjQ0KFD70uhAAAgc0pTmAgICNDmzZvVq1cvDRkyRMYYSf/ccyI0NFTTpk1TQEDAfSkUAABkTmm+aVWRIkX0/fff6/Llyzp69KiMMSpVqpRy5cp1P+oDAACZnNN3wMyVK5ceffTR9KwFAABkQU790BcAAEASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASzI0TPz0009q0aKFChQoIJvNpq+//tphuDFGw4YNU/78+eXp6amGDRvqyJEjGVMsAABIUYaGiWvXrqlixYqaNm1aisPHjx+v999/Xx999JG2bdsmLy8vhYaGKjY29l+uFAAA3En2jFx4kyZN1KRJkxSHGWM0efJkvfHGG2rVqpUk6bPPPlNAQIC+/vprdezY8d8sFQAA3EGm7TNx7NgxnT17Vg0bNrS3+fr6qnr16tqyZcsdp4uLi1N0dLTDAwAA3D+ZNkycPXtWkhQQEODQHhAQYB+WkrFjx8rX19f+CAoKuq91AgDwoMu0YcJZQ4YMUVRUlP1x6tSpjC4JAID/tEwbJgIDAyVJ586dc2g/d+6cfVhK3N3d5ePj4/AAAAD3T6YNE8WKFVNgYKDWrl1rb4uOjta2bdsUEhKSgZUBAIBbZejVHFevXtXRo0ftz48dO6a9e/cqd+7cKly4sF555RWNGjVKpUqVUrFixfTmm2+qQIECat26dcYVDQAAHGRomNi5c6fq1atnf96/f39JUlhYmGbPnq3XXntN165d0/PPP6/IyEg9/vjj+uGHH+Th4ZFRJQMAgNtkaJioW7eujDF3HG6z2TRy5EiNHDnyX6wKAACkRabtMwEAALIGwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACzJEmFi2rRpKlq0qDw8PFS9enVt3749o0sCAAD/X6YPE19++aX69++v4cOHa/fu3apYsaJCQ0N1/vz5jC4NAAAoC4SJSZMmqWfPnurWrZvKli2rjz76SDly5ND//ve/jC4NAABIyp7RBdzNjRs3tGvXLg0ZMsTe5uLiooYNG2rLli0pThMXF6e4uDj786ioKElSdHR0utaWGBeTrvNDcum9zZKw7e6/+7XtJLbfv4HPXtaV3tsuaX7GmLuOl6nDxMWLF5WQkKCAgACH9oCAAB06dCjFacaOHasRI0Ykaw8KCrovNeL+8Z2c0RXAWWy7rI3tl3Xdr2135coV+fr63nF4pg4TzhgyZIj69+9vf56YmKhLly7J399fNpstAyvLWNHR0QoKCtKpU6fk4+OT0eUgDdh2WRfbLuti2/3DGKMrV66oQIECdx0vU4eJPHnyKFu2bDp37pxD+7lz5xQYGJjiNO7u7nJ3d3do8/Pzu18lZjk+Pj4P9AcjK2PbZV1su6yLbae7HpFIkqk7YLq5ualKlSpau3atvS0xMVFr165VSEhIBlYGAACSZOojE5LUv39/hYWFqWrVqqpWrZomT56sa9euqVu3bhldGgAAUBYIEx06dNCFCxc0bNgwnT17VpUqVdIPP/yQrFMm7s7d3V3Dhw9PdgoImR/bLuti22VdbLu0sZl7Xe8BAABwF5m6zwQAAMj8CBMAAMASwgQAALCEMAFJ0uzZs1N9P460jIv75/jx47LZbNq7d29GlwL8p3Xt2lWtW7e2P69bt65eeeWVVE2blnGzskx/NQf+HR06dFDTpk0zuowsqW7duqpUqZImT56c0aXgPujatasiIyP19ddfZ3QpyCSWLFkiV1fXjC4jUyFMQJLk6ekpT0/PjC4DyDQSEhIe6Fvw485y586d0SVkOpzmyCQWLVqkChUqyNPTU/7+/mrYsKGuXbtmP7w2YsQI5c2bVz4+PnrxxRd148YN+7Q//PCDHn/8cfn5+cnf31/NmzfX77//bh+edDh8yZIlqlevnnLkyKGKFSs6/PLq7acu9u3bp3r16ilnzpzy8fFRlSpVtHPnToeaV65cqeDgYHl7e+uJJ57QmTNn7t8KyqS6du2qDRs2aMqUKbLZbLLZbPr999/Vo0cPFStWTJ6enipdurSmTJniMN3NmzfVt29f+zYbNGiQwsLCHA6l3mu7pmTDhg2qVq2a3N3dlT9/fg0ePFg3b960D79y5Yo6d+4sLy8v5c+fX++9995/5jBs3bp1FR4ervDwcPn6+ipPnjx688037b92ePnyZXXp0kW5cuVSjhw51KRJEx05csQ+fdJn4Ntvv1XZsmXl7u6u7t27a86cOfrmm2/s23f9+vVav369bDabIiMj7dPv3btXNptNx48ft7fNnDlTQUFBypEjh9q0aaNJkyY5fM5uP3wuSa+88orq1q1rf56YmKixY8fa308VK1bUokWL7MMvX76szp07K2/evPL09FSpUqU0a9Ys+/BTp07pqaeekp+fn3Lnzq1WrVo51JjV3W39JG2ntWvXqmrVqsqRI4dq1KihiIgIh3mMGjVK+fLlU86cOfXcc89p8ODBqlSp0h2Xeftn5sMPP1SpUqXk4eGhgIAAPfnkk8lqfO2115Q7d24FBgbqrbfeSq+Xn2kQJjKBM2fOqFOnTurevbsOHjyo9evXq23btvad4Nq1a+3tX3zxhZYsWeLwy6jXrl1T//79tXPnTq1du1YuLi5q06aNEhMTHZYzdOhQDRgwQHv37tVDDz2kTp06OfyhuVXnzp1VqFAh7dixQ7t27dLgwYMdDuvFxMRowoQJmjt3rn766SedPHlSAwYMuA9rJ3ObMmWKQkJC1LNnT505c0ZnzpxRoUKFVKhQIS1cuFAHDhzQsGHD9Prrr+urr76yTzdu3DjNmzdPs2bN0qZNmxQdHZ3sMHpqt2uS06dPq2nTpnr00Ue1b98+TZ8+XZ9++qlGjRplH6d///7atGmTvv32W61evVobN27U7t2778u6yQhz5sxR9uzZtX37dk2ZMkWTJk3SJ598IumfP9w7d+7Ut99+qy1btsgYo6ZNmyo+Pt4+fUxMjMaNG6dPPvlEv/32m95//3099dRT9rB85swZ1ahRI1W1bNq0SS+++KJefvll7d27V40aNdLo0aPT/JrGjh2rzz77TB999JF+++039evXT88884w2bNggSXrzzTd14MABrVixQgcPHtT06dOVJ08eSVJ8fLxCQ0OVM2dObdy4UZs2bbKH/1u/kGRl91o/0j/7vokTJ2rnzp3Knj27unfvbh82b948jR49WuPGjdOuXbtUuHBhTZ8+PdXL37lzp/r27auRI0cqIiJCP/zwg2rXru0wzpw5c+Tl5aVt27Zp/PjxGjlypFavXm39xWcmBhlu165dRpI5fvx4smFhYWEmd+7c5tq1a/a26dOnG29vb5OQkJDi/C5cuGAkmf379xtjjDl27JiRZD755BP7OL/99puRZA4ePGiMMWbWrFnG19fXPjxnzpxm9uzZKc5/1qxZRpI5evSovW3atGkmICAg9S/6P6ROnTrm5Zdfvus4vXv3Nu3atbM/DwgIMO+++679+c2bN03hwoVNq1at7jiPO23XPXv2GGOMef31103p0qVNYmKifZpp06bZ3yvR0dHG1dXVLFy40D48MjLS5MiR4571ZwV16tQxwcHBDq9/0KBBJjg42Bw+fNhIMps2bbIPu3jxovH09DRfffWVMeb/3td79+51mG9YWFiy7fLjjz8aSeby5cv2tj179hhJ5tixY8YYYzp06GCaNWvmMF3nzp0dPmcpzfvll182derUMcYYExsba3LkyGE2b97sME6PHj1Mp06djDHGtGjRwnTr1i3FdTJ37txk74m4uDjj6elpVq5cmeI0Wcm91k/SdlqzZo192PLly40kc/36dWOMMdWrVze9e/d2mL5mzZqmYsWK9ue3b6dbP/OLFy82Pj4+Jjo6OsUa69SpYx5//HGHtkcffdQMGjQorS83U+PIRCZQsWJFNWjQQBUqVFD79u01c+ZMXb582WF4jhw57M9DQkJ09epVnTp1SpJ05MgRderUScWLF5ePj4+KFi0qSTp58qTDch5++GH7//Pnzy9JOn/+fIo19e/fX88995waNmyod955J9nh9Rw5cqhEiRIO87vTvB5E06ZNU5UqVZQ3b155e3trxowZ9u0RFRWlc+fOqVq1avbxs2XLpipVqjjMI7XbNcnBgwcVEhLicJ6/Zs2aunr1qv7880/98ccfio+Pd1iur6+vSpcunV4vO8M99thjDq8/JCRER44c0YEDB5Q9e3ZVr17dPszf31+lS5fWwYMH7W1ubm4OnxMrIiIiHNa1pGTP7+Xo0aOKiYlRo0aN5O3tbX989tln9s9kr169tGDBAlWqVEmvvfaaNm/ebJ9+3759Onr0qHLmzGmfNnfu3IqNjb3nKbOsIDXrR7r7vs/qdmrUqJGKFCmi4sWL69lnn9W8efMUExPjMM7t76n/4v6SDpiZQLZs2bR69Wpt3rxZq1at0tSpUzV06FBt27YtVdO3aNFCRYoU0cyZM1WgQAElJiaqfPnyyQ5j3nqaImmHe6dD5m+99ZaefvppLV++XCtWrNDw4cO1YMECtWnTJtm8kuZnuDO7JGnBggUaMGCAJk6cqJCQEOXMmVPvvvtuqrdnktRuV6QfT0/PVHW6dHH553vYre/5W0+XpJaLi0uyz82t87l69aokafny5SpYsKDDeEm/GdGkSROdOHFC33//vVavXq0GDRqod+/emjBhgq5evaoqVapo3rx5yZadN2/eNNeb2dxr/SQFirTs+9IqZ86c2r17t9avX69Vq1Zp2LBheuutt7Rjxw57/5iU9pfptfzMgiMTmYTNZlPNmjU1YsQI7dmzR25ublq6dKmkf75dXL9+3T7u1q1b5e3traCgIP3999+KiIjQG2+8oQYNGig4ONjhqIYVDz30kPr166dVq1apbdu2Dp268H/c3NyUkJBgf75p0ybVqFFDL730kipXrqySJUs6fEvy9fVVQECAduzYYW9LSEhw6LvgzHYNDg629wW4tZacOXOqUKFCKl68uFxdXR2WGxUVpcOHD1t6/ZnJ7YFt69atKlWqlMqWLaubN286DE9ax2XLlr3rPG/fvtL//SG+tdPx7ff7KF26tMO6lpTsed68eZN1XL51PkkdQU+ePKmSJUs6PIKCghzmExYWps8//1yTJ0/WjBkzJEmPPPKIjhw5onz58iWb3tfX966vOytI7fq5m9Rsp3vJnj27GjZsqPHjx+uXX37R8ePHtW7dujTNI6vjyEQmsG3bNq1du1aNGzdWvnz5tG3bNl24cEHBwcH65ZdfdOPGDfXo0UNvvPGGjh8/ruHDhys8PFwuLi7KlSuX/P39NWPGDOXPn18nT57U4MGDLdVz/fp1DRw4UE8++aSKFSumP//8Uzt27FC7du3S6RX/txQtWlTbtm3T8ePH5e3trVKlSumzzz7TypUrVaxYMc2dO1c7duxQsWLF7NP06dNHY8eOVcmSJVWmTBlNnTpVly9ftn9rcma7vvTSS5o8ebL69Omj8PBwRUREaPjw4erfv79cXFyUM2dOhYWFaeDAgcqdO7fy5cun4cOHy8XF5T9zCeTJkyfVv39/vfDCC9q9e7emTp2qiRMnqlSpUmrVqpV69uypjz/+WDlz5tTgwYNVsGBBtWrV6q7zLFq0qFauXKmIiAj5+/vL19fX/sfqrbfe0ujRo3X48GFNnDjRYbo+ffqodu3amjRpklq0aKF169ZpxYoVDuu6fv36evfdd/XZZ58pJCREn3/+uX799VdVrlxZ0j/fegcMGKB+/fopMTFRjz/+uKKiorRp0yb5+PgoLCxMw4YNU5UqVVSuXDnFxcXpu+++U3BwsKR/OlK/++67atWqlUaOHKlChQrpxIkTWrJkiV577TUVKlQonbfAv+te66dIkSL3nEefPn3Us2dPVa1aVTVq1NCXX36pX375RcWLF09VDd99953++OMP1a5dW7ly5dL333+vxMTE/9Tpw1TJ2C4bMMaYAwcOmNDQUJM3b17j7u5uHnroITN16lRjzP91/Bk2bJjx9/c33t7epmfPniY2NtY+/erVq01wcLBxd3c3Dz/8sFm/fr2RZJYuXWqMSd5RzxhjLl++bCSZH3/80Rjj2AEzLi7OdOzY0QQFBRk3NzdToEABEx4ebu+wdHtnTWOMWbp0qXlQ304RERHmscceM56enkaSOXTokOnatavx9fU1fn5+plevXmbw4MEOHbri4+NNeHi48fHxMbly5TKDBg0y7du3Nx07drSP48x2Xb9+vXn00UeNm5ubCQwMNIMGDTLx8fH24dHR0ebpp582OXLkMIGBgWbSpEmmWrVqZvDgwfd7Nd13derUMS+99JJ58cUX7ev19ddft3c+vHTpknn22WeNr6+v8fT0NKGhoebw4cP26VN6XxtjzPnz502jRo2Mt7e3w2fm559/NhUqVDAeHh6mVq1aZuHChQ4dMI0xZsaMGaZgwYLG09PTtG7d2owaNcoEBgY6zH/YsGEmICDA+Pr6mn79+pnw8HB7B0xjjElMTDSTJ082pUuXNq6uriZv3rwmNDTUbNiwwRhjzNtvv22Cg4ONp6enyZ07t2nVqpX5448/7NOfOXPGdOnSxeTJk8e4u7ub4sWLm549e5qoqCiLazxzuNv6SU1HWWOMGTlypMmTJ4/x9vY23bt3N3379jWPPfaYffjdOmBu3LjR1KlTx+TKlct4enqahx9+2Hz55ZcpjpukVatWJiwsLB3XQsbjJ8gzOe6+92BITExUcHCwnnrqKb399tv/2nKvXbumggULauLEierRo8e/ttz7ISvcibRnz546dOiQNm7cmNGl4C4aNWqkwMBAzZ07N6NLyTI4zQFkgBMnTmjVqlWqU6eO4uLi9MEHH+jYsWN6+umn7+ty9+zZo0OHDqlatWqKiorSyJEjJemeh/rhnAkTJqhRo0by8vLSihUrNGfOHH344YcZXRZuERMTo48++kihoaHKli2bvvjiC61Zs+a/dx+I+4wwAWQAFxcXzZ49WwMGDJAxRuXLl9eaNWvs57rvpwkTJigiIkJubm6qUqWKNm7caL/JEdLX9u3bNX78eF25ckXFixfX+++/r+eeey6jy8ItbDabvv/+e40ePVqxsbEqXbq0Fi9erIYNG2Z0aVkKpzkAAIAlXBoKAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIE8ADrGvXrmrdunVGlwEgiyNMAAAASwgTAFI0adIkVahQQV5eXgoKCtJLL72kq1ev2ofPnj1bfn5+WrlypYKDg+Xt7a0nnnjC4Se1b968qb59+8rPz0/+/v4aNGiQwsLCHI6GFC1aNNnvaVSqVElvvfVWqmuRpJkzZyooKEg5cuRQmzZtNGnSJPn5+TmM88033+iRRx6Rh4eHihcvrhEjRujmzZuW1xXwoCNMAEiRi4uL3n//ff3222+aM2eO1q1bp9dee81hnJiYGE2YMEFz587VTz/9pJMnT2rAgAH24ePGjdO8efM0a9Ysbdq0SdHR0U79aN29atm0aZNefPFFvfzyy9q7d68aNWqk0aNHO8xj48aN6tKli15++WUdOHBAH3/8sWbPnp1sPABOyNDfLAWQoW7/aeW7WbhwofH397c/nzVrlpFkjh49am+bNm2aCQgIsD8PCAgw7777rv35zZs3TeHChR2WWaRIEfPee+85LKtixYpm+PDhqa6lQ4cOplmzZg7jdO7c2eEnxRs0aGDGjBnjMM7cuXNN/vz577gcAKnDD30BSNGaNWs0duxYHTp0SNHR0bp586ZiY2MVExOjHDlySJJy5MihEiVK2KfJnz+/zp8/L0mKiorSuXPnVK1aNfvwbNmyqUqVKkpMTEzXWiIiItSmTRuHaapVq6bvvvvO/nzfvn3atGmTw5GIhISEZK8JQNpxmgNAMsePH1fz5s318MMPa/Hixdq1a5emTZsmSbpx44Z9PFdXV4fpbDabTBp/O9DFxSXZNPHx8Wmu5V6uXr2qESNGaO/evfbH/v37deTIEXl4eKSpZgCOODIBIJldu3YpMTFREydOlIvLP985vvrqqzTNw9fXVwEBAdqxY4dq164t6Z8jAbt371alSpXs4+XNm9eh02Z0dLSOHTuWplpKly6tHTt2OLTd/vyRRx5RRESESpYsmabXAeDeCBPAAy4qKkp79+51aMuTJ4/i4+M1depUtWjRQps2bdJHH32U5nn36dNHY8eOVcmSJVWmTBlNnTpVly9fls1ms49Tv359zZ49Wy1atJCfn5+GDRumbNmy2YeXLFnynrX06dNHtWvX1qRJk9SiRQutW7dOK1ascFjOsGHD1Lx5cxUuXFhPPvmkXFxctG/fPv36668aNWpUml8bgFtkdKcNABknLCzMSEr26NGjh5k0aZLJnz+/8fT0NKGhoeazzz4zkszly5eNMf90wLy1g6MxxixdutTculuJj4834eHhxsfHx+TKlcsMGjTItG/f3nTs2NE+TlRUlOnQoYPx8fExQUFBZvbs2ck6YN6rFmOMmTFjhilYsKDx9PQ0rVu3NqNGjTKBgYEO9f3www+mRo0axtPT0/j4+Jhq1aqZGTNmpNv6BB5UNmPSeIITAJyUmJio4OBgPfXUU3r77bfv67J69uypQ4cOaePGjfd1OQA4zQHgPjpx4oRWrVqlOnXqKC4uTh988IGOHTump59+Ot2XNWHCBDVq1EheXl5asWKF5syZow8//DDdlwMgOcIEgPvGxcVFs2fP1oABA2SMUfny5bVmzRoFBwen+7K2b9+u8ePH68qVKypevLjef/99Pffcc+m+HADJcZoDAABYwn0mAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJb8P8HgYOGyyvMxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 retina 9 9 9 8 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 12 75.0 75.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 75.0 66.666667 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZjElEQVR4nO3deXxM1/8/8Ncksi+TRSSWJEKQ2IkiYglCal9Sa1RSRKlYa62WShH7UoJSnwSl2liL2mKNLYilaolQRIOgJEFkkTm/P/xyv8YkJHMnkrSv5+Mxj3bOvffc98yduV6599w7CiGEABEREZGW9Iq6ACIiIirZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIPqDTp0/D0NAQd+7c0Ul/V65cQalSpfDnn3/qpD8qGSpWrIjAwMAPvt6IiAgoFAqcPXv2g6/738Tb2xve3t5FXYZOMUzIcPPmTXz++eeoVKkSjI2NYWlpCS8vLyxevBgvX74s6vIK7MqVK/j2229x+/btAi87fvx4KBQK9OrVS/eF/YtMnjwZffr0gbOzs9S2bds2uLm5QalUolOnTrh3757Gcp07d8bgwYM12qtXr44OHTpgypQp+Vp/zj8Gbz7KlCmDli1bYvfu3dq/sFxUrFgRHTt21GmfpFu3b9/W+Dzk9dBmv/BfJmd/WhKVKuoCSqpdu3ahR48eMDIyQv/+/VGzZk1kZmbi2LFjGDduHC5fvoyVK1cWdZkFcuXKFUybNg3e3t6oWLFivpcTQuDnn39GxYoVsWPHDjx79gwWFhaFV2gJdeHCBURFReHEiRNS219//YVevXqhV69e8PT0xKJFi/DZZ59h79690jx79+7F0aNHER8fn2u/Q4YMQfv27XHz5k1Urlw5X7WEhITAxcUFQggkJSUhIiIC7du3x44dOxgASoC4uDjo6cn/W9DOzg7r1q1Ta5s/fz7+/vtvLFy4UGNeyr937U/37dtXNEUVIoYJLdy6dQu9e/eGs7MzDh48iLJly0rThg0bhhs3bmDXrl2y1yOEQHp6OkxMTDSmpaenw9DQUCc7FLkOHz6Mv//+GwcPHoSvry+2bNmCgICAoi5Lp169egWVSgVDQ0Ot+wgPD4eTkxMaN24ste3btw8VKlTAmjVroFAo4O7ujlatWiE9PR3GxsZ49eoVRo8ejSlTpuS5M/fx8YG1tTXWrFmDkJCQfNXSrl07NGjQQHo+cOBA2Nvb4+eff2aYKAGMjIx00o+ZmRn69eun1rZx40Y8ffpUo/2/Thf7gBy66KO4Kfp/iUqgOXPm4Pnz51i9erVakMjh6uqKkSNHSs9fvXqF7777DpUrV4aRkREqVqyIr776ChkZGWrL5RwW3rt3Lxo0aAATExP88MMPOHz4MBQKBTZu3Iivv/4a5cuXh6mpKVJTUwEAMTEx+Pjjj6FUKmFqaooWLVrg+PHjGnUlJiZi4MCBKFeuHIyMjODi4oKhQ4ciMzMTERER6NGjBwCgZcuW0qHNw4cPv/f9WL9+PapXr46WLVvCx8cH69ev15gn5zX8+uuvmDFjBipUqABjY2O0bt0aN27cUJs3Pj4efn5+cHBwgLGxMSpUqIDevXsjJSUFANC9e3fUr19fbZlOnTpBoVDgt99+k9piYmKgUCjUDt8nJydj1KhRcHR0hJGREVxdXTF79myoVCppnpxDv/PmzcOiRYuk7XblyhUAwJIlS1CjRg2YmprC2toaDRo0wIYNG977Pm3btg2tWrWCQqGQ2l6+fAkrKyupzcbGBkII6TTZ0qVLkZ2djeHDh+fZr4GBAby9vbF9+/b31pAXKysrmJiYoFSp139fCCFQsWJFdOnSRWPe9PR0KJVKfP7551qvL0d0dDR69OgBJycnGBkZwdHREaNHj9Y4TRgYGAhzc3MkJiaia9euMDc3h52dHcaOHYvs7Gy1ef/55x98+umnsLS0hJWVFQICAnDx4kUoFApERERI8+V13jowMFDjL8l58+ahSZMmsLW1hYmJCTw8PLBp0yaNZV++fIkRI0agdOnSsLCwQOfOnZGYmAiFQoFvv/1Wbd7ExEQMGDAA9vb2MDIyQo0aNfC///0vX+/b22Mmck5fHT9+HGPGjIGdnR3MzMzQrVs3PHr0KF99FkRGRka+1rN79240a9YMZmZmsLCwQIcOHXD58mW1eXK2bUJCAjp27Ahzc3OUL18eYWFhAIBLly6hVatWMDMzg7Ozc67ftfx8rwHg/v37uHbtGrKyst75+t63D7h27Ro++eQT2NjYwNjYGA0aNFDb97xvf/r2Z68g+8f8fmc+NB6Z0MKOHTtQqVIlNGnSJF/zDxo0CGvWrMEnn3yCL7/8EjExMQgNDcXVq1exdetWtXnj4uLQp08ffP755wgKCkK1atWkad999x0MDQ0xduxYZGRkwNDQEAcPHkS7du3g4eGBqVOnQk9PD+Hh4WjVqhWio6PRsGFDAMC9e/fQsGFDJCcnY/DgwXBzc0NiYiI2bdqEtLQ0NG/eHCNGjMD333+Pr776Cu7u7gAg/TcvGRkZ2Lx5M7788ksAQJ8+ffDZZ5/hwYMHcHBw0Jh/1qxZ0NPTw9ixY5GSkoI5c+bA398fMTExAIDMzEz4+voiIyMDw4cPh4ODAxITE7Fz504kJydDqVSiWbNm2L59O1JTU2FpaQkhBI4fPw49PT1ER0ejc+fOAF5/6fT09ODl5QUASEtLQ4sWLZCYmIjPP/8cTk5OOHHiBCZNmoT79+9j0aJFarWGh4cjPT0dgwcPhpGREWxsbLBq1SqMGDECn3zyCUaOHIn09HT88ccfiImJQd++ffN8nxITE5GQkKARgj766CN8+eWX+Pnnn9G4cWPMmDEDrq6usLa2xqNHjzBt2jT89NNPMDAweOd28PDwUHtP3iclJQWPHz+GEAIPHz7EkiVL8Pz5c+mvUYVCgX79+mHOnDl48uQJbGxspGV37NiB1NRUnfzlGhkZibS0NAwdOhS2trY4ffo0lixZgr///huRkZFq82ZnZ8PX1xeNGjXCvHnzEBUVhfnz56Ny5coYOnQoAEClUqFTp044ffo0hg4dCjc3N2zfvl32kbLFixejc+fO8Pf3R2ZmJjZu3IgePXpg586d6NChgzRfYGAgfv31V3z66ado3Lgxjhw5ojY9R1JSEho3bgyFQoHg4GDY2dlh9+7dGDhwIFJTUzFq1Cit6hw+fDisra0xdepU3L59G4sWLUJwcDB++eUXbV+61utZt24dAgIC4Ovri9mzZyMtLQ3Lly9H06ZNcf78ebXAlp2djXbt2qF58+aYM2cO1q9fj+DgYJiZmWHy5Mnw9/dH9+7dsWLFCvTv3x+enp5wcXEBULDv9aRJk7BmzRrcunUrX6dyc9sHXL58GV5eXihfvjwmTpwIMzMz/Prrr+jatSs2b96Mbt26ab0/fd/+ESjYd+aDElQgKSkpAoDo0qVLvua/cOGCACAGDRqk1j527FgBQBw8eFBqc3Z2FgDEnj171OY9dOiQACAqVaok0tLSpHaVSiWqVKkifH19hUqlktrT0tKEi4uLaNOmjdTWv39/oaenJ86cOaNRY86ykZGRAoA4dOhQvl6bEEJs2rRJABDx8fFCCCFSU1OFsbGxWLhwYa6vwd3dXWRkZEjtixcvFgDEpUuXhBBCnD9/XgAQkZGRea7zzJkzAoD4/fffhRBC/PHHHwKA6NGjh2jUqJE0X+fOnUW9evWk5999950wMzMT169fV+tv4sSJQl9fXyQkJAghhLh165YAICwtLcXDhw/V5u3SpYuoUaNGft8eSVRUlAAgduzYoTFtxIgRAoAAIGxsbKTPRFBQkPj444/z1f+GDRsEABETE/PO+cLDw6V1vfkwMjISERERavPGxcUJAGL58uVq7Z07dxYVK1ZU+8zlxtnZWXTo0OGd87z5ec4RGhoqFAqFuHPnjtQWEBAgAIiQkBC1eevVqyc8PDyk55s3bxYAxKJFi6S27Oxs0apVKwFAhIeHS+0tWrQQLVq00Fh/QECAcHZ2fmedmZmZombNmqJVq1ZSW2xsrAAgRo0apTZvYGCgACCmTp0qtQ0cOFCULVtWPH78WG3e3r17C6VSmev78iZnZ2cREBAgPc/Zrj4+PmrbZfTo0UJfX18kJye/s783dejQQeP1F3Q9z549E1ZWViIoKEht+QcPHgilUqnWnrNtZ86cKbU9ffpUmJiYCIVCITZu3Ci1X7t2TeO9zO/3+s113bp1653vwbv2Aa1btxa1atUS6enpUptKpRJNmjQRVapUkdretT99+7OX3/2jEPn/znxoPM1RQDmnFvI7wPD3338HAIwZM0atPecv+bfHVri4uMDX1zfXvgICAtTGT1y4cAHx8fHo27cv/vnnHzx+/BiPHz/Gixcv0Lp1axw9ehQqlQoqlQrbtm1Dp06d1M6T53jzsHtBrV+/Hg0aNICrqysASIcyczvVAQCfffaZ2vnCZs2aAXg9EBEAlEolgNeDDtPS0nLto169ejA3N8fRo0cBvD4CUaFCBfTv3x/nzp1DWloahBA4duyY1D/wOtE3a9YM1tbW0nv1+PFj+Pj4IDs7W+ovh5+fn8Y4BSsrK/z99984c+ZMvt8j4PWhdwCwtrbWmLZ48WLcuXMHMTExuHPnDlq2bIkLFy5g7dq1WLhwIVJSUtCvXz+UL18e3t7euHr1qkYfOf0+fvw4X/WEhYVh//792L9/P3766Se0bNkSgwYNwpYtW6R5qlatikaNGqltyydPnmD37t3w9/eX9bnJ8ebn+cWLF3j8+DGaNGkCIQTOnz+vMf+QIUPUnjdr1kz67ADAnj17YGBggKCgIKlNT08Pw4YN01mdT58+RUpKCpo1a4Zz586prRsAvvjiC7Vl3z5FJYTA5s2b0alTJwgh1D6Lvr6+SElJUeu3IAYPHqy2XZo1a4bs7GydXYqc3/Xs378fycnJ6NOnj9rr09fXR6NGjXDo0CGNPgcNGiT9v5WVFapVqwYzMzP07NlTaq9WrRqsrKzUtnlBvtcRERHSKbz8eHsf8OTJExw8eBA9e/bEs2fPpHX9888/8PX1RXx8PBITE/PVd27et38ECv6d+VB4mqOAcg4hP3v2LF/z37lzB3p6etI/tjkcHBxgZWWl8SXPOXSXm7en5Yzuf9ch3JSUFGRmZiI1NRU1a9bMV835lZycjN9//x3BwcFq5/W8vLywefNmXL9+HVWrVlVbxsnJSe15zj+CT58+BfD6NY4ZMwYLFizA+vXr0axZM3Tu3Bn9+vWTgoa+vj48PT0RHR0N4HWYaNasGZo2bYrs7GycOnUK9vb2ePLkiVqYiI+Pxx9//JHnQMaHDx+qPc9tW0yYMAFRUVFo2LAhXF1d0bZtW/Tt21c6lfI+Qohc252cnNTemxEjRmDIkCFwc3NDv379cPfuXWzfvh1r1qxBp06dcO3aNWl8w5v95vcf+IYNG6oFyz59+qBevXoIDg5Gx44dpR1a//79ERwcjDt37sDZ2RmRkZHIysrCp59+mq/1vE9CQgKmTJmC3377TfoM5MgZI5PD2NhYY9tZW1urLXfnzh2ULVsWpqamavO9/f0rqJ07d2L69Om4cOGC2linN9/vnO/625+bt9f96NEjJCcnY+XKlXle8fX2ZzG/3vf90pX3rSdn39SqVatcl3/7VFxu21apVKJChQoan2mlUqn2egr6vS6It7fljRs3IITAN998g2+++SbP9ZUvX16r9eVn+xXkO/MhMUwUkKWlJcqVK1fgmwTldyef25UbeU3LGVw0d+5c1K1bN9dlzM3N8eTJk/wVWUCRkZHIyMjA/PnzMX/+fI3p69evx7Rp09Ta9PX1c+3rzX9k58+fj8DAQGzfvh379u3DiBEjEBoailOnTqFChQoAgKZNm2LGjBlIT09HdHQ0Jk+eDCsrK9SsWRPR0dGwt7cHALUwoVKp0KZNG4wfPz7XGt4OPrltC3d3d8TFxWHnzp3Ys2cPNm/ejGXLlmHKlCkar/VNtra2APK3U//ll19w9epV/Pbbb8jOzsavv/6Kffv2oUGDBqhRowZWrVqFU6dOoWnTptIyOf2WLl36vf3nRk9PDy1btsTixYsRHx+PGjVqAAB69+6N0aNHY/369fjqq6/w008/oUGDBmpjebSVnZ2NNm3a4MmTJ5gwYQLc3NxgZmaGxMREBAYGagyey+uzoy2FQpFruHt7QGfOOJzmzZtj2bJlKFu2LAwMDBAeHp6vgbdvy3ld/fr1y/MPgdq1axe4XyB/3y9deN96cl7junXrch079WYQfld/+Xk9Bf1eF0Re+9yxY8fmeQRZTnB93+st6HfmQ2KY0ELHjh2xcuVKnDx5Ep6enu+c19nZGSqVCvHx8WqDb5KSkpCcnKx286KCyrmngKWlJXx8fPKcz87ODpaWlu8NQAU9bL1+/XrUrFkTU6dO1Zj2ww8/YMOGDe/8B/ZdatWqhVq1auHrr7/GiRMn4OXlhRUrVmD69OkAXoeEzMxM/Pzzz0hMTJRCQ/PmzaUwUbVqVSlUAK/fr+fPn7/zvcoPMzMz6d4QmZmZ6N69O2bMmIFJkybB2Ng412Xc3NwAvL6s+F3S0tIwbtw4fPfdd7CyskJSUhKysrJQrlw5AK93btbW1hqHUm/dugU9PT1ZO85Xr14BAJ4/fy612djYSKet/P39cfz4cY2Bqtq6dOkSrl+/jjVr1qB///5S+/79+7Xu09nZGYcOHUJaWpra0Ym3R8QDr//qe/PwcY63jxZu3rwZxsbG2Lt3r9olmeHh4RrrVqlUuHXrFqpUqZLnuu3s7GBhYYHs7GzZn8XiKmffVKZMmUJ/jbr6XudHpUqVALy+gup969PFacC3FcZ3Rlc4ZkIL48ePh5mZGQYNGoSkpCSN6Tdv3sTixYsBAO3btwcAjR3wggULACDXkd755eHhgcqVK2PevHlq/wDkyLlUS09PD127dsWOHTtyvQ1uTuo1MzMD8Pr0xfvcvXsXR48eRc+ePfHJJ59oPD777DPcuHFDbRRyfqSmpkr/qOWoVasW9PT01A4vN2rUCAYGBpg9ezZsbGykv6SbNWuGU6dO4ciRI2pHJQCgZ8+eOHnypNoNoXIkJydrrDc3OWMfchgaGqJ69eoQQrzzcrPy5cvD0dHxvbchnj17NqytraVz/ra2tihVqhSuXbsG4PWYiEePHmn8tRcbG4saNWpIp4IKKisrC/v27YOhoaHGiPNPP/0UV65cwbhx46Cvr4/evXtrtY635fwV9uZfmUII6bujDV9fX2RlZWHVqlVSm0qlki4zfFPlypVx7do1tUsaL168qHFZtb6+PhQKhdoRi9u3b2Pbtm0a6waAZcuWqbUvWbJEoz8/Pz9s3rw514BfGJdyfmi+vr6wtLTEzJkzc/1e6PI1FuR7nd9LQ/NSpkwZeHt744cffsD9+/c1pr/5ugqyP82vwvjO6AqPTGihcuXK2LBhA3r16gV3d3e1O2CeOHECkZGR0jXgderUQUBAAFauXInk5GS0aNECp0+fxpo1a9C1a1e0bNlS6zr09PTw448/ol27dqhRowY+++wzlC9fHomJiTh06BAsLS2xY8cOAMDMmTOxb98+tGjRAoMHD4a7uzvu37+PyMhIHDt2DFZWVqhbty709fUxe/ZspKSkwMjICK1atUKZMmU01r1hwwYIIaTLMN/Wvn17lCpVCuvXr0ejRo3y/ZoOHjyI4OBg9OjRA1WrVsWrV6+wbt06aQecw9TUFB4eHjh16pR0jwng9ZGJFy9e4MWLFxphYty4cfjtt9/QsWNHBAYGwsPDAy9evMClS5ewadMm3L59+72nCdq2bQsHBwd4eXnB3t4eV69exdKlS9GhQ4f3Dsrt0qULtm7dCiFErn+1JCQkYO7cudi1a5e00yhVqhS6dOmCUaNGISEhAVu3bkW5cuXUjohlZWXhyJEjGgP/3mX37t1SQHn48CE2bNiA+Ph4TJw4UeN8docOHWBra4vIyEi0a9cu189DXm7cuCEdTXpTvXr10LZtW1SuXBljx45FYmIiLC0tsXnzZlnn97t27YqGDRviyy+/xI0bN+Dm5obffvtNOtX35vs+YMAALFiwAL6+vhg4cCAePnyIFStWoEaNGtJA65zXv2DBAnz88cfo27cvHj58iLCwMLi6uuKPP/6Q5vPw8ICfnx8WLVqEf/75R7o09Pr16xrrnjVrFg4dOoRGjRohKCgI1atXx5MnT3Du3DlERUUV2qnJD8XS0hLLly/Hp59+ivr166N3796ws7NDQkICdu3aBS8vLyxdulQn6yrI97qgl4bmJiwsDE2bNkWtWrUQFBSESpUqISkpCSdPnsTff/+NixcvAkCB9qf55ebmpvPvjM58wCtH/nWuX78ugoKCRMWKFYWhoaGwsLAQXl5eYsmSJWqXDWVlZYlp06YJFxcXYWBgIBwdHcWkSZPU5hEi70vpci4byutyyfPnz4vu3bsLW1tbYWRkJJydnUXPnj3FgQMH1Oa7c+eO6N+/v7CzsxNGRkaiUqVKYtiwYWqXIq1atUpUqlRJ6Ovrv/My0Vq1agknJ6d3vj/e3t6iTJkyIisrK8/XkHMJVs4le3/99ZcYMGCAqFy5sjA2NhY2NjaiZcuWIioqSqP/cePGCQBi9uzZau2urq4CgLh586bGMs+ePROTJk0Srq6uwtDQUJQuXVo0adJEzJs3T2RmZqrVNHfuXI3lf/jhB9G8eXPpva5cubIYN26cSElJeed7IYQQ586dEwBEdHR0rtN79OghunfvrtGelJQkOnXqJCwsLET9+vXF2bNn1abv3r1b7fLcd8nt0lBjY2NRt25dsXz58jwv9/ziiy8EALFhw4b3riNHzqXOuT0GDhwohBDiypUrwsfHR5ibm4vSpUuLoKAgcfHiRY3LOAMCAoSZmZnGOqZOnSre3o09evRI9O3bV1hYWAilUikCAwPF8ePHBQC1ywyFEOKnn34SlSpVEoaGhqJu3bpi7969uV4aunr1alGlShVhZGQk3NzcRHh4eK7rfvHihRg2bJiwsbER5ubmomvXrtIltrNmzVKbNykpSQwbNkw4OjoKAwMD4eDgIFq3bi1WrlyZr/c2t0tD3770O+d7V5DLvfNzaWh+13Po0CHh6+srlEqlMDY2FpUrVxaBgYFqn+G8tm2LFi1yvQw7t/1kfr7XOetCAS4NzW0fIIQQN2/eFP379xcODg7CwMBAlC9fXnTs2FFs2rRJbb689qd5XRr6vv2jEPn/znxoCiF0PDKHiPLUunVrlCtXTuP3EOTo2rUrFAqFxg3QdGn06NFYvXo1Hjx4oHGlREmwbds2dOvWDceOHcv3lTe6cuHCBdSrVw8//fQT/P39P+i6iT4UhgmiDygmJgbNmjVDfHy8rMG3Oa5evYpatWrhwoULOr/0N0d6ejocHR3RsWNHjUGHxdHLly/VRuFnZ2ejbdu2OHv2LB48ePDOK6Z0vW7g9V0x161bh9u3b8PR0bHQ1k1UlDhmgugDatSoETIzM3XWn7u7e74Gjmrj4cOHiIqKwqZNm/DPP/+o/d5McTZ8+HC8fPkSnp6eyMjIwJYtW3DixAnMnDmzUIME8Pp3e2JjY9GyZUuUKlUKu3fvxu7duzF48GAGCfpXY5ggolxduXIF/v7+KFOmDL7//vs872VS3LRq1Qrz58/Hzp07kZ6eDldXVyxZsgTBwcGFvu4mTZpg//79+O677/D8+XM4OTnh22+/xeTJkwt93URFiac5iIiISBbeZ4KIiIhkYZggIiIiWf71YyZUKhXu3bsHCwuLQrm9KRER0b+VEALPnj1DuXLloKeX9/GHf32YuHfvHkdRExERyXD37l3phxZz868PEzm3OL57967GbYKJiIgob6mpqXB0dHzvzwX868NEzqkNS0tLhgkiIiItvG+YAAdgEhERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJUqqoCyipKk7cVdQl/OvdntWhUPrltit8hbXtAG6/D6Ewtx/9O/HIBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJEuRhomKFStCoVBoPIYNGwYASE9Px7Bhw2Brawtzc3P4+fkhKSmpKEsmIiKitxRpmDhz5gzu378vPfbv3w8A6NGjBwBg9OjR2LFjByIjI3HkyBHcu3cP3bt3L8qSiYiI6C2linLldnZ2as9nzZqFypUro0WLFkhJScHq1auxYcMGtGrVCgAQHh4Od3d3nDp1Co0bNy6KkomIiOgtxWbMRGZmJn766ScMGDAACoUCsbGxyMrKgo+PjzSPm5sbnJyccPLkyTz7ycjIQGpqqtqDiIiICk+xCRPbtm1DcnIyAgMDAQAPHjyAoaEhrKys1Oazt7fHgwcP8uwnNDQUSqVSejg6OhZi1URERFRswsTq1avRrl07lCtXTlY/kyZNQkpKivS4e/eujiokIiKi3BTpmIkcd+7cQVRUFLZs2SK1OTg4IDMzE8nJyWpHJ5KSkuDg4JBnX0ZGRjAyMirMcomIiOgNxeLIRHh4OMqUKYMOHTpIbR4eHjAwMMCBAwektri4OCQkJMDT07MoyiQiIqJcFPmRCZVKhfDwcAQEBKBUqf8rR6lUYuDAgRgzZgxsbGxgaWmJ4cOHw9PTk1dyEBERFSNFHiaioqKQkJCAAQMGaExbuHAh9PT04Ofnh4yMDPj6+mLZsmVFUCURERHlpcjDRNu2bSGEyHWasbExwsLCEBYW9oGrIiIiovwqFmMmiIiIqORimCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGQp8l8NJSKi/4aKE3cVdQn/erdndSiS9fLIBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyFHmYSExMRL9+/WBrawsTExPUqlULZ8+elaYLITBlyhSULVsWJiYm8PHxQXx8fBFWTERERG8q0jDx9OlTeHl5wcDAALt378aVK1cwf/58WFtbS/PMmTMH33//PVasWIGYmBiYmZnB19cX6enpRVg5ERER5ShVlCufPXs2HB0dER4eLrW5uLhI/y+EwKJFi/D111+jS5cuAIC1a9fC3t4e27ZtQ+/evT94zURERKSuSI9M/Pbbb2jQoAF69OiBMmXKoF69eli1apU0/datW3jw4AF8fHykNqVSiUaNGuHkyZO59pmRkYHU1FS1BxERERWeIg0Tf/31F5YvX44qVapg7969GDp0KEaMGIE1a9YAAB48eAAAsLe3V1vO3t5emva20NBQKJVK6eHo6Fi4L4KIiOg/rkjDhEqlQv369TFz5kzUq1cPgwcPRlBQEFasWKF1n5MmTUJKSor0uHv3rg4rJiIiorcVaZgoW7Ysqlevrtbm7u6OhIQEAICDgwMAICkpSW2epKQkadrbjIyMYGlpqfYgIiKiwlOkYcLLywtxcXFqbdevX4ezszOA14MxHRwccODAAWl6amoqYmJi4Onp+UFrJSIiotwV6dUco0ePRpMmTTBz5kz07NkTp0+fxsqVK7Fy5UoAgEKhwKhRozB9+nRUqVIFLi4u+Oabb1CuXDl07dq1KEsnIiKi/69Iw8RHH32ErVu3YtKkSQgJCYGLiwsWLVoEf39/aZ7x48fjxYsXGDx4MJKTk9G0aVPs2bMHxsbGRVg5ERER5SjSMAEAHTt2RMeOHfOcrlAoEBISgpCQkA9YFREREeVXkd9Om4iIiEo2hgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEiWUtosdOvWLURHR+POnTtIS0uDnZ0d6tWrB09PTxgbG+u6RiIiIirGChQm1q9fj8WLF+Ps2bOwt7dHuXLlYGJigidPnuDmzZswNjaGv78/JkyYAGdn58KqmYiIiIqRfJ/mqFevHr7//nsEBgbizp07uH//PmJjY3Hs2DFcuXIFqamp2L59O1QqFRo0aIDIyMj39vntt99CoVCoPdzc3KTp6enpGDZsGGxtbWFubg4/Pz8kJSVp90qJiIioUOT7yMSsWbPg6+ub53QjIyN4e3vD29sbM2bMwO3bt/PVb40aNRAVFfV/BZX6v5JGjx6NXbt2ITIyEkqlEsHBwejevTuOHz+e37KJiIiokOU7TLwrSLzN1tYWtra2+SugVCk4ODhotKekpGD16tXYsGEDWrVqBQAIDw+Hu7s7Tp06hcaNG+e7HiIiIio8Wg3AfNOuXbtw+PBhZGdnw8vLC35+fgVaPj4+HuXKlYOxsTE8PT0RGhoKJycnxMbGIisrCz4+PtK8bm5ucHJywsmTJ/MMExkZGcjIyJCep6amavfCiIiIKF9kXRr6zTffYPz48VAoFBBCYPTo0Rg+fHi+l2/UqBEiIiKwZ88eLF++HLdu3UKzZs3w7NkzPHjwAIaGhrCyslJbxt7eHg8ePMizz9DQUCiVSunh6Oio7csjIiKifCjQkYmzZ8+iQYMG0vNffvkFFy9ehImJCQAgMDAQ3t7eWLJkSb76a9eunfT/tWvXRqNGjeDs7Ixff/1V6rOgJk2ahDFjxkjPU1NTGSiIiIgKUYGOTAwZMgSjRo1CWloaAKBSpUqYP38+4uLicOnSJSxfvhxVq1bVuhgrKytUrVoVN27cgIODAzIzM5GcnKw2T1JSUq5jLHIYGRnB0tJS7UFERESFp0BhIiYmBmXLlkX9+vWxY8cO/O9//8P58+fRpEkTNGvWDH///Tc2bNigdTHPnz/HzZs3UbZsWXh4eMDAwAAHDhyQpsfFxSEhIQGenp5ar4OIiIh0q0CnOfT19TFhwgT06NEDQ4cOhZmZGZYuXYpy5cpptfKxY8eiU6dOcHZ2xr179zB16lTo6+ujT58+UCqVGDhwIMaMGQMbGxtYWlpi+PDh8PT05JUcRERExYhWAzArVaqEvXv3olu3bmjevDnCwsK0Wvnff/+NPn36oFq1aujZsydsbW1x6tQp2NnZAQAWLlyIjh07ws/PD82bN4eDgwO2bNmi1bqIiIiocBToyERycjJmzpyJq1evok6dOpg4cSLat2+PL7/8Eo0bN8aqVatQq1atfPe3cePGd043NjZGWFiY1mGFiIiICl+BjkwEBAQgJiYGHTp0QFxcHIYOHQpbW1tERERgxowZ6NWrFyZMmFBYtRIREVExVKAjEwcPHsT58+fh6uqKoKAguLq6StNat26Nc+fOISQkROdFEhERUfFVoCMTVapUwcqVK3H9+nWsWLFC45dBjY2NMXPmTJ0WSERERMVbgcLE//73Pxw8eBD16tXDhg0bsHz58sKqi4iIiEqIAp3mqFu3Ls6ePVtYtRAREVEJlO8jE0KIwqyDiIiISqh8h4kaNWpg48aNyMzMfOd88fHxGDp0KGbNmiW7OCIiIir+8n2aY8mSJZgwYQK++OILtGnTBg0aNJB+Ovzp06e4cuUKjh07hsuXLyM4OBhDhw4tzLqJiIiomMh3mGjdujXOnj2LY8eO4ZdffsH69etx584dvHz5EqVLl0a9evXQv39/+Pv7w9raujBrJiIiomKkQAMwAaBp06Zo2rRpYdRCREREJZBWv81BRERElINhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikkWrMHHu3DlcunRJer59+3Z07doVX3311XtvakVERET/LlqFic8//xzXr18HAPz111/o3bs3TE1NERkZifHjx+u0QCIiIiretAoT169fR926dQEAkZGRaN68OTZs2ICIiAhs3rxZl/URERFRMadVmBBCQKVSAQCioqLQvn17AICjoyMeP36su+qIiIio2NMqTDRo0ADTp0/HunXrcOTIEXTo0AEAcOvWLdjb2+u0QCIiIiretAoTixYtwrlz5xAcHIzJkyfD1dUVALBp0yY0adJEpwUSERFR8Vbg3+bIzs5GcnIyjh49qvGDXnPnzoW+vr7OiiMiIqLir8BHJvT19dG2bVskJydrTDM2NoaBgYEu6iIiIqISQqvTHDVr1sRff/2l61qIiIioBNIqTEyfPh1jx47Fzp07cf/+faSmpqo9iIiI6L+jwGMmAEiXgnbu3BkKhUJqF0JAoVAgOztbN9URERFRsadVmDh06JCu6yAiIqISSqsw0aJFC13XQURERCWU1r8aGh0djX79+qFJkyZITEwEAKxbtw7Hjh3TWXFERERU/GkVJjZv3gxfX1+YmJjg3LlzyMjIAACkpKRg5syZOi2QiIiIijetr+ZYsWIFVq1apXZfCS8vL5w7d05nxREREVHxp1WYiIuLQ/PmzTXalUplrjezIiIion8vrcKEg4MDbty4odF+7NgxVKpUSXZRREREVHJoFSaCgoIwcuRIxMTEQKFQ4N69e1i/fj3Gjh2LoUOH6rpGIiIiKsa0ujR04sSJUKlUaN26NdLS0tC8eXMYGRlh7NixGD58uK5rJCIiomJMqzChUCgwefJkjBs3Djdu3MDz589RvXp1mJub67o+IiIiKua0ChMHDx5EkyZNYGxsjOrVq+u6JiIiIipBtAoTnTt3xqtXr/DRRx/B29sbLVq0gJeXF0xMTHRdHxERERVzWg3AfPr0KQ4cOIB27drh9OnT6NatG6ysrODl5YWvv/5a1zUSERFRMaZVmDAwMICXlxe++uor7N27F6dOnUKfPn1w+vRphIaG6rpGIiIiKsa0Os1x/fp1HD58GIcPH8aRI0eQkZGBZs2aYd68efD29tZxiURERFScaRUm3NzcYGdnh5EjR2LixImoVasWFAqFrmsjIiKiEkCr0xwjRoxA+fLlERISgiFDhmDy5MnYt28f0tLSdF0fERERFXNahYlFixbh3LlzePDgASZNmoTMzExMnjwZpUuXhpeXl65rJCIiomJMqzCRIzs7G1lZWcjIyEB6ejoyMjIQFxenq9qIiIioBND6NEft2rVhb2+Pzz//HPfu3UNQUBDOnz+PR48e6bpGIiIiKsa0GoB5//59DB48GN7e3qhZs6auayIiIqISRKswERkZqes6iIiIqITS6jTHmjVrsGvXLun5+PHjYWVlhSZNmuDOnTtaFTJr1iwoFAqMGjVKaktPT8ewYcNga2sLc3Nz+Pn5ISkpSav+iYiIqHBoFSZmzpwp/Q7HyZMnERYWhjlz5qB06dIYPXp0gfs7c+YMfvjhB9SuXVutffTo0dixYwciIyNx5MgR3Lt3D927d9emZCIiIiokWoWJu3fvwtXVFQCwbds2+Pn5YfDgwQgNDUV0dHSB+nr+/Dn8/f2xatUqWFtbS+0pKSlYvXo1FixYgFatWsHDwwPh4eE4ceIETp06pU3ZREREVAi0ChPm5ub4559/AAD79u1DmzZtAADGxsZ4+fJlgfoaNmwYOnToAB8fH7X22NhYZGVlqbW7ubnByckJJ0+ezLO/jIwMpKamqj2IiIio8Gg1ALNNmzYYNGgQ6tWrh+vXr6N9+/YAgMuXL6NixYr57mfjxo04d+4czpw5ozHtwYMHMDQ0hJWVlVq7vb09Hjx4kGefoaGhmDZtWr5rICIiInm0OjIRFhYGT09PPHr0CJs3b4atrS2A10cT+vTpk68+7t69i5EjR2L9+vUwNjbWpoxcTZo0CSkpKdLj7t27OuubiIiINGl1ZMLKygpLly7VaC/IEYHY2Fg8fPgQ9evXl9qys7Nx9OhRLF26FHv37kVmZiaSk5PVjk4kJSXBwcEhz36NjIxgZGSU7zqIiIhIHq3CBAAkJyfj9OnTePjwIVQqldSuUCjw6aefvnf51q1b49KlS2ptn332Gdzc3DBhwgQ4OjrCwMAABw4cgJ+fHwAgLi4OCQkJ8PT01LZsIiIi0jGtwsSOHTvg7++P58+fw9LSUu3nx/MbJiwsLDTunmlmZgZbW1upfeDAgRgzZgxsbGxgaWmJ4cOHw9PTE40bN9ambCIiIioEWoWJL7/8EgMGDMDMmTNhamqq65okCxcuhJ6eHvz8/JCRkQFfX18sW7as0NZHREREBadVmEhMTMSIESN0HiQOHz6s9tzY2BhhYWEICwvT6XqIiIhId7S6msPX1xdnz57VdS1ERERUAml1ZKJDhw4YN24crly5glq1asHAwEBteufOnXVSHBERERV/WoWJoKAgAEBISIjGNIVCgezsbHlVERERUYmhVZh481JQIiIi+m/TasxEXpKTk3O9mRURERH9e+kkTBw4cAB9+/ZF2bJlMXXqVF10SURERCWE1mHi7t27CAkJgYuLC9q2bQuFQoGtW7e+80e4iIiI6N+nQGEiKysLkZGR8PX1RbVq1XDhwgXMnTsXenp6mDx5Mj7++GONKzuIiIjo361AAzDLly8PNzc39OvXDxs3boS1tTUA5PuXQomIiOjfp0BHJl69egWFQgGFQgF9ff3CqomIiIhKkAKFiXv37mHw4MH4+eef4eDgAD8/P2zdulXth76IiIjov6VAYcLY2Bj+/v44ePAgLl26BHd3d4wYMQKvXr3CjBkzsH//ft6wioiI6D9G66s5KleujOnTp+POnTvYtWsXMjIy0LFjR9jb2+uyPiIiIirmtLoD5pv09PTQrl07tGvXDo8ePcK6det0URcRERGVEDq9A6adnR3GjBmjyy6JiIiomNNpmCAiIqL/HoYJIiIikoVhgoiIiGTRKkyEhIQgLS1No/3ly5cICQmRXRQRERGVHFqFiWnTpuH58+ca7WlpaZg2bZrsooiIiKjk0CpMCCFyvevlxYsXYWNjI7soIiIiKjkKdJ8Ja2tr6bc5qlatqhYosrOz8fz5cwwZMkTnRRIREVHxVaAwsWjRIgghMGDAAEybNg1KpVKaZmhoiIoVK8LT01PnRRIREVHxVaAwERAQAABwcXGBl5cXSpWSfQNNIiIiKuG0GjPx4sULHDhwQKN979692L17t+yiiIiIqOTQKkxMnDgx118HFUJg4sSJsosiIiKikkOrMBEfH4/q1atrtLu5ueHGjRuyiyIiIqKSQ6swoVQq8ddff2m037hxA2ZmZrKLIiIiopJDqzDRpUsXjBo1Cjdv3pTabty4gS+//BKdO3fWWXFERERU/GkVJubMmQMzMzO4ubnBxcUFLi4ucHd3h62tLebNm6frGomIiKgY0+raTqVSiRMnTmD//v24ePEiTExMULt2bTRv3lzX9REREVExp/WNIhQKBdq2bYvmzZvDyMgo19trExER0b+fVqc5VCoVvvvuO5QvXx7m5ua4desWAOCbb77B6tWrdVogERERFW9ahYnp06cjIiICc+bMgaGhodRes2ZN/PjjjzorjoiIiIo/rcLE2rVrsXLlSvj7+0NfX19qr1OnDq5du6az4oiIiKj40ypMJCYmwtXVVaNdpVIhKytLdlFERERUcmgVJqpXr47o6GiN9k2bNqFevXqyiyIiIqKSQ6urOaZMmYKAgAAkJiZCpVJhy5YtiIuLw9q1a7Fz505d10hERETFmNZ3wNyxYweioqJgZmaGKVOm4OrVq9ixYwfatGmj6xqJiIioGCvwkYlXr15h5syZGDBgAPbv318YNREREVEJUuAjE6VKlcKcOXPw6tWrwqiHiIiIShitTnO0bt0aR44c0XUtREREVAJpNQCzXbt2mDhxIi5dugQPDw+Nnx3nL4cSERH9d2gVJr744gsAwIIFCzSmKRQKZGdny6uKiIiISgytwoRKpdJ1HURERFRCFXjMRFZWFkqVKoU///yzMOohIiKiEqbAYcLAwABOTk48lUFEREQAtLyaY/Lkyfjqq6/w5MkTXddDREREJYxWYWLp0qU4evQoypUrh2rVqqF+/fpqj/xavnw5ateuDUtLS1haWsLT0xO7d++Wpqenp2PYsGGwtbWFubk5/Pz8kJSUpE3JREREVEi0GoDZtWtXnay8QoUKmDVrFqpUqQIhBNasWYMuXbrg/PnzqFGjBkaPHo1du3YhMjISSqUSwcHB6N69O44fP66T9RMREZF8WoWJqVOn6mTlnTp1Uns+Y8YMLF++HKdOnUKFChWwevVqbNiwAa1atQIAhIeHw93dHadOnULjxo11UgMRERHJo1WYyBEbG4urV68CAGrUqCHr58ezs7MRGRmJFy9ewNPTE7GxscjKyoKPj480j5ubG5ycnHDy5Mk8w0RGRgYyMjKk56mpqVrXRERERO+nVZh4+PAhevfujcOHD8PKygoAkJycjJYtW2Ljxo2ws7PLd1+XLl2Cp6cn0tPTYW5ujq1bt6J69eq4cOECDA0Npf5z2Nvb48GDB3n2FxoaimnTpmnzsoiIiEgLWg3AHD58OJ49e4bLly/jyZMnePLkCf7880+kpqZixIgRBeqrWrVquHDhAmJiYjB06FAEBATgypUr2pQFAJg0aRJSUlKkx927d7Xui4iIiN5PqyMTe/bsQVRUFNzd3aW26tWrIywsDG3bti1QX4aGhnB1dQUAeHh44MyZM1i8eDF69eqFzMxMJCcnqx2dSEpKgoODQ579GRkZwcjIqGAviIiIiLSm1ZEJlUoFAwMDjXYDAwPZt9pWqVTIyMiAh4cHDAwMcODAAWlaXFwcEhIS4OnpKWsdREREpDtaHZlo1aoVRo4ciZ9//hnlypUDACQmJmL06NFo3bp1vvuZNGkS2rVrBycnJzx79gwbNmzA4cOHsXfvXiiVSgwcOBBjxoyBjY0NLC0tMXz4cHh6evJKDiIiomJEqzCxdOlSdO7cGRUrVoSjoyMA4O7du6hZsyZ++umnfPfz8OFD9O/fH/fv34dSqUTt2rWxd+9etGnTBgCwcOFC6Onpwc/PDxkZGfD19cWyZcu0KZmIiIgKiVZhwtHREefOnUNUVBSuXbsGAHB3d1e7jDM/Vq9e/c7pxsbGCAsLQ1hYmDZlEhER0Qeg9X0mFAoF2rRpIx1FICIiov+mAg3APHjwIKpXr57rjaBSUlJQo0YNREdH66w4IiIiKv4KFCYWLVqEoKAgWFpaakxTKpX4/PPPsWDBAp0VR0RERMVfgcLExYsX8fHHH+c5vW3btoiNjZVdFBEREZUcBQoTSUlJud5fIkepUqXw6NEj2UURERFRyVGgMFG+fHn8+eefeU7/448/ULZsWdlFERERUclRoDDRvn17fPPNN0hPT9eY9vLlS0ydOhUdO3bUWXFERERU/BXo0tCvv/4aW7ZsQdWqVREcHIxq1aoBAK5du4awsDBkZ2dj8uTJhVIoERERFU8FChP29vY4ceIEhg4dikmTJkEIAeD1PSd8fX0RFhYGe3v7QimUiIiIiqcC37TK2dkZv//+O54+fYobN25ACIEqVarA2tq6MOojIiKiYk7rO2BaW1vjo48+0mUtREREVAJp9RPkRERERDkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZCnSMBEaGoqPPvoIFhYWKFOmDLp27Yq4uDi1edLT0zFs2DDY2trC3Nwcfn5+SEpKKqKKiYiI6G1FGiaOHDmCYcOG4dSpU9i/fz+ysrLQtm1bvHjxQppn9OjR2LFjByIjI3HkyBHcu3cP3bt3L8KqiYiI6E2linLle/bsUXseERGBMmXKIDY2Fs2bN0dKSgpWr16NDRs2oFWrVgCA8PBwuLu749SpU2jcuHFRlE1ERERvKFZjJlJSUgAANjY2AIDY2FhkZWXBx8dHmsfNzQ1OTk44efJkrn1kZGQgNTVV7UFERESFp9iECZVKhVGjRsHLyws1a9YEADx48ACGhoawsrJSm9fe3h4PHjzItZ/Q0FAolUrp4ejoWNilExER/acVmzAxbNgw/Pnnn9i4caOsfiZNmoSUlBTpcffuXR1VSERERLkp0jETOYKDg7Fz504cPXoUFSpUkNodHByQmZmJ5ORktaMTSUlJcHBwyLUvIyMjGBkZFXbJRERE9P8V6ZEJIQSCg4OxdetWHDx4EC4uLmrTPTw8YGBggAMHDkhtcXFxSEhIgKen54cul4iIiHJRpEcmhg0bhg0bNmD79u2wsLCQxkEolUqYmJhAqVRi4MCBGDNmDGxsbGBpaYnhw4fD09OTV3IQEREVE0UaJpYvXw4A8Pb2VmsPDw9HYGAgAGDhwoXQ09ODn58fMjIy4Ovri2XLln3gSomIiCgvRRomhBDvncfY2BhhYWEICwv7ABURERFRQRWbqzmIiIioZGKYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKSpUjDxNGjR9GpUyeUK1cOCoUC27ZtU5suhMCUKVNQtmxZmJiYwMfHB/Hx8UVTLBEREeWqSMPEixcvUKdOHYSFheU6fc6cOfj++++xYsUKxMTEwMzMDL6+vkhPT//AlRIREVFeShXlytu1a4d27drlOk0IgUWLFuHrr79Gly5dAABr166Fvb09tm3bht69e3/IUomIiCgPxXbMxK1bt/DgwQP4+PhIbUqlEo0aNcLJkyfzXC4jIwOpqalqDyIiIio8xTZMPHjwAABgb2+v1m5vby9Ny01oaCiUSqX0cHR0LNQ6iYiI/uuKbZjQ1qRJk5CSkiI97t69W9QlERER/asV2zDh4OAAAEhKSlJrT0pKkqblxsjICJaWlmoPIiIiKjzFNky4uLjAwcEBBw4ckNpSU1MRExMDT0/PIqyMiIiI3lSkV3M8f/4cN27ckJ7funULFy5cgI2NDZycnDBq1ChMnz4dVapUgYuLC7755huUK1cOXbt2LbqiiYiISE2RhomzZ8+iZcuW0vMxY8YAAAICAhAREYHx48fjxYsXGDx4MJKTk9G0aVPs2bMHxsbGRVUyERERvaVIw4S3tzeEEHlOVygUCAkJQUhIyAesioiIiAqi2I6ZICIiopKBYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISJYSESbCwsJQsWJFGBsbo1GjRjh9+nRRl0RERET/X7EPE7/88gvGjBmDqVOn4ty5c6hTpw58fX3x8OHDoi6NiIiIUALCxIIFCxAUFITPPvsM1atXx4oVK2Bqaor//e9/RV0aERERAShV1AW8S2ZmJmJjYzFp0iSpTU9PDz4+Pjh58mSuy2RkZCAjI0N6npKSAgBITU3VaW2qjDSd9keadL3NcnDbFb7C2nYAt9+HwO9eyaXrbZfTnxDinfMV6zDx+PFjZGdnw97eXq3d3t4e165dy3WZ0NBQTJs2TaPd0dGxUGqkwqNcVNQVkLa47Uo2br+Sq7C23bNnz6BUKvOcXqzDhDYmTZqEMWPGSM9VKhWePHkCW1tbKBSKIqysaKWmpsLR0RF3796FpaVlUZdDBcBtV3Jx25Vc3HavCSHw7NkzlCtX7p3zFeswUbp0aejr6yMpKUmtPSkpCQ4ODrkuY2RkBCMjI7U2KyurwiqxxLG0tPxPfzFKMm67kovbruTitsM7j0jkKNYDMA0NDeHh4YEDBw5IbSqVCgcOHICnp2cRVkZEREQ5ivWRCQAYM2YMAgIC0KBBAzRs2BCLFi3Cixcv8NlnnxV1aURERIQSECZ69eqFR48eYcqUKXjw4AHq1q2LPXv2aAzKpHczMjLC1KlTNU4BUfHHbVdycduVXNx2BaMQ77veg4iIiOgdivWYCSIiIir+GCaIiIhIFoYJIiIikoVhggAAERER+b4fR0HmpcJz+/ZtKBQKXLhwoahLIfpXCwwMRNeuXaXn3t7eGDVqVL6WLci8JVmxv5qDPoxevXqhffv2RV1GieTt7Y26deti0aJFRV0KFYLAwEAkJydj27ZtRV0KFRNbtmyBgYFBUZdRrDBMEADAxMQEJiYmRV0GUbGRnZ39n74FP+XNxsamqEsodniao5jYtGkTatWqBRMTE9ja2sLHxwcvXryQDq9NmzYNdnZ2sLS0xJAhQ5CZmSktu2fPHjRt2hRWVlawtbVFx44dcfPmTWl6zuHwLVu2oGXLljA1NUWdOnXUfnn17VMXFy9eRMuWLWFhYQFLS0t4eHjg7NmzajXv3bsX7u7uMDc3x8cff4z79+8X3htUTAUGBuLIkSNYvHgxFAoFFAoFbt68iYEDB8LFxQUmJiaoVq0aFi9erLbcq1evMGLECGmbTZgwAQEBAWqHUt+3XXNz5MgRNGzYEEZGRihbtiwmTpyIV69eSdOfPXsGf39/mJmZoWzZsli4cOG/5jCst7c3goODERwcDKVSidKlS+Obb76Rfu3w6dOn6N+/P6ytrWFqaop27dohPj5eWj7nO/Dbb7+hevXqMDIywoABA7BmzRps375d2r6HDx/G4cOHoVAokJycLC1/4cIFKBQK3L59W2pbtWoVHB0dYWpqim7dumHBggVq37O3D58DwKhRo+Dt7S09V6lUCA0NlT5PderUwaZNm6TpT58+hb+/P+zs7GBiYoIqVaogPDxcmn737l307NkTVlZWsLGxQZcuXdRqLOne9f7kbKcDBw6gQYMGMDU1RZMmTRAXF6fWx/Tp01GmTBlYWFhg0KBBmDhxIurWrZvnOt/+zixbtgxVqlSBsbEx7O3t8cknn2jUOH78eNjY2MDBwQHffvutrl5+scEwUQzcv38fffr0wYABA3D16lUcPnwY3bt3l3aCBw4ckNp//vlnbNmyRe2XUV+8eIExY8bg7NmzOHDgAPT09NCtWzeoVCq19UyePBljx47FhQsXULVqVfTp00ftH5o3+fv7o0KFCjhz5gxiY2MxceJEtcN6aWlpmDdvHtatW4ejR48iISEBY8eOLYR3p3hbvHgxPD09ERQUhPv37+P+/fuoUKECKlSogMjISFy5cgVTpkzBV199hV9//VVabvbs2Vi/fj3Cw8Nx/PhxpKamahxGz+92zZGYmIj27dvjo48+wsWLF7F8+XKsXr0a06dPl+YZM2YMjh8/jt9++w379+9HdHQ0zp07VyjvTVFYs2YNSpUqhdOnT2Px4sVYsGABfvzxRwCv/+E+e/YsfvvtN5w8eRJCCLRv3x5ZWVnS8mlpaZg9ezZ+/PFHXL58Gd9//z169uwpheX79++jSZMm+arl+PHjGDJkCEaOHIkLFy6gTZs2mDFjRoFfU2hoKNauXYsVK1bg8uXLGD16NPr164cjR44AAL755htcuXIFu3fvxtWrV7F8+XKULl0aAJCVlQVfX19YWFggOjoax48fl8L/m3+QlGTve3+A1/u++fPn4+zZsyhVqhQGDBggTVu/fj1mzJiB2bNnIzY2Fk5OTli+fHm+13/27FmMGDECISEhiIuLw549e9C8eXO1edasWQMzMzPExMRgzpw5CAkJwf79++W/+OJEUJGLjY0VAMTt27c1pgUEBAgbGxvx4sULqW358uXC3NxcZGdn59rfo0ePBABx6dIlIYQQt27dEgDEjz/+KM1z+fJlAUBcvXpVCCFEeHi4UCqV0nQLCwsRERGRa//h4eECgLhx44bUFhYWJuzt7fP/ov9FWrRoIUaOHPnOeYYNGyb8/Pyk5/b29mLu3LnS81evXgknJyfRpUuXPPvIa7ueP39eCCHEV199JapVqyZUKpW0TFhYmPRZSU1NFQYGBiIyMlKanpycLExNTd9bf0nQokUL4e7urvb6J0yYINzd3cX169cFAHH8+HFp2uPHj4WJiYn49ddfhRD/97m+cOGCWr8BAQEa2+XQoUMCgHj69KnUdv78eQFA3Lp1SwghRK9evUSHDh3UlvP391f7nuXW98iRI0WLFi2EEEKkp6cLU1NTceLECbV5Bg4cKPr06SOEEKJTp07is88+y/U9WbduncZnIiMjQ5iYmIi9e/fmukxJ8r73J2c7RUVFSdN27dolAIiXL18KIYRo1KiRGDZsmNryXl5eok6dOtLzt7fTm9/5zZs3C0tLS5GampprjS1atBBNmzZVa/voo4/EhAkTCvpyizUemSgG6tSpg9atW6NWrVro0aMHVq1ahadPn6pNNzU1lZ57enri+fPnuHv3LgAgPj4effr0QaVKlWBpaYmKFSsCABISEtTWU7t2ben/y5YtCwB4+PBhrjWNGTMGgwYNgo+PD2bNmqVxeN3U1BSVK1dW6y+vvv6LwsLC4OHhATs7O5ibm2PlypXS9khJSUFSUhIaNmwoza+vrw8PDw+1PvK7XXNcvXoVnp6eauf5vby88Pz5c/z999/466+/kJWVpbZepVKJatWq6eplF7nGjRurvX5PT0/Ex8fjypUrKFWqFBo1aiRNs7W1RbVq1XD16lWpzdDQUO17IkdcXJzaew1A4/n73LhxA2lpaWjTpg3Mzc2lx9q1a6Xv5NChQ7Fx40bUrVsX48ePx4kTJ6TlL168iBs3bsDCwkJa1sbGBunp6e89ZVYS5Of9Ad6975O7ndq0aQNnZ2dUqlQJn376KdavX4+0tDS1ed7+TP0b95ccgFkM6OvrY//+/Thx4gT27duHJUuWYPLkyYiJicnX8p06dYKzszNWrVqFcuXKQaVSoWbNmhqHMd88TZGzw83rkPm3336Lvn37YteuXdi9ezemTp2KjRs3olu3bhp95fQneGd2AMDGjRsxduxYzJ8/H56enrCwsMDcuXPzvT1z5He7ku6YmJjka9Clnt7rv8Pe/My/ebokv/T09DS+N2/28/z5cwDArl27UL58ebX5cn4zol27drhz5w5+//137N+/H61bt8awYcMwb948PH/+HB4eHli/fr3Guu3s7Apcb3HzvvcnJ1AUZN9XUBYWFjh37hwOHz6Mffv2YcqUKfj2229x5swZaXxMbvtLXa2/uOCRiWJCoVDAy8sL06ZNw/nz52FoaIitW7cCeP3XxcuXL6V5T506BXNzczg6OuKff/5BXFwcvv76a7Ru3Rru7u5qRzXkqFq1KkaPHo19+/ahe/fuaoO66P8YGhoiOztben78+HE0adIEX3zxBerVqwdXV1e1v5KUSiXs7e1x5swZqS07O1tt7II229Xd3V0aC/BmLRYWFqhQoQIqVaoEAwMDtfWmpKTg+vXrsl5/cfJ2YDt16hSqVKmC6tWr49WrV2rTc97j6tWrv7PPt7cv8H//EL856Pjt+31Uq1ZN7b0GoPHczs5OY+Dym/3kDARNSEiAq6ur2sPR0VGtn4CAAPz0009YtGgRVq5cCQCoX78+4uPjUaZMGY3llUrlO193SZDf9+dd8rOd3qdUqVLw8fHBnDlz8Mcff+D27ds4ePBggfoo6XhkohiIiYnBgQMH0LZtW5QpUwYxMTF49OgR3N3d8ccffyAzMxMDBw7E119/jdu3b2Pq1KkIDg6Gnp4erK2tYWtri5UrV6Js2bJISEjAxIkTZdXz8uVLjBs3Dp988glcXFzw999/48yZM/Dz89PRK/53qVixImJiYnD79m2Ym5ujSpUqWLt2Lfbu3QsXFxesW7cOZ86cgYuLi7TM8OHDERoaCldXV7i5uWHJkiV4+vSp9FeTNtv1iy++wKJFizB8+HAEBwcjLi4OU6dOxZgxY6CnpwcLCwsEBARg3LhxsLGxQZkyZTB16lTo6en9ay6BTEhIwJgxY/D555/j3LlzWLJkCebPn48qVaqgS5cuCAoKwg8//AALCwtMnDgR5cuXR5cuXd7ZZ8WKFbF3717ExcXB1tYWSqVS+sfq22+/xYwZM3D9+nXMnz9fbbnhw4ejefPmWLBgATp16oSDBw9i9+7dau91q1atMHfuXKxduxaenp746aef8Oeff6JevXoAXv/VO3bsWIwePRoqlQpNmzZFSkoKjh8/DktLSwQEBGDKlCnw8PBAjRo1kJGRgZ07d8Ld3R3A64HUc+fORZcuXRASEoIKFSrgzp072LJlC8aPH48KFSroeAt8WO97f5ydnd/bx/DhwxEUFIQGDRqgSZMm+OWXX/DHH3+gUqVK+aph586d+Ouvv9C8eXNYW1vj999/h0ql+ledPsyXoh2yQUIIceXKFeHr6yvs7OyEkZGRqFq1qliyZIkQ4v8G/kyZMkXY2toKc3NzERQUJNLT06Xl9+/fL9zd3YWRkZGoXbu2OHz4sAAgtm7dKoTQHKgnhBBPnz4VAMShQ4eEEOoDMDMyMkTv3r2Fo6OjMDQ0FOXKlRPBwcHSgKW3B2sKIcTWrVvFf/XjFBcXJxo3bixMTEwEAHHt2jURGBgolEqlsLKyEkOHDhUTJ05UG9CVlZUlgoODhaWlpbC2thYTJkwQPXr0EL1795bm0Wa7Hj58WHz00UfC0NBQODg4iAkTJoisrCxpempqqujbt68wNTUVDg4OYsGCBaJhw4Zi4sSJhf02FboWLVqIL774QgwZMkR6X7/66itp8OGTJ0/Ep59+KpRKpTAxMRG+vr7i+vXr0vK5fa6FEOLhw4eiTZs2wtzcXO07c+zYMVGrVi1hbGwsmjVrJiIjI9UGYAohxMqVK0X58uWFiYmJ6Nq1q5g+fbpwcHBQ63/KlCnC3t5eKJVKMXr0aBEcHCwNwBRCCJVKJRYtWiSqVasmDAwMhJ2dnfD19RVHjhwRQgjx3XffCXd3d2FiYiJsbGxEly5dxF9//SUtf//+fdG/f39RunRpYWRkJCpVqiSCgoJESkqKzHe8eHjX+5OfgbJCCBESEiJKly4tzM3NxYABA8SIESNE48aNpenvGoAZHR0tWrRoIaytrYWJiYmoXbu2+OWXX3KdN0eXLl1EQECADt+FosefIC/mePe9/waVSgV3d3f07NkT33333Qdb74sXL1C+fHnMnz8fAwcO/GDrLQwl4U6kQUFBuHbtGqKjo4u6FHqHNm3awMHBAevWrSvqUkoMnuYgKgJ37tzBvn370KJFC2RkZGDp0qW4desW+vbtW6jrPX/+PK5du4aGDRsiJSUFISEhAPDeQ/2knXnz5qFNmzYwMzPD7t27sWbNGixbtqyoy6I3pKWlYcWKFfD19YW+vj5+/vlnREVF/fvuA1HIGCaIioCenh4iIiIwduxYCCFQs2ZNREVFSee6C9O8efMQFxcHQ0NDeHh4IDo6WrrJEenW6dOnMWfOHDx79gyVKlXC999/j0GDBhV1WfQGhUKB33//HTNmzEB6ejqqVauGzZs3w8fHp6hLK1F4moOIiIhk4aWhREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEH0HxYYGIiuXbsWdRlEVMIxTBAREZEsDBNElKsFCxagVq1aMDMzg6OjI7744gs8f/5cmh4REQErKyvs3bsX7u7uMDc3x8cff6z2k9qvXr3CiBEjYGVlBVtbW0yYMAEBAQFqR0MqVqyo8XsadevWxbfffpvvWgBg1apVcHR0hKmpKbp164YFCxbAyspKbZ7t27ejfv36MDY2RqVKlTBt2jS8evVK9ntF9F/HMEFEudLT08P333+Py5cvY82aNTh48CDGjx+vNk9aWhrmzZuHdevW4ejRo0hISMDYsWOl6bNnz8b69esRHh6O48ePIzU1VasfrXtfLcePH8eQIUMwcuRIXLhwAW3atMGMGTPU+oiOjkb//v0xcuRIXLlyBT/88AMiIiI05iMiLRTpb5YSUZF6+6eV3yUyMlLY2tpKz8PDwwUAcePGDaktLCxM2NvbS8/t7e3F3LlzpeevXr0STk5Oaut0dnYWCxcuVFtXnTp1xNSpU/NdS69evUSHDh3U5vH391f7SfHWrVuLmTNnqs2zbt06UbZs2TzXQ0T5wx/6IqJcRUVFITQ0FNeuXUNqaipevXqF9PR0pKWlwdTUFABgamqKypUrS8uULVsWDx8+BACkpKQgKSkJDRs2lKbr6+vDw8MDKpVKp7XExcWhW7duass0bNgQO3fulJ5fvHgRx48fVzsSkZ2drfGaiKjgeJqDiDTcvn0bHTt2RO3atbF582bExsYiLCwMAJCZmSnNZ2BgoLacQqGAKOBvB+rp6Wksk5WVVeBa3uf58+eYNm0aLly4ID0uXbqE+Ph4GBsbF6hmIlLHIxNEpCE2NhYqlQrz58+Hnt7rvzl+/fXXAvWhVCphb2+PM2fOoHnz5gBeHwk4d+4c6tatK81nZ2enNmgzNTUVt27dKlAt1apVw5kzZ9Ta3n5ev359xMXFwdXVtUCvg4jej2GC6D8uJSUFFy5cUGsrXbo0srKysGTJEnTq1AnHjx/HihUrCtz38OHDERoaCldXV7i5uWHJkiV4+vQpFAqFNE+rVq0QERGBTp06wcrKClOmTIG+vr403dXV9b21DB8+HM2bN8eCBQvQqVMnHDx4ELt371Zbz5QpU9CxY0c4OTnhk08+gZ6eHi5evIg///wT06dPL/BrI6I3FPWgDSIqOgEBAQKAxmPgwIFiwYIFomzZssLExET4+vqKtWvXCgDi6dOnQojXAzDfHOAohBBbt24Vb+5WsrKyRHBwsLC0tBTW1tZiwoQJokePHqJ3797SPCkpKaJXr17C0tJSODo6ioiICI0BmO+rRQghVq5cKcqXLy9MTExE165dxfTp04WDg4NafXv27BFNmjQRJiYmwtLSUjRs2FCsXLlSZ+8n0X+VQogCnuAkItKSSqWCu7s7evbsie+++65Q1xUUFIRr164hOjq6UNdDRDzNQUSF6M6dO9i3bx9atGiBjIwMLF26FLdu3ULfvn11vq558+ahTZs2MDMzw+7du7FmzRosW7ZM5+shIk0ME0RUaPT09BAREYGxY8dCCIGaNWsiKioK7u7uOl/X6dOnMWfOHDx79gyVKlXC999/j0GDBul8PUSkiac5iIiISBbeZ4KIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpLl/wE7H+8Ofpc+zwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 contact lenses 2 1 1 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 3 66.666667 33.333333 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 33.333333 33.333333 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAIjCAYAAAAz9gDIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd00lEQVR4nO3dd1QU5/s28GtBelmKSFGkiAp2xaiIXRB7I/YoRqOxYCN2E3uJHaOo0fgFNRoTYknU2HsliiVWxIpRQY0CClL3ef/wZX6uiwrr4qBcn3P2HHbKM/fO7M5ezDwzqxBCCBARERHJSE/uAoiIiIgYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEjok/f333/D0NAQd+7c0Ul7ly9fRrFixXDx4kWdtEcfB1dXV/Tu3fuDLzciIgIKhQKnT5/+4Msm+TRq1AiNGjWSu4wP6qMLJDdu3MDXX38Nd3d3GBsbw9LSEr6+vli0aBFevHghd3n5dvnyZUyePBm3b9/O97yjR4+GQqFAly5ddF/YJ2TChAno1q0bXFxcpGFbtmyBp6cnlEol2rRpg/v372vM17ZtW/Tv319jeIUKFdCqVStMnDgxT8vP+UJ59VGiRAk0btwYO3bs0P6F5cLV1RWtW7fWaZukW7dv39Z4P7zpoc1+gfLnffbB+fHXX39h8uTJBbqMj10xuQvIj+3bt6NTp04wMjJCr169UKlSJWRkZODo0aMYNWoULl26hBUrVshdZr5cvnwZU6ZMQaNGjeDq6prn+YQQ+OWXX+Dq6oqtW7fi2bNnsLCwKLhCP1Lnzp3D3r17cfz4cWnYzZs30aVLF3Tp0gU+Pj4IDQ3Fl19+iV27dknT7Nq1C4cPH0ZsbGyu7Q4YMAAtW7bEjRs3UKZMmTzVMnXqVLi5uUEIgYSEBERERKBly5bYunUrQ8RHICYmBnp67/8/nJ2dHdauXas2bP78+fj333+xcOFCjWmpYGm7D86vv/76C2FhYQwlb/HRBJJbt26ha9eucHFxwf79++Ho6CiNGzx4MK5fv47t27e/93KEEEhLS4OJiYnGuLS0NBgaGupkp/S+Dh48iH///Rf79+9HQEAANm3ahKCgILnL0qmsrCyoVCoYGhpq3UZ4eDhKly6NOnXqSMN2796NUqVKYfXq1VAoFPDy8kKTJk2QlpYGY2NjZGVlYcSIEZg4ceIbvxD8/PxgbW2N1atXY+rUqXmqpUWLFqhZs6b0vG/fvrC3t8cvv/zCQPIRMDIy0kk7ZmZm+OKLL9SGbdiwAU+fPtUYTlSUyP/Nmkdz5szB8+fPsWrVKrUwksPDwwPDhg2TnmdlZWHatGkoU6YMjIyM4OrqivHjxyM9PV1tvpxD3Lt27ULNmjVhYmKCH3/8EQcPHoRCocCGDRvw7bffomTJkjA1NUVycjIAICoqCs2bN4dSqYSpqSkaNmyIY8eOadR179499O3bF05OTjAyMoKbmxsGDhyIjIwMREREoFOnTgCAxo0bS4dpDx48+M71sW7dOlSoUAGNGzeGn58f1q1bpzFNzmv47bffMGPGDJQqVQrGxsZo2rQprl+/rjZtbGwsAgMD4eDgAGNjY5QqVQpdu3ZFUlISAKBjx46oUaOG2jxt2rSBQqHAn3/+KQ2LioqCQqFQOxWRmJiI4cOHw9nZGUZGRvDw8MDs2bOhUqmkaXIOY8+bNw+hoaHSdrt8+TIAYPHixahYsSJMTU1hbW2NmjVrYv369e9cT1u2bEGTJk2gUCikYS9evICVlZU0zMbGBkII6ZTfkiVLkJ2djSFDhryxXQMDAzRq1Ah//PHHO2t4EysrK5iYmKBYsZf/Fwgh4Orqinbt2mlMm5aWBqVSia+//lrr5eU4cuQIOnXqhNKlS8PIyAjOzs4YMWKExinP3r17w9zcHPfu3UP79u1hbm4OOzs7jBw5EtnZ2WrT/vfff+jZsycsLS1hZWWFoKAgnD9/HgqFAhEREdJ0bzov3rt3b43/TufNm4e6devC1tYWJiYm8Pb2xu+//64x74sXLzB06FAUL14cFhYWaNu2Le7duweFQqHx3+i9e/fQp08f2Nvbw8jICBUrVsT//ve/PK231/uQ5JyKO3bsGEJCQmBnZwczMzN06NABjx49ylOb+ZGenp6n5ezYsQP169eHmZkZLCws0KpVK1y6dEltmpxtGxcXh9atW8Pc3BwlS5ZEWFgYAODChQto0qQJzMzM4OLikutnLS+fawB48OABrl69iszMzHe+RpVKhUWLFqFy5cowNjaGnZ0dmjdvrtZ/Jr/79qNHj6JWrVowNjaGu7s71qxZI03zrn3wH3/8gVatWkn77zJlymDatGka73/g5b6vZcuWsLa2hpmZGapUqYJFixZJ6ztn3b56Si6/0tPTMWnSJHh4eEif3dGjR2u8doVCgeDgYGzZsgWVKlWS3us7d+5Um+7Zs2cYPnw4XF1dYWRkhBIlSsDf3x9nzpzReG3v+r7La1tvJT4SJUuWFO7u7nmePigoSAAQn3/+uQgLCxO9evUSAET79u3VpnNxcREeHh7C2tpajB07VixfvlwcOHBAHDhwQAAQFSpUENWqVRMLFiwQs2bNEikpKWLfvn3C0NBQ+Pj4iPnz54uFCxeKKlWqCENDQxEVFSW1fe/ePeHk5CRMTU3F8OHDxfLly8V3330nvLy8xNOnT8WNGzfE0KFDBQAxfvx4sXbtWrF27VoRHx//1teWlpYmrKysxLRp04QQQqxZs0bo6+uLBw8eqE2X8xqqV68uvL29xcKFC8XkyZOFqampqFWrljRdenq6cHNzE05OTmL69Onip59+ElOmTBGfffaZuH37thBCiAULFgg9PT2RlJQkhBBCpVIJa2troaenJ0aOHCm1NXfuXLXpUlJSRJUqVYStra0YP368WL58uejVq5dQKBRi2LBh0ny3bt2S1re7u7v4/vvvxcKFC8WdO3fEihUrpG35448/ikWLFom+ffuKoUOHvnU9/fvvvwKA+OGHH9SGHzlyRCgUCrF+/Xpx8+ZN0blzZ+Hh4SGEEOLhw4fCyspKbNu27a1tCyHE9OnT1V7rm4SHhwsAYu/eveLRo0fi4cOH4uLFi+Lrr78Wenp6Yvfu3dK0EyZMEAYGBuK///5Ta+O3334TAMThw4ffuiwXFxfRqlWrt04zZMgQ0bJlSzFz5kzx448/ir59+wp9fX3x+eefq00XFBQkjI2NRcWKFUWfPn3EsmXLRGBgoAAgli5dKk2XnZ0tfHx8hL6+vggODhZLliwR/v7+omrVqgKACA8Pl6Zt2LChaNiwoUZNQUFBwsXFRW1YqVKlxKBBg8SSJUvEggULRK1atQQAjW3TuXNnAUD07NlThIWFic6dO0vLnjRpkjRdfHy8KFWqlHB2dhZTp04Vy5YtE23bthUAxMKFC9+6zoR4uW6DgoKk5znbtXr16qJJkyZi8eLF4ptvvhH6+vqic+fO72zvVa1atdJ4/dosZ82aNUKhUIjmzZuLxYsXi9mzZwtXV1dhZWUlbt26JU2Xs20rVKggBgwYIMLCwkTdunWl7eXk5CRGjRolFi9eLCpWrCj09fXFzZs3pfnz+rnOWRYAteW/Se/evQUA0aJFCxEaGirmzZsn2rVrJxYvXqzRXl727eXLlxf29vZi/PjxYsmSJaJGjRpCoVCIixcvCiHEO/fB7du3F507dxZz584Vy5YtE506dRIA1PZ5Qgixe/duYWhoKFxcXMSkSZPEsmXLxNChQ4Wfn58QQojjx48Lf39/AUBaxtq1a9+6Ll7/rGRnZ4tmzZpJ3yc//vijCA4OFsWKFRPt2rVTmxeAqFq1qnB0dBTTpk0ToaGhwt3dXZiamorHjx9L03Xv3l0YGhqKkJAQ8dNPP4nZs2eLNm3aiJ9//lmaJq/fd3lp610+ikCSlJQkAGis9Dc5d+6cACC++uorteEjR44UAMT+/fulYS4uLgKA2Llzp9q0OV/m7u7uIjU1VRquUqlE2bJlRUBAgFCpVNLw1NRU4ebmJvz9/aVhvXr1Enp6euLUqVMaNebMGxkZKQCIAwcO5Om1CSHE77//LgCI2NhYIYQQycnJwtjYWGOnmvMavLy8RHp6ujR80aJFAoC4cOGCEEKIs2fPCgAiMjLyjcs8deqUACD++usvIYQQ//zzjwAgOnXqJGrXri1N17ZtW1G9enXp+bRp04SZmZm4du2aWntjx44V+vr6Ii4uTgjxf4HE0tJSPHz4UG3adu3aiYoVK+Z19Uj27t0rAIitW7dqjMvZCQEQNjY20nuiX79+onnz5nlqf/369QKA2ocyNzlfKK8/jIyMREREhNq0MTExAoBYtmyZ2vC2bdsKV1dXtfdcbvISSF59P+eYNWuWUCgU4s6dO9KwnB3/1KlT1abNCbg5Nm7cKACI0NBQaVh2drZo0qTJewWS1+vMyMgQlSpVEk2aNJGGRUdHCwBi+PDhatPmfLG9Gkj69u0rHB0d1XbIQgjRtWtXoVQqc10vr3pTIPHz81PbLiNGjBD6+voiMTHxre29Ki+B5F3LefbsmbCyshL9+vVTmz8+Pl4olUq14TnbdubMmdKwp0+fChMTE6FQKMSGDRuk4VevXtVYl3n9XL+6rHcFkv379wsAuf6jkfO6tdm3vxriHz58KIyMjMQ333wjDXvbPji398TXX38tTE1NRVpamhBCiKysLOHm5iZcXFzE06dPc61bCCEGDx4s8nMM4PXPytq1a4Wenp44cuSI2nTLly8XAMSxY8ekYQCEoaGhuH79ujTs/PnzAoBauFMqlWLw4MFvrCE/33fvaisvPopTNjmnSfLaafOvv/4CAISEhKgN/+abbwBAo6+Jm5sbAgICcm0rKChIrT/JuXPnEBsbi+7du+O///7D48eP8fjxY6SkpKBp06Y4fPgwVCoVVCoVtmzZgjZt2qj1G8ihzeG6HOvWrUPNmjXh4eEBANJh2dxO2wDAl19+qdYPo379+gBedu4EAKVSCeBlR87U1NRc26hevTrMzc1x+PBhAC8P+5cqVQq9evXCmTNnkJqaCiEEjh49KrUPAJGRkahfvz6sra2ldfX48WP4+fkhOztbai9HYGCgRr8NKysr/Pvvvzh16lSe1xHw8jQCAFhbW2uMW7RoEe7cuYOoqCjcuXMHjRs3xrlz57BmzRosXLgQSUlJ+OKLL1CyZEk0atQIV65c0Wgjp93Hjx/nqZ6wsDDs2bMHe/bswc8//4zGjRvjq6++wqZNm6RpypUrh9q1a6ttyydPnmDHjh3o0aPHe71vcrz6fk5JScHjx49Rt25dCCFw9uxZjekHDBig9rx+/frSewcAdu7cCQMDA/Tr108apqenh8GDB+uszqdPnyIpKQn169dXOwSccwh60KBBavO+frpNCIGNGzeiTZs2EEKovRcDAgKQlJSUv0PLr+jfv7/adqlfvz6ys7N1dpl5XpezZ88eJCYmolu3bmqvT19fH7Vr18aBAwc02vzqq6+kv62srFC+fHmYmZmhc+fO0vDy5cvDyspKbZvn53MdEREhnY58m40bN0KhUGDSpEka43Jed3737RUqVFDbH9nZ2aF8+fJqr+VtXn0PPnv2DI8fP0b9+vWRmpqKq1evAgDOnj2LW7duYfjw4bCyssq1bl2IjIyEl5cXPD091dZ5kyZNAEBj+/r5+al1uK9SpQosLS3VXruVlRWioqJyvcoQyPv3XV7ayouPolOrpaUlgJdviLy4c+cO9PT0pC/sHA4ODrCystLYUbi5ub2xrdfH5Vx18bYOpElJScjIyEBycjIqVaqUp5rzKjExEX/99ReCg4PV+oH4+vpi48aNuHbtGsqVK6c2T+nSpdWe53yRPn36FMDL1xgSEoIFCxZg3bp1qF+/Ptq2bYsvvvhCCiv6+vrw8fHBkSNHALwMJPXr10e9evWQnZ2NkydPwt7eHk+ePFHbAcTGxuKff/55Y+fQhw8fqj3PbVuMGTMGe/fuRa1ateDh4YFmzZqhe/fu8PX1zdM6e/kPg6bSpUurrZuhQ4diwIAB8PT0xBdffIG7d+/ijz/+wOrVq9GmTRtcvXpV6u/xart53enUqlVLLZx269YN1atXR3BwMFq3bi2Fxl69eiE4OBh37tyBi4sLIiMjkZmZiZ49e+ZpOe8SFxeHiRMn4s8//5TeAzly+gzlyDmP/ypra2u1+e7cuQNHR0eYmpqqTff65y+/tm3bhunTp+PcuXNq58hfXd85n/XX3zevL/vRo0dITEzEihUr3ngl3uvvxbx61+dLV961nJx9U84X1Oty9qM5ctu2SqUSpUqV0nhPK5VKtdeT3891Xty4cQNOTk6wsbF54zT53be/vs4Azffv21y6dAnffvst9u/fL/1jnCPns3Ljxg0A0Pm+/nWxsbG4cuVKntd5Xl77nDlzEBQUBGdnZ3h7e6Nly5bo1asX3N3dpWUC7/6+s7a2fmdbefHRBBInJ6d834gqr18UuV1R86ZxOWlw7ty5qFatWq7zmJub48mTJ3krMp8iIyORnp6O+fPnY/78+Rrj161bhylTpqgN09fXz7WtV7+o58+fj969e+OPP/7A7t27MXToUMyaNQsnT55EqVKlAAD16tXDjBkzkJaWhiNHjmDChAmwsrJCpUqVcOTIEdjb2wOAWiBRqVTw9/fH6NGjc63h9fCU27bw8vJCTEwMtm3bhp07d2Ljxo1YunQpJk6cqPFaX2Vrawsgb18Mv/76K65cuYI///wT2dnZ+O2337B7927UrFkTFStWxMqVK3Hy5EnUq1dPmien3eLFi7+z/dzo6emhcePGWLRoEWJjY1GxYkUAQNeuXTFixAisW7cO48ePx88//4yaNWuifPnyWi3nVdnZ2fD398eTJ08wZswYeHp6wszMDPfu3UPv3r01OiS+6b2jLYVCkWtAfL2T4JEjR9C2bVs0aNAAS5cuhaOjIwwMDBAeHp6nzsyvy3ldX3zxxRt3rlWqVMl3u0DePl+68K7l5LzGtWvXwsHBQWO6V8P029rLy+vJ7+da1/K6b3+fbZOYmIiGDRvC0tISU6dORZkyZWBsbIwzZ85gzJgxGp+VgqZSqVC5cmUsWLAg1/HOzs5qz/Py2jt37oz69etj8+bN2L17N+bOnYvZs2dj06ZNaNGiRZ6/7/LSVl58FIEEAFq3bo0VK1bgxIkT8PHxeeu0Li4uUKlUiI2NhZeXlzQ8ISEBiYmJajfIyq+cQ2CWlpbw8/N743R2dnawtLR8Z4jK7yG9devWoVKlSrke1vzxxx+xfv36t35Jv03lypVRuXJlfPvttzh+/Dh8fX2xfPlyTJ8+HcDLoJGRkYFffvkF9+7dk4JHgwYNpEBSrlw5KZgAL9fX8+fP37qu8sLMzEy6d0hGRgY6duyIGTNmYNy4cTA2Ns51Hk9PTwAvLxl/m9TUVIwaNQrTpk2DlZUVEhISkJmZCScnJwAvQ5K1tTXu3bunNt+tW7egp6f3XjvfrKwsAMDz58+lYTY2NtIpuB49euDYsWMIDQ3VehmvunDhAq5du4bVq1ejV69e0vA9e/Zo3aaLiwsOHDiA1NRUtaMkr1/JBbz8Dy23w+Wv/2e7ceNGGBsbY9euXWqX24aHh2ssW6VS4datWyhbtuwbl21nZwcLCwtkZ2e/93uxsMrZN5UoUaLAX6OuPtevt7lr1y48efLkjUdJCmLf/qZ98MGDB/Hff/9h06ZNaNCggTT89f1Jznq/ePHiW9fH+56+KVOmDM6fP4+mTZvq9FSQo6MjBg0ahEGDBuHhw4eoUaMGZsyYgRYtWuT5+y4vbeXFR9GHBHh5V1IzMzN89dVXSEhI0Bh/48YN6RKrli1bAoDGTjwnWbZq1UrrOry9vVGmTBnMmzdP7UskR85leHp6emjfvj22bt2a6y2fc1KqmZkZgJdp/F3u3r2Lw4cPo3Pnzvj88881Hl9++SWuX7+OqKiofL2m5ORk6YsxR+XKlaGnp6d2qLx27dowMDDA7NmzYWNjI/1HX79+fZw8eRKHDh1SOzoCvEzNJ06cULvpWI7ExESN5eYmpy9IDkNDQ1SoUAFCiLdeSliyZEk4Ozu/85bbs2fPhrW1tdQHwtbWFsWKFZPOET9+/BiPHj3S+K8zOjoaFStWlE5r5VdmZiZ2794NQ0NDtZ0rAPTs2ROXL1/GqFGjoK+vj65du2q1jNfl/Nf06n9JQgjps6ONgIAAZGZmYuXKldIwlUolXeb4qjJlyuDq1atql6ueP39e4xJCfX19KBQKtSMnt2/fxpYtWzSWDQBLly5VG7548WKN9gIDA7Fx48Zc/0koiMt0P7SAgABYWlpi5syZuX4udPka8/O5zutlv4GBgRBC5PoPVc77tSD27W/aB+f2WcnIyNB4r9WoUQNubm4IDQ3VaOPVefOzr89N586dce/ePbXPWY4XL14gJSUlX+1lZ2drnKItUaIEnJycpP1+Xr/v8tJWXnw0R0jKlCmD9evXo0uXLvDy8lK7U+vx48cRGRkp3SOgatWqCAoKwooVK6TDbn///TdWr16N9u3bo3HjxlrXoaenh59++gktWrRAxYoV8eWXX6JkyZK4d+8eDhw4AEtLS2zduhUAMHPmTOzevRsNGzZE//794eXlhQcPHiAyMhJHjx6FlZUVqlWrBn19fcyePRtJSUkwMjJCkyZNUKJECY1lr1+/HkIItG3bNtfaWrZsiWLFimHdunWoXbt2nl/T/v37ERwcjE6dOqFcuXLIysrC2rVrpZ14DlNTU3h7e+PkyZPSPUiAl0dIUlJSkJKSohFIRo0ahT///BOtW7dG79694e3tjZSUFFy4cAG///47bt++/c5THs2aNYODgwN8fX1hb2+PK1euYMmSJWjVqtU7Ozq3a9cOmzdvhhAi1/8q4uLiMHfuXGzfvl3aARUrVgzt2rXD8OHDERcXh82bN8PJyUntyFxmZiYOHTqk0ZnybXbs2CGFnIcPH2L9+vWIjY3F2LFjNc7vt2rVCra2toiMjESLFi1yfT+8yfXr16WjWq+qXr06mjVrhjJlymDkyJG4d+8eLC0tsXHjxvfq79C+fXvUqlUL33zzDa5fvw5PT0/8+eef0mnLV9d7nz59sGDBAgQEBKBv3754+PAhli9fjooVK6qdo2/VqhUWLFiA5s2bo3v37nj48CHCwsLg4eGBf/75R5rO29sbgYGBCA0NxX///Yc6derg0KFDuHbtmsayv//+exw4cAC1a9dGv379UKFCBTx58gRnzpzB3r17C+w064diaWmJZcuWoWfPnqhRowa6du0KOzs7xMXFYfv27fD19cWSJUt0sqz8fK7HjRuH1atX49atW2/t2Nq4cWP07NkTP/zwA2JjY9G8eXOoVCocOXIEjRs3RnBwcIHs29+0D65bty6sra0RFBSEoUOHQqFQYO3atRqne/T09LBs2TK0adMG1apVw5dffglHR0dcvXoVly5dkkKbt7c3gJd91QICAvL9j0bPnj3x22+/YcCAAThw4AB8fX2RnZ2Nq1ev4rfffpPupZVXz549Q6lSpfD555+jatWqMDc3x969e3Hq1CmpO0Bev+/y0laevNc1OjK4du2a6Nevn3B1dRWGhobCwsJC+Pr6isWLF0uXYQkhRGZmppgyZYpwc3MTBgYGwtnZWYwbN05tGiHefJlkziWzb7oU9uzZs6Jjx47C1tZWGBkZCRcXF9G5c2exb98+tenu3LkjevXqJezs7ISRkZFwd3cXgwcPVrsMd+XKlcLd3V3o6+u/9RLgypUri9KlS791/TRq1EiUKFFCZGZmvvE15Fxim3M55s2bN0WfPn1EmTJlhLGxsbCxsRGNGzcWe/fu1Wh/1KhRAoCYPXu22nAPDw8BQNy4cUNjnmfPnolx48YJDw8PYWhoKIoXLy7q1q0r5s2bJzIyMtRqmjt3rsb8P/74o2jQoIG0rsuUKSNGjRr1zvt/CCHEmTNnBACNS+VydOrUSXTs2FFjeEJCgmjTpo2wsLAQNWrUEKdPn1Ybv2PHDrVLr98mt8t+jY2NRbVq1cSyZcveeCnvoEGDBACxfv36dy4jR86ljrk9+vbtK4QQ4vLly8LPz0+Ym5uL4sWLi379+kmXBL56iW5QUJAwMzPTWMakSZM0Ll989OiR6N69u7CwsBBKpVL07t1bHDt2TABQu4RUCCF+/vln4e7uLgwNDUW1atXErl27cr3sd9WqVaJs2bLCyMhIeHp6ivDw8FyXnZKSIgYPHixsbGyEubm5aN++vXT59Pfff682bUJCghg8eLBwdnYWBgYGwsHBQTRt2lSsWLEiT+s2t8t+X7+sP+dzl59L+fNy2W9el3PgwAEREBAglEqlMDY2FmXKlBG9e/dWew+/ads2bNgw10vsc9tP5uVznbMs5PE+JFlZWWLu3LnC09NTGBoaCjs7O9GiRQsRHR0tTfO++/bcLj1/0z742LFjok6dOsLExEQ4OTmJ0aNHi127duW63o8ePSr8/f2FhYWFMDMzE1WqVFG7xDYrK0sMGTJE2NnZCYVC8c5LgHOrMyMjQ8yePVtUrFhRGBkZCWtra+Ht7S2mTJmitj8EkOsluK++h9PT08WoUaNE1apVpZqrVq2qdo+hHO/6vstPW2+j+P/FE32ymjZtCicnJ43fD3kf7du3h0KhwObNm3XW5utGjBiBVatWIT4+XuMKlo/Bli1b0KFDBxw9ejTPV0Tpyrlz51C9enX8/PPP6NGjxwddNhFph4GEPnlRUVGoX78+YmNj36tDc44rV66gcuXKOHfuXIFd6peWlgZnZ2e0bt1aoyNnYfTixQu1K6Sys7PRrFkznD59GvHx8W+9kk3XywZe3qp77dq1uH37tsbVB0RUOH00fUiItFW7dm1kZGTorD0vL688dcbVxsOHD7F37178/vvv+O+//9R+n6kwGzJkCF68eAEfHx+kp6dj06ZNOH78OGbOnFmgYQR4eS+F6OhoNG7cGMWKFcOOHTuwY8cO9O/fn2GE6CPCQEJUiFy+fBk9evRAiRIl8MMPP7zx2v/CpkmTJpg/fz62bduGtLQ0eHh4YPHixQgODi7wZdetWxd79uzBtGnT8Pz5c5QuXRqTJ0/GhAkTCnzZRKQ7sp6ycXV1zfX2yoMGDUJYWBjS0tLwzTffYMOGDUhPT0dAQACWLl2qdp8LIiIi+vjJGkgePXqkdp+Bixcvwt/fHwcOHECjRo0wcOBAbN++HREREVAqlQgODoaenp7GPQuIiIjo41aoOrUOHz4c27ZtQ2xsLJKTk2FnZ4f169fj888/BwBcvXoVXl5eOHHiBOrUqSNztURERKQrhaYPSUZGBn7++WeEhIRAoVAgOjoamZmZarer9fT0ROnSpd8aSNLT09XuDKdSqfDkyRPY2trq9Ha7REREnzohBJ49ewYnJyfo6RXszd0LTSDZsmULEhMTpbutxsfHw9DQUOPnnO3t7REfH//GdmbNmqX1b7kQERGRprt370o/tFpQCk0gWbVqFVq0aCH9oJm2xo0bh5CQEOl5UlISSpcujbt372rcnpuIiIjeLDk5Gc7Ozu/8mQ5dKBSB5M6dO9i7dy82bdokDXNwcEBGRgYSExPVjpIkJCTk+tPaOYyMjNR+HTSHpaUlAwkREZEWPkSXh0Lxa7/h4eEoUaKE2i81ent7w8DAAPv27ZOGxcTEIC4uTu1HzoiIiOjjJ/sREpVKhfDwcAQFBaFYsf8rR6lUom/fvggJCYGNjQ0sLS0xZMgQ+Pj48AobIiKiT4zsgWTv3r2Ii4tDnz59NMYtXLgQenp6CAwMVLsxGhEREX1aCtV9SApCcnIylEolkpKS2IeEiIgoHz7kd2ih6ENCRERERRsDCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHbF5C7gY+U6drvcJXzybn/fSu4SiIjoA+EREiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2sgeSe/fu4YsvvoCtrS1MTExQuXJlnD59WhovhMDEiRPh6OgIExMT+Pn5ITY2VsaKiYiISNdkDSRPnz6Fr68vDAwMsGPHDly+fBnz58+HtbW1NM2cOXPwww8/YPny5YiKioKZmRkCAgKQlpYmY+VERESkS8XkXPjs2bPh7OyM8PBwaZibm5v0txACoaGh+Pbbb9GuXTsAwJo1a2Bvb48tW7aga9euH7xmIiIi0j1Zj5D8+eefqFmzJjp16oQSJUqgevXqWLlypTT+1q1biI+Ph5+fnzRMqVSidu3aOHHiRK5tpqenIzk5We1BREREhZusgeTmzZtYtmwZypYti127dmHgwIEYOnQoVq9eDQCIj48HANjb26vNZ29vL4173axZs6BUKqWHs7Nzwb4IIiIiem+yBhKVSoUaNWpg5syZqF69Ovr3749+/fph+fLlWrc5btw4JCUlSY+7d+/qsGIiIiIqCLIGEkdHR1SoUEFtmJeXF+Li4gAADg4OAICEhAS1aRISEqRxrzMyMoKlpaXag4iIiAo3WQOJr68vYmJi1IZdu3YNLi4uAF52cHVwcMC+ffuk8cnJyYiKioKPj88HrZWIiIgKjqxX2YwYMQJ169bFzJkz0blzZ/z9999YsWIFVqxYAQBQKBQYPnw4pk+fjrJly8LNzQ3fffcdnJyc0L59ezlLJyIiIh2SNZB89tln2Lx5M8aNG4epU6fCzc0NoaGh6NGjhzTN6NGjkZKSgv79+yMxMRH16tXDzp07YWxsLGPlREREpEsKIYSQu4iClJycDKVSiaSkJJ32J3Edu11nbVHubn/fSu4SiIiKtIL6Ds2N7LeOJyIiImIgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJTtZAMnnyZCgUCrWHp6enND4tLQ2DBw+Gra0tzM3NERgYiISEBBkrJiIiooIg+xGSihUr4sGDB9Lj6NGj0rgRI0Zg69atiIyMxKFDh3D//n107NhRxmqJiIioIBSTvYBixeDg4KAxPCkpCatWrcL69evRpEkTAEB4eDi8vLxw8uRJ1KlT50OXSkRERAVE9iMksbGxcHJygru7O3r06IG4uDgAQHR0NDIzM+Hn5ydN6+npidKlS+PEiRNvbC89PR3JyclqDyIiIircZA0ktWvXRkREBHbu3Illy5bh1q1bqF+/Pp49e4b4+HgYGhrCyspKbR57e3vEx8e/sc1Zs2ZBqVRKD2dn5wJ+FURERPS+ZD1l06JFC+nvKlWqoHbt2nBxccFvv/0GExMTrdocN24cQkJCpOfJyckMJURERIWc7KdsXmVlZYVy5crh+vXrcHBwQEZGBhITE9WmSUhIyLXPSQ4jIyNYWlqqPYiIiKhwK1SB5Pnz57hx4wYcHR3h7e0NAwMD7Nu3TxofExODuLg4+Pj4yFglERER6Zqsp2xGjhyJNm3awMXFBffv38ekSZOgr6+Pbt26QalUom/fvggJCYGNjQ0sLS0xZMgQ+Pj48AobIiKiT4ysgeTff/9Ft27d8N9//8HOzg716tXDyZMnYWdnBwBYuHAh9PT0EBgYiPT0dAQEBGDp0qVylkxEREQFQCGEEHIXUZCSk5OhVCqRlJSk0/4krmO366wtyt3t71vJXQIRUZFWUN+huSlUfUiIiIioaGIgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmumDYz3bp1C0eOHMGdO3eQmpoKOzs7VK9eHT4+PjA2NtZ1jURERPSJy1cgWbduHRYtWoTTp0/D3t4eTk5OMDExwZMnT3Djxg0YGxujR48eGDNmDFxcXAqqZiIiIvrE5DmQVK9eHYaGhujduzc2btwIZ2dntfHp6ek4ceIENmzYgJo1a2Lp0qXo1KmTzgsmIiKiT0+eA8n333+PgICAN443MjJCo0aN0KhRI8yYMQO3b9/WRX1ERERUBOQ5kLwtjLzO1tYWtra2WhVERERERY9WnVpftX37dhw8eBDZ2dnw9fVFYGCgLuoiIiKiIuS9Lvv97rvvMHr0aCgUCgghMGLECAwZMkRXtREREVERka8jJKdPn0bNmjWl57/++ivOnz8PExMTAEDv3r3RqFEjLF68WLdVEhER0SctX0dIBgwYgOHDhyM1NRUA4O7ujvnz5yMmJgYXLlzAsmXLUK5cuQIplIiIiD5d+QokUVFRcHR0RI0aNbB161b873//w9mzZ1G3bl3Ur18f//77L9avX19QtRIREdEnKl+nbPT19TFmzBh06tQJAwcOhJmZGZYsWQInJ6eCqo+IiIiKAK06tbq7u2PXrl3o0KEDGjRogLCwMF3XRUREREVIvgJJYmIiRo8ejTZt2uDbb79Fhw4dEBUVhVOnTqFOnTq4cOFCQdVJREREn7B8BZKgoCBERUWhVatWiImJwcCBA2Fra4uIiAjMmDEDXbp0wZgxYwqqViIiIvpE5asPyf79+3H27Fl4eHigX79+8PDwkMY1bdoUZ86cwdSpU3VeJBEREX3a8nWEpGzZslixYgWuXbuG5cuXa/yir7GxMWbOnKnTAomIiOjTl69A8r///Q/79+9H9erVsX79eixbtqyg6iIiIqIiJF+nbKpVq4bTp08XVC1ERERUROX5CIkQoiDrICIioiIsz4GkYsWK2LBhAzIyMt46XWxsLAYOHIjvv//+vYsjIiKioiHPp2wWL16MMWPGYNCgQfD390fNmjXh5OQEY2NjPH36FJcvX8bRo0dx6dIlBAcHY+DAgQVZNxEREX1C8hxImjZtitOnT+Po0aP49ddfsW7dOty5cwcvXrxA8eLFUb16dfTq1Qs9evSAtbV1QdZMREREn5h8dWoFgHr16qFevXoFUQsREREVUVr9lg0RERGRLjGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikp1WgeTMmTO4cOGC9PyPP/5A+/btMX78+HfeOI2IiIjodVoFkq+//hrXrl0DANy8eRNdu3aFqakpIiMjMXr0aJ0WSERERJ8+rQLJtWvXUK1aNQBAZGQkGjRogPXr1yMiIgIbN27UZX1ERERUBGgVSIQQUKlUAIC9e/eiZcuWAABnZ2c8fvxYd9URERFRkaBVIKlZsyamT5+OtWvX4tChQ2jVqhUA4NatW7C3t9eqkO+//x4KhQLDhw+XhqWlpWHw4MGwtbWFubk5AgMDkZCQoFX7REREVHhpFUhCQ0Nx5swZBAcHY8KECfDw8AAA/P7776hbt26+2zt16hR+/PFHVKlSRW34iBEjsHXrVkRGRuLQoUO4f/8+OnbsqE3JREREVIjl+7dssrOzkZiYiMOHD2v8iN7cuXOhr6+fr/aeP3+OHj16YOXKlZg+fbo0PCkpCatWrcL69evRpEkTAEB4eDi8vLxw8uRJ1KlTJ7+lExERUSGV7yMk+vr6aNasGRITEzXGGRsbw8DAIF/tDR48GK1atYKfn5/a8OjoaGRmZqoN9/T0ROnSpXHixIk3tpeeno7k5GS1BxERERVuWp2yqVSpEm7evPneC9+wYQPOnDmDWbNmaYyLj4+HoaEhrKys1Ibb29sjPj7+jW3OmjULSqVSejg7O793nURERFSwtAok06dPx8iRI7Ft2zY8ePBAqyMSd+/exbBhw7Bu3ToYGxtrU0auxo0bh6SkJOlx9+5dnbVNREREBSPffUgASJf5tm3bFgqFQhouhIBCoUB2dvY724iOjsbDhw9Ro0YNaVh2djYOHz6MJUuWYNeuXcjIyEBiYqLaUZKEhAQ4ODi8sV0jIyMYGRlp8aqIiIhILloFkgMHDrz3gps2bap2+3kA+PLLL+Hp6YkxY8bA2dkZBgYG2LdvHwIDAwEAMTExiIuLg4+Pz3svn4iIiAoPrQJJw4YN33vBFhYWqFSpktowMzMz2NraSsP79u2LkJAQ2NjYwNLSEkOGDIGPjw+vsCEiIvrEaP1rv0eOHMEXX3yBunXr4t69ewCAtWvX4ujRozorbuHChWjdujUCAwPRoEEDODg4YNOmTTprn4iIiAoHrQLJxo0bERAQABMTE5w5cwbp6ekAXt47ZObMmVoXc/DgQYSGhkrPjY2NERYWhidPniAlJQWbNm16a/8RIiIi+jhpfZXN8uXLsXLlSrX7jvj6+uLMmTM6K46IiIiKBq0CSUxMDBo0aKAxXKlU5nrDNCIiIqK30SqQODg44Pr16xrDjx49Cnd39/cuioiIiIoWrQJJv379MGzYMERFRUGhUOD+/ftYt24dRo4ciYEDB+q6RiIiIvrEaXXZ79ixY6FSqdC0aVOkpqaiQYMGMDIywsiRIzFkyBBd10hERESfOK0CiUKhwIQJEzBq1Chcv34dz58/R4UKFWBubq7r+oiIiKgI0CqQ7N+/H3Xr1oWxsTEqVKig65qIiIioiNEqkLRt2xZZWVn47LPP0KhRIzRs2BC+vr4wMTHRdX1ERERUBGjVqfXp06fYt28fWrRogb///hsdOnSAlZUVfH198e233+q6RiIiIvrEKYQQ4n0buXTpEubOnYt169ZBpVLl6dd+P5Tk5GQolUokJSXB0tJSZ+26jt2us7Yod7e/byV3CURERVpBfYfmRqtTNteuXcPBgwdx8OBBHDp0COnp6ahfvz7mzZuHRo0a6bhEIiIi+tRpFUg8PT1hZ2eHYcOGYezYsahcuTIUCoWuayMiIqIiQqs+JEOHDkXJkiUxdepUDBgwABMmTMDu3buRmpqq6/qIiIioCNAqkISGhuLMmTOIj4/HuHHjkJGRgQkTJqB48eLw9fXVdY1ERET0idMqkOTIzs5GZmYm0tPTkZaWhvT0dMTExOiqNiIiIioitD5lU6VKFdjb2+Prr7/G/fv30a9fP5w9exaPHj3SdY1ERET0idOqU+uDBw/Qv39/NGrUCJUqVdJ1TURERFTEaBVIIiMjdV0HERERFWFanbJZvXo1tm//vxuDjR49GlZWVqhbty7u3Lmjs+KIiIioaNAqkMycOVP63ZoTJ04gLCwMc+bMQfHixTFixAidFkhERESfPq1O2dy9exceHh4AgC1btiAwMBD9+/eHr68v79RKRERE+abVERJzc3P8999/AIDdu3fD398fAGBsbIwXL17orjoiIiIqErQ6QuLv74+vvvoK1atXx7Vr19CyZUsAL39kz9XVVZf1ERERURGg1RGSsLAw+Pj44NGjR9i4cSNsbW0BANHR0ejWrZtOCyQiIqJPn1ZHSKysrLBkyRKN4VOmTHnvgoiIiKjo0SqQAEBiYiL+/vtvPHz4ECqVShquUCjQs2dPnRRHRERERYNWgWTr1q3o0aMHnj9/DktLSygUCmkcAwkRERHll1Z9SL755hv06dMHz58/R2JiIp4+fSo9njx5ousaiYiI6BOnVSC5d+8ehg4dClNTU13XQ0REREWQVoEkICAAp0+f1nUtREREVERp1YekVatWGDVqFC5fvozKlSvDwMBAbXzbtm11UhwREREVDVoFkn79+gEApk6dqjFOoVAgOzv7/aoiIiKiIkWrQPLqZb5ERERE70urPiRvkpiYmOsN04iIiIjeRieBZN++fejevTscHR0xadIkXTRJRERERYjWgeTu3buYOnUq3Nzc0KxZMygUCmzevBnx8fG6rI+IiIiKgHwFkszMTERGRiIgIADly5fHuXPnMHfuXOjp6WHChAlo3ry5xhU3RERERO+Sr06tJUuWhKenJ7744gts2LAB1tbWAMBf+KWPiuvY7XKX8Mm7/X2rAmub26/gFdT247YreAX52Sto+TpCkpWVBYVCAYVCAX19/YKqiYiIiIqYfAWS+/fvo3///vjll1/g4OCAwMBAbN68We3H9YiIiIjyK1+BxNjYGD169MD+/ftx4cIFeHl5YejQocjKysKMGTOwZ88e3hSNiIiI8k3rq2zKlCmD6dOn486dO9i+fTvS09PRunVr2Nvb67I+IiIiKgK0ulPrq/T09NCiRQu0aNECjx49wtq1a3VRFxERERUhOr1Tq52dHUJCQnTZJBERERUBOg0kRERERNpgICEiIiLZMZAQERGR7LQKJFOnTkVqaqrG8BcvXmDq1KnvXRQREREVLVoFkilTpuD58+caw1NTUzFlypT3LoqIiIiKFq0CiRAi17uznj9/HjY2Nu9dFBERERUt+boPibW1tfRbNuXKlVMLJdnZ2Xj+/DkGDBig8yKJiIjo05avQBIaGgohBPr06YMpU6ZAqVRK4wwNDeHq6gofHx+dF0lERESftnwFkqCgIACAm5sbfH19UazYe9/olYiIiEi7PiQpKSnYt2+fxvBdu3Zhx44d710UERERFS1aBZKxY8fm+qu+QgiMHTv2vYsiIiKiokWrQBIbG4sKFSpoDPf09MT169fz3M6yZctQpUoVWFpawtLSEj4+PmpHWNLS0jB48GDY2trC3NwcgYGBSEhI0KZkIiIiKsS0CiRKpRI3b97UGH79+nWYmZnluZ1SpUrh+++/R3R0NE6fPo0mTZqgXbt2uHTpEgBgxIgR2Lp1KyIjI3Ho0CHcv38fHTt21KZkIiIiKsS0CiTt2rXD8OHDcePGDWnY9evX8c0336Bt27Z5bqdNmzZo2bIlypYti3LlymHGjBkwNzfHyZMnkZSUhFWrVmHBggVo0qQJvL29ER4ejuPHj+PkyZPalE1ERESFlFaBZM6cOTAzM4Onpyfc3Nzg5uYGLy8v2NraYt68eVoVkp2djQ0bNiAlJQU+Pj6Ijo5GZmYm/Pz8pGk8PT1RunRpnDhx4o3tpKenIzk5We1BREREhZtW1+0qlUocP34ce/bswfnz52FiYoIqVaqgQYMG+W7rwoUL8PHxQVpaGszNzbF582ZUqFAB586dg6GhIaysrNSmt7e3R3x8/BvbmzVrFm9fT0RE9JHR+kYiCoUCzZo1Q4MGDWBkZJTrreTzonz58jh37hySkpLw+++/IygoCIcOHdK2LIwbNw4hISHS8+TkZDg7O2vdHhERERU8rU7ZqFQqTJs2DSVLloS5uTlu3boFAPjuu++watWqfLVlaGgIDw8PeHt7Y9asWahatSoWLVoEBwcHZGRkIDExUW36hIQEODg4vLE9IyMj6aqdnAcREREVbloFkunTpyMiIgJz5syBoaGhNLxSpUr46aef3qsglUqF9PR0eHt7w8DAQO0GbDExMYiLi+Pt6YmIiD4xWp2yWbNmDVasWIGmTZuq/Zhe1apVcfXq1Ty3M27cOLRo0QKlS5fGs2fPsH79ehw8eBC7du2CUqlE3759ERISAhsbG1haWmLIkCHw8fFBnTp1tCmbiIiICimtAsm9e/fg4eGhMVylUiEzMzPP7Tx8+BC9evXCgwcPoFQqUaVKFezatQv+/v4AgIULF0JPTw+BgYFIT09HQEAAli5dqk3JREREVIhpFUgqVKiAI0eOwMXFRW3477//jurVq+e5nXf1NzE2NkZYWBjCwsK0KZOIiIg+EloFkokTJyIoKAj37t2DSqXCpk2bEBMTgzVr1mDbtm26rpGIiIg+cVrfqXXr1q3Yu3cvzMzMMHHiRFy5cgVbt26VTrcQERER5VW+j5BkZWVh5syZ6NOnD/bs2VMQNREREVERk+8jJMWKFcOcOXOQlZVVEPUQERFREaTVKZumTZu+191UiYiIiF6lVafWFi1aYOzYsbhw4QK8vb1hZmamNj4/v/hLREREpFUgGTRoEABgwYIFGuMUCgWys7PfryoiIiIqUrQKJCqVStd1EBERURGW7z4kmZmZKFasGC5evFgQ9RAREVERlO9AYmBggNKlS/O0DBEREemMVlfZTJgwAePHj8eTJ090XQ8REREVQVr1IVmyZAmuX78OJycnuLi4aFxlc+bMGZ0UR0REREWDVoGkffv2Oi6DiIiIijKtAsmkSZN0XQcREREVYVoFkhzR0dG4cuUKAKBixYqoXr26TooiIiKiokWrQPLw4UN07doVBw8ehJWVFQAgMTERjRs3xoYNG2BnZ6fLGomIiOgTp9VVNkOGDMGzZ89w6dIlPHnyBE+ePMHFixeRnJyMoUOH6rpGIiIi+sRpdYRk586d2Lt3L7y8vKRhFSpUQFhYGJo1a6az4oiIiKho0OoIiUqlgoGBgcZwAwMD3laeiIiI8k2rQNKkSRMMGzYM9+/fl4bdu3cPI0aMQNOmTXVWHBERERUNWgWSJUuWIDk5Ga6urihTpgzKlCkDNzc3JCcnY/HixbqukYiIiD5xWvUhcXZ2xpkzZ7B3715cvXoVAODl5QU/Pz+dFkdERERFg9b3IVEoFPD394e/v78u6yEiIqIiKF+nbPbv348KFSogOTlZY1xSUhIqVqyII0eO6Kw4IiIiKhryFUhCQ0PRr18/WFpaaoxTKpX4+uuvsWDBAp0VR0REREVDvgLJ+fPn0bx58zeOb9asGaKjo9+7KCIiIipa8hVIEhIScr3/SI5ixYrh0aNH710UERERFS35CiQlS5bExYsX3zj+n3/+gaOj43sXRUREREVLvgJJy5Yt8d133yEtLU1j3IsXLzBp0iS0bt1aZ8URERFR0ZCvy36//fZbbNq0CeXKlUNwcDDKly8PALh69SrCwsKQnZ2NCRMmFEihRERE9OnKVyCxt7fH8ePHMXDgQIwbNw5CCAAv70kSEBCAsLAw2NvbF0ihRERE9OnK943RXFxc8Ndff+Hp06e4fv06hBAoW7YsrK2tC6I+IiIiKgK0vlOrtbU1PvvsM13WQkREREWUVj+uR0RERKRLDCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESykzWQzJo1C5999hksLCxQokQJtG/fHjExMWrTpKWlYfDgwbC1tYW5uTkCAwORkJAgU8VERERUEGQNJIcOHcLgwYNx8uRJ7NmzB5mZmWjWrBlSUlKkaUaMGIGtW7ciMjIShw4dwv3799GxY0cZqyYiIiJdKybnwnfu3Kn2PCIiAiVKlEB0dDQaNGiApKQkrFq1CuvXr0eTJk0AAOHh4fDy8sLJkydRp04dOcomIiIiHStUfUiSkpIAADY2NgCA6OhoZGZmws/PT5rG09MTpUuXxokTJ3JtIz09HcnJyWoPIiIiKtwKTSBRqVQYPnw4fH19UalSJQBAfHw8DA0NYWVlpTatvb094uPjc21n1qxZUCqV0sPZ2bmgSyciIqL3VGgCyeDBg3Hx4kVs2LDhvdoZN24ckpKSpMfdu3d1VCEREREVFFn7kOQIDg7Gtm3bcPjwYZQqVUoa7uDggIyMDCQmJqodJUlISICDg0OubRkZGcHIyKigSyYiIiIdkvUIiRACwcHB2Lx5M/bv3w83Nze18d7e3jAwMMC+ffukYTExMYiLi4OPj8+HLpeIiIgKiKxHSAYPHoz169fjjz/+gIWFhdQvRKlUwsTEBEqlEn379kVISAhsbGxgaWmJIUOGwMfHh1fYEBERfUJkDSTLli0DADRq1EhteHh4OHr37g0AWLhwIfT09BAYGIj09HQEBARg6dKlH7hSIiIiKkiyBhIhxDunMTY2RlhYGMLCwj5ARURERCSHQnOVDRERERVdDCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItnJGkgOHz6MNm3awMnJCQqFAlu2bFEbL4TAxIkT4ejoCBMTE/j5+SE2NlaeYomIiKjAyBpIUlJSULVqVYSFheU6fs6cOfjhhx+wfPlyREVFwczMDAEBAUhLS/vAlRIREVFBKibnwlu0aIEWLVrkOk4IgdDQUHz77bdo164dAGDNmjWwt7fHli1b0LVr1w9ZKhERERWgQtuH5NatW4iPj4efn580TKlUonbt2jhx4sQb50tPT0dycrLag4iIiAq3QhtI4uPjAQD29vZqw+3t7aVxuZk1axaUSqX0cHZ2LtA6iYiI6P0V2kCirXHjxiEpKUl63L17V+6SiIiI6B0KbSBxcHAAACQkJKgNT0hIkMblxsjICJaWlmoPIiIiKtwKbSBxc3ODg4MD9u3bJw1LTk5GVFQUfHx8ZKyMiIiIdE3Wq2yeP3+O69evS89v3bqFc+fOwcbGBqVLl8bw4cMxffp0lC1bFm5ubvjuu+/g5OSE9u3by1c0ERER6ZysgeT06dNo3Lix9DwkJAQAEBQUhIiICIwePRopKSno378/EhMTUa9ePezcuRPGxsZylUxEREQFQNZA0qhRIwgh3jheoVBg6tSpmDp16gesioiIiD60QtuHhIiIiIoOBhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSIiIikh0DCREREcmOgYSIiIhkx0BCREREsmMgISIiItkxkBAREZHsGEiIiIhIdgwkREREJDsGEiIiIpIdAwkRERHJjoGEiIiIZMdAQkRERLJjICEiIiLZMZAQERGR7BhIiIiISHYMJERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkew+ikASFhYGV1dXGBsbo3bt2vj777/lLomIiIh0qNAHkl9//RUhISGYNGkSzpw5g6pVqyIgIAAPHz6UuzQiIiLSkUIfSBYsWIB+/frhyy+/RIUKFbB8+XKYmprif//7n9ylERERkY4Uk7uAt8nIyEB0dDTGjRsnDdPT04Ofnx9OnDiR6zzp6elIT0+XniclJQEAkpOTdVqbKj1Vp+2RJl1vsxzcdgWvoLYdwO33IfCz9/HS9bbLaU8IodN2c1OoA8njx4+RnZ0Ne3t7teH29va4evVqrvPMmjULU6ZM0Rju7OxcIDVSwVGGyl0BaYvb7uPG7ffxKqht9+zZMyiVyoJp/P8r1IFEG+PGjUNISIj0XKVS4cmTJ7C1tYVCoZCxMnklJyfD2dkZd+/ehaWlpdzlUD5w2328uO0+Xtx2Lwkh8OzZMzg5ORX4sgp1IClevDj09fWRkJCgNjwhIQEODg65zmNkZAQjIyO1YVZWVgVV4kfH0tKySH+4Pmbcdh8vbruPF7cdCvzISI5C3anV0NAQ3t7e2LdvnzRMpVJh37598PHxkbEyIiIi0qVCfYQEAEJCQhAUFISaNWuiVq1aCA0NRUpKCr788ku5SyMiIiIdKfSBpEuXLnj06BEmTpyI+Ph4VKtWDTt37tTo6EpvZ2RkhEmTJmmczqLCj9vu48Vt9/HitvvwFOJDXMtDRERE9BaFug8JERERFQ0MJERERCQ7BhIiIiKSHQMJAQAiIiLyfL+W/ExLBef27dtQKBQ4d+6c3KUQfdJ69+6N9u3bS88bNWqE4cOH52ne/Exb1BX6q2zow+jSpQtatmwpdxkfpUaNGqFatWoIDQ2VuxQqAL1790ZiYiK2bNkidylUSGzatAkGBgZyl/HJYSAhAICJiQlMTEzkLoOo0MjOzi7SPzdBb2ZjYyN3CZ8knrIpJH7//XdUrlwZJiYmsLW1hZ+fH1JSUqRDhVOmTIGdnR0sLS0xYMAAZGRkSPPu3LkT9erVg5WVFWxtbdG6dWvcuHFDGp9zaH/Tpk1o3LgxTE1NUbVqVbVfTH79NMz58+fRuHFjWFhYwNLSEt7e3jh9+rRazbt27YKXlxfMzc3RvHlzPHjwoOBWUCHVu3dvHDp0CIsWLYJCoYBCocCNGzfQt29fuLm5wcTEBOXLl8eiRYvU5svKysLQoUOlbTZmzBgEBQWpHRZ+13bNzaFDh1CrVi0YGRnB0dERY8eORVZWljT+2bNn6NGjB8zMzODo6IiFCxd+MoeUGzVqhODgYAQHB0OpVKJ48eL47rvvpF8pffr0KXr16gVra2uYmpqiRYsWiI2NlebP+Qz8+eefqFChAoyMjNCnTx+sXr0af/zxh7R9Dx48iIMHD0KhUCAxMVGa/9y5c1AoFLh9+7Y0bOXKlXB2doapqSk6dOiABQsWqH3OXj8VAADDhw9Ho0aNpOcqlQqzZs2S3k9Vq1bF77//Lo1/+vQpevToATs7O5iYmKBs2bIIDw+Xxt+9exedO3eGlZUVbGxs0K5dO7UaP3ZvWz8522nfvn2oWbMmTE1NUbduXcTExKi1MX36dJQoUQIWFhb46quvMHbsWFSrVu2Ny3z9M7N06VKULVsWxsbGsLe3x+eff65R4+jRo2FjYwMHBwdMnjxZVy//k8JAUgg8ePAA3bp1Q58+fXDlyhUcPHgQHTt2lHak+/btk4b/8ssv2LRpk9ovGqekpCAkJASnT5/Gvn37oKenhw4dOkClUqktZ8KECRg5ciTOnTuHcuXKoVu3bmpfVq/q0aMHSpUqhVOnTiE6Ohpjx45VO0SZmpqKefPmYe3atTh8+DDi4uIwcuTIAlg7hduiRYvg4+ODfv364cGDB3jw4AFKlSqFUqVKITIyEpcvX8bEiRMxfvx4/Pbbb9J8s2fPxrp16xAeHo5jx44hOTlZ45RAXrdrjnv37qFly5b47LPPcP78eSxbtgyrVq3C9OnTpWlCQkJw7Ngx/Pnnn9izZw+OHDmCM2fOFMi6kcPq1atRrFgx/P3331i0aBEWLFiAn376CcDLL//Tp0/jzz//xIkTJyCEQMuWLZGZmSnNn5qaitmzZ+Onn37CpUuX8MMPP6Bz585S4H7w4AHq1q2bp1qOHTuGAQMGYNiwYTh37hz8/f0xY8aMfL+mWbNmYc2aNVi+fDkuXbqEESNG4IsvvsChQ4cAAN999x0uX76MHTt24MqVK1i2bBmKFy8OAMjMzERAQAAsLCxw5MgRHDt2TPoH4tV/aj5m71o/wMt93/z583H69GkUK1YMffr0kcatW7cOM2bMwOzZsxEdHY3SpUtj2bJleV7+6dOnMXToUEydOhUxMTHYuXMnGjRooDbN6tWrYWZmhqioKMyZMwdTp07Fnj173v/Ff2oEyS46OloAELdv39YYFxQUJGxsbERKSoo0bNmyZcLc3FxkZ2fn2t6jR48EAHHhwgUhhBC3bt0SAMRPP/0kTXPp0iUBQFy5ckUIIUR4eLhQKpXSeAsLCxEREZFr++Hh4QKAuH79ujQsLCxM2Nvb5/1Ff0IaNmwohg0b9tZpBg8eLAIDA6Xn9vb2Yu7cudLzrKwsUbp0adGuXbs3tvGm7Xr27FkhhBDjx48X5cuXFyqVSponLCxMeq8kJycLAwMDERkZKY1PTEwUpqam76z/Y9CwYUPh5eWl9vrHjBkjvLy8xLVr1wQAcezYMWnc48ePhYmJifjtt9+EEP/3vj537pxau0FBQRrb5cCBAwKAePr0qTTs7NmzAoC4deuWEEKILl26iFatWqnN16NHD7XPWW5tDxs2TDRs2FAIIURaWpowNTUVx48fV5umb9++olu3bkIIIdq0aSO+/PLLXNfJ2rVrNd4T6enpwsTEROzatSvXeT4m71o/Odtp79690rjt27cLAOLFixdCCCFq164tBg8erDa/r6+vqFq1qvT89e306md+48aNwtLSUiQnJ+daY8OGDUW9evXUhn322WdizJgx+X25nzweISkEqlatiqZNm6Jy5cro1KkTVq5ciadPn6qNNzU1lZ77+Pjg+fPnuHv3LgAgNjYW3bp1g7u7OywtLeHq6goAiIuLU1tOlSpVpL8dHR0BAA8fPsy1ppCQEHz11Vfw8/PD999/r3GqwNTUFGXKlFFr701tFUVhYWHw9vaGnZ0dzM3NsWLFCml7JCUlISEhAbVq1ZKm19fXh7e3t1obed2uOa5cuQIfHx+1fg++vr54/vw5/v33X9y8eROZmZlqy1UqlShfvryuXrbs6tSpo/b6fXx8EBsbi8uXL6NYsWKoXbu2NM7W1hbly5fHlStXpGGGhoZqn5P3ERMTo7auAWg8f5fr168jNTUV/v7+MDc3lx5r1qyRPpMDBw7Ehg0bUK1aNYwePRrHjx+X5j9//jyuX78OCwsLaV4bGxukpaW98/TfxyAv6wd4+77vfbeTv78/XFxc4O7ujp49e2LdunVITU1Vm+b19xT3l7ljp9ZCQF9fH3v27MHx48exe/duLF68GBMmTEBUVFSe5m/Tpg1cXFywcuVKODk5QaVSoVKlShqHZF895ZKz037T4f/Jkyeje/fu2L59O3bs2IFJkyZhw4YN6NChg0ZbOe0J/goBAGDDhg0YOXIk5s+fDx8fH1hYWGDu3Ll53p458rpdSXdMTEzy1JFVT+/l/3KvvudfPfWTV3p6ehqfm1fbef78OQBg+/btKFmypNp0Ob+x0qJFC9y5cwd//fUX9uzZg6ZNm2Lw4MGYN28enj9/Dm9vb6xbt05j2XZ2dvmut7B51/rJCSX52ffll4WFBc6cOYODBw9i9+7dmDhxIiZPnoxTp05J/YVy21/qavmfEh4hKSQUCgV8fX0xZcoUnD17FoaGhti8eTOAl//lvHjxQpr25MmTMDc3h7OzM/777z/ExMTg22+/RdOmTeHl5aV2dOV9lCtXDiNGjMDu3bvRsWNHtY5y9H8MDQ2RnZ0tPT927Bjq1q2LQYMGoXr16vDw8FD7b02pVMLe3h6nTp2ShmVnZ6v15dBmu3p5eUl9I16txcLCAqVKlYK7uzsMDAzUlpuUlIRr16691+svTF4PfSdPnkTZsmVRoUIFZGVlqY3PWccVKlR4a5uvb1/g/77MX+3I/fr9YMqXL6+2rgFoPLezs9PoDP5qOzmda+Pi4uDh4aH2cHZ2VmsnKCgIP//8M0JDQ7FixQoAQI0aNRAbG4sSJUpozK9UKt/6uj8GeV0/b5OX7fQuxYoVg5+fH+bMmYN//vkHt2/fxv79+/PVBvEISaEQFRWFffv2oVmzZihRogSioqLw6NEjeHl54Z9//kFGRgb69u2Lb7/9Frdv38akSZMQHBwMPT09WFtbw9bWFitWrICjoyPi4uIwduzY96rnxYsXGDVqFD7//HO4ubnh33//xalTpxAYGKijV/xpcXV1RVRUFG7fvg1zc3OULVsWa9aswa5du+Dm5oa1a9fi1KlTcHNzk+YZMmQIZs2aBQ8PD3h6emLx4sV4+vSp9N+bNtt10KBBCA0NxZAhQxAcHIyYmBhMmjQJISEh0NPTg4WFBYKCgjBq1CjY2NigRIkSmDRpEvT09D6Zy1vj4uIQEhKCr7/+GmfOnMHixYsxf/58lC1bFu3atUO/fv3w448/wsLCAmPHjkXJkiXRrl27t7bp6uqKXbt2ISYmBra2tlAqldIX3uTJkzFjxgxcu3YN8+fPV5tvyJAhaNCgARYsWIA2bdpg//792LFjh9q6btKkCebOnYs1a9bAx8cHP//8My5evIjq1asDePnf98iRIzFixAioVCrUq1cPSUlJOHbsGCwtLREUFISJEyfC29sbFStWRHp6OrZt2wYvLy8ALzunz507F+3atcPUqVNRqlQp3LlzB5s2bcLo0aNRqlQpHW+BD+td68fFxeWdbQwZMgT9+vVDzZo1UbduXfz666/4559/4O7unqcatm3bhps3b6JBgwawtrbGX3/9BZVK9UmdCv1g5O3CQkIIcfnyZREQECDs7OyEkZGRKFeunFi8eLEQ4v86U02cOFHY2toKc3Nz0a9fP5GWlibNv2fPHuHl5SWMjIxElSpVxMGDBwUAsXnzZiGEZudHIYR4+vSpACAOHDgghFDv1Jqeni66du0qnJ2dhaGhoXBychLBwcFSJ7DXO8AKIcTmzZtFUX07xcTEiDp16ggTExMBQFy9elX07t1bKJVKYWVlJQYOHCjGjh2r1kkuMzNTBAcHC0tLS2FtbS3GjBkjOnXqJLp27SpNo812PXjwoPjss8+EoaGhcHBwEGPGjBGZmZnS+OTkZNG9e3dhamoqHBwcxIIFC0StWrXE2LFjC3o1FbiGDRuKQYMGiQEDBkjrdfz48VKHzidPnoiePXsKpVIpTExMREBAgLh27Zo0f27vayGEePjwofD39xfm5uZqn5mjR4+KypUrC2NjY1G/fn0RGRmp1qlVCCFWrFghSpYsKUxMTET79u3F9OnThYODg1r7EydOFPb29kKpVIoRI0aI4OBgqVOrEEKoVCoRGhoqypcvLwwMDISdnZ0ICAgQhw4dEkIIMW3aNOHl5SVMTEyEjY2NaNeunbh586Y0/4MHD0SvXr1E8eLFhZGRkXB3dxf9+vUTSUlJ77nGC4e3rZ+8dD4WQoipU6eK4sWLC3Nzc9GnTx8xdOhQUadOHWn82zq1HjlyRDRs2FBYW1sLExMTUaVKFfHrr7/mOm2Odu3aiaCgIB2uhU+DQgie+C/MeJfIokGlUsHLywudO3fGtGnTPthyU1JSULJkScyfPx99+/b9YMstCB/DHXP79euHq1ev4siRI3KXQm/h7+8PBwcHrF27Vu5SihSesiGSwZ07d7B79240bNgQ6enpWLJkCW7duoXu3bsX6HLPnj2Lq1evolatWkhKSsLUqVMB4J2nLUg78+bNg7+/P8zMzLBjxw6sXr0aS5culbssekVqaiqWL1+OgIAA6Ovr45dffsHevXt5nxAZMJAQyUBPTw8REREYOXIkhBCoVKkS9u7dK537L0jz5s1DTEwMDA0N4e3tjSNHjkg30iLd+vvvvzFnzhw8e/YM7u7u+OGHH/DVV1/JXRa9QqFQ4K+//sKMGTOQlpaG8uXLY+PGjfDz85O7tCKHp2yIiIhIdrzsl4iIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2DCREREQkOwYSoiKsd+/eaN++vdxlEBExkBAREZH8GEiIKFcLFixA5cqVYWZmBmdnZwwaNAjPnz+XxkdERMDKygq7du2Cl5cXzM3N0bx5czx48ECaJisrC0OHDoWVlRVsbW0xZswYBAUFqR2VcXV11fj9mWrVqmHy5Ml5rgUAVq5cCWdnZ5iamqJDhw5YsGABrKys1Kb5448/UKNGDRgbG8Pd3R1TpkxBVlbWe68rInp/DCRElCs9PT388MMPuHTpElavXo39+/dj9OjRatOkpqZi3rx5WLt2LQ4fPoy4uDiMHDlSGj979mysW7cO4eHhOHbsGJKTk7X6och31XLs2DEMGDAAw4YNw7lz5+Dv748ZM2aotXHkyBH06tULw4YNw+XLl/Hjjz8iIiJCYzoikomsvzVMRLJ6/WfV3yYyMlLY2tpKz8PDwwUAcf36dWlYWFiYsLe3l57b29uLuXPnSs+zsrJE6dKl1Zbp4uIiFi5cqLasqlWrikmTJuW5li5duohWrVqpTdOjRw+hVCql502bNhUzZ85Um2bt2rXC0dHxjcshog+HP65HRLnau3cvZs2ahatXryI5ORlZWVlIS0tDamoqTE1NAQCmpqYoU6aMNI+joyMePnwIAEhKSkJCQgJq1aoljdfX14e3tzdUKpVOa4mJiUGHDh3U5qlVqxa2bdsmPT9//jyOHTumdkQkOztb4zURkTx4yoaINNy+fRutW7dGlSpVsHHjRkRHRyMsLAwAkJGRIU1nYGCgNp9CoYDI5+916unpacyTmZmZ71re5fnz55gyZQrOnTsnPS5cuIDY2FgYGxvnq2Yi0j0eISEiDdHR0VCpVJg/fz709F7+3/Lbb7/lqw2lUgl7e3ucOnUKDRo0APDyiMSZM2dQrVo1aTo7Ozu1jrDJycm4detWvmopX748Tp06pTbs9ec1atRATEwMPDw88vU6iOjDYCAhKuKSkpJw7tw5tWHFixdHZmYmFi9ejDZt2uDYsWNYvnx5vtseMmQIZs2aBQ8PD3h6emLx4sV4+vQpFAqFNE2TJk0QERGBNm3awMrKChMnToS+vr403sPD4521DBkyBA0aNMCCBQvQpk0b7N+/Hzt27FBbzsSJE9G6dWuULl0an3/+OfT09HD+/HlcvHgR06dPz/drIyIdk7sTCxHJJygoSADQePTt21csWLBAODo6ChMTExEQECDWrFkjAIinT58KIV52an2106gQQmzevFm8ulvJzMwUwcHBwtLSUlhbW4sxY8aITp06ia5du0rTJCUliS5dughLS0vh7OwsIiIiNDq1vqsWIYRYsWKFKFmypDAxMRHt27cX06dPFw4ODmr17dy5U9StW1eYmJgIS0tLUatWLbFixQqdrU8i0p5CiHye8CUi0pJKpYKXlxc6d+6MadOmFeiy+vXrh6tXr+LIkSMFuhwi0g2esiGiAnPnzh3s3r0bDRs2RHp6OpYsWYJbt26he/fuOl/WvHnz4O/vDzMzM+zYsQOrV6/G0qVLdb4cIioYDCREVGD09PQQERGBkSNHQgiBSpUqYe/evfDy8tL5sv7++2/MmTMHz549g7u7O3744Qd89dVXOl8OERUMnrIhIiIi2fE+JERERCQ7BhIiIiKSHQMJERERyY6BhIiIiGTHQEJERESyYyAhIiIi2TGQEBERkewYSIiIiEh2/w/4K0AwkTqmqgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 cornea 4 4 5 4 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 10 40.0 40.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 50.0 40.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV8klEQVR4nO3dd3QU5f/28WsTUgkphJBQQm+hIwgGpJeIVEWaKEEQRSkCIlVBEESliwFE/YIgiCI2VKQ3EZAiiAKhF5GmkIQaQnI/f/hkfywJkOwkJtH365w9h51yz2dmdocrM/fM2owxRgAAAE5yyeoCAABAzkaYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAy0U8//SR3d3cdP348Q9rbu3evcuXKpV9//TVD2kPOUKxYMXXr1u0fX+7cuXNls9m0ffv2f3zZyFkIE+lw+PBhPfvssypRooQ8PT3l6+urOnXqaNq0abp27VpWl5due/fu1auvvqpjx46le97BgwfLZrOpY8eOGV/Yv8iIESPUuXNnFS1a1D7syy+/VLly5eTn56dWrVrpjz/+SDFf69at9cwzz6QYXr58ebVo0UIjR45M0/KT/zO49ZU/f341bNhQy5Ytc37FUlGsWDG1bNkyQ9tExjp27FiKz8OdXs4cF/DflSurC8gpvv32W7Vv314eHh7q2rWrKlasqBs3buiHH37QSy+9pN9++02zZ8/O6jLTZe/evRo9erQaNGigYsWKpXk+Y4w+/vhjFStWTEuXLtWlS5eUJ0+ezCs0h9q1a5dWrVqlH3/80T7syJEj6tixozp27Kjw8HBNnTpVTz31lJYvX26fZvny5dqwYYMOHjyYaru9evXSww8/rMOHD6tkyZJpqmXMmDEqXry4jDE6e/as5s6dq4cfflhLly4lAOQA0dHRcnGx/rdfUFCQ5s+f7zBs0qRJ+v333zVlypQU0wJpZnBPR44cMT4+PqZcuXLmjz/+SDH+4MGDZurUqZaXk5SUZK5evZrquGvXrpnExETLy7jV4sWLjSSzdu3adM23Zs0aI8msWbPGuLm5mblz52ZoXdlBQkKCiY+Pt9RGv379TJEiRUxSUpJ92MyZM02JEiXsw9auXWtsNpu5du2afblhYWFm0qRJd2z3xo0bJiAgwLzyyiv3rGHOnDlGktm2bZvD8AsXLhg3Nzfz+OOPO7NqqSpatKhp0aJFhrWHf0aLFi1M0aJFUx13p88P0udux/Z/Cy5zpMFbb72ly5cv64MPPlCBAgVSjC9VqpReeOEF+/ubN2/qtddeU8mSJeXh4aFixYpp+PDhio+Pd5gv+bTw8uXLVaNGDXl5eendd9/VunXrZLPZtGjRIr388ssqVKiQvL29FRcXJ0naunWrHnroIfn5+cnb21v169fXpk2bUtR16tQp9ejRQwULFpSHh4eKFy+u5557Tjdu3NDcuXPVvn17SVLDhg3tpzbXrVt3z+2xYMEClS9fXg0bNlSTJk20YMGCFNMkr8Onn36qcePGqXDhwvL09FTjxo116NAhh2kPHjyodu3aKSQkRJ6enipcuLA6deqk2NhYSdKjjz6q++67z2GeVq1ayWaz6euvv7YP27p1q2w2m8Pp+5iYGPXv31+hoaHy8PBQqVKl9OabbyopKck+TfKp34kTJ2rq1Kn2/bZ3715J0vTp01WhQgV5e3srICBANWrU0MKFC++5nb788ks1atRINpvNPuzatWvy9/e3D8ubN6+MMfbLZO+8844SExPVt2/fO7br5uamBg0a6KuvvrpnDXfi7+8vLy8v5cr198lJY4yKFSumNm3apJj2+vXr8vPz07PPPuv08pJt3LhR7du3V5EiReTh4aHQ0FANGDAgxWXCbt26ycfHR6dOnVLbtm3l4+OjoKAgDRo0SImJiQ7T/vXXX3ryySfl6+srf39/RUZGavfu3bLZbJo7d659ugYNGqhBgwYpaurWrVuKM3MTJ05U7dq1FRgYKC8vL1WvXl2fffZZinmvXbumfv36KV++fMqTJ49at26tU6dOyWaz6dVXX3WY9tSpU+revbuCg4Pl4eGhChUq6H//+1+attvtfSaSL19t2rRJAwcOVFBQkHLnzq1HHnlE58+fT1Ob6REfH5+m5Sxbtkx169ZV7ty5lSdPHrVo0UK//fabwzTJ+/bEiRNq2bKlfHx8VKhQIUVFRUmS9uzZo0aNGil37twqWrRoqt+1tHyvJen06dPav3+/EhIS7rmOSUlJmjZtmipVqiRPT08FBQXpoYcecugvklHH9rQcF6W0HeuPHz+u559/XmXLlpWXl5cCAwPVvn37f/4yVVanmZygUKFCpkSJEmmePjIy0kgyjz32mImKijJdu3Y1kkzbtm0dpitatKgpVaqUCQgIMEOHDjWzZs0ya9euNWvXrjWSTPny5U3VqlXN5MmTzfjx482VK1fM6tWrjbu7uwkPDzeTJk0yU6ZMMZUrVzbu7u5m69at9rZPnTplChYsaLy9vU3//v3NrFmzzCuvvGLCwsLMxYsXzeHDh02/fv2MJDN8+HAzf/58M3/+fHPmzJm7rtv169eNv7+/ee2114wxxsybN8+4urqa06dPO0yXvA7VqlUz1atXN1OmTDGvvvqq8fb2NjVr1rRPFx8fb4oXL24KFixoxo4da95//30zevRoc//995tjx44ZY4yZPHmycXFxMbGxscaYv1N+QECAcXFxMYMGDbK3NWHCBIfprly5YipXrmwCAwPN8OHDzaxZs0zXrl2NzWYzL7zwgn2+o0eP2rd3iRIlzBtvvGGmTJlijh8/bmbPnm3fl++++66ZNm2a6dGjh+nXr99dt9Pvv/9uJJm3337bYfjGjRuNzWYzCxcuNEeOHDEdOnQwpUqVMsYYc+7cOePv72+++eabu7ZtjDFjx451WNc7Sf7LctWqVeb8+fPm3Llz5tdffzXPPvuscXFxMStWrLBPO2LECOPm5mb++usvhzY+/fRTI8ls2LDhrstKy5mJvn37mocffti8/vrr5t133zU9evQwrq6u5rHHHnOYLjIy0nh6epoKFSqY7t27m5kzZ5p27doZSWbGjBn26RITE014eLhxdXU1ffr0Me+8845p2rSpqVKlipFk5syZY5+2fv36pn79+ilqioyMTPGXeeHChc3zzz9v3nnnHTN58mRTs2ZNIynFvunQoYORZJ588kkTFRVlOnToYF/2qFGj7NOdOXPGFC5c2ISGhpoxY8aYmTNnmtatWxtJZsqUKXfdZsb8vW0jIyPt75P3a7Vq1UyjRo3M9OnTzYsvvmhcXV1Nhw4d7tnerdJyZiIty5k3b56x2WzmoYceMtOnTzdvvvmmKVasmPH39zdHjx61T5e8b8uXL2969eploqKiTO3ate37q2DBguall14y06dPNxUqVDCurq7myJEj9vnT+r1OXpYkh+XfSbdu3Ywk07x5czN16lQzceJE06ZNGzN9+vQU7Vk9tt/ruGiMSfOxfvHixaZKlSpm5MiRZvbs2Wb48OEmICDAFC1a1Fy5cuWe651RCBP3EBsbaySZNm3apGn6Xbt2GUnm6aefdhg+aNAg+6WBZEWLFjWSzPfff+8wbfIHrkSJEg6nxpKSkkzp0qVNRESEw6nzq1evmuLFi5umTZvah3Xt2tW4uLikenoyeV5nLnN89tlnRpI5ePCgMcaYuLg44+npmeKAmLwOYWFhDpcLpk2bZiSZPXv2GGOM+fnnn40ks3jx4jsuc9u2bUaS+e6774wxxvzyyy9Gkmnfvr2pVauWfbrWrVubatWq2d+/9tprJnfu3ObAgQMO7Q0dOtS4urqaEydOGGP+L0z4+vqac+fOOUzbpk0bU6FChbRuHrtVq1YZSWbp0qUpxiWHOEkmb9689s9Ez549zUMPPZSm9hcuXGgkORxUUpP8n8HtLw8PjxSXp6Kjo40kM3PmTIfhrVu3NsWKFXP4zKUmLWEitVO948ePNzabzRw/ftw+LPmgPWbMGIdpkw/CyZYsWWIkOVxmTExMNI0aNbIUJm6v88aNG6ZixYqmUaNG9mE7duwwkkz//v0dpk3+T+nWMNGjRw9ToEAB8+effzpM26lTJ+Pn53fPU+B3ChNNmjRx2C8DBgwwrq6uJiYm5q7t3SotYeJey7l06ZLx9/c3PXv2dJj/zJkzxs/Pz2F48r59/fXX7cMuXrxovLy8jM1mM4sWLbIP379/f4ptmdbv9a3LuleYSL50m9ofCcnrnZHH9nsdF9NzrE/ts7N582YjycybN++u652RuMxxD8mXFtLawfC7776TJA0cONBh+Isvvijp746ctypevLgiIiJSbSsyMlJeXl7297t27dLBgwf1+OOP66+//tKff/6pP//8U1euXFHjxo21YcMGJSUlKSkpSV9++aVatWqlGjVqpGj31tPu6bVgwQLVqFFDpUqVkiT7qczULnVI0lNPPSV3d3f7+7p160r6uyOiJPn5+Un6u9Ph1atXU22jWrVq8vHx0YYNGyT9faq8cOHC6tq1q3bu3KmrV6/KGKMffvjB3r4kLV68WHXr1lVAQIB9W/35559q0qSJEhMT7e0la9euXYpOZ/7+/vr999+1bdu2NG8j6e9T75IUEBCQYty0adN0/Phxbd26VcePH1fDhg21a9cuzZs3T1OmTFFsbKyeeOIJFSpUSA0aNNC+fftStJHc7p9//pmmeqKiorRy5UqtXLlSH330kRo2bKinn35an3/+uX2aMmXKqFatWg778sKFC1q2bJm6dOli6XOT7NbP85UrV/Tnn3+qdu3aMsbo559/TjF9r169HN7XrVvX/tmRpO+//15ubm7q2bOnfZiLi4t69+6dYXVevHhRsbGxqlu3rnbu3OmwbEl6/vnnHea9/RKVMUZLlixRq1atZIxx+CxGREQoNjbWod30eOaZZxz2S926dZWYmJhhtyKndTkrV65UTEyMOnfu7LB+rq6uqlWrltauXZuizaefftr+b39/f5UtW1a5c+dWhw4d7MPLli0rf39/h32enu/13Llz7Zfw7mbJkiWy2WwaNWpUinHJ652Rx/Z7HRfTeqyXHD+rCQkJ+uuvv1SqVCn5+/s7/blyBndz3IOvr68k6dKlS2ma/vjx43JxcbH/Z5ssJCRE/v7+Kb7kxYsXv2Nbt49L7t0fGRl5x3liY2N148YNxcXFqWLFimmqOa1iYmL03XffqU+fPg7X9+rUqaMlS5bowIEDKlOmjMM8RYoUcXif/J/gxYsXJf29jgMHDtTkyZO1YMEC1a1bV61bt9YTTzxhDxqurq4KDw/Xxo0bJf0dJurWrasHH3xQiYmJ2rJli4KDg3XhwgWHMHHw4EH98ssvd+yVfu7cOYf3qe2LIUOGaNWqVapZs6ZKlSqlZs2a6fHHH1edOnXStM2MMakOL1KkiMO26devn3r16qVy5crpiSee0MmTJ/XVV1/pww8/VKtWrbR//357/4Zb203rf/A1a9Z0CJadO3dWtWrV1KdPH7Vs2dJ+YOvatav69Omj48ePq2jRolq8eLESEhL05JNPpmk593LixAmNHDlSX3/9tf0zkCy5j0yy5OvWtwoICHCY7/jx4ypQoIC8vb0dprv9+5de33zzjcaOHatdu3Y5XA+/dXsnf9dv/9zcvuzz588rJiZGs2fPvuMdX7d/FtPqXt+vjHKv5SQfmxo1apTq/MnH0WSp7Vs/Pz8VLlw4xWfaz8/PYX3S+71Oi8OHD6tgwYLKmzfvHafJyGN7WrfnvY71AQEBunbtmsaPH685c+bo1KlTDsec279TmYkwcQ++vr4qWLBguh8SlNaD/K2p8l7jkpPohAkTVLVq1VTn8fHx0YULF9JWZDotXrxY8fHxmjRpkiZNmpRi/IIFCzR69GiHYa6urqm2desHftKkSerWrZu++uorrVixQv369dP48eO1ZcsWFS5cWJL04IMPaty4cbp+/bo2btyoESNGyN/fXxUrVtTGjRsVHBwsSQ5hIikpSU2bNtXgwYNTreH24JPavggLC1N0dLS++eYbff/991qyZIlmzJihkSNHpljXWwUGBkpK20H9k08+0b59+/T1118rMTFRn376qVasWKEaNWqoQoUKeu+997RlyxY9+OCD9nmS282XL98920+Ni4uLGjZsqGnTpungwYOqUKGCJKlTp04aMGCAFixYoOHDh+ujjz5SjRo1VLZsWaeWc6vExEQ1bdpUFy5c0JAhQ1SuXDnlzp1bp06dUrdu3VJ0nrvTZ8dZNpst1XB3e4fOjRs3qnXr1qpXr55mzJihAgUKyM3NTXPmzElTx9vbJa/XE088ccf/HCpXrpzudqW0fb8ywr2Wk7yO8+fPV0hISIrpbg3Cd2svLeuT3u91RsuIY3tat+e9jvXS32fC5syZo/79+ys8PFx+fn6y2Wzq1KlTiu9UZiJMpEHLli01e/Zsbd68WeHh4XedtmjRokpKStLBgwcVFhZmH3727FnFxMQ4PLwovZKfKeDr66smTZrccbqgoCD5+vreMwCl97T1ggULVLFixVRPBb777rtauHDhXf+DvZtKlSqpUqVKevnll/Xjjz+qTp06mjVrlsaOHSvp75Bw48YNffzxxzp16pQ9NNSrV88eJsqUKWMPFdLf2+vy5ct33VZpkTt3bvuzIW7cuKFHH31U48aN07Bhw+Tp6ZnqPOXKlZMkHT169K5tX716VS+99JJee+01+fv76+zZs0pISFDBggUl/X1ACggI0KlTpxzmO3r0qFxcXCwdOG/evClJunz5sn1Y3rx57ZetunTpok2bNmnq1KlOL+NWe/bs0YEDB/Thhx+qa9eu9uErV650us2iRYtq7dq1unr1qsPZidR6xgcEBDicLk92+1+US5Yskaenp5YvXy4PDw/78Dlz5qRYdlJSko4eParSpUvfcdlBQUHKkyePEhMTLX8Ws6vkY1P+/PkzfR0z6nt9e5vLly/XhQsX7nh2IjOP7anVI937WC9Jn332mSIjIx3+wLt+/bpiYmIyrJ60oM9EGgwePFi5c+fW008/rbNnz6YYf/jwYU2bNk2S9PDDD0tSigPw5MmTJUktWrRwuo7q1aurZMmSmjhxosN/AMmSb9VycXFR27ZttXTp0lQfg5ucfnPnzi1JafrQnTx5Uhs2bFCHDh302GOPpXg99dRTOnTokLZu3ZqudYqLi7P/p5asUqVKcnFxcTi9XKtWLbm5uenNN99U3rx57X9J161bV1u2bNH69esdzkpIUocOHbR582aHB0Ili4mJSbHc1CT3fUjm7u6u8uXLyxhz19vNChUqpNDQ0Hs+hvjNN99UQECA/Zp/YGCgcuXKpf3790v6u0/E+fPnU/y1t2PHDlWoUMF+KSi9EhIStGLFCrm7uzscGCXpySef1N69e/XSSy/J1dVVnTp1cmoZt0v+a+zWvzKNMfbvjjMiIiKUkJCg9957zz4sKSnJfpvhrUqWLKn9+/c73NK4e/fuFLfaubq6ymazOZyxOHbsmL788ssUy5akGTNmOAyfPn16ivbatWunJUuWpBrwM+NWzn9aRESEfH199frrr6f6vcjIdUzP9zqtt4a2a9dOxphU/xhK/rxm5rH9dmk91kt/f75uPxM1ffr0FGfcMhtnJtKgZMmSWrhwoTp27KiwsDCHJ2D++OOPWrx4sf0e8CpVqigyMlKzZ89WTEyM6tevr59++kkffvih2rZtq4YNGzpdh4uLi95//301b95cFSpU0FNPPaVChQrp1KlTWrt2rXx9fbV06VJJ0uuvv64VK1aofv36euaZZxQWFqbTp09r8eLF+uGHH+Tv76+qVavK1dVVb775pmJjY+Xh4aFGjRopf/78KZa9cOFCGWPUunXrVGt7+OGHlStXLi1YsEC1atVK8zqtWbNGffr0Ufv27VWmTBndvHlT8+fPtx+Ak3l7e6t69erasmWL/RkT0t9nJq5cuaIrV66kCBMvvfSSvv76a7Vs2VLdunVT9erVdeXKFe3Zs0efffaZjh07ds/LBM2aNVNISIjq1Kmj4OBg7du3T++8845atGhxz065bdq00RdffCFjTKpngU6cOKEJEybo22+/tf9HmytXLrVp00b9+/fXiRMn9MUXX6hgwYIOZ8QSEhK0fv36FB3/7mbZsmX2gHLu3DktXLhQBw8e1NChQ1Ncz27RooUCAwO1ePFiNW/ePNXPw50cOnTIfjbpVtWqVVOzZs1UsmRJDRo0SKdOnZKvr6+WLFli6fp+27ZtVbNmTb344os6dOiQypUrp6+//tp+qe/W7d69e3dNnjxZERER6tGjh86dO6dZs2apQoUK9o7Wyes/efJkPfTQQ3r88cd17tw5RUVFqVSpUvrll1/s01WvXl3t2rXT1KlT9ddff+mBBx7Q+vXrdeDAgRTLfuONN7R27VrVqlVLPXv2VPny5XXhwgXt3LlTq1atyrRLk/8UX19fzZw5U08++aTuu+8+derUSUFBQTpx4oS+/fZb1alTR++8806GLCs93+thw4bpww8/1NGjR+/aCbNhw4Z68skn9fbbb+vgwYN66KGHlJSUpI0bN6phw4bq06dPph7bb5eeY33Lli01f/58+fn5qXz58tq8ebNWrVplv9T6j/nH7hv5Fzhw4IDp2bOnKVasmHF3dzd58uQxderUMdOnTzfXr1+3T5eQkGBGjx5tihcvbtzc3ExoaKgZNmyYwzTG3PlWuuTbh+50u+TPP/9sHn30URMYGGg8PDxM0aJFTYcOHczq1asdpjt+/Ljp2rWrCQoKMh4eHqZEiRKmd+/eDrckvffee6ZEiRLG1dX1rreJVqpUyRQpUuSu26dBgwYmf/78JiEh4Y7rkHwbZvIte0eOHDHdu3c3JUuWNJ6eniZv3rymYcOGZtWqVSnaf+mll4wk8+abbzoML1WqlJFkDh8+nGKeS5cumWHDhplSpUoZd3d3ky9fPlO7dm0zceJEc+PGDYeaJkyYkGL+d99919SrV8++rUuWLGleeumlez7fwRhjdu7caSSZjRs3pjq+ffv25tFHH00x/OzZs6ZVq1YmT5485r777jPbt293GL9s2TKH23PvJrVbQz09PU3VqlXNzJkz73i75/PPP28kmYULF95zGcmSb4dL7dWjRw9jjDF79+41TZo0MT4+PiZfvnymZ8+eZvfu3Slu44yMjDS5c+dOsYxRo0aZ2w9b58+fN48//rjJkyeP8fPzM926dTObNm0ykhxuMzTGmI8++siUKFHCuLu7m6pVq5rly5enemvoBx98YEqXLm08PDxMuXLlzJw5c1Jd9pUrV0zv3r1N3rx5jY+Pj2nbtq39Fts33njDYdqzZ8+a3r17m9DQUOPm5mZCQkJM48aNzezZs9O0bVO7NfT2W7+Tv3fpud3bmSdg3mk5a9euNREREcbPz894enqakiVLmm7dujl8hu+0b+vXr5/qbdipHSfT8r1OXpbS+JyJmzdvmgkTJphy5coZd3d3ExQUZJo3b2527Nhhnyazju23HxeTpeVYf/HiRfPUU0+ZfPnyGR8fHxMREWH279+f4jOT2WzGZHBPHQB2jRs3VsGCBVP8HoIVbdu2lc1m0xdffJFhbd5uwIAB+uCDD3TmzJkUd0rkBF9++aUeeeQR/fDDD2m+8yaj7Nq1S9WqVdNHH32kLl26/KPLBrIKYQLIRFu3blXdunV18ODBDOmgtW/fPlWqVEm7du3K8Ft/k12/fl2hoaFq2bJlik6H2dG1a9cces4nJiaqWbNm2r59u86cOXPXXvUZvWzp78dFz58/X8eOHVNoaGimLRvITugzAWSiWrVq6caNGxnWXlhYWJo6jjrj3LlzWrVqlT777DP99ddfDr83k5317dtX165dU3h4uOLj4/X555/rxx9/1Ouvv56pQUL6+3d7duzYoYYNGypXrlxatmyZli1bpmeeeYYggf8UwgQASX//JH2XLl2UP39+vf3223e8vz27adSokSZNmqRvvvlG169fV6lSpTR9+nT16dMn05ddu3ZtrVy5Uq+99pouX76sIkWK6NVXX9WIESMyfdlAdsJlDgAAYAnPmQAAAJYQJgAAgCX/+j4TSUlJ+uOPP5QnT54M+dVDAAD+K4wxunTpkgoWLCgXlzuff/jXh4k//viDXtUAAFhw8uRJ+w8vpuZfHyaSH3l88uTJFI8NBgAAdxYXF6fQ0NB7/nzAvz5MJF/a8PX1JUwAAOCEe3UToAMmAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLsjRMvPrqq7LZbA6vcuXK2cdfv35dvXv3VmBgoHx8fNSuXTudPXs2CysGAAC3y/IzExUqVNDp06ftrx9++ME+bsCAAVq6dKkWL16s9evX648//tCjjz6ahdUCAIDb5cryAnLlUkhISIrhsbGx+uCDD7Rw4UI1atRIkjRnzhyFhYVpy5YteuCBB/7pUgEAQCqy/MzEwYMHVbBgQZUoUUJdunTRiRMnJEk7duxQQkKCmjRpYp+2XLlyKlKkiDZv3nzH9uLj4xUXF+fwAgAAmSdLz0zUqlVLc+fOVdmyZXX69GmNHj1adevW1a+//qozZ87I3d1d/v7+DvMEBwfrzJkzd2xz/PjxGj16dCZXDiCrFBv6bVaX8K937I0WWV0CcpgsDRPNmze3/7ty5cqqVauWihYtqk8//VReXl5OtTls2DANHDjQ/j4uLk6hoaGWawUAAKnL8ssct/L391eZMmV06NAhhYSE6MaNG4qJiXGY5uzZs6n2sUjm4eEhX19fhxcAAMg82SpMXL58WYcPH1aBAgVUvXp1ubm5afXq1fbx0dHROnHihMLDw7OwSgAAcKssvcwxaNAgtWrVSkWLFtUff/yhUaNGydXVVZ07d5afn5969OihgQMHKm/evPL19VXfvn0VHh7OnRwAAGQjWRomfv/9d3Xu3Fl//fWXgoKC9OCDD2rLli0KCgqSJE2ZMkUuLi5q166d4uPjFRERoRkzZmRlyQAA4DY2Y4zJ6iIyU1xcnPz8/BQbG0v/CeBfgLs5Mh93cyBZWv8PzVZ9JgAAQM5DmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWJJtwsQbb7whm82m/v3724ddv35dvXv3VmBgoHx8fNSuXTudPXs264oEAAApZIswsW3bNr377ruqXLmyw/ABAwZo6dKlWrx4sdavX68//vhDjz76aBZVCQAAUpPlYeLy5cvq0qWL3nvvPQUEBNiHx8bG6oMPPtDkyZPVqFEjVa9eXXPmzNGPP/6oLVu2ZGHFAADgVlkeJnr37q0WLVqoSZMmDsN37NihhIQEh+HlypVTkSJFtHnz5ju2Fx8fr7i4OIcXAADIPLmycuGLFi3Szp07tW3bthTjzpw5I3d3d/n7+zsMDw4O1pkzZ+7Y5vjx4zV69OiMLjWFYkO/zfRl/Ncde6NFprTLvst8mbXvkLPx3ct8WfXdy7IzEydPntQLL7ygBQsWyNPTM8PaHTZsmGJjY+2vkydPZljbAAAgpSwLEzt27NC5c+d03333KVeuXMqVK5fWr1+vt99+W7ly5VJwcLBu3LihmJgYh/nOnj2rkJCQO7br4eEhX19fhxcAAMg8WXaZo3HjxtqzZ4/DsKeeekrlypXTkCFDFBoaKjc3N61evVrt2rWTJEVHR+vEiRMKDw/PipIBAEAqsixM5MmTRxUrVnQYljt3bgUGBtqH9+jRQwMHDlTevHnl6+urvn37Kjw8XA888EBWlAwAAFKRpR0w72XKlClycXFRu3btFB8fr4iICM2YMSOrywIAALfIVmFi3bp1Du89PT0VFRWlqKiorCkIAADcU5Y/ZwIAAORshAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJbmcmeno0aPauHGjjh8/rqtXryooKEjVqlVTeHi4PD09M7pGAACQjaUrTCxYsEDTpk3T9u3bFRwcrIIFC8rLy0sXLlzQ4cOH5enpqS5dumjIkCEqWrRoZtUMAACykTSHiWrVqsnd3V3dunXTkiVLFBoa6jA+Pj5emzdv1qJFi1SjRg3NmDFD7du3z/CCAQBA9pLmMPHGG28oIiLijuM9PDzUoEEDNWjQQOPGjdOxY8cyoj4AAJDNpTlM3C1I3C4wMFCBgYFOFQQAAHIWpzpg3urbb7/VunXrlJiYqDp16qhdu3YZURcAAMghLN0a+sorr2jw4MGy2WwyxmjAgAHq27dvRtUGAABygHSdmdi+fbtq1Khhf//JJ59o9+7d8vLykiR169ZNDRo00PTp0zO2SgAAkG2l68xEr1691L9/f129elWSVKJECU2aNEnR0dHas2ePZs6cqTJlymRKoQAAIHtKV5jYunWrChQooPvuu09Lly7V//73P/3888+qXbu26tatq99//10LFy7MrFoBAEA2lK7LHK6urhoyZIjat2+v5557Trlz59Y777yjggULZlZ9AAAgm3OqA2aJEiW0fPlyPfLII6pXr56ioqIyui4AAJBDpCtMxMTEaPDgwWrVqpVefvllPfLII9q6dau2bdumBx54QHv27MmsOgEAQDaVrjARGRmprVu3qkWLFoqOjtZzzz2nwMBAzZ07V+PGjVPHjh01ZMiQzKoVAABkQ+nqM7FmzRr9/PPPKlWqlHr27KlSpUrZxzVu3Fg7d+7UmDFjMrxIAACQfaXrzETp0qU1e/ZsHThwQLNmzUrxy6Cenp56/fXXM7RAAACQvaUrTPzvf//TmjVrVK1aNS1cuFAzZ87MrLoAAEAOka7LHFWrVtX27dszqxYAAJADpfnMhDEmM+sAAAA5VJrDRIUKFbRo0SLduHHjrtMdPHhQzz33nN544w3LxQEAgOwvzZc5pk+friFDhuj5559X06ZNVaNGDRUsWFCenp66ePGi9u7dqx9++EG//fab+vTpo+eeey4z6wYAANlEmsNE48aNtX37dv3www/65JNPtGDBAh0/flzXrl1Tvnz5VK1aNXXt2lVdunRRQEBAZtYMAACykXR1wJSkBx98UA8++GBm1AIAAHIgp36bAwAAIBlhAgAAWEKYAAAAlhAmAACAJYQJAABgiVNhYufOndqzZ4/9/VdffaW2bdtq+PDh93yoFQAA+HdxKkw8++yzOnDggCTpyJEj6tSpk7y9vbV48WINHjw4QwsEAADZm1Nh4sCBA6pataokafHixapXr54WLlyouXPnasmSJRlZHwAAyOacChPGGCUlJUmSVq1apYcffliSFBoaqj///DPjqgMAANmeU2GiRo0aGjt2rObPn6/169erRYsWkqSjR48qODg4ze3MnDlTlStXlq+vr3x9fRUeHq5ly5bZx1+/fl29e/dWYGCgfHx81K5dO509e9aZkgEAQCZxKkxMnTpVO3fuVJ8+fTRixAiVKlVKkvTZZ5+pdu3aaW6ncOHCeuONN7Rjxw5t375djRo1Ups2bfTbb79JkgYMGKClS5dq8eLFWr9+vf744w89+uijzpQMAAAySbp/myMxMVExMTHasGFDih/0mjBhglxdXdPcVqtWrRzejxs3TjNnztSWLVtUuHBhffDBB1q4cKEaNWokSZozZ47CwsK0ZcsWPfDAA+ktHQAAZIJ0n5lwdXVVs2bNFBMTk2Kcp6en3NzcnCokMTFRixYt0pUrVxQeHq4dO3YoISFBTZo0sU9Trlw5FSlSRJs3b75jO/Hx8YqLi3N4AQCAzOPUZY6KFSvqyJEjGVLAnj175OPjIw8PD/Xq1UtffPGFypcvrzNnzsjd3V3+/v4O0wcHB+vMmTN3bG/8+PHy8/Ozv0JDQzOkTgAAkDqnwsTYsWM1aNAgffPNNzp9+rSlMwFly5bVrl27tHXrVj333HOKjIzU3r17nSlLkjRs2DDFxsbaXydPnnS6LQAAcG/p7jMhyX4raOvWrWWz2ezDjTGy2WxKTExMc1vu7u72DpzVq1fXtm3bNG3aNHXs2FE3btxQTEyMw9mJs2fPKiQk5I7teXh4yMPDI51rBAAAnOVUmFi7dm1G12GXlJSk+Ph4Va9eXW5ublq9erXatWsnSYqOjtaJEycUHh6eacsHAADp41SYqF+/foYsfNiwYWrevLmKFCmiS5cuaeHChVq3bp2WL18uPz8/9ejRQwMHDlTevHnl6+urvn37Kjw8nDs5AADIRpwKE5K0ceNGvfvuuzpy5IgWL16sQoUKaf78+SpevLgefPDBNLVx7tw5de3aVadPn5afn58qV66s5cuXq2nTppKkKVOmyMXFRe3atVN8fLwiIiI0Y8YMZ0sGAACZwKkwsWTJEj355JPq0qWLdu7cqfj4eElSbGysXn/9dX333XdpaueDDz6463hPT09FRUUpKirKmTIBAMA/wOm7OWbNmqX33nvP4bkSderU0c6dOzOsOAAAkP05FSaio6NVr169FMP9/PxSfZgVAAD493IqTISEhOjQoUMphv/www8qUaKE5aIAAEDO4VSY6Nmzp1544QVt3bpVNptNf/zxhxYsWKBBgwbpueeey+gaAQBANuZUB8yhQ4cqKSlJjRs31tWrV1WvXj15eHho0KBB6tu3b0bXCAAAsjGnwoTNZtOIESP00ksv6dChQ7p8+bLKly8vHx+fjK4PAABkc06FiTVr1qh27dry9PRU+fLlM7omAACQgzgVJlq3bq2bN2/q/vvvV4MGDVS/fn3VqVNHXl5eGV0fAADI5pzqgHnx4kWtXr1azZs3108//aRHHnlE/v7+qlOnjl5++eWMrhEAAGRjToUJNzc31alTR8OHD9fy5cu1ZcsWde7cWT/99JPGjx+f0TUCAIBszKnLHAcOHNC6deu0bt06rV+/XvHx8apbt64mTpyoBg0aZHCJAAAgO3MqTJQrV05BQUF64YUXNHToUFWqVEk2my2jawMAADmAU5c5+vXrp0KFCmnMmDHq1auXRowYoRUrVujq1asZXR8AAMjmnAoTU6dO1c6dO3XmzBkNGzZMN27c0IgRI5QvXz7VqVMno2sEAADZmFNhIlliYqISEhIUHx+v69evKz4+XtHR0RlVGwAAyAGcvsxRuXJlBQcH69lnn9Uff/yhnj176ueff9b58+czukYAAJCNOdUB8/Tp03rmmWfUoEEDVaxYMaNrAgAAOYhTYWLx4sUZXQcAAMihnLrM8eGHH+rbb7+1vx88eLD8/f1Vu3ZtHT9+PMOKAwAA2Z9TYeL111+3/w7H5s2bFRUVpbfeekv58uXTgAEDMrRAAACQvTl1mePkyZMqVaqUJOnLL79Uu3bt9Mwzz6hOnTo8ARMAgP8Yp85M+Pj46K+//pIkrVixQk2bNpUkeXp66tq1axlXHQAAyPacOjPRtGlTPf3006pWrZoOHDighx9+WJL022+/qVixYhlZHwAAyOacOjMRFRWl8PBwnT9/XkuWLFFgYKAkaceOHercuXOGFggAALI3p85M+Pv765133kkxfPTo0ZYLAgAAOYtTYUKSYmJi9NNPP+ncuXNKSkqyD7fZbHryySczpDgAAJD9ORUmli5dqi5duujy5cvy9fV1+PlxwgQAAP8tTvWZePHFF9W9e3ddvnxZMTExunjxov114cKFjK4RAABkY06FiVOnTqlfv37y9vbO6HoAAEAO41SYiIiI0Pbt2zO6FgAAkAM51WeiRYsWeumll7R3715VqlRJbm5uDuNbt26dIcUBAIDsz6kw0bNnT0nSmDFjUoyz2WxKTEy0VhUAAMgxnAoTt94KCgAA/tuc6jNxJzExMak+zAoAAPx7ZUiYWL16tR5//HEVKFBAo0aNyogmAQBADuF0mDh58qTGjBmj4sWLq1mzZrLZbPriiy905syZjKwPAABkc+kKEwkJCVq8eLEiIiJUtmxZ7dq1SxMmTJCLi4tGjBihhx56KMWdHQAA4N8tXR0wCxUqpHLlyumJJ57QokWLFBAQIEn8UigAAP9h6TozcfPmTdlsNtlsNrm6umZWTQAAIAdJV5j4448/9Mwzz+jjjz9WSEiI2rVrpy+++MLhh74AAMB/S7rChKenp7p06aI1a9Zoz549CgsLU79+/XTz5k2NGzdOK1eu5IFVAAD8xzh9N0fJkiU1duxYHT9+XN9++63i4+PVsmVLBQcHZ2R9AAAgm3PqCZi3cnFxUfPmzdW8eXOdP39e8+fPz4i6AABADpGhT8AMCgrSwIEDM7JJAACQzWVomAAAAP89hAkAAGAJYQIAAFjiVJgYM2aMrl69mmL4tWvXNGbMGMtFAQCAnMOpMDF69Ghdvnw5xfCrV69q9OjRlosCAAA5h1NhwhiT6lMvd+/erbx581ouCgAA5Bzpes5EQECA/bc5ypQp4xAoEhMTdfnyZfXq1SvDiwQAANlXusLE1KlTZYxR9+7dNXr0aPn5+dnHubu7q1ixYgoPD8/wIgEAQPaVrjARGRkpSSpevLjq1KmjXLksP0ATAADkcE71mbhy5YpWr16dYvjy5cu1bNkyy0UBAICcw6kwMXTo0FR/HdQYo6FDh1ouCgAA5BxOhYmDBw+qfPnyKYaXK1dOhw4dslwUAADIOZwKE35+fjpy5EiK4YcOHVLu3LktFwUAAHIOp8JEmzZt1L9/fx0+fNg+7NChQ3rxxRfVunXrDCsOAABkf06Fibfeeku5c+dWuXLlVLx4cRUvXlxhYWEKDAzUxIkTM7pGAACQjTl1b6efn59+/PFHrVy5Urt375aXl5cqV66sevXqZXR9AAAgm3P6QRE2m03NmjVTvXr15OHhkerjtQEAwL+fU5c5kpKS9Nprr6lQoULy8fHR0aNHJUmvvPKKPvjggwwtEAAAZG9OhYmxY8dq7ty5euutt+Tu7m4fXrFiRb3//vsZVhwAAMj+nAoT8+bN0+zZs9WlSxe5urrah1epUkX79+/PsOIAAED251SYOHXqlEqVKpVieFJSkhISEiwXBQAAcg6nwkT58uW1cePGFMM/++wzVatWzXJRAAAg53Dqbo6RI0cqMjJSp06dUlJSkj7//HNFR0dr3rx5+uabbzK6RgAAkI05/QTMpUuXatWqVcqdO7dGjhypffv2aenSpWratGlG1wgAALKxdJ+ZuHnzpl5//XV1795dK1euzIyaAABADpLuMxO5cuXSW2+9pZs3b2ZGPQAAIIdx6jJH48aNtX79+oyuBQAA5EBOdcBs3ry5hg4dqj179qh69eopfnacXw4FAOC/w6kw8fzzz0uSJk+enGKczWZTYmKitaoAAECO4VSYSEpKyug6AABADpXuPhMJCQnKlSuXfv3118yoBwAA5DDpDhNubm4qUqQIlzIAAIAkJ+/mGDFihIYPH64LFy5kdD0AACCHcSpMvPPOO9qwYYMKFiyosmXL6r777nN4pdX48eN1//33K0+ePMqfP7/atm2r6Ohoh2muX7+u3r17KzAwUD4+PmrXrp3Onj3rTNkAACATONUBs23bthmy8PXr16t37966//77dfPmTQ0fPlzNmjXT3r177bebDhgwQN9++60WL14sPz8/9enTR48++qg2bdqUITUAAABrnAoTo0aNypCFf//99w7v586dq/z582vHjh2qV6+eYmNj9cEHH2jhwoVq1KiRJGnOnDkKCwvTli1b9MADD2RIHQAAwHlOhYlkO3bs0L59+yRJFSpUsPzz47GxsZKkvHnz2ttPSEhQkyZN7NOUK1dORYoU0ebNm1MNE/Hx8YqPj7e/j4uLs1QTAAC4O6fCxLlz59SpUyetW7dO/v7+kqSYmBg1bNhQixYtUlBQULrbTEpKUv/+/VWnTh1VrFhRknTmzBm5u7vbl5EsODhYZ86cSbWd8ePHa/To0elePgAAcI5THTD79u2rS5cu6bffftOFCxd04cIF/frrr4qLi1O/fv2cKqR379769ddftWjRIqfmTzZs2DDFxsbaXydPnrTUHgAAuDunzkx8//33WrVqlcLCwuzDypcvr6ioKDVr1izd7fXp00fffPONNmzYoMKFC9uHh4SE6MaNG4qJiXE4O3H27FmFhISk2paHh4c8PDzSXQMAAHCOU2cmkpKS5ObmlmK4m5tbuh61bYxRnz599MUXX2jNmjUqXry4w/jq1avLzc1Nq1evtg+Ljo7WiRMnFB4e7kzpAAAggzl1ZqJRo0Z64YUX9PHHH6tgwYKSpFOnTmnAgAFq3Lhxmtvp3bu3Fi5cqK+++kp58uSx94Pw8/OTl5eX/Pz81KNHDw0cOFB58+aVr6+v+vbtq/DwcO7kAAAgm3AqTLzzzjtq3bq1ihUrptDQUEnSyZMnVbFiRX300UdpbmfmzJmSpAYNGjgMnzNnjrp16yZJmjJlilxcXNSuXTvFx8crIiJCM2bMcKZsAACQCZwKE6Ghodq5c6dWrVql/fv3S5LCwsIcbuFMC2PMPafx9PRUVFSUoqKinCkVAABkMqefM2Gz2dS0aVM1bdo0I+sBAAA5TLo6YK5Zs0bly5dP9UFQsbGxqlChgjZu3JhhxQEAgOwvXWFi6tSp6tmzp3x9fVOM8/Pz07PPPqvJkydnWHEAACD7S1eY2L17tx566KE7jm/WrJl27NhhuSgAAJBzpCtMnD17NtXnSyTLlSuXzp8/b7koAACQc6QrTBQqVEi//vrrHcf/8ssvKlCggOWiAABAzpGuMPHwww/rlVde0fXr11OMu3btmkaNGqWWLVtmWHEAACD7S9etoS+//LI+//xzlSlTRn369FHZsmUlSfv371dUVJQSExM1YsSITCkUAABkT+kKE8HBwfrxxx/13HPPadiwYfaHTtlsNkVERCgqKkrBwcGZUigAAMie0v3QqqJFi+q7777TxYsXdejQIRljVLp0aQUEBGRGfQAAIJtz+gmYAQEBuv/++zOyFgAAkAM59RPkAAAAyQgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMCSLA0TGzZsUKtWrVSwYEHZbDZ9+eWXDuONMRo5cqQKFCggLy8vNWnSRAcPHsyaYgEAQKqyNExcuXJFVapUUVRUVKrj33rrLb399tuaNWuWtm7dqty5cysiIkLXr1//hysFAAB3kisrF968eXM1b9481XHGGE2dOlUvv/yy2rRpI0maN2+egoOD9eWXX6pTp07/ZKkAAOAOsm2fiaNHj+rMmTNq0qSJfZifn59q1aqlzZs333G++Ph4xcXFObwAAEDmybZh4syZM5Kk4OBgh+HBwcH2cakZP368/Pz87K/Q0NBMrRMAgP+6bBsmnDVs2DDFxsbaXydPnszqkgAA+FfLtmEiJCREknT27FmH4WfPnrWPS42Hh4d8fX0dXgAAIPNk2zBRvHhxhYSEaPXq1fZhcXFx2rp1q8LDw7OwMgAAcKssvZvj8uXLOnTokP390aNHtWvXLuXNm1dFihRR//79NXbsWJUuXVrFixfXK6+8ooIFC6pt27ZZVzQAAHCQpWFi+/btatiwof39wIEDJUmRkZGaO3euBg8erCtXruiZZ55RTEyMHnzwQX3//ffy9PTMqpIBAMBtsjRMNGjQQMaYO4632WwaM2aMxowZ8w9WBQAA0iPb9pkAAAA5A2ECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGBJjggTUVFRKlasmDw9PVWrVi399NNPWV0SAAD4/7J9mPjkk080cOBAjRo1Sjt37lSVKlUUERGhc+fOZXVpAABAOSBMTJ48WT179tRTTz2l8uXLa9asWfL29tb//ve/rC4NAABIypXVBdzNjRs3tGPHDg0bNsw+zMXFRU2aNNHmzZtTnSc+Pl7x8fH297GxsZKkuLi4DK0tKf5qhraHlDJ6nyVj32W+zNp3Evvvn8B3L+fK6H2X3J4x5q7TZesw8eeffyoxMVHBwcEOw4ODg7V///5U5xk/frxGjx6dYnhoaGim1IjM4zc1qyuAs9h3ORv7L+fKrH136dIl+fn53XF8tg4Tzhg2bJgGDhxof5+UlKQLFy4oMDBQNpstCyvLWnFxcQoNDdXJkyfl6+ub1eUgHdh3ORf7Ludi3/3NGKNLly6pYMGCd50uW4eJfPnyydXVVWfPnnUYfvbsWYWEhKQ6j4eHhzw8PByG+fv7Z1aJOY6vr+9/+ouRk7Hvci72Xc7FvtNdz0gky9YdMN3d3VW9enWtXr3aPiwpKUmrV69WeHh4FlYGAACSZeszE5I0cOBARUZGqkaNGqpZs6amTp2qK1eu6Kmnnsrq0gAAgHJAmOjYsaPOnz+vkSNH6syZM6pataq+//77FJ0ycXceHh4aNWpUiktAyP7YdzkX+y7nYt+lj83c634PAACAu8jWfSYAAED2R5gAAACWECYAAIAlhAlIkubOnZvm53GkZ1pknmPHjslms2nXrl1ZXQrwr9atWze1bdvW/r5Bgwbq379/muZNz7Q5Wba/mwP/jI4dO+rhhx/O6jJypAYNGqhq1aqaOnVqVpeCTNCtWzfFxMToyy+/zOpSkE18/vnncnNzy+oyshXCBCRJXl5e8vLyyuoygGwjMTHxP/0IftxZ3rx5s7qEbIfLHNnEZ599pkqVKsnLy0uBgYFq0qSJrly5Yj+9Nnr0aAUFBcnX11e9evXSjRs37PN+//33evDBB+Xv76/AwEC1bNlShw8fto9PPh3++eefq2HDhvL29laVKlUcfnn19ksXu3fvVsOGDZUnTx75+vqqevXq2r59u0PNy5cvV1hYmHx8fPTQQw/p9OnTmbeBsqlu3bpp/fr1mjZtmmw2m2w2mw4fPqwePXqoePHi8vLyUtmyZTVt2jSH+W7evKl+/frZ99mQIUMUGRnpcCr1Xvs1NevXr1fNmjXl4eGhAgUKaOjQobp586Z9/KVLl9SlSxflzp1bBQoU0JQpU/41p2EbNGigPn36qE+fPvLz81O+fPn0yiuv2H/t8OLFi+ratasCAgLk7e2t5s2b6+DBg/b5k78DX3/9tcqXLy8PDw91795dH374ob766iv7/l23bp3WrVsnm82mmJgY+/y7du2SzWbTsWPH7MPee+89hYaGytvbW4888ogmT57s8D27/fS5JPXv318NGjSwv09KStL48ePtn6cqVaros88+s4+/ePGiunTpoqCgIHl5eal06dKaM2eOffzJkyfVoUMH+fv7K2/evGrTpo1DjTnd3bZP8n5avXq1atSoIW9vb9WuXVvR0dEObYwdO1b58+dXnjx59PTTT2vo0KGqWrXqHZd5+3dmxowZKl26tDw9PRUcHKzHHnssRY2DBw9W3rx5FRISoldffTWjVj/bIExkA6dPn1bnzp3VvXt37du3T+vWrdOjjz5qPwiuXr3aPvzjjz/W559/7vDLqFeuXNHAgQO1fft2rV69Wi4uLnrkkUeUlJTksJwRI0Zo0KBB2rVrl8qUKaPOnTs7/Edzqy5duqhw4cLatm2bduzYoaFDhzqc1rt69aomTpyo+fPna8OGDTpx4oQGDRqUCVsne5s2bZrCw8PVs2dPnT59WqdPn1bhwoVVuHBhLV68WHv37tXIkSM1fPhwffrpp/b53nzzTS1YsEBz5szRpk2bFBcXl+I0elr3a7JTp07p4Ycf1v3336/du3dr5syZ+uCDDzR27Fj7NAMHDtSmTZv09ddfa+XKldq4caN27tyZKdsmK3z44YfKlSuXfvrpJ02bNk2TJ0/W+++/L+nv/7i3b9+ur7/+Wps3b5YxRg8//LASEhLs81+9elVvvvmm3n//ff322296++231aFDB3tYPn36tGrXrp2mWjZt2qRevXrphRde0K5du9S0aVONGzcu3es0fvx4zZs3T7NmzdJvv/2mAQMG6IknntD69eslSa+88or27t2rZcuWad++fZo5c6by5csnSUpISFBERITy5MmjjRs3atOmTfbwf+sfJDnZvbaP9Pexb9KkSdq+fbty5cql7t2728ctWLBA48aN05tvvqkdO3aoSJEimjlzZpqXv337dvXr109jxoxRdHS0vv/+e9WrV89hmg8//FC5c+fW1q1b9dZbb2nMmDFauXKl9ZXPTgyy3I4dO4wkc+zYsRTjIiMjTd68ec2VK1fsw2bOnGl8fHxMYmJiqu2dP3/eSDJ79uwxxhhz9OhRI8m8//779ml+++03I8ns27fPGGPMnDlzjJ+fn318njx5zNy5c1Ntf86cOUaSOXTokH1YVFSUCQ4OTvtK/4vUr1/fvPDCC3edpnfv3qZdu3b298HBwWbChAn29zdv3jRFihQxbdq0uWMbd9qvP//8szHGmOHDh5uyZcuapKQk+zxRUVH2z0pcXJxxc3Mzixcvto+PiYkx3t7e96w/J6hfv74JCwtzWP8hQ4aYsLAwc+DAASPJbNq0yT7uzz//NF5eXubTTz81xvzf53rXrl0O7UZGRqbYL2vXrjWSzMWLF+3Dfv75ZyPJHD161BhjTMeOHU2LFi0c5uvSpYvD9yy1tl944QVTv359Y4wx169fN97e3ubHH390mKZHjx6mc+fOxhhjWrVqZZ566qlUt8n8+fNTfCbi4+ONl5eXWb58earz5CT32j7J+2nVqlX2cd9++62RZK5du2aMMaZWrVqmd+/eDvPXqVPHVKlSxf7+9v1063d+yZIlxtfX18TFxaVaY/369c2DDz7oMOz+++83Q4YMSe/qZmucmcgGqlSposaNG6tSpUpq37693nvvPV28eNFhvLe3t/19eHi4Ll++rJMnT0qSDh48qM6dO6tEiRLy9fVVsWLFJEknTpxwWE7lypXt/y5QoIAk6dy5c6nWNHDgQD399NNq0qSJ3njjjRSn1729vVWyZEmH9u7U1n9RVFSUqlevrqCgIPn4+Gj27Nn2/REbG6uzZ8+qZs2a9uldXV1VvXp1hzbSul+T7du3T+Hh4Q7X+evUqaPLly/r999/15EjR5SQkOCwXD8/P5UtWzajVjvLPfDAAw7rHx4eroMHD2rv3r3KlSuXatWqZR8XGBiosmXLat++ffZh7u7uDt8TK6Kjox22taQU7+/l0KFDunr1qpo2bSofHx/7a968efbv5HPPPadFixapatWqGjx4sH788Uf7/Lt379ahQ4eUJ08e+7x58+bV9evX73nJLCdIy/aR7n7ss7qfmjZtqqJFi6pEiRJ68skntWDBAl29etVhmts/U//G4yUdMLMBV1dXrVy5Uj/++KNWrFih6dOna8SIEdq6dWua5m/VqpWKFi2q9957TwULFlRSUpIqVqyY4jTmrZcpkg+4dzpl/uqrr+rxxx/Xt99+q2XLlmnUqFFatGiRHnnkkRRtJbdneDK7JGnRokUaNGiQJk2apPDwcOXJk0cTJkxI8/5Mltb9iozj5eWVpk6XLi5//x1262f+1sslaeXi4pLie3NrO5cvX5YkffvttypUqJDDdMm/GdG8eXMdP35c3333nVauXKnGjRurd+/emjhxoi5fvqzq1atrwYIFKZYdFBSU7nqzm3ttn+RAkZ5jX3rlyZNHO3fu1Lp167RixQqNHDlSr776qrZt22bvH5Pa8TKjlp9dcGYim7DZbKpTp45Gjx6tn3/+We7u7vriiy8k/f3XxbVr1+zTbtmyRT4+PgoNDdVff/2l6Ohovfzyy2rcuLHCwsIczmpYUaZMGQ0YMEArVqzQo48+6tCpC//H3d1diYmJ9vebNm1S7dq19fzzz6tatWoqVaqUw19Jfn5+Cg4O1rZt2+zDEhMTHfouOLNfw8LC7H0Bbq0lT548Kly4sEqUKCE3NzeH5cbGxurAgQOW1j87uT2wbdmyRaVLl1b58uV18+ZNh/HJ27h8+fJ3bfP2/Sv933/Et3Y6vv15H2XLlnXY1pJSvA8KCkrRcfnWdpI7gp44cUKlSpVyeIWGhjq0ExkZqY8++khTp07V7NmzJUn33XefDh48qPz586eY38/P767rnROkdfvcTVr2073kypVLTZo00VtvvaVffvlFx44d05o1a9LVRk7HmYlsYOvWrVq9erWaNWum/Pnza+vWrTp//rzCwsL0yy+/6MaNG+rRo4defvllHTt2TKNGjVKfPn3k4uKigIAABQYGavbs2SpQoIBOnDihoUOHWqrn2rVreumll/TYY4+pePHi+v3337Vt2za1a9cug9b436VYsWLaunWrjh07Jh8fH5UuXVrz5s3T8uXLVbx4cc2fP1/btm1T8eLF7fP07dtX48ePV6lSpVSuXDlNnz5dFy9etP/V5Mx+ff755zV16lT17dtXffr0UXR0tEaNGqWBAwfKxcVFefLkUWRkpF566SXlzZtX+fPn16hRo+Ti4vKvuQXyxIkTGjhwoJ599lnt3LlT06dP16RJk1S6dGm1adNGPXv21Lvvvqs8efJo6NChKlSokNq0aXPXNosVK6bly5crOjpagYGB8vPzs/9n9eqrr2rcuHE6cOCAJk2a5DBf3759Va9ePU2ePFmtWrXSmjVrtGzZModt3ahRI02YMEHz5s1TeHi4PvroI/3666+qVq2apL//6h00aJAGDBigpKQkPfjgg4qNjdWmTZvk6+uryMhIjRw5UtWrV1eFChUUHx+vb775RmFhYZL+7kg9YcIEtWnTRmPGjFHhwoV1/Phxff755xo8eLAKFy6cwXvgn3Wv7VO0aNF7ttG3b1/17NlTNWrUUO3atfXJJ5/ol19+UYkSJdJUwzfffKMjR46oXr16CggI0HfffaekpKR/1eXDNMnaLhswxpi9e/eaiIgIExQUZDw8PEyZMmXM9OnTjTH/1/Fn5MiRJjAw0Pj4+JiePXua69ev2+dfuXKlCQsLMx4eHqZy5cpm3bp1RpL54osvjDEpO+oZY8zFixeNJLN27VpjjGMHzPj4eNOpUycTGhpq3N3dTcGCBU2fPn3sHZZu76xpjDFffPGF+a9+nKKjo80DDzxgvLy8jCSzf/9+061bN+Pn52f8/f3Nc889Z4YOHerQoSshIcH06dPH+Pr6moCAADNkyBDTvn1706lTJ/s0zuzXdevWmfvvv9+4u7ubkJAQM2TIEJOQkGAfHxcXZx5//HHj7e1tQkJCzOTJk03NmjXN0KFDM3szZbr69eub559/3vTq1cu+XYcPH27vfHjhwgXz5JNPGj8/P+Pl5WUiIiLMgQMH7POn9rk2xphz586Zpk2bGh8fH4fvzA8//GAqVapkPD09Td26dc3ixYsdOmAaY8zs2bNNoUKFjJeXl2nbtq0ZO3asCQkJcWh/5MiRJjg42Pj5+ZkBAwaYPn362DtgGmNMUlKSmTp1qilbtqxxc3MzQUFBJiIiwqxfv94YY8xrr71mwsLCjJeXl8mbN69p06aNOXLkiH3+06dPm65du5p8+fIZDw8PU6JECdOzZ08TGxtrcYtnD3fbPmnpKGuMMWPGjDH58uUzPj4+pnv37qZfv37mgQcesI+/WwfMjRs3mvr165uAgADj5eVlKleubD755JNUp03Wpk0bExkZmYFbIevxE+TZHE/f+29ISkpSWFiYOnTooNdee+0fW+6VK1dUqFAhTZo0ST169PjHlpsZcsKTSHv27Kn9+/dr48aNWV0K7qJp06YKCQnR/Pnzs7qUHIPLHEAWOH78uFasWKH69esrPj5e77zzjo4eParHH388U5f7888/a//+/apZs6ZiY2M1ZswYSbrnqX44Z+LEiWratKly586tZcuW6cMPP9SMGTOyuizc4urVq5o1a5YiIiLk6uqqjz/+WKtWrfr3PQcikxEmgCzg4uKiuXPnatCgQTLGqGLFilq1apX9WndmmjhxoqKjo+Xu7q7q1atr48aN9occIWP99NNPeuutt3Tp0iWVKFFCb7/9tp5++umsLgu3sNls+u677zRu3Dhdv35dZcuW1ZIlS9SkSZOsLi1H4TIHAACwhFtDAQCAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQL4D+vWrZvatm2b1WUAyOEIEwAAwBLCBIBUTZ48WZUqVVLu3LkVGhqq559/XpcvX7aPnzt3rvz9/bV8+XKFhYXJx8dHDz30kMNPat+8eVP9+vWTv7+/AgMDNWTIEEVGRjqcDSlWrFiK39OoWrWqXn311TTXIknvvfeeQkND5e3trUceeUSTJ0+Wv7+/wzRfffWV7rvvPnl6eqpEiRIaPXq0bt68aXlbAf91hAkAqXJxcdHbb7+t3377TR9++KHWrFmjwYMHO0xz9epVTZw4UfPnz9eGDRt04sQJDRo0yD7+zTff1IIFCzRnzhxt2rRJcXFxTv1o3b1q2bRpk3r16qUXXnhBu3btUtOmTTVu3DiHNjZu3KiuXbvqhRde0N69e/Xuu+9q7ty5KaYD4IQs/c1SAFnq9p9WvpvFixebwMBA+/s5c+YYSebQoUP2YVFRUSY4ONj+Pjg42EyYMMH+/ubNm6ZIkSIOyyxatKiZMmWKw7KqVKliRo0aleZaOnbsaFq0aOEwTZcuXRx+Urxx48bm9ddfd5hm/vz5pkCBAndcDoC04Ye+AKRq1apVGj9+vPbv36+4uDjdvHlT169f19WrV+Xt7S1J8vb2VsmSJe3zFChQQOfOnZMkxcbG6uzZs6pZs6Z9vKurq6pXr66kpKQMrSU6OlqPPPKIwzw1a9bUN998Y3+/e/dubdq0yeFMRGJiYop1ApB+XOYAkMKxY8fUsmVLVa5cWUuWLNGOHTsUFRUlSbpx44Z9Ojc3N4f5bDabTDp/O9DFxSXFPAkJCemu5V4uX76s0aNHa9euXfbXnj17dPDgQXl6eqarZgCOODMBIIUdO3YoKSlJkyZNkovL339zfPrpp+lqw8/PT8HBwdq2bZvq1asn6e8zATt37lTVqlXt0wUFBTl02oyLi9PRo0fTVUvZsmW1bds2h2G3v7/vvvsUHR2tUqVKpWs9ANwbYQL4j4uNjdWuXbschuXLl08JCQmaPn26WrVqpU2bNmnWrFnpbrtv374aP368SpUqpXLlymn69Om6ePGibDabfZpGjRpp7ty5atWqlfz9/TVy5Ei5urrax5cqVeqetfTt21f16tXT5MmT1apVK61Zs0bLli1zWM7IkSPVsmVLFSlSRI899phcXFy0e/du/frrrxo7dmy61w3ALbK60waArBMZGWkkpXj16NHDTJ482RQoUMB4eXmZiIgIM2/ePCPJXLx40RjzdwfMWzs4GmPMF198YW49rCQkJJg+ffoYX19fExAQYIYMGWLat29vOnXqZJ8mNjbWdOzY0fj6+prQ0FAzd+7cFB0w71WLMcbMnj3bFCpUyHh5eZm2bduasWPHmpCQEIf6vv/+e1O7dm3j5eVlfH19Tc2aNc3s2bMzbHsC/1U2Y9J5gRMAnJSUlKSwsDB16NBBr732WqYuq2fPntq/f782btyYqcsBwGUOAJno+PHjWrFiherXr6/4+Hi98847Onr0qB5//PEMX9bEiRPVtGlT5c6dW8uWLdOHH36oGTNmZPhyAKREmACQaVxcXDR37lwNGjRIxhhVrFhRq1atUlhYWIYv66efftJbb72lS5cuqUSJEnr77bf19NNPZ/hyAKTEZQ4AAGAJz5kAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWPL/AExoJ4EDpB7HAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 cornea/lens 1 1 1 1 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 100.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIjCAYAAADV38uMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABak0lEQVR4nO3deVxN+f8H8Nct7cttkRZCZCm7LJMsIbIvY2xjyJY169iNLWHskTDMfGUJMzHMYGxZs2U3xpJsMYaYoZKU6n5+f3h0fq5bquvmkNfz8biPh/s52/ucc+/x6pzPOVchhBAgIiIi+sD05C6AiIiIPk8MIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFE+XT69GkYGhoiLi5OJ/O7evUqihQpgr/++ksn86NPQ+nSpdG7d+8PvtywsDAoFAqcPXv2gy+bPozevXujdOnScpeRJ599CLl16xYGDhyIMmXKwNjYGJaWlvDy8sKSJUvw8uVLucvLt6tXr2L69Om4e/duvqcdN24cFAoFunbtqvvCCpHJkyeje/fuKFWqlNS2fft2VKxYEUqlEm3btsU///yjMV27du0wYMAAjXZ3d3e0bt0aU6dOzdPys/4TefNVrFgxNG7cGLt379Z+xbJRunRptGnTRqfzJN26e/euxuchp5c2xwX6NHh4eGDIkCFyl5FvReQuQE67du1C586dYWRkhF69eqFy5cp49eoVjh07hrFjx+LKlStYtWqV3GXmy9WrVzFjxgx4e3vnKwkLIbBp0yaULl0aO3bswPPnz2FhYVFwhX6iLl68iMjISJw4cUJqu337Nrp27YquXbvC09MTwcHB6NOnD/bu3SuNs3fvXhw9ehSxsbHZznfQoEFo1aoVbt26hbJly+aplsDAQLi4uEAIgfj4eISFhaFVq1bYsWMHg8MnICYmBnp67/93oJ2dHdavX6/WtnDhQvz9999YvHixxrhU+Dx8+BAXLlxAYGCg3KXk22cbQu7cuYNu3bqhVKlSOHjwIBwdHaVhQ4cOxc2bN7Fr1673Xo4QAqmpqTAxMdEYlpqaCkNDQ50ciN7X4cOH8ffff+PgwYPw9fXFr7/+Cj8/P7nL0qmMjAyoVCoYGhpqPY81a9agZMmS+OKLL6S2ffv2oUSJEli7di0UCgXc3NzQpEkTpKamwtjYGBkZGRg1ahSmTp2a438CPj4+sLa2xtq1a/N8IGnZsiVq1aolve/Xrx/s7e2xadMmhpBPgJGRkU7mY2Zmhm+++UatbfPmzXj27JlGO+nOu47tH9ru3bthbGyMJk2ayF1Kvsn/v59M5s2bh+TkZPz0009qASSLq6srRowYIb3PyMjAzJkzUbZsWRgZGaF06dKYNGkS0tLS1KbLOn29d+9e1KpVCyYmJvjhhx9w+PBhKBQKbN68Gd999x2KFy8OU1NTJCUlAQCio6PRokULKJVKmJqaolGjRjh+/LhGXQ8ePEC/fv3g5OQEIyMjuLi4YPDgwXj16hXCwsLQuXNnAEDjxo2lU7CHDx/OdXuEh4fD3d0djRs3ho+PD8LDwzXGyVqHX375BbNmzUKJEiVgbGyMpk2b4ubNm2rjxsbGolOnTnBwcICxsTFKlCiBbt26ITExEQDw5ZdfombNmmrTtG3bFgqFAr///rvUFh0dDYVCoXaZISEhASNHjoSzszOMjIzg6uqKuXPnQqVSSeNknaJesGABgoODpf129epVAEBISAgqVaoEU1NTWFtbo1atWti4cWOu22n79u1o0qQJFAqF1Pby5UtYWVlJbTY2NhBCSJfzli1bhszMTAwbNizH+RoYGMDb2xu//fZbrjXkxMrKCiYmJihS5PXfFkIIlC5dGu3bt9cYNzU1FUqlEgMHDtR6eVmioqLQuXNnlCxZEkZGRnB2dsaoUaM0Lmf27t0b5ubmePDgATp06ABzc3PY2dlhzJgxyMzMVBv3v//+Q8+ePWFpaQkrKyv4+fnh0qVLUCgUCAsLk8bz9vaGt7e3Rk3ZXRNfsGAB6tWrB1tbW5iYmMDDwwNbtmzRmPbly5cYPnw4ihYtCgsLC7Rr1w4PHjyAQqHA9OnT1cZ98OAB+vbtC3t7exgZGaFSpUr43//+l6ft9nafkKzLbMePH8fo0aNhZ2cHMzMzdOzYEU+ePMnTPPMjLS0tT8vZvXs3GjRoADMzM1hYWKB169a4cuWK2jhZ+/bevXto06YNzM3NUbx4cYSGhgIALl++jCZNmsDMzAylSpXK9ruWl+818Pqv/uvXryM9PT3XdVSpVFiyZAmqVKkCY2Nj2NnZoUWLFmr9YXR1bM/LcRHI27E+Li4OQ4YMQYUKFWBiYgJbW1t07tw5x8tpu3btQuPGjd8ZiFQqFYKDg1GpUiUYGxvD3t4eAwcOxLNnz7Jdz2PHjqFOnTowNjZGmTJlsG7dOrXx0tPTMWPGDJQrVw7GxsawtbVF/fr1sX///hxryJb4TBUvXlyUKVMmz+P7+fkJAOKrr74SoaGholevXgKA6NChg9p4pUqVEq6ursLa2lpMmDBBrFy5Uhw6dEgcOnRIABDu7u6ievXqYtGiRWLOnDnixYsX4sCBA8LQ0FB4enqKhQsXisWLF4uqVasKQ0NDER0dLc37wYMHwsnJSZiamoqRI0eKlStXiilTpgg3Nzfx7NkzcevWLTF8+HABQEyaNEmsX79erF+/Xjx69Oid65aamiqsrKzEzJkzhRBCrFu3Tujr64uHDx+qjZe1DjVq1BAeHh5i8eLFYvr06cLU1FTUqVNHGi8tLU24uLgIJycnERQUJH788UcxY8YMUbt2bXH37l0hhBCLFi0Senp6IjExUQghhEqlEtbW1kJPT0+MGTNGmtf8+fPVxnvx4oWoWrWqsLW1FZMmTRIrV64UvXr1EgqFQowYMUKa7s6dO9L2LlOmjPj+++/F4sWLRVxcnFi1apW0L3/44QexZMkS0a9fPzF8+PB3bqe///5bABBLly5Va4+KihIKhUJs3LhR3L59W3Tp0kW4uroKIYR4/PixsLKyEjt37nznvIUQIigoSG1dc7JmzRoBQERGRoonT56Ix48fi7/++ksMHDhQ6OnpiX379knjTp48WRgYGIj//vtPbR6//PKLACCOHj36zmWVKlVKtG7d+p3jDBs2TLRq1UrMnj1b/PDDD6Jfv35CX19ffPXVV2rj+fn5CWNjY1GpUiXRt29fsWLFCtGpUycBQCxfvlwaLzMzU3h6egp9fX0REBAgli1bJpo1ayaqVasmAIg1a9ZI4zZq1Eg0atRIoyY/Pz9RqlQptbYSJUqIIUOGiGXLlolFixaJOnXqCAAa+6ZLly4CgOjZs6cIDQ0VXbp0kZY9bdo0abxHjx6JEiVKCGdnZxEYGChWrFgh2rVrJwCIxYsXv3ObCfF62/r5+Unvs/ZrjRo1RJMmTURISIj49ttvhb6+vujSpUuu83tT69atNdZfm+WsW7dOKBQK0aJFCxESEiLmzp0rSpcuLaysrMSdO3ek8bL2rbu7uxg0aJAIDQ0V9erVk/aXk5OTGDt2rAgJCRGVKlUS+vr64vbt29L0ef1eZy0LgNryc9K7d28BQLRs2VIEBweLBQsWiPbt24uQkBCN+b3vsT2346IQIs/H+oiICFGtWjUxdepUsWrVKjFp0iRhbW0tSpUqJV68eKE2z1evXglLS0uxbNkytXV6e//3799fFClSRPj7+4uVK1eK8ePHCzMzM1G7dm3x6tUrtfWsUKGCsLe3F5MmTRLLli0TNWvWFAqFQvz111/SeJMmTRIKhUL4+/uL1atXi4ULF4ru3buL77//Ptf98qbPMoQkJiYKAKJ9+/Z5Gv/ixYsCgOjfv79a+5gxYwQAcfDgQamtVKlSAoDYs2eP2rhZH9QyZcqIlJQUqV2lUoly5coJX19foVKppPaUlBTh4uIimjVrJrX16tVL6OnpiTNnzmjUmDVtRESEACAOHTqUp3UTQogtW7YIACI2NlYIIURSUpIwNjbWOJBmrYObm5tIS0uT2pcsWSIAiMuXLwshhLhw4YIAICIiInJc5pkzZwQA8ccffwghhPjzzz8FANG5c2dRt25dabx27dqJGjVqSO9nzpwpzMzMxI0bN9TmN2HCBKGvry/u3bsnhPj/EGJpaSkeP36sNm779u1FpUqV8rp5JJGRkQKA2LFjh8awrPAHQNjY2EifCX9/f9GiRYs8zX/jxo0CgNrBKDtZ/4m8/TIyMhJhYWFq48bExAgAYsWKFWrt7dq1E6VLl1b7zGUnLyHkzc9zljlz5giFQiHi4uKktqyDfWBgoNq4WQfvLFu3bhUARHBwsNSWmZkpmjRp8l4h5O06X716JSpXriyaNGkitZ07d04AECNHjlQbN+s/szdDSL9+/YSjo6P4999/1cbt1q2bUCqV2W6XN+UUQnx8fNT2y6hRo4S+vr5ISEh45/zelJcQkttynj9/LqysrIS/v7/a9I8ePRJKpVKtPWvfzp49W2p79uyZMDExEQqFQmzevFlqv379usa2zOv3+s1l5RZCDh48KABk+8dF1nrr8tie23ExP8f67D47J0+eFADEunXr1NoPHDigsT3e/vxHRUUJACI8PFxt2j179mi0Z63nm3+gPH78WBgZGYlvv/1WaqtWrVqux4a8+Cwvx2RdAslrx8s//vgDADB69Gi19m+//RYANPqOuLi4wNfXN9t5+fn5qZ0yu3jxImJjY/H111/jv//+w7///ot///0XL168QNOmTXH06FGoVCqoVCps374dbdu2VesHkOXNywP5FR4ejlq1asHV1RUApFOu2V2SAYA+ffqo9ato0KABgNcdNAFAqVQCeN0ZMyUlJdt51KhRA+bm5jh69CiA16f0S5QogV69euH8+fNISUmBEALHjh2T5g8AERERaNCgAaytraVt9e+//8LHxweZmZnS/LJ06tRJox+GlZUV/v77b5w5cybP2wh4fYkAAKytrTWGLVmyBHFxcYiOjkZcXBwaN26MixcvYt26dVi8eDESExPxzTffoHjx4vD29sa1a9c05pE133///TdP9YSGhmL//v3Yv38/NmzYgMaNG6N///749ddfpXHKly+PunXrqu3Lp0+fYvfu3ejRo8d7fW6yvPl5fvHiBf7991/Uq1cPQghcuHBBY/xBgwapvW/QoIH02QGAPXv2wMDAAP7+/lKbnp4ehg4dqrM6nz17hsTERDRo0ADnz59XWzYAjbsM3r6UJoTA1q1b0bZtWwgh1D6Lvr6+SExMVJtvfgwYMEBtvzRo0ACZmZk6uyU8r8vZv38/EhIS0L17d7X109fXR926dXHo0CGNefbv31/6t5WVFSpUqAAzMzN06dJFaq9QoQKsrKzU9nl+vtdhYWHSpcZ32bp1KxQKBaZNm6YxLGu9dXlsz+24mNdjPaD+WU1PT8d///0HV1dXWFlZaXyu/vjjD7i7u79ze0RERECpVKJZs2Zq29fDwwPm5uYa+9Ld3V3tuGtnZ4cKFSqo7TMrKytcuXIlx872efVZdky1tLQEADx//jxP48fFxUFPT0/6TzqLg4MDrKysNA4OLi4uOc7r7WFZO/BdnUATExPx6tUrJCUloXLlynmqOa8SEhLwxx9/ICAgQO36pZeXF7Zu3YobN26gfPnyatOULFlS7X3Wf55Z1xZdXFwwevRoLFq0COHh4WjQoAHatWuHb775Rgoo+vr68PT0RFRUFIDXIaRBgwaoX78+MjMzcerUKdjb2+Pp06dqX4bY2Fj8+eefOXbwfPz4sdr77PbF+PHjERkZiTp16sDV1RXNmzfH119/DS8vrzxtMyFEtu0lS5ZU2zbDhw/HoEGDULFiRXzzzTe4f/8+fvvtN6xduxZt27bF9evXpf4bb843r8GgTp06aoG0e/fuqFGjBgICAtCmTRvpgNirVy8EBAQgLi4OpUqVQkREBNLT09GzZ888LSc39+7dw9SpU/H7779rXF/O6gOUJeu6/Jusra3VpouLi4OjoyNMTU3Vxnv7+5dfO3fuRFBQEC5evKh2vf/N7Z31XX/7c/P2sp88eYKEhASsWrUqxzvo3v4s5lVu3y9dyW05WcemnDo7Zh1Hs2S3b5VKJUqUKKHxmVYqlWrrk9/vdV7cunULTk5OsLGxyXEcXR7b87o9czvWW1tb4+XLl5gzZw7WrFmDBw8eqB1z3v5O7dq1C23bts1xnlnLTkxMRLFixbId/vb2fXtdstbnzX0WGBiI9u3bo3z58qhcuTJatGiBnj17omrVqu+s5W2fbQhxcnLK98Oh8vqfw7s6B709LCv5zp8/H9WrV892GnNzczx9+jRvReZTREQE0tLSsHDhQixcuFBjeHh4OGbMmKHWpq+vn+283vyiLFy4EL1798Zvv/2Gffv2Yfjw4ZgzZw5OnTqFEiVKAADq16+PWbNmITU1FVFRUZg8eTKsrKxQuXJlREVFwd7eHgDUQohKpUKzZs0wbty4bGt4OzBlty/c3NwQExODnTt3Ys+ePdi6dSuWL1+OqVOnaqzrm2xtbQHk7T+Dn3/+GdeuXcPvv/+OzMxM/PLLL9i3bx9q1aqFSpUqYfXq1Th16hTq168vTZM136JFi+Y6/+zo6emhcePGWLJkCWJjY1GpUiUAQLdu3TBq1CiEh4dj0qRJ2LBhA2rVqoUKFSpotZw3ZWZmolmzZnj69CnGjx+PihUrwszMDA8ePEDv3r01OhXm9NnRlkKhyDYUvt3RNSoqCu3atUPDhg2xfPlyODo6wsDAAGvWrMlTh+S3Za3XN998k+N/Kvk9GGfJy/dLF3JbTtY6rl+/Hg4ODhrjvRmg3zW/vKxPfr/XuqaLY3tet2dux3rg9Zm3NWvWYOTIkfD09IRSqYRCoUC3bt3UvlN37tzB9evXsWLFinfWrVKpUKxYsRzPbr8d/vKyzxo2bIhbt25Jx/gff/wRixcvxsqVK9XOiOXmswwhANCmTRusWrUKJ0+ehKen5zvHLVWqFFQqFWJjY+Hm5ia1x8fHIyEhQe2hVfmV9UwIS0tL+Pj45DienZ0dLC0tcw1O+T29Hh4ejsqVK2d7yvKHH37Axo0b3/kf87tUqVIFVapUwXfffYcTJ07Ay8sLK1euRFBQEIDX4eLVq1fYtGkTHjx4IIWNhg0bSiGkfPnyUhgBXm+v5OTkd26rvDAzM5Oe7fHq1St8+eWXmDVrFiZOnAhjY+Nsp6lYsSKA11/8d0lJScHYsWMxc+ZMWFlZIT4+Hunp6XBycgLw+kBmbW2NBw8eqE13584d6OnpvdcBNyMjAwCQnJwstdnY2EiX13r06IHjx48jODhY62W86fLly7hx4wbWrl2LXr16Se357iH/hlKlSuHQoUNISUlROxuS3Z0G1tbWaqeIs7z9F+zWrVthbGyMvXv3qt0au2bNGo1lq1Qq3LlzB+XKlctx2XZ2drCwsEBmZuZ7fxY/VlnHpmLFihX4Ourqe/32PPfu3YunT5/meDakII/t2dUD5H6sB4AtW7bAz89P7Q/D1NRUJCQkqI23a9cuKJVKtT9mclp2ZGQkvLy8dHpLsY2NDfr06YM+ffogOTkZDRs2xPTp0/MVQj7LPiHA66eDmpmZoX///oiPj9cYfuvWLSxZsgQA0KpVKwDQOHAvWrQIANC6dWut6/Dw8EDZsmWxYMECtf84smTdMqenp4cOHTpgx44d2T5uOSuhmpmZAYDGhzU79+/fx9GjR9GlSxd89dVXGq8+ffrg5s2biI6Oztc6JSUlSf8ZZqlSpQr09PTUToPXrVsXBgYGmDt3LmxsbKS/3Bs0aIBTp07hyJEjamdBAKBLly44efKk2oPAsiQkJGgsNztZfTuyGBoawt3dHUKId972V7x4cTg7O+f6uOu5c+fC2tpa6tNga2uLIkWK4Pr16wBe9/l48uSJxl+X586dQ6VKlaRLVvmVnp6Offv2wdDQUO2ACgA9e/bE1atXMXbsWOjr66Nbt25aLeNtWX8xvfkXkhBC+u5ow9fXF+np6Vi9erXUplKppNs931S2bFlcv35d7dbSS5cuadzyqK+vD4VCoXaG5O7du9i+fbvGsgFg+fLlau0hISEa8+vUqRO2bt2a7R8GBXFL7Yfm6+sLS0tLzJ49O9vvhS7XMT/f67zeotupUycIIbL9Iyrr81qQx/a35fVYD7z+fL195iskJETjDN8ff/yB5s2ba5yVeluXLl2QmZmJmTNnagzLyMjI0/8Xb3v7OGpubg5XV1eNW5tz89meCSlbtiw2btyIrl27ws3NTe2JqSdOnEBERIR0D3+1atXg5+eHVatWISEhAY0aNcLp06exdu1adOjQAY0bN9a6Dj09Pfz4449o2bIlKlWqhD59+qB48eJ48OABDh06BEtLS+zYsQMAMHv2bOzbtw+NGjXCgAED4ObmhocPHyIiIgLHjh2DlZUVqlevDn19fcydOxeJiYkwMjJCkyZNsr0WuHHjRggh0K5du2xra9WqFYoUKYLw8HDUrVs3z+t08OBBBAQEoHPnzihfvjwyMjKwfv166cCdxdTUFB4eHjh16pT0jBDg9ZmQFy9e4MWLFxohZOzYsfj999/Rpk0b9O7dGx4eHnjx4gUuX76MLVu24O7du7lezmjevDkcHBzg5eUFe3t7XLt2DcuWLUPr1q1z7azcvn17bNu2DUKIbM863bt3D/Pnz8euXbuk/6CLFCmC9u3bY+TIkbh37x62bdsGJycntTNw6enpOHLkSL4eu7x7924p2Dx+/BgbN25EbGwsJkyYoHG9vnXr1rC1tUVERARatmyZ47Xh7Ny8eVM6e/WmGjVqoHnz5ihbtizGjBmDBw8ewNLSElu3bn2v/gsdOnRAnTp18O233+LmzZuoWLEifv/9d+mS5JvbvW/fvli0aBF8fX3Rr18/PH78GCtXrkSlSpWkDuhZ679o0SK0aNECX3/9NR4/fozQ0FC4urrizz//lMbz8PBAp06dEBwcjP/++w9ffPEFjhw5ghs3bmgs+/vvv8ehQ4dQt25d+Pv7w93dHU+fPsX58+cRGRlZYJdQPxRLS0usWLECPXv2RM2aNdGtWzfY2dnh3r172LVrF7y8vLBs2TKdLCs/3+uJEydi7dq1uHPnzjs7YzZu3Bg9e/bE0qVLERsbixYtWkClUiEqKgqNGzdGQEBAgR7b35afY32bNm2wfv16KJVKuLu74+TJk4iMjJQuCQOvn2dz6NAhrFy5MtdlN2rUCAMHDsScOXNw8eJFNG/eHAYGBoiNjUVERASWLFmCr776Kl/r4+7uDm9vb3h4eMDGxgZnz57Fli1bEBAQkL8N897313zibty4Ifz9/UXp0qWFoaGhsLCwEF5eXiIkJESkpqZK46Wnp4sZM2YIFxcXYWBgIJydncXEiRPVxhEi51sas27jyum21QsXLogvv/xS2NraCiMjI1GqVCnRpUsXceDAAbXx4uLiRK9evYSdnZ0wMjISZcqUEUOHDlW7NWz16tWiTJkyQl9f/52361apUkWULFnyndvH29tbFCtWTKSnp+e4Dlm3w2bdOnn79m3Rt29fUbZsWWFsbCxsbGxE48aNRWRkpMb8x44dKwCIuXPnqrW7uroKAOLWrVsa0zx//lxMnDhRuLq6CkNDQ1G0aFFRr149sWDBAul+96ya5s+frzH9Dz/8IBo2bCht67Jly4qxY8fm+nwOIYQ4f/68ACCioqKyHd65c2fx5ZdfarTHx8eLtm3bCgsLC1GzZk1x9uxZteG7d+9Wu036XbK7RdfY2FhUr15drFixIsfbbocMGSIAiI0bN+a6jCxZt+tl9+rXr58QQoirV68KHx8fYW5uLooWLSr8/f3FpUuXNG6n9fPzE2ZmZhrLmDZtmnj7UPTkyRPx9ddfCwsLC6FUKkXv3r3F8ePHBQC12z2FEGLDhg2iTJkywtDQUFSvXl3s3bs321t0f/rpJ1GuXDlhZGQkKlasKNasWZPtsl+8eCGGDh0qbGxshLm5uejQoYN0q/Pbz0CIj48XQ4cOFc7OzsLAwEA4ODiIpk2bilWrVuVp22Z3i+7bt+Bnfe/yc9t9Xm7RzetyDh06JHx9fYVSqRTGxsaibNmyonfv3mqf4Zz2baNGjbK9HT6742RevtdZy0IenxOSkZEh5s+fLypWrCgMDQ2FnZ2daNmypTh37pw0TkEd298+LmbJy7H+2bNnok+fPqJo0aLC3Nxc+Pr6iuvXr6t9Znbu3CkUCoWIj4/XqCm7z78QQqxatUp4eHgIExMTYWFhIapUqSLGjRsn/vnnn1zX8+3b4YOCgkSdOnWElZWVMDExERUrVhSzZs1S21d5oRBCx72diAq5pk2bwsnJSeP3Ot5Hhw4doFAosG3bNp3N822jRo3CTz/9hEePHmncefIp2L59Ozp27Ihjx47l+U4mXbl48SJq1KiBDRs2oEePHh902UTZGTJkCM6ePYvTp0/LXcp7+WwvxxBpa/bs2WjQoAGCgoJ00nHt2rVr2LlzJy5evPj+xeUgNTUVGzZsQKdOnT6JAPLy5Uu1DnSZmZkICQmBpaWlxuP+C3rZwOs+A3p6emjYsGGBLpsor6pXr57rrbmfAoYQonyqW7cuXr16pbP5ubm55alDrTYeP36MyMhIbNmyBf/995/a7yF9zIYNG4aXL1/C09MTaWlp+PXXX3HixAnMnj27wH8wbN68eTh37hwaN26MIkWKYPfu3di9ezcGDBgAZ2fnAl02UV4NGDBA7hJ0giGEqBC7evUqevTogWLFimHp0qU5Pp/gY9OkSRMsXLgQO3fuRGpqKlxdXRESEpL/Tm9aqFevHvbv34+ZM2ciOTkZJUuWxPTp0zF58uQCXzbR54Z9QoiIiEgWn+1zQoiIiEheDCFEREQkC/YJweunMf7zzz+wsLDQya+KEhERfS6EEHj+/DmcnJygp5e/cxsMIQD++ecf9nonIiJ6D/fv35d+oDSvGEIA6VHd9+/f13jcNREREeUsKSkJzs7Ouf7sRXYYQvD/vwdhaWnJEEJERKQFbbozsGMqERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAtZQ8jRo0fRtm1bODk5QaFQYPv27WrDhRCYOnUqHB0dYWJiAh8fH8TGxqqN8/TpU/To0QOWlpawsrJCv379kJyc/AHXgoiIiLQhawh58eIFqlWrhtDQ0GyHz5s3D0uXLsXKlSsRHR0NMzMz+Pr6IjU1VRqnR48euHLlCvbv34+dO3fi6NGjGDBgwIdaBSIiItKSQggh5C4CABQKBbZt24YOHToAeH0WxMnJCd9++y3GjBkDAEhMTIS9vT3CwsLQrVs3XLt2De7u7jhz5gxq1aoFANizZw9atWqFv//+G05OTnladlJSEpRKJRITE2FpaVkg60dERFQYvc//oR9tn5A7d+7g0aNH8PHxkdqUSiXq1q2LkydPAgBOnjwJKysrKYAAgI+PD/T09BAdHZ3jvNPS0pCUlKT2IiIiog+riNwF5OTRo0cAAHt7e7V2e3t7adijR49QrFgxteFFihSBjY2NNE525syZgxkzZui4Yk2lJ+wq8GV87u5+37pA5st9V/C47z5dBbXvAO6/D6Eg919+fbRnQgrSxIkTkZiYKL3u378vd0lERESfnY82hDg4OAAA4uPj1drj4+OlYQ4ODnj8+LHa8IyMDDx9+lQaJztGRkawtLRUexEREdGH9dGGEBcXFzg4OODAgQNSW1JSEqKjo+Hp6QkA8PT0REJCAs6dOyeNc/DgQahUKtStW/eD10xERER5J2ufkOTkZNy8eVN6f+fOHVy8eBE2NjYoWbIkRo4ciaCgIJQrVw4uLi6YMmUKnJycpDto3Nzc0KJFC/j7+2PlypVIT09HQEAAunXrluc7Y4iIiEgesoaQs2fPonHjxtL70aNHAwD8/PwQFhaGcePG4cWLFxgwYAASEhJQv3597NmzB8bGxtI04eHhCAgIQNOmTaGnp4dOnTph6dKlH3xdiIiIKH9kDSHe3t5412NKFAoFAgMDERgYmOM4NjY22LhxY0GUR0RERAXoo+0TQkRERIUbQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZfNQhJDMzE1OmTIGLiwtMTExQtmxZzJw5E0IIaRwhBKZOnQpHR0eYmJjAx8cHsbGxMlZNREREefFRh5C5c+dixYoVWLZsGa5du4a5c+di3rx5CAkJkcaZN28eli5dipUrVyI6OhpmZmbw9fVFamqqjJUTERFRborIXcC7nDhxAu3bt0fr1q0BAKVLl8amTZtw+vRpAK/PggQHB+O7775D+/btAQDr1q2Dvb09tm/fjm7duslWOxEREb3bR30mpF69ejhw4ABu3LgBALh06RKOHTuGli1bAgDu3LmDR48ewcfHR5pGqVSibt26OHnyZI7zTUtLQ1JSktqLiIiIPqyP+kzIhAkTkJSUhIoVK0JfXx+ZmZmYNWsWevToAQB49OgRAMDe3l5tOnt7e2lYdubMmYMZM2YUXOFERESUq4/6TMgvv/yC8PBwbNy4EefPn8fatWuxYMECrF279r3mO3HiRCQmJkqv+/fv66hiIiIiyquP+kzI2LFjMWHCBKlvR5UqVRAXF4c5c+bAz88PDg4OAID4+Hg4OjpK08XHx6N69eo5ztfIyAhGRkYFWjsRERG920d9JiQlJQV6euol6uvrQ6VSAQBcXFzg4OCAAwcOSMOTkpIQHR0NT0/PD1orERER5c9HfSakbdu2mDVrFkqWLIlKlSrhwoULWLRoEfr27QsAUCgUGDlyJIKCglCuXDm4uLhgypQpcHJyQocOHeQtnoiIiN7pow4hISEhmDJlCoYMGYLHjx/DyckJAwcOxNSpU6Vxxo0bhxcvXmDAgAFISEhA/fr1sWfPHhgbG8tYOREREeXmow4hFhYWCA4ORnBwcI7jKBQKBAYGIjAw8MMVRkRERO/to+4TQkRERIUXQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkU0WaiO3fuICoqCnFxcUhJSYGdnR1q1KgBT09PGBsb67pGIiIiKoTyFULCw8OxZMkSnD17Fvb29nBycoKJiQmePn2KW7duwdjYGD169MD48eNRqlSpgqqZiIiICoE8h5AaNWrA0NAQvXv3xtatW+Hs7Kw2PC0tDSdPnsTmzZtRq1YtLF++HJ07d9Z5wURERFQ45DmEfP/99/D19c1xuJGREby9veHt7Y1Zs2bh7t27uqiPiIiICqk8h5B3BZC32drawtbWVquCiIiI6POgVcfUN+3atQuHDx9GZmYmvLy80KlTJ13URURERIXce92iO2XKFIwbNw4KhQJCCIwaNQrDhg3TVW1ERERUiOXrTMjZs2dRq1Yt6f3PP/+MS5cuwcTEBADQu3dveHt7IyQkRLdVEhERUaGTrzMhgwYNwsiRI5GSkgIAKFOmDBYuXIiYmBhcvnwZK1asQPny5QukUCIiIipc8hVCoqOj4ejoiJo1a2LHjh343//+hwsXLqBevXpo0KAB/v77b2zcuLGgaiUiIqJCJF+XY/T19TF+/Hh07twZgwcPhpmZGZYtWwYnJ6eCqo+IiIgKKa06ppYpUwZ79+5Fx44d0bBhQ4SGhuq6LiIiIirk8hVCEhISMG7cOLRt2xbfffcdOnbsiOjoaJw5cwZffPEFLl++XFB1EhERUSGTrxDi5+eH6OhotG7dGjExMRg8eDBsbW0RFhaGWbNmoWvXrhg/fnxB1UpERESFSL76hBw8eBAXLlyAq6sr/P394erqKg1r2rQpzp8/j8DAQJ0XSURERIVPvs6ElCtXDqtWrcKNGzewcuVKjV/KNTY2xuzZs3VaIBERERVO+Qoh//vf/3Dw4EHUqFEDGzduxIoVKwqqLiIiIirk8nU5pnr16jh79mxB1UJERESfkTyfCRFCFGQdRERE9JnJcwipVKkSNm/ejFevXr1zvNjYWAwePBjff//9exdHREREhVeeL8eEhIRg/PjxGDJkCJo1a4ZatWrByckJxsbGePbsGa5evYpjx47hypUrCAgIwODBgwuybiIiIvrE5TmENG3aFGfPnsWxY8fw888/Izw8HHFxcXj58iWKFi2KGjVqoFevXujRowesra0LsmYiIiIqBPLVMRUA6tevj/r16xdELURERPQZ0eq3Y4iIiIjeF0MIERERyYIhhIiIiGTBEEJERESyYAghIiIiWWgVQs6fP4/Lly9L73/77Td06NABkyZNyvVhZkRERESAliFk4MCBuHHjBgDg9u3b6NatG0xNTREREYFx48bptEAiIiIqnLQKITdu3ED16tUBABEREWjYsCE2btyIsLAwbN26VZf1ERERUSGlVQgRQkClUgEAIiMj0apVKwCAs7Mz/v33X91VR0RERIWWViGkVq1aCAoKwvr163HkyBG0bt0aAHDnzh3Y29vrtMAHDx7gm2++ga2tLUxMTFClShWcPXtWGi6EwNSpU+Ho6AgTExP4+PggNjZWpzUQERGR7mkVQoKDg3H+/HkEBARg8uTJcHV1BQBs2bIF9erV01lxz549g5eXFwwMDLB7925cvXoVCxcuVPttmnnz5mHp0qVYuXIloqOjYWZmBl9fX6SmpuqsDiIiItK9fP92TGZmJhISEnD06FGNH6qbP38+9PX1dVbc3Llz4ezsjDVr1khtLi4u0r+FEAgODsZ3332H9u3bAwDWrVsHe3t7bN++Hd26ddNZLURERKRb+T4Toq+vj+bNmyMhIUFjmLGxMQwMDHRRFwDg999/R61atdC5c2cUK1YMNWrUwOrVq6Xhd+7cwaNHj+Dj4yO1KZVK1K1bFydPnsxxvmlpaUhKSlJ7ERER0Yel1eWYypUr4/bt27quRcPt27exYsUKlCtXDnv37sXgwYMxfPhwrF27FgDw6NEjANDoh2Jvby8Ny86cOXOgVCqll7Ozc8GtBBEREWVLqxASFBSEMWPGYOfOnXj48GGBnVVQqVSoWbMmZs+ejRo1amDAgAHw9/fHypUr32u+EydORGJiovS6f/++jiomIiKivMp3nxAA0i257dq1g0KhkNqFEFAoFMjMzNRJcY6OjnB3d1drc3Nzk55F4uDgAACIj4+Ho6OjNE58fLz0HJPsGBkZwcjISCc1EhERkXa0CiGHDh3SdR3Z8vLyQkxMjFrbjRs3UKpUKQCvO6k6ODjgwIEDUuhISkpCdHQ0Bg8e/EFqJCIiIu1oFUIaNWqk6zqyNWrUKNSrVw+zZ89Gly5dcPr0aaxatQqrVq0CACgUCowcORJBQUEoV64cXFxcMGXKFDg5OaFDhw4fpEYiIiLSjta/ohsVFYVvvvkG9erVw4MHDwAA69evx7Fjx3RWXO3atbFt2zZs2rQJlStXxsyZMxEcHIwePXpI44wbNw7Dhg3DgAEDULt2bSQnJ2PPnj0wNjbWWR1ERESke1qFkK1bt8LX1xcmJiY4f/480tLSAACJiYmYPXu2Tgts06YNLl++jNTUVFy7dg3+/v5qwxUKBQIDA/Ho0SOkpqYiMjIS5cuX12kNREREpHta3x2zcuVKrF69Wu25IF5eXjh//rzOiiMiIqLCS6sQEhMTg4YNG2q0K5XKbB9iRkRERPQ2rUKIg4MDbt68qdF+7NgxlClT5r2LIiIiosJPqxDi7++PESNGIDo6GgqFAv/88w/Cw8MxZswY3hpLREREeaLVLboTJkyASqVC06ZNkZKSgoYNG8LIyAhjxozBsGHDdF0jERERFUJahRCFQoHJkydj7NixuHnzJpKTk+Hu7g5zc3Nd10dERESFlFYh5ODBg6hXrx6MjY01HqtORERElBdahZB27dohIyMDtWvXhre3Nxo1agQvLy+YmJjouj4iIiIqpLTqmPrs2TMcOHAALVu2xOnTp9GxY0dYWVnBy8sL3333na5rJCIiokJIqxBiYGAALy8vTJo0CXv37sWpU6fQvXt3nD59GnPmzNF1jURERFQIaXU55saNGzh8+DAOHz6MI0eOIC0tDQ0aNMCCBQvg7e2t4xKJiIioMNIqhFSsWBF2dnYYMWIEJkyYgCpVqkChUOi6NiIiIirEtLocM3z4cBQvXhyBgYEYNGgQJk+ejH379iElJUXX9REREVEhpVUICQ4Oxvnz5/Ho0SNMnDgRr169wuTJk1G0aFF4eXnpukYiIiIqhLQKIVkyMzORnp6OtLQ0pKamIi0tDTExMbqqjYiIiAoxrS/HVK1aFfb29hg4cCD++ecf+Pv748KFC3jy5ImuayQiIqJCSKuOqQ8fPsSAAQPg7e2NypUr67omIiIi+gxoFUIiIiJ0XQcRERF9ZrS6HLN27Vrs2rVLej9u3DhYWVmhXr16iIuL01lxREREVHhpFUJmz54t/U7MyZMnERoainnz5qFo0aIYNWqUTgskIiKiwkmryzH379+Hq6srAGD79u3o1KkTBgwYAC8vLz4xlYiIiPJEqzMh5ubm+O+//wAA+/btQ7NmzQAAxsbGePnype6qIyIiokJLqzMhzZo1Q//+/VGjRg3cuHEDrVq1AgBcuXIFpUuX1mV9REREVEhpdSYkNDQUnp6eePLkCbZu3QpbW1sAwLlz59C9e3edFkhERESFk1ZnQqysrLBs2TKN9hkzZrx3QURERPR50CqEAEBCQgJOnz6Nx48fQ6VSSe0KhQI9e/bUSXFERERUeGkVQnbs2IEePXogOTkZlpaWUCgU0jCGECIiIsoLrfqEfPvtt+jbty+Sk5ORkJCAZ8+eSa+nT5/qukYiIiIqhLQKIQ8ePMDw4cNhamqq63qIiIjoM6FVCPH19cXZs2d1XQsRERF9RrTqE9K6dWuMHTsWV69eRZUqVWBgYKA2vF27djopjoiIiAovrUKIv78/ACAwMFBjmEKhQGZm5vtVRURERIWeViHkzVtyiYiIiLShVZ+QnCQkJGT7EDMiIiKit+kkhBw4cABff/01HB0dMW3aNF3MkoiIiAo5rUPI/fv3ERgYCBcXFzRv3hwKhQLbtm3Do0ePdFkfERERFVL5CiHp6emIiIiAr68vKlSogIsXL2L+/PnQ09PD5MmT0aJFC407ZYiIiIiyk6+OqcWLF0fFihXxzTffYPPmzbC2tgYA/nIuERER5Vu+zoRkZGRAoVBAoVBAX1+/oGoiIiKiz0C+Qsg///yDAQMGYNOmTXBwcECnTp2wbds2tR+wIyIiIsqLfIUQY2Nj9OjRAwcPHsTly5fh5uaG4cOHIyMjA7NmzcL+/fv5oDIiIiLKE63vjilbtiyCgoIQFxeHXbt2IS0tDW3atIG9vb0u6yMiIqJCSqsnpr5JT08PLVu2RMuWLfHkyROsX79eF3URERFRIafTJ6ba2dlh9OjRupwlERERFVI6DSFEREREecUQQkRERLJgCCEiIiJZaBVCAgMDkZKSotH+8uVLBAYGvndRREREVPhpFUJmzJiB5ORkjfaUlBTMmDHjvYsiIiKiwk+rECKEyPYpqZcuXYKNjc17F0VERESFX76eE2JtbS39dkz58uXVgkhmZiaSk5MxaNAgnRdJREREhU++QkhwcDCEEOjbty9mzJgBpVIpDTM0NETp0qXh6emp8yKJiIio8MlXCPHz8wMAuLi4wMvLC0WKvPcDV4mIiOgzpVWfkBcvXuDAgQMa7Xv37sXu3bvfuygiIiIq/LQKIRMmTMj213KFEJgwYcJ7F0VERESFn1YhJDY2Fu7u7hrtFStWxM2bN9+7KCIiIir8tAohSqUSt2/f1mi/efMmzMzM3rsoIiIiKvy0CiHt27fHyJEjcevWLant5s2b+Pbbb9GuXTudFUdERESFl1YhZN68eTAzM0PFihXh4uICFxcXuLm5wdbWFgsWLNB1jURERFQIaXWPrVKpxIkTJ7B//35cunQJJiYmqFq1Kho2bKjr+oiIiKiQ0vpBHwqFAs2bN0fDhg1hZGSU7WPciYiIiHKi1eUYlUqFmTNnonjx4jA3N8edO3cAAFOmTMFPP/2k0wKJiIiocNIqhAQFBSEsLAzz5s2DoaGh1F65cmX8+OOPOiuOiIiICi+tQsi6deuwatUq9OjRA/r6+lJ7tWrVcP36dZ0VR0RERIWXViHkwYMHcHV11WhXqVRIT09/76KIiIio8NMqhLi7uyMqKkqjfcuWLahRo8Z7F0VERESFn1Z3x0ydOhV+fn548OABVCoVfv31V8TExGDdunXYuXOnrmskIiKiQkjrJ6bu2LEDkZGRMDMzw9SpU3Ht2jXs2LEDzZo103WNREREVAjl+0xIRkYGZs+ejb59+2L//v0FURMRERF9BvJ9JqRIkSKYN28eMjIyCqIeIiIi+kxodTmmadOmOHLkiK5rISIios+IVh1TW7ZsiQkTJuDy5cvw8PCAmZmZ2nD+ki4RERHlRqsQMmTIEADAokWLNIYpFApkZma+X1VERERU6GkVQlQqla7rICIios9MvvuEpKeno0iRIvjrr78Koh4iIiL6TOQ7hBgYGKBkyZK85EJERETvRau7YyZPnoxJkybh6dOnuq6HiIiIPhNahZBly5bh6NGjcHJyQoUKFVCzZk21V0H5/vvvoVAoMHLkSKktNTUVQ4cOha2tLczNzdGpUyfEx8cXWA1ERESkG1p1TO3QoYOOy8jdmTNn8MMPP6Bq1apq7aNGjcKuXbsQEREBpVKJgIAAfPnllzh+/PgHr5GIiIjyTqsQMm3aNF3X8U7Jycno0aMHVq9ejaCgIKk9MTERP/30EzZu3IgmTZoAANasWQM3NzecOnUKX3zxxQetk4iIiPJOq8sxWc6dO4cNGzZgw4YNuHDhgq5q0jB06FC0bt0aPj4+GstPT09Xa69YsSJKliyJkydP5ji/tLQ0JCUlqb2IiIjow9LqTMjjx4/RrVs3HD58GFZWVgCAhIQENG7cGJs3b4adnZ3OCty8eTPOnz+PM2fOaAx79OgRDA0NpRqy2Nvb49GjRznOc86cOZgxY4bOaiQiIqL80+pMyLBhw/D8+XNcuXIFT58+xdOnT/HXX38hKSkJw4cP11lx9+/fx4gRIxAeHg5jY2OdzXfixIlITEyUXvfv39fZvImIiChvtDoTsmfPHkRGRsLNzU1qc3d3R2hoKJo3b66z4s6dO4fHjx+r3XGTmZmJo0ePYtmyZdi7dy9evXqFhIQEtbMh8fHxcHBwyHG+RkZGMDIy0lmdRERElH9aP7bdwMBAo93AwECnj3Rv2rQpLl++rNbWp08fVKxYEePHj4ezszMMDAxw4MABdOrUCQAQExODe/fuwdPTU2d1EBERke5pFUKaNGmCESNGYNOmTXBycgIAPHjwAKNGjULTpk11VpyFhQUqV66s1mZmZgZbW1upvV+/fhg9ejRsbGxgaWmJYcOGwdPTk3fGEBERfeS0CiHLli1Du3btULp0aTg7OwN43X+jcuXK2LBhg04LzM3ixYuhp6eHTp06IS0tDb6+vli+fPkHrYGIiIjyT6sQ4uzsjPPnzyMyMhLXr18HALi5uWncQlsQDh8+rPbe2NgYoaGhCA0NLfBlExERke5oFUIAQKFQoFmzZmjWrJku6yEiIqLPRL5u0T148CDc3d2zfbhXYmIiKlWqhKioKJ0VR0RERIVXvkJIcHAw/P39YWlpqTFMqVRi4MCBWLRokc6KIyIiosIrXyHk0qVLaNGiRY7DmzdvjnPnzr13UURERFT45SuExMfHZ/t8kCxFihTBkydP3rsoIiIiKvzyFUKKFy+Ov/76K8fhf/75JxwdHd+7KCIiIir88hVCWrVqhSlTpiA1NVVj2MuXLzFt2jS0adNGZ8URERFR4ZWvW3S/++47/PrrryhfvjwCAgJQoUIFAMD169cRGhqKzMxMTJ48uUAKJSIiosIlXyHE3t4eJ06cwODBgzFx4kQIIQC8fmaIr68vQkNDYW9vXyCFEhERUeGS74eVlSpVCn/88QeePXuGmzdvQgiBcuXKwdrauiDqIyIiokJK6yemWltbo3bt2rqshYiIiD4j+eqYSkRERKQrDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCSLjzqEzJkzB7Vr14aFhQWKFSuGDh06ICYmRm2c1NRUDB06FLa2tjA3N0enTp0QHx8vU8VERESUVx91CDly5AiGDh2KU6dOYf/+/UhPT0fz5s3x4sULaZxRo0Zhx44diIiIwJEjR/DPP//gyy+/lLFqIiIiyosichfwLnv27FF7HxYWhmLFiuHcuXNo2LAhEhMT8dNPP2Hjxo1o0qQJAGDNmjVwc3PDqVOn8MUXX8hRNhEREeXBR30m5G2JiYkAABsbGwDAuXPnkJ6eDh8fH2mcihUromTJkjh58mSO80lLS0NSUpLai4iIiD6sTyaEqFQqjBw5El5eXqhcuTIA4NGjRzA0NISVlZXauPb29nj06FGO85ozZw6USqX0cnZ2LsjSiYiIKBufTAgZOnQo/vrrL2zevPm95zVx4kQkJiZKr/v37+ugQiIiIsqPj7pPSJaAgADs3LkTR48eRYkSJaR2BwcHvHr1CgkJCWpnQ+Lj4+Hg4JDj/IyMjGBkZFSQJRMREVEuPuozIUIIBAQEYNu2bTh48CBcXFzUhnt4eMDAwAAHDhyQ2mJiYnDv3j14enp+6HKJiIgoHz7qMyFDhw7Fxo0b8dtvv8HCwkLq56FUKmFiYgKlUol+/fph9OjRsLGxgaWlJYYNGwZPT0/eGUNERPSR+6hDyIoVKwAA3t7eau1r1qxB7969AQCLFy+Gnp4eOnXqhLS0NPj6+mL58uUfuFIiIiLKr486hAghch3H2NgYoaGhCA0N/QAVERERka581H1CiIiIqPBiCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCQLhhAiIiKSBUMIERERyYIhhIiIiGTBEEJERESyYAghIiIiWTCEEBERkSwYQoiIiEgWDCFEREQkC4YQIiIikgVDCBEREcmCIYSIiIhkwRBCREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLJgCCEiIiJZMIQQERGRLBhCiIiISBYMIURERCSLQhNCQkNDUbp0aRgbG6Nu3bo4ffq03CURERHROxSKEPLzzz9j9OjRmDZtGs6fP49q1arB19cXjx8/lrs0IiIiykGhCCGLFi2Cv78/+vTpA3d3d6xcuRKmpqb43//+J3dpRERElIMichfwvl69eoVz585h4sSJUpuenh58fHxw8uTJbKdJS0tDWlqa9D4xMREAkJSUpNPaVGkpOp0fadL1PsvCfVfwuO8+XQW17wDuvw9B1/sva35CiHxP+8mHkH///ReZmZmwt7dXa7e3t8f169eznWbOnDmYMWOGRruzs3OB1EgFRxksdwWkLe67Txf33aetoPbf8+fPoVQq8zXNJx9CtDFx4kSMHj1aeq9SqfD06VPY2tpCoVDIWJl8kpKS4OzsjPv378PS0lLuciifuP8+Xdx3ny7uu9eEEHj+/DmcnJzyPe0nH0KKFi0KfX19xMfHq7XHx8fDwcEh22mMjIxgZGSk1mZlZVVQJX5SLC0tP+sv06eO++/TxX336eK+Q77PgGT55DumGhoawsPDAwcOHJDaVCoVDhw4AE9PTxkrIyIionf55M+EAMDo0aPh5+eHWrVqoU6dOggODsaLFy/Qp08fuUsjIiKiHBSKENK1a1c8efIEU6dOxaNHj1C9enXs2bNHo7Mq5czIyAjTpk3TuExFnwbuv08X992ni/vu/SmENvfUEBEREb2nT75PCBEREX2aGEKIiIhIFgwhREREJAuGEMqTsLCwPD9LJT/jUsG5e/cuFAoFLl68KHcpRIVe79690aFDB+m9t7c3Ro4cmadp8zNuYVMo7o6hgte1a1e0atVK7jI+Sd7e3qhevTqCg4PlLoUKQO/evZGQkIDt27fLXQp9RH799VcYGBjIXcZHjyGE8sTExAQmJiZyl0H00cjMzPxsf+aBcmdjYyN3CZ8EXo75RGzZsgVVqlSBiYkJbG1t4ePjgxcvXkinAGfMmAE7OztYWlpi0KBBePXqlTTtnj17UL9+fVhZWcHW1hZt2rTBrVu3pOFZp+1//fVXNG7cGKampqhWrZrarxC/fYnl0qVLaNy4MSwsLGBpaQkPDw+cPXtWrea9e/fCzc0N5ubmaNGiBR4+fFhwG+gj1bt3bxw5cgRLliyBQqGAQqHArVu30K9fP7i4uMDExAQVKlTAkiVL1KbLyMjA8OHDpX02fvx4+Pn5qZ3uzW2/ZufIkSOoU6cOjIyM4OjoiAkTJiAjI0Ma/vz5c/To0QNmZmZwdHTE4sWLC82pYm9vbwQEBCAgIABKpRJFixbFlClTpF/+fPbsGXr16gVra2uYmpqiZcuWiI2NlabP+g78/vvvcHd3h5GREfr27Yu1a9fit99+k/bv4cOHcfjwYSgUCiQkJEjTX7x4EQqFAnfv3pXaVq9eDWdnZ5iamqJjx45YtGiR2vfs7VP8ADBy5Eh4e3tL71UqFebMmSN9nqpVq4YtW7ZIw589e4YePXrAzs4OJiYmKFeuHNasWSMNv3//Prp06QIrKyvY2Nigffv2ajUWBu/aRln76sCBA6hVqxZMTU1Rr149xMTEqM0jKCgIxYoVg4WFBfr3748JEyagevXqOS7z7e/N8uXLUa5cORgbG8Pe3h5fffWVRo3jxo2DjY0NHBwcMH36dF2t/keNIeQT8PDhQ3Tv3h19+/bFtWvXcPjwYXz55ZfSwfPAgQNS+6ZNm/Drr7+q/UrwixcvMHr0aJw9exYHDhyAnp4eOnbsCJVKpbacyZMnY8yYMbh48SLKly+P7t27q/0H9aYePXqgRIkSOHPmDM6dO4cJEyaonXpMSUnBggULsH79ehw9ehT37t3DmDFjCmDrfNyWLFkCT09P+Pv74+HDh3j48CFKlCiBEiVKICIiAlevXsXUqVMxadIk/PLLL9J0c+fORXh4ONasWYPjx48jKSlJ43R/XvdrlgcPHqBVq1aoXbs2Ll26hBUrVuCnn35CUFCQNM7o0aNx/Phx/P7779i/fz+ioqJw/vz5Atk2cli7di2KFCmC06dPY8mSJVi0aBF+/PFHAK//wz979ix+//13nDx5EkIItGrVCunp6dL0KSkpmDt3Ln788UdcuXIFS5cuRZcuXaSQ/fDhQ9SrVy9PtRw/fhyDBg3CiBEjcPHiRTRr1gyzZs3K9zrNmTMH69atw8qVK3HlyhWMGjUK33zzDY4cOQIAmDJlCq5evYrdu3fj2rVrWLFiBYoWLQoASE9Ph6+vLywsLBAVFYXjx49LfzS8+YfMpy63bQS8Pv4tXLgQZ8+eRZEiRdC3b19pWHh4OGbNmoW5c+fi3LlzKFmyJFasWJHn5Z89exbDhw9HYGAgYmJisGfPHjRs2FBtnLVr18LMzAzR0dGYN28eAgMDsX///vdf+Y+doI/euXPnBABx9+5djWF+fn7CxsZGvHjxQmpbsWKFMDc3F5mZmdnO78mTJwKAuHz5shBCiDt37ggA4scff5TGuXLligAgrl27JoQQYs2aNUKpVErDLSwsRFhYWLbzX7NmjQAgbt68KbWFhoYKe3v7vK90IdKoUSMxYsSId44zdOhQ0alTJ+m9vb29mD9/vvQ+IyNDlCxZUrRv3z7HeeS0Xy9cuCCEEGLSpEmiQoUKQqVSSdOEhoZKn5WkpCRhYGAgIiIipOEJCQnC1NQ01/o/BY0aNRJubm5q6z9+/Hjh5uYmbty4IQCI48ePS8P+/fdfYWJiIn755RchxP9/ri9evKg2Xz8/P439cujQIQFAPHv2TGq7cOGCACDu3LkjhBCia9euonXr1mrT9ejRQ+17lt28R4wYIRo1aiSEECI1NVWYmpqKEydOqI3Tr18/0b17dyGEEG3bthV9+vTJdpusX79e4zORlpYmTExMxN69e7Od5lOT2zbK2leRkZHSsF27dgkA4uXLl0IIIerWrSuGDh2qNr2Xl5eoVq2a9P7tffXm937r1q3C0tJSJCUlZVtjo0aNRP369dXaateuLcaPH5/f1f3k8EzIJ6BatWpo2rQpqlSpgs6dO2P16tV49uyZ2nBTU1PpvaenJ5KTk3H//n0AQGxsLLp3744yZcrA0tISpUuXBgDcu3dPbTlVq1aV/u3o6AgAePz4cbY1jR49Gv3794ePjw++//57jcsApqamKFu2rNr8cprX5yg0NBQeHh6ws7ODubk5Vq1aJe2PxMRExMfHo06dOtL4+vr68PDwUJtHXvdrlmvXrsHT01OtH4OXlxeSk5Px999/4/bt20hPT1dbrlKpRIUKFXS12rL74osv1Nbf09MTsbGxuHr1KooUKYK6detKw2xtbVGhQgVcu3ZNajM0NFT7nryPmJgYtW0NQON9bm7evImUlBQ0a9YM5ubm0mvdunXSd3Lw4MHYvHkzqlevjnHjxuHEiRPS9JcuXcLNmzdhYWEhTWtjY4PU1NRcL+19KvKyjYB3H//ed181a9YMpUqVQpkyZdCzZ0+Eh4cjJSVFbZy3P1efyzGTHVM/Afr6+ti/fz9OnDiBffv2ISQkBJMnT0Z0dHSepm/bti1KlSqF1atXw8nJCSqVCpUrV9Y43frm5ZSsA3VOp/anT5+Or7/+Grt27cLu3bsxbdo0bN68GR07dtSYV9b8BH8hAACwefNmjBkzBgsXLoSnpycsLCwwf/78PO/PLHndr6Q7JiYmeeqMqqf3+u+7Nz/zb17WySs9PT2N782b80lOTgYA7Nq1C8WLF1cbL+v3TFq2bIm4uDj88ccf2L9/P5o2bYqhQ4diwYIFSE5OhoeHB8LDwzWWbWdnl+96P0a5baOsIJKf419+WVhY4Pz58zh8+DD27duHqVOnYvr06Thz5ozUByi7Y6aulv8x45mQT4RCoYCXlxdmzJiBCxcuwNDQENu2bQPw+q+Zly9fSuOeOnUK5ubmcHZ2xn///YeYmBh89913aNq0Kdzc3NTOoryP8uXLY9SoUdi3bx++/PJLtc5u9P8MDQ2RmZkpvT9+/Djq1auHIUOGoEaNGnB1dVX7i0ypVMLe3h5nzpyR2jIzM9X6ZmizX93c3KS+Dm/WYmFhgRIlSqBMmTIwMDBQW25iYiJu3LjxXuv/MXk76J06dQrlypWDu7s7MjIy1IZnbWN3d/d3zvPt/Qv8/3/gb3bGfvt5LRUqVFDb1gA03tvZ2Wl06H5zPlkdZO/duwdXV1e1l7Ozs9p8/Pz8sGHDBgQHB2PVqlUAgJo1ayI2NhbFihXTmF6pVL5zvT8Ved1G75KXfZWbIkWKwMfHB/PmzcOff/6Ju3fv4uDBg/maR2HEMyGfgOjoaBw4cADNmzdHsWLFEB0djSdPnsDNzQ1//vknXr16hX79+uG7777D3bt3MW3aNAQEBEBPTw/W1tawtbXFqlWr4OjoiHv37mHChAnvVc/Lly8xduxYfPXVV3BxccHff/+NM2fOoFOnTjpa48KldOnSiI6Oxt27d2Fubo5y5cph3bp12Lt3L1xcXLB+/XqcOXMGLi4u0jTDhg3DnDlz4OrqiooVKyIkJATPnj2T/kLTZr8OGTIEwcHBGDZsGAICAhATE4Np06Zh9OjR0NPTg4WFBfz8/DB27FjY2NigWLFimDZtGvT09ArNraj37t3D6NGjMXDgQJw/fx4hISFYuHAhypUrh/bt28Pf3x8//PADLCwsMGHCBBQvXhzt27d/5zxLly6NvXv3IiYmBra2tlAqldJ/cNOnT8esWbNw48YNLFy4UG26YcOGoWHDhli0aBHatm2LgwcPYvfu3WrbukmTJpg/fz7WrVsHT09PbNiwAX/99Rdq1KgB4PVf2GPGjMGoUaOgUqlQv359JCYm4vjx47C0tISfnx+mTp0KDw8PVKpUCWlpadi5cyfc3NwAvO5gPn/+fLRv3x6BgYEoUaIE4uLi8Ouvv2LcuHEoUaKEjvfAh5fbNipVqlSu8xg2bBj8/f1Rq1Yt1KtXDz///DP+/PNPlClTJk817Ny5E7dv30bDhg1hbW2NP/74AyqVqlBd6tSavF1SKC+uXr0qfH19hZ2dnTAyMhLly5cXISEhQoj/7ww1depUYWtrK8zNzYW/v79ITU2Vpt+/f79wc3MTRkZGomrVquLw4cMCgNi2bZsQQrMDoxBCPHv2TAAQhw4dEkKod0xNS0sT3bp1E87OzsLQ0FA4OTmJgIAAqRPX251YhRBi27Zt4nP9uMXExIgvvvhCmJiYCADi+vXronfv3kKpVAorKysxePBgMWHCBLVObunp6SIgIEBYWloKa2trMX78eNG5c2fRrVs3aRxt9uvhw4dF7dq1haGhoXBwcBDjx48X6enp0vCkpCTx9ddfC1NTU+Hg4CAWLVok6tSpIyZMmFDQm6nANWrUSAwZMkQMGjRI2q6TJk2SOmU+ffpU9OzZUyiVSmFiYiJ8fX3FjRs3pOmz+1wLIcTjx49Fs2bNhLm5udp35tixY6JKlSrC2NhYNGjQQERERKh1TBVCiFWrVonixYsLExMT0aFDBxEUFCQcHBzU5j916lRhb28vlEqlGDVqlAgICJA6pgohhEqlEsHBwaJChQrCwMBA2NnZCV9fX3HkyBEhhBAzZ84Ubm5uwsTERNjY2Ij27duL27dvS9M/fPhQ9OrVSxQtWlQYGRmJMmXKCH9/f5GYmPieW/zj8a5tlJdOxEIIERgYKIoWLSrMzc1F3759xfDhw8UXX3whDX9Xx9SoqCjRqFEjYW1tLUxMTETVqlXFzz//nO24Wdq3by/8/Px0uBU+TgoheKH+U8anNX4eVCoV3Nzc0KVLF8ycOfODLffFixcoXrw4Fi5ciH79+n2w5RaET+HJtf7+/rh+/TqioqLkLoVy0axZMzg4OGD9+vVyl/JJ4+UYoo9QXFwc9u3bh0aNGiEtLQ3Lli3DnTt38PXXXxfoci9cuIDr16+jTp06SExMRGBgIADkekmCtLNgwQI0a9YMZmZm2L17N9auXYvly5fLXRa9JSUlBStXroSvry/09fWxadMmREZGfh7P8ShgDCFEHyE9PT2EhYVhzJgxEEKgcuXKiIyMlK7lF6QFCxYgJiYGhoaG8PDwQFRUlPRwK9Kt06dPY968eXj+/DnKlCmDpUuXon///nKXRW9RKBT4448/MGvWLKSmpqJChQrYunUrfHx85C7tk8fLMURERCQL3qJLREREsmAIISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRvVPv3r3RoUMHucsgokKIIYSIiIhkwRBCRFpbtGgRqlSpAjMzMzg7O2PIkCFITk6WhoeFhcHKygp79+6Fm5sbzM3N0aJFC7Wfp8/IyMDw4cNhZWUFW1tbjB8/Hn5+fmpnX0qXLq3xmy/Vq1fH9OnT81wLAKxevRrOzs4wNTVFx44dsWjRIlhZWamN89tvv6FmzZowNjZGmTJlMGPGDGRkZLz3tiIiTQwhRKQ1PT09LF26FFeuXMHatWtx8OBBjBs3Tm2clJQULFiwAOvXr8fRo0dx7949jBkzRho+d+5chIeHY82aNTh+/DiSkpK0+kHG3Go5fvw4Bg0ahBEjRuDixYto1qwZZs2apTaPqKgo9OrVCyNGjMDVq1fxww8/ICwsTGM8ItIRWX/Dl4g+em//RPm7RERECFtbW+n9mjVrBABx8+ZNqS00NFTY29tL7+3t7cX8+fOl9xkZGaJkyZJqyyxVqpRYvHix2rKqVasmpk2bludaunbtKlq3bq02To8ePYRSqZTeN23aVMyePVttnPXr1wtHR8ccl0NE2uMP2BGR1iIjIzFnzhxcv34dSUlJyMjIQGpqKlJSUmBqagoAMDU1RdmyZaVpHB0d8fjxYwBAYmIi4uPjUadOHWm4vr4+PDw8oFKpdFpLTEwMOnbsqDZNnTp1sHPnTun9pUuXcPz4cbUzH5mZmRrrRES6wcsxRKSVu3fvok2bNqhatSq2bt2Kc+fOITQ0FADw6tUraTwDAwO16RQKBUQ+fzdTT09PY5r09PR815Kb5ORkzJgxAxcvXpRely9fRmxsLIyNjfNVMxHljmdCiEgr586dg0qlwsKFC6Gn9/rvmV9++SVf81AqlbC3t8eZM2fQsGFDAK/PPJw/fx7Vq1eXxrOzs1PrzJqUlIQ7d+7kq5YKFSrgzJkzam1vv69ZsyZiYmLg6uqar/UgIu0whBBRrhITE3Hx4kW1tqJFiyI9PR0hISFo27Ytjh8/jpUrV+Z73sOGDcOcOXPg6uqKihUrIiQkBM+ePYNCoZDGadKkCcLCwtC2bVtYWVlh6tSp0NfXl4a7urrmWsuwYcPQsGFDLFq0CG3btsXBgwexe/duteVMnToVbdq0QcmSJfHVV19BT08Ply5dwl9//YWgoKB8rxsR5ULuTilE9HHz8/MTADRe/fr1E4sWLRKOjo7CxMRE+Pr6inXr1gkA4tmzZ0KI1x1T3+z4KYQQ27ZtE28eetLT00VAQICwtLQU1tbWYvz48aJz586iW7du0jiJiYmia9euwtLSUjg7O4uwsDCNjqm51SKEEKtWrRLFixcXJiYmokOHDiIoKEg4ODio1bdnzx5Rr149YWJiIiwtLUWdOnXEqlWrdLY9iej/KYTI58VZIqICpFKp4Obmhi5dumDmzJkFuix/f39cv34dUVFRBbocIsoeL8cQkazi4uKwb98+NGrUCGlpaVi2bBnu3LmDr7/+WufLWrBgAZo1awYzMzPs3r0ba9euxfLly3W+HCLKG4YQIpKVnp4ewsLCMGbMGAghULlyZURGRsLNzU3nyzp9+jTmzZuH58+fo0yZMli6dCn69++v8+UQUd7wcgwRERHJgs8JISIiIlkwhBAREZEsGEKIiIhIFgwhREREJAuGECIiIpIFQwgRERHJgiGEiIiIZMEQQkRERLL4P6FaxrA38pRpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 glaucoma 7 7 7 8 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 9 77.777778 77.777778 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 77.777778 88.888889 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXjUlEQVR4nO3deZyN9f//8ecZzG4WgxnLYCwxlhARsi+TnaSIjMiWJWRNkS0RUhLx6YNEyhYqu8hSdlIYlC1ZY2YwjDHz/v3hN+frmMHMXDOfmcnjfrvNjfO+tte5ruuc8zzX9b6uYzPGGAEAAKSQU3oXAAAAMjfCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgSQDDt37pSzs7NOnTqVKvM7dOiQsmbNqt9++y1V5ofMoVChQurYseP/fLlz5syRzWbT7t27/+fLzqjeffdd2Wy29C4j03usw8Qff/yhbt26qXDhwnJ1dZWXl5eqVaumjz76SDdv3kzv8pLt0KFDevfdd3Xy5MlkTzto0CDZbDa99NJLqV/Yv8iwYcPUtm1bFSxY0N727bffqkSJEvL29lbTpk31999/J5iuWbNm6tq1a4L2kiVLqnHjxho+fHiSlh//YXDvX+7cuVW7dm2tWrUq5U8sEYUKFVKTJk1SdZ5IXSdPnkywPzzoLyXvC0BSZU3vAtLL999/r9atW8vFxUUdOnRQ6dKldfv2bW3dulUDBw7U77//rpkzZ6Z3mcly6NAhjRw5UrVq1VKhQoWSPJ0xRl999ZUKFSqklStX6tq1a8qePXvaFZpJ7d+/X+vXr9f27dvtbX/++adeeuklvfTSS6pSpYqmTJmiV199VWvWrLGPs2bNGv300086duxYovPt3r27GjVqpD/++ENFihRJUi2jRo1SUFCQjDG6cOGC5syZo0aNGmnlypUEgEwgLCxMTk7Wv8vlypVL8+bNc2ibNGmS/vrrL3344YcJxgXSymMZJk6cOKE2bdqoYMGC2rhxo/LkyWMf1rNnTx0/flzff/+95eUYY3Tr1i25ubklGHbr1i05OzunyhuKVZs2bdJff/2ljRs3KiQkREuXLlVoaGh6l5Wq7ty5o7i4ODk7O6d4HrNnz1aBAgX0zDPP2NvWrl2r/Pnza+7cubLZbAoODladOnV069Ytubq66s6dO+rXr5+GDx/+wDfzevXqydfXV3PnztWoUaOSVEvDhg1VsWJF++POnTvL399fX331FWEiE3BxcUmV+Xh4eKh9+/YObQsXLtTVq1cTtANpKf0/ydLBhAkTdP36dX3++ecOQSJe0aJF9cYbb9gf37lzR6NHj1aRIkXk4uKiQoUK6a233lJ0dLTDdPGHhdesWaOKFSvKzc1Nn332mTZt2iSbzaaFCxfq7bffVr58+eTu7q7IyEhJ0o4dO/Tcc8/J29tb7u7uqlmzprZt25agrrNnz6pz587KmzevXFxcFBQUpB49euj27duaM2eOWrduLUmqXbu2/dDmpk2bHrk+5s+fr5IlS6p27dqqV6+e5s+fn2Cc+OfwzTffaOzYscqfP79cXV1Vt25dHT9+3GHcY8eOqVWrVgoICJCrq6vy58+vNm3aKCIiQpL0/PPP66mnnnKYpmnTprLZbFqxYoW9bceOHbLZbA6H78PDw9W3b18FBgbKxcVFRYsW1fjx4xUXF2cfJ/7Q78SJEzVlyhT7djt06JAkaerUqSpVqpTc3d3l6+urihUrasGCBY9cT99++63q1KnjcH715s2b8vHxsbflyJFDxhj7abJPPvlEsbGx6t279wPnmy1bNtWqVUvLly9/ZA0P4uPjIzc3N2XNevf7gTFGhQoVUvPmzROMe+vWLXl7e6tbt24pXl68LVu2qHXr1ipQoIBcXFwUGBiofv36JThN2LFjR3l6eurs2bNq0aKFPD09lStXLg0YMECxsbEO4/7zzz965ZVX5OXlJR8fH4WGhurAgQOy2WyaM2eOfbxatWqpVq1aCWrq2LFjgiNzEydOVNWqVeXn5yc3NzdVqFBBixcvTjDtzZs31adPH+XMmVPZs2dXs2bNdPbsWdlsNr377rsO4549e1adOnWSv7+/XFxcVKpUKf33v/9N0nq7v89E/Omrbdu2qX///sqVK5c8PDzUsmVLXbp0KUnzTI7o6OgkLWfVqlWqXr26PDw8lD17djVu3Fi///67wzjx2/b06dNq0qSJPD09lS9fPk2bNk2SdPDgQdWpU0ceHh4qWLBgoq+1pLyuJencuXM6cuSIYmJiHvkck7ofJWb27NmqU6eOcufOLRcXF5UsWVLTp09PMF5i+4WUeJ+Y8PBw9evXT4UKFZKLi4vy58+vDh066PLly/ZxLl68aP9i4OrqqrJly2ru3LkO87n3/W3atGkqXLiw3N3d1aBBA505c0bGGI0ePVr58+eXm5ubmjdvritXrjjMY/ny5WrcuLH9s6RIkSIaPXp0gtdicjyWRyZWrlypwoULq2rVqkka/7XXXtPcuXP1wgsv6M0339SOHTs0btw4HT58WMuWLXMYNywsTG3btlW3bt3UpUsXFS9e3D5s9OjRcnZ21oABAxQdHS1nZ2dt3LhRDRs2VIUKFTRixAg5OTnZd+QtW7aoUqVKkqS///5blSpVUnh4uLp27aoSJUro7NmzWrx4saKiolSjRg316dNHH3/8sd566y0FBwdLkv3fB4mOjtaSJUv05ptvSpLatm2rV199VefPn1dAQECC8d9//305OTlpwIABioiI0IQJE9SuXTvt2LFDknT79m2FhIQoOjpavXv3VkBAgM6ePavvvvtO4eHh8vb2VvXq1bV8+XJFRkbKy8tLxhht27ZNTk5O2rJli5o1aybp7geVk5OTqlWrJkmKiopSzZo1dfbsWXXr1k0FChTQ9u3bNXToUJ07d05TpkxxqHX27Nm6deuWunbtKhcXF+XIkUOzZs1Snz599MILL+iNN97QrVu39Ouvv2rHjh16+eWXH7iezp49q9OnTycIQU8//bTefPNNffXVV3rmmWc0duxYFS1aVL6+vrp06ZJGjhypL7/8UtmyZXvodqhQoYLDOnmUiIgIXb58WcYYXbx4UVOnTtX169ft30ZtNpvat2+vCRMm6MqVK8qRI4d92pUrVyoyMjJVvrkuWrRIUVFR6tGjh/z8/LRz505NnTpVf/31lxYtWuQwbmxsrEJCQlS5cmVNnDhR69ev16RJk1SkSBH16NFDkhQXF6emTZtq586d6tGjh0qUKKHly5dbPlL20UcfqVmzZmrXrp1u376thQsXqnXr1vruu+/UuHFj+3gdO3bUN998o1deeUXPPPOMNm/e7DA83oULF/TMM8/IZrOpV69eypUrl1atWqXOnTsrMjJSffv2TVGdvXv3lq+vr0aMGKGTJ09qypQp6tWrl77++uuUPvUUL2fevHkKDQ1VSEiIxo8fr6ioKE2fPl3PPvus9u3b5xDYYmNj1bBhQ9WoUUMTJkzQ/Pnz1atXL3l4eGjYsGFq166dnn/+ec2YMUMdOnRQlSpVFBQUJCl5r+uhQ4dq7ty5OnHixENP5Vrdj6ZPn65SpUqpWbNmypo1q1auXKnXX39dcXFx6tmzZ7LWtSRdv35d1atX1+HDh9WpUyc99dRTunz5slasWKG//vpLOXPm1M2bN1WrVi0dP35cvXr1UlBQkBYtWqSOHTsqPDzc4QuudPdL4O3bt9W7d29duXJFEyZM0Isvvqg6depo06ZNGjx4sI4fP66pU6dqwIABDkF3zpw58vT0VP/+/eXp6amNGzdq+PDhioyM1AcffJDs5ydJMo+ZiIgII8k0b948SePv37/fSDKvvfaaQ/uAAQOMJLNx40Z7W8GCBY0ks3r1aodxf/zxRyPJFC5c2ERFRdnb4+LiTLFixUxISIiJi4uzt0dFRZmgoCBTv359e1uHDh2Mk5OT2bVrV4Ia46ddtGiRkWR+/PHHJD03Y4xZvHixkWSOHTtmjDEmMjLSuLq6mg8//DDR5xAcHGyio6Pt7R999JGRZA4ePGiMMWbfvn1Gklm0aNEDl7lr1y4jyfzwww/GGGN+/fVXI8m0bt3aVK5c2T5es2bNTPny5e2PR48ebTw8PMzRo0cd5jdkyBCTJUsWc/r0aWOMMSdOnDCSjJeXl7l48aLDuM2bNzelSpVK6uqxW79+vZFkVq5cmWBYnz59jCQjyeTIkcO+T3Tp0sU899xzSZr/ggULjCSzY8eOh443e/Zs+7Lu/XNxcTFz5sxxGDcsLMxIMtOnT3dob9asmSlUqJDDPpeYggULmsaNGz90nHv353jjxo0zNpvNnDp1yt4WGhpqJJlRo0Y5jFu+fHlToUIF++MlS5YYSWbKlCn2ttjYWFOnTh0jycyePdveXrNmTVOzZs0Eyw8NDTUFCxZ8aJ23b982pUuXNnXq1LG37dmzx0gyffv2dRi3Y8eORpIZMWKEva1z584mT5485vLlyw7jtmnTxnh7eye6Xu5VsGBBExoaan8cv13r1avnsF369etnsmTJYsLDwx86v3s1btw4wfNP7nKuXbtmfHx8TJcuXRymP3/+vPH29nZoj9+27733nr3t6tWrxs3NzdhsNrNw4UJ7+5EjRxKsy6S+ru9d1okTJx66DpKzH40YMcLc/1GY2PYLCQkxhQsXdmi7/7nEu3/7Dh8+3EgyS5cuTTBu/HaYMmWKkWS+/PJL+7Dbt2+bKlWqGE9PTxMZGWmM+b/3t1y5cjnsF0OHDjWSTNmyZU1MTIy9vW3btsbZ2dncunXroc+vW7duxt3d3WG85HjsTnPEn1pIagfDH374QZLUv39/h/b4b/L3960ICgpSSEhIovMKDQ116D+xf/9+HTt2TC+//LL++ecfXb58WZcvX9aNGzdUt25d/fTTT4qLi1NcXJy+/fZbNW3a1OE8eTwrlzXNnz9fFStWVNGiRSXJfigzsVMdkvTqq6869DuoXr26pLsdESXJ29tb0t1Oh1FRUYnOo3z58vL09NRPP/0k6e4RiPhDfnv37lVUVJSMMdq6dat9/tLdb8HVq1eXr6+vfV1dvnxZ9erVU2xsrH1+8Vq1apWgn4KPj4/++usv7dq1K8nrSLp7yFSSfH19Ewz76KOPdOrUKe3YsUOnTp1S7dq1tX//fn3xxRf68MMPFRERofbt2ytfvnyqVauWDh8+nGAe8fO995Dnw0ybNk3r1q3TunXr9OWXX6p27dp67bXXtHTpUvs4TzzxhCpXruywLa9cuaJVq1apXbt2qXI53L37840bN3T58mVVrVpVxhjt27cvwfjdu3d3eFy9enX7viNJq1evVrZs2dSlSxd7m5OTU4q+DT6ozqtXryoiIkLVq1fX3r17HZYtSa+//rrDtPefojLGaMmSJWratKmMMQ77YkhIiCIiIhzmmxxdu3Z12C7Vq1dXbGxsql2KnNTlrFu3TuHh4Wrbtq3D88uSJYsqV66sH3/8McE8X3vtNfv/fXx8VLx4cXl4eOjFF1+0txcvXlw+Pj4O2zw5r+s5c+bYT+E9jNX96N79Jf4oYM2aNfXnn3/aT9cmx5IlS1S2bFm1bNkywbD47fDDDz8oICBAbdu2tQ/Lli2b+vTpo+vXr2vz5s0O07Vu3dr+fitJlStXliS1b9/efrozvv327ds6e/Zsos/v2rVrunz5sqpXr66oqCgdOXIk2c9PegxPc8QfQr527VqSxj916pScnJzsH7bxAgIC5OPjk+BFHn/oLjH3D4vv3f+wQ28RERG6ffu2IiMjVbp06STVnFTh4eH64Ycf1KtXL4d+D9WqVdOSJUt09OhRPfHEEw7TFChQwOFx/Ifg1atXJd19jv3799fkyZM1f/58Va9eXc2aNVP79u3tO36WLFlUpUoVbdmyRdLdMFG9enU9++yzio2N1S+//CJ/f39duXLFIUwcO3ZMv/766wM7Ml68eNHhcWLbYvDgwVq/fr0qVaqkokWLqkGDBnr55Zftp1IexRiTaHuBAgUc1k2fPn3UvXt3lShRQu3bt9eZM2e0fPlyzZ07V02bNtWRI0ccXvDx803qB3ylSpUcgmXbtm1Vvnx59erVS02aNLEHvg4dOqhXr146deqUChYsqEWLFikmJkavvPJKkpbzKKdPn9bw4cO1YsUK+z4Q7/43XVdX1wTbztfX12G6U6dOKU+ePHJ3d3cY7/7XX3J99913GjNmjPbv3+/Q1+ne9R3/Wr9/v7l/2ZcuXVJ4eLhmzpz5wCu+7t8Xk+pRr6/U8qjlxL831alTJ9Hp7z8Vl9i29fb2Vv78+RPs097e3g7PJ7mv66Swuh9t27ZNI0aM0M8//5zgS1FERITDh3hS/PHHH2rVqtUjay5WrFiCTvnxp6rv/6y5fxvG1xQYGJho+73r/Pfff9fbb7+tjRs32r9gx0tJWJIe0zCRN2/eZN8kKKlv8oldufGgYfGdiz744AOVK1cu0Wk8PT0TdJ5JLYsWLVJ0dLQmTZqkSZMmJRg+f/58jRw50qEtS5Ysic7r3g/ZSZMmqWPHjlq+fLnWrl2rPn36aNy4cfrll1+UP39+SdKzzz6rsWPH6tatW9qyZYuGDRsmHx8flS5dWlu2bJG/v78kOYSJuLg41a9fX4MGDUq0hvuDT2LbIjg4WGFhYfruu++0evVqLVmyRJ9++qmGDx+e4Lney8/PT1LS3tS//vprHT58WCtWrFBsbKy++eYbrV27VhUrVlSpUqU0a9Ys/fLLL3r22Wft08TPN2fOnI+cf2KcnJxUu3ZtffTRRzp27JhKlSolSWrTpo369eun+fPn66233tKXX36pihUrOvTlSanY2FjVr19fV65c0eDBg1WiRAl5eHjo7Nmz6tixY4LOcw/ad1LKZrMlGu7u70QW3w+nRo0a+vTTT5UnTx5ly5ZNs2fPTlLH2/vFP6/27ds/8IvAk08+mez5Skl7faWGRy0n/jnOmzcv0b5T9wbhh80vKc8nua/rtPbHH3+obt26KlGihCZPnqzAwEA5Ozvrhx9+0Icffphgv06MlY6MSZXSdR4eHq6aNWvKy8tLo0aNUpEiReTq6qq9e/dq8ODBSXp+iXnswoQkNWnSRDNnztTPP/+sKlWqPHTcggULKi4uTseOHXPozHjhwgWFh4c73LwoueLvKeDl5aV69eo9cLxcuXLJy8vrkQEouYet58+fr9KlS2vEiBEJhn322WdasGDBQz9gH6ZMmTIqU6aM3n77bW3fvl3VqlXTjBkzNGbMGEl3Q8Lt27f11Vdf6ezZs/bQUKNGDXuYeOKJJ+yhQrq7vq5fv/7QdZUUHh4e9ntD3L59W88//7zGjh2roUOHytXVNdFpSpQoIenuZcUPExUVpYEDB2r06NHy8fHRhQsXFBMTo7x580q6G3B8fX0dDjnGz9fJycnSG+edO3ck3e3sFS9Hjhz201bt2rXTtm3bEnRUTamDBw/q6NGjmjt3rjp06GBvX7duXYrnWbBgQf3444+Kiopy+FZ5/xVD0t1v0/ceLo93/ze4JUuWyNXVVWvWrHG4JHP27NkJlh0XF6cTJ06oWLFiD1x2rly5lD17dsXGxlreFzOq+Pem3Llzp/lzTK3X9b2Ssx/db+XKlYqOjtaKFSscvv0ndmrH19dX4eHhDm23b9/WuXPnHNqKFCnyyPfvggUL6tdff1VcXJzD0Yn40w5WPmvutWnTJv3zzz9aunSpatSoYW9/1Hvbozx2fSaku3d79PDw0GuvvaYLFy4kGP7HH3/oo48+kiQ1atRIkhK8AU+ePFmSEu3pnVQVKlRQkSJFNHHiRIcPgHjxl2o5OTmpRYsWWrlyZaK3wY1PnB4eHpKUYOdOzJkzZ/TTTz/pxRdf1AsvvJDg79VXX9Xx48ftV2kkVWRkpP1DLV6ZMmXk5OTkcHi5cuXKypYtm8aPH68cOXLYv0lXr15dv/zyizZv3uxwVEKSXnzxRf38888ON4SKFx4enmC5iYnv+xDP2dlZJUuWlDHmoZeb5cuXT4GBgY+8DfH48ePl6+trP1fr5+enrFmz2t8QLl++rEuXLiX4trdnzx6VKlUq2YdP48XExGjt2rVydnZOcAXPK6+8okOHDmngwIHKkiWL2rRpk6Jl3C/+G9C93zKNMfbXTkqEhIQoJiZGs2bNsrfFxcXZLzO8V5EiRXTkyBGHSxoPHDiQ4LLqLFmyyGazOXxbPHnypL799tsEy5akTz/91KF96tSpCebXqlUrLVmyJNEPiLS4lPN/LSQkRF5eXnrvvfcSfV2k5nNMzus6qZeGJmc/ul9i+3VERESC8Cnd3Qfv76s1c+bMBEcmWrVqpQMHDiS4+u/e5TRq1Ejnz593uKLmzp07mjp1qjw9PVWzZs1H1p4UiT2/27dvJ9jvk+uxPDJRpEgRLViwQC+99JKCg4Md7oC5fft2++U4klS2bFmFhoZq5syZ9sNDO3fu1Ny5c9WiRQvVrl07xXU4OTnpP//5jxo2bKhSpUrp1VdfVb58+XT27Fn9+OOP8vLy0sqVKyVJ7733ntauXauaNWuqa9euCg4O1rlz57Ro0SJt3bpVPj4+KleunLJkyaLx48crIiJCLi4u9mul77dgwQIZY+yXYd6vUaNGypo1q+bPn2/v2JMUGzduVK9evdS6dWs98cQTunPnjubNm2d/A47n7u6uChUq6JdffrHfY0K6e2Tixo0bunHjRoIwMXDgQK1YsUJNmjRRx44dVaFCBd24cUMHDx7U4sWLdfLkyUeeJmjQoIECAgJUrVo1+fv76/Dhw/rkk0/UuHHjR3bKbd68uZYtWyZjTKJHgU6fPq0PPvhA33//vf0FmzVrVjVv3lx9+/bV6dOntWzZMuXNm9fhiFhMTIw2b96coOPfw6xatcoeUC5evKgFCxbo2LFjGjJkSILz2Y0bN5afn58WLVqkhg0bJro/PMjx48ftR5PuVb58eTVo0EBFihTRgAEDdPbsWXl5eWnJkiWWzu+3aNFClSpV0ptvvqnjx4+rRIkSWrFihf1U373rvVOnTpo8ebJCQkLUuXNnXbx4UTNmzFCpUqUczgM3btxYkydP1nPPPaeXX35ZFy9e1LRp01S0aFH9+uuv9vEqVKigVq1aacqUKfrnn3/sl4YePXo0wbLff/99/fjjj6pcubK6dOmikiVL6sqVK9q7d6/Wr1+fZqcm/1e8vLw0ffp0vfLKK3rqqafUpk0b5cqVS6dPn9b333+vatWq6ZNPPkmVZSXndZ3US0OTsx/dr0GDBnJ2dlbTpk3VrVs3Xb9+XbNmzVLu3LkTHHF47bXX1L17d7Vq1Ur169fXgQMHtGbNmgTvQwMHDtTixYvVunVrderUSRUqVNCVK1e0YsUKzZgxQ2XLllXXrl312WefqWPHjtqzZ48KFSqkxYsX248mptZdiatWrSpfX1+FhoaqT58+stlsmjdvnvVTaSm6BuRf4ujRo6ZLly6mUKFCxtnZ2WTPnt1Uq1bNTJ061eHymJiYGDNy5EgTFBRksmXLZgIDA83QoUMTXELzoEvp4i+rfNDlkvv27TPPP/+88fPzMy4uLqZgwYLmxRdfNBs2bHAY79SpU6ZDhw4mV65cxsXFxRQuXNj07NnT4VLNWbNmmcKFC5ssWbI89DLRMmXKmAIFCjx0/dSqVcvkzp3bxMTEPPA5xF+mFH+p1Z9//mk6depkihQpYlxdXU2OHDlM7dq1zfr16xPMf+DAgUaSGT9+vEN70aJFjSTzxx9/JJjm2rVrZujQoaZo0aLG2dnZ5MyZ01StWtVMnDjR3L5926GmDz74IMH0n332malRo4Z9XRcpUsQMHDjQREREPHRdGGPM3r17jSSzZcuWRIe3bt3aPP/88wnaL1y4YJo2bWqyZ89unnrqKbN7926H4atWrXK4PPdhErs01NXV1ZQrV85Mnz79gZd7vv7660aSWbBgwSOXES/+UufE/jp37myMMebQoUOmXr16xtPT0+TMmdN06dLFHDhwIMHld6GhocbDwyPBMhK7LO/SpUvm5ZdfNtmzZzfe3t6mY8eOZtu2bUaSw2WGxhjz5ZdfmsKFCxtnZ2dTrlw5s2bNmkQvDf38889NsWLFjIuLiylRooSZPXt2osu+ceOG6dmzp8mRI4fx9PQ0LVq0sF9i+/777zuMe+HCBdOzZ08TGBhosmXLZgICAkzdunXNzJkzk7RuE7s09P5Lv+Nfd8m53Dspl4YmdTk//vijCQkJMd7e3sbV1dUUKVLEdOzY0WEfftC2rVmzZqKXYSf2PpmU13X8spSES0ONSfp+lNh+sGLFCvPkk08aV1dXU6hQITN+/Hjz3//+N8GyY2NjzeDBg03OnDmNu7u7CQkJMcePH0+wfY0x5p9//jG9evUy+fLlM87OziZ//vwmNDTU4fLiCxcumFdffdXkzJnTODs7mzJlyji8jox58Pvbg96jE9vm27ZtM88884xxc3MzefPmNYMGDTJr1qxJ9r52L5sxqdyzB/gXq1u3rvLmzZvg9xCsaNGihWw2W6KHQFNLv3799Pnnn+v8+fMJerhnBt9++61atmyprVu3JvnKm9Syf/9+lS9fXl9++aXatWv3P102Uld67kf/doQJIBl27Nih6tWr69ixY6nSIerw4cMqU6aM9u/fn+qX/sa7deuWAgMD1aRJk0TP+2Y0N2/edLgSJzY2Vg0aNNDu3bt1/vz5h14xldrLlu7eFXPevHk6efJkgsvukHGl5370OHos+0wAKRV/A5jUEhwcnKSOoylx8eJFrV+/XosXL9Y///yT4Ha8GVXv3r118+ZNValSRdHR0Vq6dKm2b9+u9957L80/ACZMmKA9e/aodu3aypo1q1atWqVVq1apa9euBIlMJj33o8dSik6OAMjw4s+h5s6d20ydOjW9y0my+fPnm6eeesp4eXkZZ2dnU7Jkyf9Z/WvXrjXVqlUzvr6+Jlu2bKZIkSLm3Xffdbg9MTKH9NyPHkec5gAAAJY8lveZAAAAqYcwAQAALPnXd8CMi4vT33//rezZs6fKryQCAPC4MMbo2rVryps3b4IfIbvXvz5M/P333/TCBgDAgjNnzth/qDEx//owEX8L0jNnziS4zTAAAHiwyMhIBQYGPvJ23v/6MBF/asPLy4swAQBACjyqmwAdMAEAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYkjW9CwAAPB4KDfk+vUv41zv5fuN0WS5HJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWJKuYSI2NlbvvPOOgoKC5ObmpiJFimj06NEyxtjHMcZo+PDhypMnj9zc3FSvXj0dO3YsHasGAAD3StcwMX78eE2fPl2ffPKJDh8+rPHjx2vChAmaOnWqfZwJEybo448/1owZM7Rjxw55eHgoJCREt27dSsfKAQBAvKzpufDt27erefPmaty4sSSpUKFC+uqrr7Rz505Jd49KTJkyRW+//baaN28uSfriiy/k7++vb7/9Vm3atEm32gEAwF3pemSiatWq2rBhg44ePSpJOnDggLZu3aqGDRtKkk6cOKHz58+rXr169mm8vb1VuXJl/fzzz4nOMzo6WpGRkQ5/AAAg7aTrkYkhQ4YoMjJSJUqUUJYsWRQbG6uxY8eqXbt2kqTz589Lkvz9/R2m8/f3tw+737hx4zRy5Mi0LRwAANil65GJb775RvPnz9eCBQu0d+9ezZ07VxMnTtTcuXNTPM+hQ4cqIiLC/nfmzJlUrBgAANwvXY9MDBw4UEOGDLH3fShTpoxOnTqlcePGKTQ0VAEBAZKkCxcuKE+ePPbpLly4oHLlyiU6TxcXF7m4uKR57QAA4K50PTIRFRUlJyfHErJkyaK4uDhJUlBQkAICArRhwwb78MjISO3YsUNVqlT5n9YKAAASl65HJpo2baqxY8eqQIECKlWqlPbt26fJkyerU6dOkiSbzaa+fftqzJgxKlasmIKCgvTOO+8ob968atGiRXqWDgAA/r90DRNTp07VO++8o9dff10XL15U3rx51a1bNw0fPtw+zqBBg3Tjxg117dpV4eHhevbZZ7V69Wq5urqmY+UAACCezdx7u8l/ocjISHl7eysiIkJeXl7pXQ4APLYKDfk+vUv41zv5fuNUnV9SP0P5bQ4AAGAJYQIAAFhCmAAAAJYQJgAAgCXpejVHZkZHorSX2h2J4rHt0l5abTuJ7fe/kJbbD/9OHJkAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgSbqHibNnz6p9+/by8/OTm5ubypQpo927d9uHG2M0fPhw5cmTR25ubqpXr56OHTuWjhUDAIB7ZU3JRCdOnNCWLVt06tQpRUVFKVeuXCpfvryqVKkiV1fXJM/n6tWrqlatmmrXrq1Vq1YpV65cOnbsmHx9fe3jTJgwQR9//LHmzp2roKAgvfPOOwoJCdGhQ4eStSwAAJA2khUm5s+fr48++ki7d++Wv7+/8ubNKzc3N125ckV//PGHXF1d1a5dOw0ePFgFCxZ85PzGjx+vwMBAzZ49294WFBRk/78xRlOmTNHbb7+t5s2bS5K++OIL+fv769tvv1WbNm2SUz4AAEgDST7NUb58eX388cfq2LGjTp06pXPnzmnPnj3aunWrDh06pMjISC1fvlxxcXGqWLGiFi1a9Mh5rlixQhUrVlTr1q2VO3dulS9fXrNmzbIPP3HihM6fP6969erZ27y9vVW5cmX9/PPPic4zOjpakZGRDn8AACDtJDlMvP/++9qxY4def/11BQYGJhju4uKiWrVqacaMGTpy5IgKFy78yHn++eefmj59uooVK6Y1a9aoR48e6tOnj+bOnStJOn/+vCTJ39/fYTp/f3/7sPuNGzdO3t7e9r/EagUAAKknyac5QkJCkjxTPz8/+fn5PXK8+KMY7733nqS7Rz9+++03zZgxQ6GhoUle3r2GDh2q/v372x9HRkYSKAAASEMp6oB5r++//16bNm1SbGysqlWrplatWiV52jx58qhkyZIObcHBwVqyZIkkKSAgQJJ04cIF5cmTxz7OhQsXVK5cuUTn6eLiIhcXl2Q+CwAAkFKWLg195513NGjQINlsNhlj1K9fP/Xu3TvJ01erVk1hYWEObUePHrV33gwKClJAQIA2bNhgHx4ZGakdO3aoSpUqVkoHAACpJFlHJnbv3q2KFSvaH3/99dc6cOCA3NzcJEkdO3ZUrVq1NHXq1CTNr1+/fqpataree+89vfjii9q5c6dmzpypmTNnSpJsNpv69u2rMWPGqFixYvZLQ/PmzasWLVokp3QAAJBGknVkonv37urbt6+ioqIkSYULF9akSZMUFhamgwcPavr06XriiSeSPL+nn35ay5Yt01dffaXSpUtr9OjRmjJlitq1a2cfZ9CgQerdu7e6du2qp59+WtevX9fq1au5xwQAABlEssLEjh07lCdPHj311FNauXKl/vvf/2rfvn2qWrWqqlevrr/++ksLFixIVgFNmjTRwYMHdevWLR0+fFhdunRxGG6z2TRq1CidP39et27d0vr165MVWAAAQNpK1mmOLFmyaPDgwWrdurV69OghDw8PffLJJ8qbN29a1QcAADK4FHXALFy4sNasWaOWLVuqRo0amjZtWmrXBQAAMolkhYnw8HANGjRITZs21dtvv62WLVtqx44d2rVrl5555hkdPHgwreoEAAAZVLLCRGhoqHbs2KHGjRsrLCxMPXr0kJ+fn+bMmaOxY8fqpZde0uDBg9OqVgAAkAElq8/Exo0btW/fPhUtWlRdunRR0aJF7cPq1q2rvXv3atSoUaleJAAAyLiSdWSiWLFimjlzpo4ePaoZM2Yk+GVQV1dX+62xAQDA4yFZYeK///2vNm7cqPLly2vBggWaPn16WtUFAAAyiWSd5ihXrpx2796dVrUAAIBMKMlHJowxaVkHAADIpJIcJkqVKqWFCxfq9u3bDx3v2LFj6tGjh95//33LxQEAgIwvyac5pk6dqsGDB+v1119X/fr1VbFiReXNm1eurq66evWqDh06pK1bt+r3339Xr1691KNHj7SsGwAAZBBJDhN169bV7t27tXXrVn399deaP3++Tp06pZs3bypnzpwqX768OnTooHbt2snX1zctawYAABlIsjpgStKzzz6rZ599Ni1qAQAAmVCKfpsDAAAgHmECAABYQpgAAACWECYAAIAlhAkAAGBJisLE3r17dfDgQfvj5cuXq0WLFnrrrbceeVMrAADw75KiMNGtWzcdPXpUkvTnn3+qTZs2cnd316JFizRo0KBULRAAAGRsKQoTR48eVbly5SRJixYtUo0aNbRgwQLNmTNHS5YsSc36AABABpeiMGGMUVxcnCRp/fr1atSokSQpMDBQly9fTr3qAABAhpeiMFGxYkWNGTNG8+bN0+bNm9W4cWNJ0okTJ+Tv75+qBQIAgIwtRWFiypQp2rt3r3r16qVhw4apaNGikqTFixeratWqqVogAADI2JL92xyxsbEKDw/XTz/9lOAHvT744ANlyZIl1YoDAAAZX7KPTGTJkkUNGjRQeHh4gmGurq7Kli1batQFAAAyiRSd5ihdurT+/PPP1K4FAABkQikKE2PGjNGAAQP03Xff6dy5c4qMjHT4AwAAj49k95mQZL8UtFmzZrLZbPZ2Y4xsNptiY2NTpzoAAJDhpShM/Pjjj6ldBwAAyKRSFCZq1qyZ2nUAAIBMKsW/Grplyxa1b99eVatW1dmzZyVJ8+bN09atW1OtOAAAkPGlKEwsWbJEISEhcnNz0969exUdHS1JioiI0HvvvZeqBQIAgIwtxVdzzJgxQ7NmzXK4r0S1atW0d+/eVCsOAABkfCkKE2FhYapRo0aCdm9v70RvZgUAAP69UhQmAgICdPz48QTtW7duVeHChS0XBQAAMo8UhYkuXbrojTfe0I4dO2Sz2fT3339r/vz5GjBggHr06JHaNQIAgAwsRZeGDhkyRHFxcapbt66ioqJUo0YNubi4aMCAAerdu3dq1wgAADKwFIUJm82mYcOGaeDAgTp+/LiuX7+ukiVLytPTM7XrAwAAGVyKwsTGjRtVtWpVubq6qmTJkqldEwAAyERSFCaaNWumO3fu6Omnn1atWrVUs2ZNVatWTW5ubqldHwAAyOBS1AHz6tWr2rBhgxo2bKidO3eqZcuW8vHxUbVq1fT222+ndo0AACADS1GYyJYtm6pVq6a33npLa9as0S+//KK2bdtq586dGjduXGrXCAAAMrAUneY4evSoNm3apE2bNmnz5s2Kjo5W9erVNXHiRNWqVSuVSwQAABlZisJEiRIllCtXLr3xxhsaMmSIypQpI5vNltq1AQCATCBFpzn69OmjfPnyadSoUerevbuGDRumtWvXKioqKrXrAwAAGVyKwsSUKVO0d+9enT9/XkOHDtXt27c1bNgw5cyZU9WqVUvtGgEAQAaWojARLzY2VjExMYqOjtatW7cUHR2tsLCw1KoNAABkAik+zfHkk0/K399f3bp1099//60uXbpo3759unTpUmrXCAAAMrAUdcA8d+6cunbtqlq1aql06dKpXRMAAMhEUhQmFi1alNp1AACATCpFpznmzp2r77//3v540KBB8vHxUdWqVXXq1KlUKw4AAGR8KQoT7733nv13OH7++WdNmzZNEyZMUM6cOdWvX79ULRAAAGRsKTrNcebMGRUtWlSS9O2336pVq1bq2rWrqlWrxh0wAQB4zKToyISnp6f++ecfSdLatWtVv359SZKrq6tu3ryZetUBAIAML0VHJurXr6/XXntN5cuX19GjR9WoUSNJ0u+//65ChQqlZn0AACCDS9GRiWnTpqlKlSq6dOmSlixZIj8/P0nSnj171LZt21QtEAAAZGwpOjLh4+OjTz75JEH7yJEjLRcEAAAylxSFCUkKDw/Xzp07dfHiRcXFxdnbbTabXnnllVQpDgAAZHwpChMrV65Uu3btdP36dXl5eTn8/DhhAgCAx0uK+ky8+eab6tSpk65fv67w8HBdvXrV/nflypXUrhEAAGRgKQoTZ8+eVZ8+feTu7p7a9QAAgEwmRWEiJCREu3fvTu1aAABAJpSiPhONGzfWwIEDdejQIZUpU0bZsmVzGN6sWbNUKQ4AAGR8KQoTXbp0kSSNGjUqwTCbzabY2FhrVQEAgEwjRWHi3ktBAQDA4y1FfSYeJDw8PNGbWQEAgH+vVAkTGzZs0Msvv6w8efJoxIgRqTFLAACQSaQ4TJw5c0ajRo1SUFCQGjRoIJvNpmXLlun8+fOpWR8AAMjgkhUmYmJitGjRIoWEhKh48eLav3+/PvjgAzk5OWnYsGF67rnnElzZAQAA/t2S1QEzX758KlGihNq3b6+FCxfK19dXkvilUAAAHmPJOjJx584d2Ww22Ww2ZcmSJa1qAgAAmUiywsTff/+trl276quvvlJAQIBatWqlZcuWOfzQFwAAeLwkK0y4urqqXbt22rhxow4ePKjg4GD16dNHd+7c0dixY7Vu3TpuWAUAwGMmxVdzFClSRGPGjNGpU6f0/fffKzo6Wk2aNJG/v39q1gcAADK4FN0B815OTk5q2LChGjZsqEuXLmnevHmpURcAAMgkUvUOmLly5VL//v1Tc5YAACCDS9UwAQAAHj+ECQAAYAlhAgAAWJKiMDFq1ChFRUUlaL9586ZGjRpluSgAAJB5pChMjBw5UtevX0/QHhUVpZEjR1ouCgAAZB4pChPGmETvenngwAHlyJHDclEAACDzSNZ9Jnx9fe2/zfHEE084BIrY2Fhdv35d3bt3T/UiAQBAxpWsMDFlyhQZY9SpUyeNHDlS3t7e9mHOzs4qVKiQqlSpkupFAgCAjCtZYSI0NFSSFBQUpGrVqilrVss30AQAAJlcivpM3LhxQxs2bEjQvmbNGq1atcpyUQAAIPNIUZgYMmRIor8OaozRkCFDLBcFAAAyjxSFiWPHjqlkyZIJ2kuUKKHjx4+nqJD3339fNptNffv2tbfdunVLPXv2lJ+fnzw9PdWqVStduHAhRfMHAABpI0VhwtvbW3/++WeC9uPHj8vDwyPZ89u1a5c+++wzPfnkkw7t/fr108qVK7Vo0SJt3rxZf//9t55//vmUlAwAANJIisJE8+bN1bdvX/3xxx/2tuPHj+vNN99Us2bNkjWv69evq127dpo1a5Z8fX3t7REREfr88881efJk1alTRxUqVNDs2bO1fft2/fLLLykpGwAApIEUhYkJEybIw8NDJUqUUFBQkIKCghQcHCw/Pz9NnDgxWfPq2bOnGjdurHr16jm079mzRzExMQ7tJUqUUIECBfTzzz8/cH7R0dGKjIx0+AMAAGknRdd2ent7a/v27Vq3bp0OHDggNzc3Pfnkk6pRo0ay5rNw4ULt3btXu3btSjDs/PnzcnZ2lo+Pj0O7v7+/zp8//8B5jhs3jlt6AwDwP5TiG0XYbDY1aNBANWrUkIuLS6K3136YM2fO6I033tC6devk6uqa0jISGDp0qPr3729/HBkZqcDAwFSbPwAAcJSi0xxxcXEaPXq08uXLJ09PT504cUKS9M477+jzzz9P0jz27Nmjixcv6qmnnlLWrFmVNWtWbd68WR9//LGyZs0qf39/3b59W+Hh4Q7TXbhwQQEBAQ+cr4uLi7y8vBz+AABA2klRmBgzZozmzJmjCRMmyNnZ2d5eunRp/ec//0nSPOrWrauDBw9q//799r+KFSuqXbt29v9ny5bN4eZYYWFhOn36NLfsBgAgA0nRaY4vvvhCM2fOVN26dR1+2Kts2bI6cuRIkuaRPXt2lS5d2qHNw8NDfn5+9vbOnTurf//+ypEjh7y8vNS7d29VqVJFzzzzTErKBgAAaSBFYeLs2bMqWrRogva4uDjFxMRYLirehx9+KCcnJ7Vq1UrR0dEKCQnRp59+mmrzBwAA1qUoTJQsWVJbtmxRwYIFHdoXL16s8uXLp7iYTZs2OTx2dXXVtGnTNG3atBTPEwAApK0UhYnhw4crNDRUZ8+eVVxcnJYuXaqwsDB98cUX+u6771K7RgAAkIGl+A6YK1eu1Pr16+Xh4aHhw4fr8OHDWrlyperXr5/aNQIAgAws2Ucm7ty5o/fee0+dOnXSunXr0qImAACQiST7yETWrFk1YcIE3blzJy3qAQAAmUyKTnPUrVtXmzdvTu1aAABAJpSiDpgNGzbUkCFDdPDgQVWoUCHBz44n95dDAQBA5pWiMPH6669LkiZPnpxgmM1mU2xsrLWqAABAppGiMBEXF5fadQAAgEwq2X0mYmJilDVrVv32229pUQ8AAMhkkh0msmXLpgIFCnAqAwAASErh1RzDhg3TW2+9pStXrqR2PQAAIJNJUZ+JTz75RMePH1fevHlVsGDBBFdz7N27N1WKAwAAGV+KwkSLFi1SuQwAAJBZpShMjBgxIrXrAAAAmVSKwkS8PXv26PDhw5KkUqVKWfr5cQAAkDmlKExcvHhRbdq00aZNm+Tj4yNJCg8PV+3atbVw4ULlypUrNWsEAAAZWIqu5ujdu7euXbum33//XVeuXNGVK1f022+/KTIyUn369EntGgEAQAaWoiMTq1ev1vr16xUcHGxvK1mypKZNm6YGDRqkWnEAACDjS9GRibi4OGXLli1Be7Zs2bjVNgAAj5kUhYk6derojTfe0N9//21vO3v2rPr166e6deumWnEAACDjS1GY+OSTTxQZGalChQqpSJEiKlKkiIKCghQZGampU6emdo0AACADS1GficDAQO3du1fr16/XkSNHJEnBwcGqV69eqhYHAAAyvhTfZ8Jms6l+/fqqX79+atYDAAAymWSd5ti4caNKliypyMjIBMMiIiJUqlQpbdmyJdWKAwAAGV+ywsSUKVPUpUsXeXl5JRjm7e2tbt26afLkyalWHAAAyPiSFSYOHDig55577oHDGzRooD179lguCgAAZB7JChMXLlxI9P4S8bJmzapLly5ZLgoAAGQeyQoT+fLl02+//fbA4b/++qvy5MljuSgAAJB5JCtMNGrUSO+8845u3bqVYNjNmzc1YsQINWnSJNWKAwAAGV+yLg19++23tXTpUj3xxBPq1auXihcvLkk6cuSIpk2bptjYWA0bNixNCgUAABlTssKEv7+/tm/frh49emjo0KEyxki6e8+JkJAQTZs2Tf7+/mlSKAAAyJiSfdOqggUL6ocfftDVq1d1/PhxGWNUrFgx+fr6pkV9AAAgg0vxHTB9fX319NNPp2YtAAAgE0rRD30BAADEI0wAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwJJ0DRPjxo3T008/rezZsyt37txq0aKFwsLCHMa5deuWevbsKT8/P3l6eqpVq1a6cOFCOlUMAADul65hYvPmzerZs6d++eUXrVu3TjExMWrQoIFu3LhhH6dfv35auXKlFi1apM2bN+vvv//W888/n45VAwCAe2VNz4WvXr3a4fGcOXOUO3du7dmzRzVq1FBERIQ+//xzLViwQHXq1JEkzZ49W8HBwfrll1/0zDPPpEfZAADgHhmqz0RERIQkKUeOHJKkPXv2KCYmRvXq1bOPU6JECRUoUEA///xzovOIjo5WZGSkwx8AAEg7GSZMxMXFqW/fvqpWrZpKly4tSTp//rycnZ3l4+PjMK6/v7/Onz+f6HzGjRsnb29v+19gYGBalw4AwGMtw4SJnj176rffftPChQstzWfo0KGKiIiw/505cyaVKgQAAIlJ1z4T8Xr16qXvvvtOP/30k/Lnz29vDwgI0O3btxUeHu5wdOLChQsKCAhIdF4uLi5ycXFJ65IBAMD/l65HJowx6tWrl5YtW6aNGzcqKCjIYXiFChWULVs2bdiwwd4WFham06dPq0qVKv/rcgEAQCLS9chEz549tWDBAi1fvlzZs2e394Pw9vaWm5ubvL291blzZ/Xv3185cuSQl5eXevfurSpVqnAlBwAAGUS6honp06dLkmrVquXQPnv2bHXs2FGS9OGHH8rJyUmtWrVSdHS0QkJC9Omnn/6PKwUAAA+SrmHCGPPIcVxdXTVt2jRNmzbtf1ARAABIrgxzNQcAAMicCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACzJFGFi2rRpKlSokFxdXVW5cmXt3LkzvUsCAAD/X4YPE19//bX69++vESNGaO/evSpbtqxCQkJ08eLF9C4NAAAoE4SJyZMnq0uXLnr11VdVsmRJzZgxQ+7u7vrvf/+b3qUBAABJWdO7gIe5ffu29uzZo6FDh9rbnJycVK9ePf3888+JThMdHa3o6Gj744iICElSZGRkqtYWFx2VqvNDQqm9zeKx7dJeWm07ie33v8BrL/NK7W0XPz9jzEPHy9Bh4vLly4qNjZW/v79Du7+/v44cOZLoNOPGjdPIkSMTtAcGBqZJjUg73lPSuwKkFNsuc2P7ZV5pte2uXbsmb2/vBw7P0GEiJYYOHar+/fvbH8fFxenKlSvy8/OTzWZLx8rSV2RkpAIDA3XmzBl5eXmldzlIBrZd5sW2y7zYdncZY3Tt2jXlzZv3oeNl6DCRM2dOZcmSRRcuXHBov3DhggICAhKdxsXFRS4uLg5tPj4+aVVipuPl5fVYvzAyM7Zd5sW2y7zYdnroEYl4GboDprOzsypUqKANGzbY2+Li4rRhwwZVqVIlHSsDAADxMvSRCUnq37+/QkNDVbFiRVWqVElTpkzRjRs39Oqrr6Z3aQAAQJkgTLz00ku6dOmShg8frvPnz6tcuXJavXp1gk6ZeDgXFxeNGDEiwSkgZHxsu8yLbZd5se2Sx2Yedb0HAADAQ2ToPhMAACDjI0wAAABLCBMAAMASwgQkSXPmzEny/TiSMy7SzsmTJ2Wz2bR///70LgX4V+vYsaNatGhhf1yrVi317ds3SdMmZ9zMLMNfzYH/jZdeekmNGjVK7zIypVq1aqlcuXKaMmVKepeCNNCxY0eFh4fr22+/Te9SkEEsXbpU2bJlS+8yMhTCBCRJbm5ucnNzS+8ygAwjNjb2sb4FPx4sR44c6V1ChsNpjgxi8eLFKlOmjNzc3OTn56d69erpxo0b9sNrI0eOVK5cueTl5aXu3bvr9u3b9mlXr16tZ599Vj4+PvLz81OTJk30xx9/2IfHHw5funSpateuLXd3d5UtW9bhl1fvP3Vx4MAB1a5dW9mzZ5eXl5cqVKig3bt3O9S8Zs0aBQcHy9PTU88995zOnTuXdisog+rYsaM2b96sjz76SDabTTabTX/88Yc6d+6soKAgubm5qXjx4vroo48cprtz54769Olj32aDBw9WaGiow6HUR23XxGzevFmVKlWSi4uL8uTJoyFDhujOnTv24deuXVO7du3k4eGhPHny6MMPP/zXHIatVauWevXqpV69esnb21s5c+bUO++8Y/+1w6tXr6pDhw7y9fWVu7u7GjZsqGPHjtmnj38NrFixQiVLlpSLi4s6deqkuXPnavny5fbtu2nTJm3atEk2m03h4eH26ffv3y+bzaaTJ0/a22bNmqXAwEC5u7urZcuWmjx5ssPr7P7D55LUt29f1apVy/44Li5O48aNs+9PZcuW1eLFi+3Dr169qnbt2ilXrlxyc3NTsWLFNHv2bPvwM2fO6MUXX5SPj49y5Mih5s2bO9SY2T1s/cRvpw0bNqhixYpyd3dX1apVFRYW5jCPMWPGKHfu3MqePbtee+01DRkyROXKlXvgMu9/zXz66acqVqyYXF1d5e/vrxdeeCFBjYMGDVKOHDkUEBCgd999N7WefoZBmMgAzp07p7Zt26pTp046fPiwNm3apOeff97+JrhhwwZ7+1dffaWlS5c6/DLqjRs31L9/f+3evVsbNmyQk5OTWrZsqbi4OIflDBs2TAMGDND+/fv1xBNPqG3btg4fNPdq166d8ufPr127dmnPnj0aMmSIw2G9qKgoTZw4UfPmzdNPP/2k06dPa8CAAWmwdjK2jz76SFWqVFGXLl107tw5nTt3Tvnz51f+/Pm1aNEiHTp0SMOHD9dbb72lb775xj7d+PHjNX/+fM2ePVvbtm1TZGRkgsPoSd2u8c6ePatGjRrp6aef1oEDBzR9+nR9/vnnGjNmjH2c/v37a9u2bVqxYoXWrVunLVu2aO/evWmybtLD3LlzlTVrVu3cuVMfffSRJk+erP/85z+S7n5w7969WytWrNDPP/8sY4waNWqkmJgY+/RRUVEaP368/vOf/+j333/Xxx9/rBdffNEels+dO6eqVasmqZZt27ape/fueuONN7R//37Vr19fY8eOTfZzGjdunL744gvNmDFDv//+u/r166f27dtr8+bNkqR33nlHhw4d0qpVq3T48GFNnz5dOXPmlCTFxMQoJCRE2bNn15YtW7Rt2zZ7+L/3C0lm9qj1I91975s0aZJ2796trFmzqlOnTvZh8+fP19ixYzV+/Hjt2bNHBQoU0PTp05O8/N27d6tPnz4aNWqUwsLCtHr1atWoUcNhnLlz58rDw0M7duzQhAkTNGrUKK1bt876k89IDNLdnj17jCRz8uTJBMNCQ0NNjhw5zI0bN+xt06dPN56eniY2NjbR+V26dMlIMgcPHjTGGHPixAkjyfznP/+xj/P7778bSebw4cPGGGNmz55tvL297cOzZ89u5syZk+j8Z8+ebSSZ48eP29umTZtm/P39k/6k/0Vq1qxp3njjjYeO07NnT9OqVSv7Y39/f/PBBx/YH9+5c8cUKFDANG/e/IHzeNB23bdvnzHGmLfeessUL17cxMXF2aeZNm2afV+JjIw02bJlM4sWLbIPDw8PN+7u7o+sPzOoWbOmCQ4Odnj+gwcPNsHBwebo0aNGktm2bZt92OXLl42bm5v55ptvjDH/t1/v37/fYb6hoaEJtsuPP/5oJJmrV6/a2/bt22ckmRMnThhjjHnppZdM48aNHaZr166dw+sssXm/8cYbpmbNmsYYY27dumXc3d3N9u3bHcbp3Lmzadu2rTHGmKZNm5pXX3010XUyb968BPtEdHS0cXNzM2vWrEl0mszkUesnfjutX7/ePuz77783kszNmzeNMcZUrlzZ9OzZ02H6atWqmbJly9of37+d7n3NL1myxHh5eZnIyMhEa6xZs6Z59tlnHdqefvppM3jw4OQ+3QyNIxMZQNmyZVW3bl2VKVNGrVu31qxZs3T16lWH4e7u7vbHVapU0fXr13XmzBlJ0rFjx9S2bVsVLlxYXl5eKlSokCTp9OnTDst58skn7f/PkyePJOnixYuJ1tS/f3+99tprqlevnt5///0Eh9fd3d1VpEgRh/k9aF6Po2nTpqlChQrKlSuXPD09NXPmTPv2iIiI0IULF1SpUiX7+FmyZFGFChUc5pHU7Rrv8OHDqlKlisN5/mrVqun69ev666+/9OeffyomJsZhud7e3ipevHhqPe1098wzzzg8/ypVqujYsWM6dOiQsmbNqsqVK9uH+fn5qXjx4jp8+LC9zdnZ2eF1YkVYWJjDupaU4PGjHD9+XFFRUapfv748PT3tf1988YX9NdmjRw8tXLhQ5cqV06BBg7R9+3b79AcOHNDx48eVPXt2+7Q5cuTQrVu3HnnKLDNIyvqRHv7eZ3U71a9fXwULFlThwoX1yiuvaP78+YqKinIY5/596t/4fkkHzAwgS5YsWrdunbZv3661a9dq6tSpGjZsmHbs2JGk6Zs2baqCBQtq1qxZyps3r+Li4lS6dOkEhzHvPU0R/4b7oEPm7777rl5++WV9//33WrVqlUaMGKGFCxeqZcuWCeYVPz/DndklSQsXLtSAAQM0adIkValSRdmzZ9cHH3yQ5O0ZL6nbFanHzc0tSZ0unZzufg+7d5+/93RJUjk5OSV43dw7n+vXr0uSvv/+e+XLl89hvPjfjGjYsKFOnTqlH374QevWrVPdunXVs2dPTZw4UdevX1eFChU0f/78BMvOlStXsuvNaB61fuIDRXLe+5Ire/bs2rt3rzZt2qS1a9dq+PDhevfdd7Vr1y57/5jE3i9Ta/kZBUcmMgibzaZq1app5MiR2rdvn5ydnbVs2TJJd79d3Lx50z7uL7/8Ik9PTwUGBuqff/5RWFiY3n77bdWtW1fBwcEORzWseOKJJ9SvXz+tXbtWzz//vEOnLvwfZ2dnxcbG2h9v27ZNVatW1euvv67y5curaNGiDt+SvL295e/vr127dtnbYmNjHfoupGS7BgcH2/sC3FtL9uzZlT9/fhUuXFjZsmVzWG5ERISOHj1q6flnJPcHtl9++UXFihVTyZIldefOHYfh8eu4ZMmSD53n/dtX+r8P4ns7Hd9/v4/ixYs7rGtJCR7nypUrQcfle+cT3xH09OnTKlq0qMNfYGCgw3xCQ0P15ZdfasqUKZo5c6Yk6amnntKxY8eUO3fuBNN7e3s/9HlnBkldPw+TlO30KFmzZlW9evU0YcIE/frrrzp58qQ2btyYrHlkdhyZyAB27NihDRs2qEGDBsqdO7d27NihS5cuKTg4WL/++qtu376tzp076+2339bJkyc1YsQI9erVS05OTvL19ZWfn59mzpypPHny6PTp0xoyZIilem7evKmBAwfqhRdeUFBQkP766y/t2rVLrVq1SqVn/O9SqFAh7dixQydPnpSnp6eKFSumL774QmvWrFFQUJDmzZunXbt2KSgoyD5N7969NW7cOBUtWlQlSpTQ1KlTdfXqVfu3ppRs19dff11TpkxR79691atXL4WFhWnEiBHq37+/nJyclD17doWGhmrgwIHKkSOHcufOrREjRsjJyelfcwnk6dOn1b9/f3Xr1k179+7V1KlTNWnSJBUrVkzNmzdXly5d9Nlnnyl79uwaMmSI8uXLp+bNmz90noUKFdKaNWsUFhYmPz8/eXt72z+s3n33XY0dO1ZHjx7VpEmTHKbr3bu3atSoocmTJ6tp06bauHGjVq1a5bCu69Spow8++EBffPGFqlSpoi+//FK//fabypcvL+nut94BAwaoX79+iouL07PPPquIiAht27ZNXl5eCg0N1fDhw1WhQgWVKlVK0dHR+u677xQcHCzpbkfqDz74QM2bN9eoUaOUP39+nTp1SkuXLtWgQYOUP3/+VN4C/1uPWj8FCxZ85Dx69+6tLl26qGLFiqpataq+/vpr/frrrypcuHCSavjuu+/0559/qkaNGvL19dUPP/yguLi4f9XpwyRJ3y4bMMaYQ4cOmZCQEJMrVy7j4uJinnjiCTN16lRjzP91/Bk+fLjx8/Mznp6epkuXLubWrVv26detW2eCg4ONi4uLefLJJ82mTZuMJLNs2TJjTMKOesYYc/XqVSPJ/Pjjj8YYxw6Y0dHRpk2bNiYwMNA4OzubvHnzml69etk7LN3fWdMYY5YtW2Ye190pLCzMPPPMM8bNzc1IMkeOHDEdO3Y03t7exsfHx/To0cMMGTLEoUNXTEyM6dWrl/Hy8jK+vr5m8ODBpnXr1qZNmzb2cVKyXTdt2mSefvpp4+zsbAICAszgwYNNTEyMfXhkZKR5+eWXjbu7uwkICDCTJ082lSpVMkOGDEnr1ZTmatasaV5//XXTvXt3+3p966237J0Pr1y5Yl555RXj7e1t3NzcTEhIiDl69Kh9+sT2a2OMuXjxoqlfv77x9PR0eM1s3brVlClTxri6uprq1aubRYsWOXTANMaYmTNnmnz58hk3NzfTokULM2bMGBMQEOAw/+HDhxt/f3/j7e1t+vXrZ3r16mXvgGmMMXFxcWbKlCmmePHiJlu2bCZXrlwmJCTEbN682RhjzOjRo01wcLBxc3MzOXLkMM2bNzd//vmnffpz586ZDh06mJw5cxoXFxdTuHBh06VLFxMREWFxjWcMD1s/Sekoa4wxo0aNMjlz5jSenp6mU6dOpk+fPuaZZ56xD39YB8wtW7aYmjVrGl9fX+Pm5maefPJJ8/XXXyc6brzmzZub0NDQVFwL6Y+fIM/guPve4yEuLk7BwcF68cUXNXr06P/Zcm/cuKF8+fJp0qRJ6ty58/9suWkhM9yJtEuXLjpy5Ii2bNmS3qXgIerXr6+AgADNmzcvvUvJNDjNAaSDU6dOae3atapZs6aio6P1ySef6MSJE3r55ZfTdLn79u3TkSNHVKlSJUVERGjUqFGS9MhD/UiZiRMnqn79+vLw8NCqVas0d+5cffrpp+ldFu4RFRWlGTNmKCQkRFmyZNFXX32l9evX//vuA5HGCBNAOnByctKcOXM0YMAAGWNUunRprV+/3n6uOy1NnDhRYWFhcnZ2VoUKFbRlyxb7TY6Qunbu3KkJEybo2rVrKly4sD7++GO99tpr6V0W7mGz2fTDDz9o7NixunXrlooXL64lS5aoXr166V1apsJpDgAAYAmXhgIAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIE8Bjr2LGjWrRokd5lAMjkCBMAAMASwgSARE2ePFllypSRh4eHAgMD9frrr+v69ev24XPmzJGPj4/WrFmj4OBgeXp66rnnnnP4Se07d+6oT58+8vHxkZ+fnwYPHqzQ0FCHoyGFChVK8Hsa5cqV07vvvpvkWiRp1qxZCgwMlLu7u1q2bKnJkyfLx8fHYZzly5frqaeekqurqwoXLqyRI0fqzp07ltcV8LgjTABIlJOTkz7++GP9/vvvmjt3rjZu3KhBgwY5jBMVFaWJEydq3rx5+umnn3T69GkNGDDAPnz8+PGaP3++Zs+erW3btikyMjJFP1r3qFq2bdum7t2764033tD+/ftVv359jR071mEeW7ZsUYcOHfTGG2/o0KFD+uyzzzRnzpwE4wFIgXT9zVIA6er+n1Z+mEWLFhk/Pz/749mzZxtJ5vjx4/a2adOmGX9/f/tjf39/88EHH9gf37lzxxQoUMBhmQULFjQffvihw7LKli1rRowYkeRaXnrpJdO4cWOHcdq1a+fwk+J169Y17733nsM48+bNM3ny5HngcgAkDT/0BSBR69ev17hx43TkyBFFRkbqzp07unXrlqKiouTu7i5Jcnd3V5EiRezT5MmTRxcvXpQkRURE6MKFC6pUqZJ9eJYsWVShQgXFxcWlai1hYWFq2bKlwzSVKlXSd999Z3984MABbdu2zeFIRGxsbILnBCD5OM0BIIGTJ0+qSZMmevLJJ7VkyRLt2bNH06ZNkyTdvn3bPl62bNkcprPZbDLJ/O1AJyenBNPExMQku5ZHuX79ukaOHKn9+/fb/w4ePKhjx47J1dU1WTUDcMSRCQAJ7NmzR3FxcZo0aZKcnO5+5/jmm2+SNQ9vb2/5+/tr165dqlGjhqS7RwL27t2rcuXK2cfLlSuXQ6fNyMhInThxIlm1FC9eXLt27XJou//xU089pbCwMBUtWjRZzwPAoxEmgMdcRESE9u/f79CWM2dOxcTEaOrUqWratKm2bdumGTNmJHvevXv31rhx41S0aFGVKFFCU6dO1dWrV2Wz2ezj1KlTR3PmzFHTpk3l4+Oj4cOHK0uWLPbhRYsWfWQtvXv3Vo0aNTR58mQ1bdpUGzdu1KpVqxyWM3z4cDVp0kQFChTQCy+8ICcnJx04cEC//fabxowZk+znBuAe6d1pA0D6CQ0NNZIS/HXu3NlMnjzZ5MmTx7i5uZmQkBDzxRdfGEnm6tWrxpi7HTDv7eBojDHLli0z976txMTEmF69ehkvLy/j6+trBg8ebFq3bm3atGljHyciIsK89NJLxsvLywQGBpo5c+Yk6ID5qFqMMWbmzJkmX758xs3NzbRo0cKMGTPGBAQEONS3evVqU7VqVePm5ma8vLxMpUqVzMyZM1NtfQKPK5sxyTzBCQApFBcXp+DgYL344osaPXp0mi6rS5cuOnLkiLZs2ZKmywHAaQ4AaejUqVNau3atatasqejoaH3yySc6ceKEXn755VRf1sSJE1W/fn15eHho1apVmjt3rj799NNUXw6AhAgTANKMk5OT5syZowEDBsgYo9KlS2v9+vUKDg5O9WXt3LlTEyZM0LVr11S4cGF9/PHHeu2111J9OQAS4jQHAACwhPtMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACz5fyZ/2L7yCuX0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 glaucoma/uveitis 1 1 1 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 1 100.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAIjCAYAAAD/bzojAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdTklEQVR4nO3dd1gU1/s28HtBegcRRBGwY4m9ICoWlNg1xIqKDSvW2DUascUajKJGk68VG/bee8OCGmPBXkIENQqISD/vH77Mz3VBd5dFcHJ/rotL90x7dmd2596ZM7MKIYQAERERkUzo5XUBRERERLrEcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ7J04cIFGBoa4vHjxzqZ382bN1GgQAH89ddfOpkffR1cXV3Ro0ePL77clStXQqFQ4NKlS1982fnVTz/9BIVCkddlkBoyt99Hjx59dtzjx49DoVDg+PHjOq3hqwg39+/fR79+/VC8eHEYGxvD0tISnp6eWLBgAd69e5fX5Wns5s2b+Omnn9Ra8R8bPXo0FAoFOnbsqPvCZGTChAno3LkzXFxcpLbt27ejbNmysLKyQqtWrfDPP/+oTNe6dWv07dtXpb1cuXJo0aIFJk2apNbyM9/cH/4VKlQIDRs2xL59+7R/YllwdXVFy5YtdTpP0q1Hjx6pbA/Z/WnzuUAEANevX4dCocCFCxfyuhQVixcvxsqVK7/Y8gp8sSVpac+ePWjfvj2MjIzQvXt3VKhQASkpKTh9+jRGjRqFGzduYNmyZXldpkZu3ryJKVOmoEGDBnB1dVV7OiEE1q9fD1dXV+zatQtv3ryBhYVF7hX6lbp69SoOHz6Ms2fPSm0PHjxAx44d0bFjR3h4eCA4OBg9e/bEgQMHpHEOHDiAkydP4u7du1nOt3///mjevDnu37+PEiVKqFVLUFAQ3NzcIIRATEwMVq5ciebNm2PXrl0MJF+ByMhI6Onl/Dugvb091qxZo9Q2b948/P333/jll19UxiXSxp49e1CoUCHUqFEjT+vo1q0bOnXqBCMjI6lt8eLFKFiwoMqR0Pr16+Pdu3cwNDTUaQ35Otw8fPgQnTp1gouLC44ePYrChQtLwwYNGoR79+5hz549OV6OEAJJSUkwMTFRGZaUlARDQ0OdfMDl1PHjx/H333/j6NGj8PHxwdatW+Hv75/XZelUWloaMjIycrShr1ixAsWKFUPt2rWltoMHD6Jo0aJYtWoVFAoF3N3d0ahRIyQlJcHY2BhpaWkYPnw4Jk2alO3OxdvbGzY2Nli1ahWCgoLUqqVZs2aoXr269Lh3795wcHDA+vXrGW6+Ah9+OOeEmZkZunbtqtS2YcMGvH79WqWdSFt79+5Fs2bN8vz0nb6+PvT19dUaV09PD8bGxjqvIe/32J8we/ZsJCQk4I8//lAKNplKliyJoUOHSo/T0tIwdepUlChRAkZGRnB1dcX48eORnJysNF3mYfwDBw6gevXqMDExwW+//Sad+9uwYQMmTpyIIkWKwNTUFPHx8QCA8PBwfPvtt7CysoKpqSm8vLxw5swZlbqioqLQu3dvODk5wcjICG5ubhgwYABSUlKwcuVKtG/fHgDQsGFD6VC0OucbQ0NDUa5cOTRs2BDe3t4IDQ1VGSfzOWzatAnTp09H0aJFYWxsjMaNG+PevXtK4969exe+vr5wdHSEsbExihYtik6dOiEuLg4A8N1336Fq1apK07Rq1QoKhQI7d+6U2sLDw6FQKJROt8TGxmLYsGFwdnaGkZERSpYsiVmzZiEjI0MaJ/NQ/dy5cxEcHCytt5s3bwIAFi5ciPLly8PU1BQ2NjaoXr061q1b99nXafv27WjUqJHSG/zdu3ewtraW2mxtbSGEkE5rLlq0COnp6Rg8eHC28zUwMECDBg2wY8eOz9aQHWtra5iYmKBAgfffK4QQcHV1RZs2bVTGTUpKgpWVFfr166f18jKdOnUK7du3R7FixWBkZARnZ2cMHz5c5bRujx49YG5ujqioKLRt2xbm5uawt7fHyJEjkZ6erjTuv//+i27dusHS0hLW1tbw9/fHtWvXoFAolA4/N2jQAA0aNFCpqUePHipHLufOnYs6derAzs4OJiYmqFatGjZv3qwy7bt37zBkyBAULFgQFhYWaN26NaKioqBQKPDTTz8pjRsVFYVevXrBwcEBRkZGKF++PP73v/+p9bp93Ocm83TjmTNnMGLECNjb28PMzAzt2rXDixcv1JqnJpKTk9Vazr59+1CvXj2YmZnBwsICLVq0wI0bN5TGyVy3T548QcuWLWFubo4iRYogJCQEwPtTGo0aNYKZmRlcXFyyfK+p874GgGfPnuH27dtITU397HNUdzvKyooVK9CoUSMUKlQIRkZGKFeuHJYsWaIyXlbbBZB1n6rY2FgMHz4crq6uMDIyQtGiRdG9e3e8fPlSGuf58+fSFxVjY2NUqlQJq1atUprPh59vISEhKF68OExNTdG0aVM8ffoUQghMnToVRYsWhYmJCdq0aYNXr14pzWPHjh1o0aKFtC8pUaIEpk6dqvJezKz77NmzaNGiBYDs+7Jk1pX52s6dOxcKhSLL/onjxo2DoaEhXr9+LbWpsx/8uM+Nq6srbty4gRMnTkj7vMzPhKzq/Ny+SR35+sjNrl27ULx4cdSpU0et8fv06YNVq1bh+++/xw8//IDw8HDMnDkTt27dwrZt25TGjYyMROfOndGvXz8EBASgTJky0rCpU6fC0NAQI0eORHJyMgwNDXH06FE0a9YM1apVw+TJk6Gnpye9sU6dOoWaNWsCAP755x/UrFkTsbGx6Nu3L8qWLYuoqChs3rwZiYmJqF+/PoYMGYJff/0V48ePh7u7OwBI/2YnOTkZW7ZswQ8//AAA6Ny5M3r27Ino6Gg4OjqqjP/zzz9DT08PI0eORFxcHGbPng0/Pz+Eh4cDAFJSUuDj44Pk5GQMHjwYjo6OiIqKwu7duxEbGwsrKyvUq1cPO3bsQHx8PCwtLSGEwJkzZ6Cnp4dTp06hdevWAN7vOPX09ODp6QkASExMhJeXF6KiotCvXz8UK1YMZ8+exbhx4/Ds2TMEBwcr1bpixQokJSWhb9++MDIygq2tLZYvX44hQ4bg+++/x9ChQ5GUlIQ///wT4eHh6NKlS7avU1RUFJ48eaISymrUqIEffvgB69evR+3atTF9+nSULFkSNjY2ePHiBaZMmYK1a9fCwMDgk+uhWrVqSq/J58TFxeHly5cQQuD58+dYuHAhEhISpG/rCoUCXbt2xezZs/Hq1SvY2tpK0+7atQvx8fE6+WYfFhaGxMREDBgwAHZ2drhw4QIWLlyIv//+G2FhYUrjpqenw8fHB7Vq1cLcuXNx+PBhzJs3DyVKlMCAAQMAABkZGWjVqhUuXLiAAQMGoGzZstixY0eOjyQuWLAArVu3hp+fH1JSUrBhwwa0b98eu3fvlj60gfc76k2bNqFbt26oXbs2Tpw4oTQ8U0xMDGrXrg2FQoHAwEDY29tj37596N27N+Lj4zFs2DCt6hw8eDBsbGwwefJkPHr0CMHBwQgMDMTGjRu1fepaL2fNmjXw9/eHj48PZs2ahcTERCxZsgR169bFlStXlAJkeno6mjVrhvr162P27NkIDQ1FYGAgzMzMMGHCBPj5+eG7777D0qVL0b17d3h4eMDNzQ2AZu/rcePGYdWqVXj48OEnT73ndDtasmQJypcvj9atW6NAgQLYtWsXBg4ciIyMDAwaNEij1xoAEhISUK9ePdy6dQu9evVC1apV8fLlS+zcuRN///03ChYsiHfv3qFBgwa4d+8eAgMD4ebmhrCwMPTo0QOxsbFKX7iB919KU1JSMHjwYLx69QqzZ89Ghw4d0KhRIxw/fhxjxozBvXv3sHDhQowcOVIpeK9cuRLm5uYYMWIEzM3NcfToUUyaNAnx8fGYM2eO0nIOHDgAhUKBpk2bavScO3TogNGjR2PTpk0YNWqU0rBNmzahadOmsLGxAQC194MfCw4OxuDBg2Fubo4JEyYAABwcHLIcV519k1pEPhUXFycAiDZt2qg1/tWrVwUA0adPH6X2kSNHCgDi6NGjUpuLi4sAIPbv36807rFjxwQAUbx4cZGYmCi1Z2RkiFKlSgkfHx+RkZEhtScmJgo3NzfRpEkTqa179+5CT09PXLx4UaXGzGnDwsIEAHHs2DG1npsQQmzevFkAEHfv3hVCCBEfHy+MjY3FL7/8kuVzcHd3F8nJyVL7ggULBABx/fp1IYQQV65cEQBEWFhYtsu8ePGiACD27t0rhBDizz//FABE+/btRa1ataTxWrduLapUqSI9njp1qjAzMxN37txRmt/YsWOFvr6+ePLkiRBCiIcPHwoAwtLSUjx//lxp3DZt2ojy5cur+/JIDh8+LACIXbt2qQwbMmSIACAACFtbW2mbCAgIEN9++61a81+3bp0AIMLDwz853ooVK6RlffhnZGQkVq5cqTRuZGSkACCWLFmi1N66dWvh6uqqtM1lxcXFRbRo0eKT43y4PWeaOXOmUCgU4vHjx1Kbv7+/ACCCgoKUxq1SpYqoVq2a9HjLli0CgAgODpba0tPTRaNGjQQAsWLFCqndy8tLeHl5qSzf399fuLi4fLLOlJQUUaFCBdGoUSOp7fLlywKAGDZsmNK4PXr0EADE5MmTpbbevXuLwoULi5cvXyqN26lTJ2FlZZXl6/IhFxcX4e/vLz3OXK/e3t5K62X48OFCX19fxMbGfnJ+H2rRooXK89d0OW/evBHW1tYiICBAafro6GhhZWWl1J65bmfMmCG1vX79WpiYmAiFQiE2bNggtd++fVvltVT3ff3hsh4+fPjJ10CT7Wjy5Mni411WVuvPx8dHFC9eXKnt4+eS6eP1O2nSJAFAbN26VWXczPUQHBwsAIi1a9dKw1JSUoSHh4cwNzcX8fHxQoj/+3yzt7dX2i7GjRsnAIhKlSqJ1NRUqb1z587C0NBQJCUlffL59evXT5iamiqNJ4QQ3bp1U3qfZe4LPt7PZNb14Wvr4eGh9P4WQogLFy4IAGL16tXS81d3P5i5/X64/suXL5/l58DHdaqzb1JHvj0tlXkqSN0Os3v37gUAjBgxQqk980jHx31z3Nzc4OPjk+W8/P39lfrfXL16FXfv3kWXLl3w77//4uXLl3j58iXevn2Lxo0b4+TJk8jIyEBGRga2b9+OVq1aKfWzyJST86ChoaGoXr06SpYsCQDSoeesTk0BQM+ePZX6rdSrVw/A+461AKT0e+DAASQmJmY5jypVqsDc3BwnT54E8P4ITeYh2oiICCQmJkIIgdOnT0vzB94fJahXrx5sbGyk1+rly5fw9vZGenq6NL9Mvr6+Kv1crK2t8ffff+PixYtqv0bA+0PcAKRvGh9asGABHj9+jPDwcDx+/BgNGzbE1atXsXr1avzyyy+Ii4tD165dUaRIETRo0AC3bt1SmUfmfD88RP0pISEhOHToEA4dOoS1a9eiYcOG6NOnD7Zu3SqNU7p0adSqVUtpXb569Qr79u2Dn5+fTs6ff7g9v337Fi9fvkSdOnUghMCVK1dUxu/fv7/S43r16knbDgDs378fBgYGCAgIkNr09PS0+racXZ2vX79GXFwc6tWrh4iICKVlA8DAgQOVpv34lKIQAlu2bEGrVq0ghFDaFn18fBAXF6c0X0307dtXab3Uq1cP6enpOrv1gLrLOXToEGJjY9G5c2el56evr49atWrh2LFjKvPs06eP9H9ra2uUKVMGZmZm6NChg9RepkwZWFtbK61zTd7XK1eulE65fkpOt6MPt5fMo6ReXl548OCBRqcwMm3ZsgWVKlVCu3btVIZlroe9e/fC0dERnTt3loYZGBhgyJAhSEhIwIkTJ5Sma9++vdLRhlq1agEAunbtKp2ezmxPSUlBVFRUls/vzZs3ePnyJerVq4fExETcvn1bGpaRkYH9+/dnefRSHR07dsTly5dx//59qW3jxo0wMjKSTpmrux/MKXX2TerIt6elMg/5v3nzRq3xHz9+DD09PWnnn8nR0RHW1tYqHzqZh1qz8vGwzKtnPnWoNC4uDikpKYiPj0eFChXUqlldsbGx2Lt3LwIDA5X6zXh6emLLli24c+cOSpcurTRNsWLFlB5n7pQzz526ublhxIgRmD9/PkJDQ1GvXj20bt0aXbt2lTYufX19eHh44NSpUwDeh5t69eqhbt26SE9Px/nz5+Hg4IBXr14phZu7d+/izz//zLZj7vPnz5UeZ7UuxowZg8OHD6NmzZooWbIkmjZtii5dukinvj5HCJFle7FixZRemyFDhqB///4oW7YsunbtiqdPn2LHjh1YtWoVWrVqhdu3byt9AGXOV93AUbNmTaWg27lzZ1SpUgWBgYFo2bKlFEC7d++OwMBAPH78GC4uLggLC0Nqaiq6deum1nI+58mTJ5g0aRJ27typdP4cgMpOwNjYWGXd2djYKE33+PFjFC5cGKampkrjffz+09Tu3bsxbdo0XL16Vamv3Ievd+Z7/ePt5uNlv3jxArGxsVi2bFm2V1R+vC2q63PvL1353HIyP5saNWqU5fQfnzrNat1aWVmhaNGiKtu0lZWV0vPR9H2tjpxuR2fOnMHkyZNx7tw5lR1hXFyc+qcw/r/79+/D19f3szWXKlVK5SKTzK4FH+9rPl6HmTU5Oztn2f7ha37jxg1MnDgRR48elb7wZ/rwfXvx4kW8ePFC63DTvn17jBgxAhs3bsT48eMhhEBYWBiaNWsmbUPq7gez+mKpCXX2TerI1+HGyclJ45umqbvTyerKqOyGZabROXPmoHLlyllOY25urtIZTFfCwsKQnJyMefPmYd68eSrDQ0NDMWXKFKW27Hqqf7jTnzdvHnr06IEdO3bg4MGDGDJkCGbOnInz58+jaNGiAIC6deti+vTpSEpKwqlTpzBhwgRYW1ujQoUKOHXqlHTe9MNwk5GRgSZNmmD06NFZ1vBxEMtqXbi7uyMyMhK7d+/G/v37sWXLFixevBiTJk1Sea4fsrOzA6DeTmbjxo24desWdu7cifT0dGzatAkHDx5E9erVUb58eSxfvhznz59H3bp1pWky51uwYMHPzj8renp6aNiwIRYsWIC7d++ifPnyAIBOnTph+PDhCA0Nxfjx47F27VpUr15dqS+YttLT09GkSRO8evUKY8aMQdmyZWFmZoaoqCj06NFD5duWulc5qEuhUGQZNj/uFJnZj6t+/fpYvHgxChcuDAMDA6xYsUKtjuQfy3xeXbt2zfYD+ZtvvtF4voB67y9d+NxyMp/jmjVrsux792Ew/9T81Hk+mr6vc9v9+/fRuHFjlC1bFvPnz4ezszMMDQ2xd+9e/PLLL2odRciqY66uafuax8bGwsvLC5aWlggKCkKJEiVgbGyMiIgIjBkzRun57d27F66urihXrpzUlt2+MKvn7OTkhHr16mHTpk0YP348zp8/jydPnmDWrFnSOOruB3VBnX3T5+TbcAMALVu2xLJly3Du3Dl4eHh8clwXFxdkZGTg7t27Sp1zY2JiEBsbq3QzN01l3tPE0tIS3t7e2Y5nb28PS0vLzwYyTU8zhIaGokKFCpg8ebLKsN9++w3r1q375A7/UypWrIiKFSti4sSJOHv2LDw9PbF06VJMmzYNwPvQkpKSgvXr1yMqKkoKMfXr15fCTenSpZU6h5UoUQIJCQmffK3UYWZmJt2bJiUlBd999x2mT5+OcePGZXvpYNmyZQG8v43ApyQmJmLUqFGYOnUqrK2tERMTg9TUVDg5OQF4H7hsbGyUDhFnzldPTy9HH+RpaWkA3ndezGRrayudZvTz88OZM2dUOl5r6/r167hz5w5WrVqF7t27S+2HDh3Sep4uLi44duwYEhMTlb51f3xFHvD+aMOHpzcyffwNd8uWLTA2NsaBAweULsFesWKFyrIzMjLw8OFDlCpVKttl29vbw8LCAunp6TneFvOrzM+mQoUK5fpz1NX7+kOabEcf27VrF5KTk7Fz506loyNZnYqzsbFBbGysUltKSgqePXum1FaiRInPfn67uLjgzz//REZGhtLRm8zTRDnZ13zo+PHj+Pfff7F161bUr19fas/qs23Pnj1o3ry5UlvmEZSPn3d2p047duyIgQMHIjIyEhs3boSpqSlatWolDVd3P5gdTfd7n9s3fU6+7XMDvL8br5mZGfr06YOYmBiV4ffv38eCBQsAQFqxH+8Q5s+fDwBaH64D3l8hU6JECcydO1dph5Qp89JMPT09tG3bFrt27crytumZidzMzAyA6kaXladPn+LkyZPo0KEDvv/+e5W/nj174t69e9JVUOqKj4+XdrKZKlasCD09PaXTAbVq1YKBgQFmzZoFW1tb6UhDvXr1cP78eZw4cULpqA3wvvf9uXPnlG6Qlyk2NlZluVnJ7DuTydDQEOXKlYMQ4pOXlxYpUgTOzs6fvW39rFmzYGNjI53rt7OzQ4ECBaQPqJcvX+LFixcq34YvX76M8uXLa3y4O1NqaioOHjwIQ0NDlSvkunXrhps3b2LUqFHQ19dHp06dtFrGxzK/IX74LVwIIb13tOHj44PU1FQsX75casvIyJAuK/5QiRIlcPv2baVLmK9du6Zy+ai+vj4UCoXSN8tHjx5h+/btKssG3t8U7EMLFy5UmZ+vry+2bNmS5Q4rNy7d/tJ8fHxgaWmJGTNmZPm+0OVz1OR9re6l4JpsRx/LaruOi4tTCcPA+23w475+y5YtUzmK4evri2vXrqlcXfvhcpo3b47o6GilK9bS0tKwcOFCmJubw8vL67O1qyOr55eSkqKy3cfExCAiIkJlH+fi4gJ9fX2V5/3x9Jl8fX2hr6+P9evXIywsDC1btpT2VYD6+8HsmJmZqbXPU3ff9Dn5+shNiRIlsG7dOnTs2BHu7u5Kdyg+e/asdPkdAFSqVAn+/v5YtmyZdDjvwoULWLVqFdq2bYuGDRtqXYeenh5+//13NGvWDOXLl0fPnj1RpEgRREVF4dixY7C0tMSuXbsAADNmzMDBgwfh5eWFvn37wt3dHc+ePUNYWBhOnz4Na2trVK5cGfr6+pg1axbi4uJgZGQk3avhY+vWrYMQQrrs+mPNmzdHgQIFEBoaKnVUU8fRo0cRGBiI9u3bo3Tp0khLS8OaNWukHUImU1NTVKtWDefPn5fucQO8P3Lz9u1bvH37ViXcjBo1Cjt37kTLli3Ro0cPVKtWDW/fvsX169exefNmPHr06LOndZo2bQpHR0d4enrCwcEBt27dwqJFi9CiRYvPdjJv06YNtm3bBiFElt8Wnjx5gjlz5mDPnj3SB0iBAgXQpk0bDBs2DE+ePMG2bdvg5OSkdMQwNTUVJ06cUOnI+in79u2TAtPz58+xbt063L17F2PHjlXpD9GiRQvY2dlJ57qz2h6yc+/evSy/0VSpUgVNmzZFiRIlMHLkSERFRcHS0hJbtmzJUf+Qtm3bombNmvjhhx9w7949lC1bFjt37pROzX74uvfq1Qvz58+Hj48PevfujefPn2Pp0qUoX768Uj+CFi1aYP78+fj222/RpUsXPH/+HCEhIShZsiT+/PNPabxq1arB19cXwcHB+Pfff6VLwe/cuaOy7J9//hnHjh1DrVq1EBAQgHLlyuHVq1eIiIjA4cOHc+1U8pdiaWmJJUuWoFu3bqhatSo6deoEe3t7PHnyBHv27IGnpycWLVqkk2Vp8r5W91JwTbajjzVt2hSGhoZo1aoV+vXrh4SEBCxfvhyFChVSOSLTp08f9O/fH76+vmjSpAmuXbuGAwcOqHwOjRo1Cps3b0b79u3Rq1cvVKtWDa9evcLOnTuxdOlSVKpUCX379sVvv/2GHj164PLly3B1dcXmzZulo626umt8nTp1YGNjA39/fwwZMgQKhQJr1qxROfW5d+9eGBsbq+zjrKys0L59eyxcuBAKhQIlSpTA7t27s+0blfnzMPPnz8ebN29UfuJHk/1gVqpVq4YlS5Zg2rRpKFmyJAoVKpRlXzF1902flaNrrb6QO3fuiICAAOHq6ioMDQ2FhYWF8PT0FAsXLlS6HC41NVVMmTJFuLm5CQMDA+Hs7CzGjRuncslcdpfOZl6Slt0laFeuXBHfffedsLOzE0ZGRsLFxUV06NBBHDlyRGm8x48fi+7duwt7e3thZGQkihcvLgYNGqR0afby5ctF8eLFhb6+/icvC69YsaIoVqzYJ1+fBg0aiEKFConU1NRsn8PHl/89ePBA9OrVS5QoUUIYGxsLW1tb0bBhQ3H48GGV+Y8aNUoAELNmzVJqL1mypAAg7t+/rzLNmzdvxLhx40TJkiWFoaGhKFiwoKhTp46YO3euSElJUappzpw5KtP/9ttvon79+tJrXaJECTFq1CgRFxf3yddCCCEiIiIEAHHq1Kksh7dv31589913Ku0xMTGiVatWwsLCQlStWlVcunRJafi+ffuULsf/lKwuBTc2NhaVK1cWS5Ysyfby7oEDBwoAYt26dZ9dRqbMWxtk9de7d28hhBA3b94U3t7ewtzcXBQsWFAEBASIa9euqVwS6u/vL8zMzFSWkdVluC9evBBdunQRFhYWwsrKSvTo0UOcOXNGAFC6rFgIIdauXSuKFy8uDA0NReXKlcWBAweyvBT8jz/+EKVKlRJGRkaibNmyYsWKFVku++3bt2LQoEHC1tZWmJubi7Zt20qX1P/8889K48bExIhBgwYJZ2dnYWBgIBwdHUXjxo3FsmXL1Hpts7oU/ONbPWR32e2nqHMpuLrLOXbsmPDx8RFWVlbC2NhYlChRQvTo0UNpG85u3Xp5eWV524WsPifVeV9nLgtqXAouhPrbUVbbwc6dO8U333wjjI2Nhaurq5g1a5b43//+p7Ls9PR0MWbMGFGwYEFhamoqfHx8xL1791TWrxBC/PvvvyIwMFAUKVJEGBoaiqJFiwp/f3+l2wnExMSInj17ioIFCwpDQ0NRsWJFpfeRENl/vmX3GZ3VOj9z5oyoXbu2MDExEU5OTmL06NHiwIEDStvA999/L5o3b57ta+vr6ytMTU2FjY2N6Nevn/jrr79U3veZli9fLgAICwsL8e7duyznqc5+MKtLwaOjo0WLFi2EhYWFACBdFv7xNq3JvulTFELouAccUT7QuHFjODk5qfyeT060bdsWCoUiy0PWujJ8+HD88ccfiI6OVrmC5Guwfft2tGvXDqdPn1b7yjZduXr1KqpUqYK1a9fCz8/viy6bdCsvt6OvSVpaGuzs7DBz5kyNjij/F+TrPjdE2poxYwY2btyos/uO3Lp1C7t378bUqVN1Mr+sJCUlYe3atfD19f0qgs3HP92Qnp6OhQsXwtLSUuUO0bm9bOB9fzs9PT2lzpeU/+XldvS1e/XqFYYPH57lfXn+6/J1nxsibWXeEEtX3N3d1eoIrY3nz5/j8OHD2Lx5M/7991+V27fnV4MHD8a7d+/g4eGB5ORkbN26FWfPnsWMGTM+easFXZg9ezYuX76Mhg0bokCBAti3bx/27duHvn37qtw/hPK3vNyOvnaFChXK8jezCF9HnxsiOcs851yoUCGxcOHCvC5HbaGhoaJq1arC0tJSGBoainLlyn2x+g8ePCg8PT2FjY2NMDAwECVKlBA//fST0u3s6euQl9sRyRf73BAREZGssM8NERERyQrDDREREckKOxTj/R0x//nnH1hYWOjkF5iJiIj+K4QQePPmDZycnFR+UDSvMNwA+Oeff3iFBRERUQ48ffpU7R+2zG0MN4B0u+ynT5+q3BKfiIiIshcfHw9nZ2ed/fSELjDc4P9+v8TS0pLhhoiISAv5qVtH/jg5RkRERKQjDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCsMN0RERCQrDDdEREQkKww3REREJCt5Gm5OnjyJVq1awcnJCQqFAtu3b1caLoTApEmTULhwYZiYmMDb2xt3795VGufVq1fw8/ODpaUlrK2t0bt3byQkJHzBZ0FERET5SZ6Gm7dv36JSpUoICQnJcvjs2bPx66+/YunSpQgPD4eZmRl8fHyQlJQkjePn54cbN27g0KFD2L17N06ePIm+fft+qadARERE+YxCCCHyuggAUCgU2LZtG9q2bQvg/VEbJycn/PDDDxg5ciQAIC4uDg4ODli5ciU6deqEW7duoVy5crh48SKqV68OANi/fz+aN2+Ov//+G05OTmotOz4+HlZWVoiLi4OlpWWuPD8iIiI5yo/70Hzb5+bhw4eIjo6Gt7e31GZlZYVatWrh3LlzAIBz587B2tpaCjYA4O3tDT09PYSHh2c77+TkZMTHxyv9ERERkTwUyOsCshMdHQ0AcHBwUGp3cHCQhkVHR6NQoUJKwwsUKABbW1tpnKzMnDkTU6ZM0XHFqlzH7sn1ZfzXPfq5Ra7Ml+su93Hdfb1ya90BXH9fQm6uv/wi3x65yU3jxo1DXFyc9Pf06dO8LomIiIh0JN+GG0dHRwBATEyMUntMTIw0zNHREc+fP1canpaWhlevXknjZMXIyAiWlpZKf0RERCQP+TbcuLm5wdHREUeOHJHa4uPjER4eDg8PDwCAh4cHYmNjcfnyZWmco0ePIiMjA7Vq1friNRMREVHey9M+NwkJCbh37570+OHDh7h69SpsbW1RrFgxDBs2DNOmTUOpUqXg5uaGH3/8EU5OTtIVVe7u7vj2228REBCApUuXIjU1FYGBgejUqZPaV0oRERGRvORpuLl06RIaNmwoPR4xYgQAwN/fHytXrsTo0aPx9u1b9O3bF7Gxsahbty72798PY2NjaZrQ0FAEBgaicePG0NPTg6+vL3799dcv/lyIiIgof8jTcNOgQQN86jY7CoUCQUFBCAoKynYcW1tbrFu3LjfKIyIioq9Qvu1zQ0RERKQNhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSFYYbIiIikhWGGyIiIpIVhhsiIiKSlXwdbtLT0/Hjjz/Czc0NJiYmKFGiBKZOnQohhDSOEAKTJk1C4cKFYWJiAm9vb9y9ezcPqyYiIqK8lK/DzaxZs7BkyRIsWrQIt27dwqxZszB79mwsXLhQGmf27Nn49ddfsXTpUoSHh8PMzAw+Pj5ISkrKw8qJiIgorxTI6wI+5ezZs2jTpg1atGgBAHB1dcX69etx4cIFAO+P2gQHB2PixIlo06YNAGD16tVwcHDA9u3b0alTpzyrnYiIiPJGvj5yU6dOHRw5cgR37twBAFy7dg2nT59Gs2bNAAAPHz5EdHQ0vL29pWmsrKxQq1YtnDt3Ltv5JicnIz4+XumPiIiI5CFfH7kZO3Ys4uPjUbZsWejr6yM9PR3Tp0+Hn58fACA6OhoA4ODgoDSdg4ODNCwrM2fOxJQpU3KvcCIiIsoz+frIzaZNmxAaGop169YhIiICq1atwty5c7Fq1aoczXfcuHGIi4uT/p4+faqjiomIiCiv5esjN6NGjcLYsWOlvjMVK1bE48ePMXPmTPj7+8PR0REAEBMTg8KFC0vTxcTEoHLlytnO18jICEZGRrlaOxEREeWNfH3kJjExEXp6yiXq6+sjIyMDAODm5gZHR0ccOXJEGh4fH4/w8HB4eHh80VqJiIgof8jXR25atWqF6dOno1ixYihfvjyuXLmC+fPno1evXgAAhUKBYcOGYdq0aShVqhTc3Nzw448/wsnJCW3bts3b4omIiChP5Otws3DhQvz4448YOHAgnj9/DicnJ/Tr1w+TJk2Sxhk9ejTevn2Lvn37IjY2FnXr1sX+/fthbGych5UTERFRXsnX4cbCwgLBwcEIDg7OdhyFQoGgoCAEBQV9ucKIiIgo38rXfW6IiIiINMVwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESyUkCbiR4+fIhTp07h8ePHSExMhL29PapUqQIPDw8YGxvrukYiIiIitWkUbkJDQ7FgwQJcunQJDg4OcHJygomJCV69eoX79+/D2NgYfn5+GDNmDFxcXHKrZiIiIqJsqR1uqlSpAkNDQ/To0QNbtmyBs7Oz0vDk5GScO3cOGzZsQPXq1bF48WK0b99e5wUTERERfYra4ebnn3+Gj49PtsONjIzQoEEDNGjQANOnT8ejR490UR8RERGRRtQON58KNh+zs7ODnZ2dVgURERER5YRWHYo/tGfPHhw/fhzp6enw9PSEr6+vLuoiIiIi0kqOLgX/8ccfMXr0aCgUCgghMHz4cAwePFhXtRERERFpTKMjN5cuXUL16tWlxxs3bsS1a9dgYmICAOjRowcaNGiAhQsX6rZKIiIiIjVpdOSmf//+GDZsGBITEwEAxYsXx7x58xAZGYnr169jyZIlKF26dK4USkRERKQOjcJNeHg4ChcujKpVq2LXrl343//+hytXrqBOnTqoV68e/v77b6xbty63aiUiIiL6LI1OS+nr62PMmDFo3749BgwYADMzMyxatAhOTk65VR8RERGRRrTqUFy8eHEcOHAA7dq1Q/369RESEqLruoiIiIi0olG4iY2NxejRo9GqVStMnDgR7dq1Q3h4OC5evIjatWvj+vXruVUnERERkVo0Cjf+/v4IDw9HixYtEBkZiQEDBsDOzg4rV67E9OnT0bFjR4wZMya3aiUiIiL6LI363Bw9ehRXrlxByZIlERAQgJIlS0rDGjdujIiICAQFBem8SCIiIiJ1aXTkplSpUli2bBnu3LmDpUuXqvzyt7GxMWbMmKHTAomIiIg0oVG4+d///oejR4+iSpUqWLduHZYsWZJbdRERERFpRaPTUpUrV8alS5dyqxYiIiKiHFP7yI0QIjfrICIiItIJtcNN+fLlsWHDBqSkpHxyvLt372LAgAH4+eefc1wcERERkabUPi21cOFCjBkzBgMHDkSTJk1QvXp1ODk5wdjYGK9fv8bNmzdx+vRp3LhxA4GBgRgwYEBu1k1ERESUJbXDTePGjXHp0iWcPn0aGzduRGhoKB4/fox3796hYMGCqFKlCrp37w4/Pz/Y2NjkZs1ERERE2dKoQzEA1K1bF3Xr1s2NWoiIiIhyTKvfliIiIiLKrxhuiIiISFYYboiIiEhWGG6IiIhIVhhuiIiISFa0CjcRERG4fv269HjHjh1o27Ytxo8f/9mb/BERERHlJq3CTb9+/XDnzh0AwIMHD9CpUyeYmpoiLCwMo0eP1mmBRERERJrQKtzcuXMHlStXBgCEhYWhfv36WLduHVauXIktW7bosj4iIiIijWgVboQQyMjIAAAcPnwYzZs3BwA4Ozvj5cuXuquOiIiISENahZvq1atj2rRpWLNmDU6cOIEWLVoAAB4+fAgHBwedFhgVFYWuXbvCzs4OJiYmqFixIi5duiQNF0Jg0qRJKFy4MExMTODt7Y27d+/qtAYiIiL6emgVboKDgxEREYHAwEBMmDABJUuWBABs3rwZderU0Vlxr1+/hqenJwwMDLBv3z7cvHkT8+bNU/rtqtmzZ+PXX3/F0qVLER4eDjMzM/j4+CApKUlndRAREdHXQ+PflkpPT0dsbCxOnjyp8gOZc+bMgb6+vs6KmzVrFpydnbFixQqpzc3NTfq/EALBwcGYOHEi2rRpAwBYvXo1HBwcsH37dnTq1ElntRAREdHXQeMjN/r6+mjatCliY2NVhhkbG8PAwEAXdQEAdu7cierVq6N9+/YoVKgQqlSpguXLl0vDHz58iOjoaHh7e0ttVlZWqFWrFs6dO5ftfJOTkxEfH6/0R0RERPKg1WmpChUq4MGDB7quRcWDBw+wZMkSlCpVCgcOHMCAAQMwZMgQrFq1CgAQHR0NACr9fBwcHKRhWZk5cyasrKykP2dn59x7EkRERPRFaRVupk2bhpEjR2L37t149uxZrh0FycjIQNWqVTFjxgxUqVIFffv2RUBAAJYuXZqj+Y4bNw5xcXHS39OnT3VUMREREeU1jfvcAJAu/W7dujUUCoXULoSAQqFAenq6ToorXLgwypUrp9Tm7u4u3UvH0dERABATE4PChQtL48TExEj34cmKkZERjIyMdFIjERER5S9ahZtjx47puo4seXp6IjIyUqntzp07cHFxAfC+c7GjoyOOHDkihZn4+HiEh4djwIABX6RGIiIiyl+0CjdeXl66riNLw4cPR506dTBjxgx06NABFy5cwLJly7Bs2TIAgEKhwLBhwzBt2jSUKlUKbm5u+PHHH+Hk5IS2bdt+kRqJiIgof9H6V8FPnTqFrl27ok6dOoiKigIArFmzBqdPn9ZZcTVq1MC2bduwfv16VKhQAVOnTkVwcDD8/PykcUaPHo3Bgwejb9++qFGjBhISErB//34YGxvrrA4iIiL6emgVbrZs2QIfHx+YmJggIiICycnJAIC4uDjMmDFDpwW2bNkS169fR1JSEm7duoWAgACl4QqFAkFBQYiOjkZSUhIOHz6M0qVL67QGIiIi+npofbXU0qVLsXz5cqX72nh6eiIiIkJnxRERERFpSqtwExkZifr166u0W1lZZXlzPyIiIqIvRatw4+joiHv37qm0nz59GsWLF89xUURERETa0ircBAQEYOjQoQgPD4dCocA///yD0NBQjBw5kpdgExERUZ7S6lLwsWPHIiMjA40bN0ZiYiLq168PIyMjjBw5EoMHD9Z1jURERERq0yrcKBQKTJgwAaNGjcK9e/eQkJCAcuXKwdzcXNf1EREREWlEq3Bz9OhR1KlTB8bGxio/j0BERESUl7QKN61bt0ZaWhpq1KiBBg0awMvLC56enjAxMdF1fUREREQa0apD8evXr3HkyBE0a9YMFy5cQLt27WBtbQ1PT09MnDhR1zUSERERqU2rcGNgYABPT0+MHz8eBw4cwPnz59G5c2dcuHABM2fO1HWNRERERGrT6rTUnTt3cPz4cRw/fhwnTpxAcnIy6tWrh7lz56JBgwY6LpGIiIhIfVqFm7Jly8Le3h5Dhw7F2LFjUbFiRSgUCl3XRkRERKQxrU5LDRkyBEWKFEFQUBD69++PCRMm4ODBg0hMTNR1fUREREQa0SrcBAcHIyIiAtHR0Rg3bhxSUlIwYcIEFCxYEJ6enrqukYiIiEhtWoWbTOnp6UhNTUVycjKSkpKQnJyMyMhIXdVGREREpDGtT0t98803cHBwQL9+/fDPP/8gICAAV65cwYsXL3RdIxEREZHatOpQ/OzZM/Tt2xcNGjRAhQoVdF0TERERkda0CjdhYWG6roOIiIhIJ7Q6LbVq1Srs2bNHejx69GhYW1ujTp06ePz4sc6KIyIiItKUVuFmxowZ0u9InTt3DiEhIZg9ezYKFiyI4cOH67RAIiIiIk1odVrq6dOnKFmyJABg+/bt8PX1Rd++feHp6ck7FBMREVGe0urIjbm5Of79918AwMGDB9GkSRMAgLGxMd69e6e76oiIiIg0pNWRmyZNmqBPnz6oUqUK7ty5g+bNmwMAbty4AVdXV13WR0RERKQRrY7chISEwMPDAy9evMCWLVtgZ2cHALh8+TI6d+6s0wKJiIiINKHVkRtra2ssWrRIpX3KlCk5LoiIiIgoJ7QKNwAQGxuLCxcu4Pnz58jIyJDaFQoFunXrppPiiIiIiDSlVbjZtWsX/Pz8kJCQAEtLSygUCmkYww0RERHlJa363Pzwww/o1asXEhISEBsbi9evX0t/r1690nWNRERERGrTKtxERUVhyJAhMDU11XU9RERERDmiVbjx8fHBpUuXdF0LERERUY5p1eemRYsWGDVqFG7evImKFSvCwMBAaXjr1q11UhwRERGRprQKNwEBAQCAoKAglWEKhQLp6ek5q4qIiIhIS1qFmw8v/SYiIiLKT7Tqc5Od2NjYLG/uR0RERPSl6CTcHDlyBF26dEHhwoUxefJkXcySiIiISCtah5unT58iKCgIbm5uaNq0KRQKBbZt24bo6Ghd1kdERESkEY3CTWpqKsLCwuDj44MyZcrg6tWrmDNnDvT09DBhwgR8++23KldOEREREX1JGnUoLlKkCMqWLYuuXbtiw4YNsLGxAQD+EjgRERHlGxoduUlLS4NCoYBCoYC+vn5u1URERESkNY3CzT///IO+ffti/fr1cHR0hK+vL7Zt26b0w5lEREREeUmjcGNsbAw/Pz8cPXoU169fh7u7O4YMGYK0tDRMnz4dhw4d4g38iIiIKE9pfbVUiRIlMG3aNDx+/Bh79uxBcnIyWrZsCQcHB13WR0RERKQRre5Q/CE9PT00a9YMzZo1w4sXL7BmzRpd1EVERESkFZ3eodje3h4jRozQ5SyJiIiINKLTcENERESU1xhuiIiISFYYboiIiEhWtAo3QUFBSExMVGl/9+4dgoKCclwUERERkba0CjdTpkxBQkKCSntiYiKmTJmS46KIiIiItKVVuBFCZHlX4mvXrsHW1jbHRRERERFpS6P73NjY2Ei/LVW6dGmlgJOeno6EhAT0799f50USERERqUujcBMcHAwhBHr16oUpU6bAyspKGmZoaAhXV1d4eHjovEgiIiIidWkUbvz9/QEAbm5u8PT0RIECOb7BMREREZFOadXn5u3btzhy5IhK+4EDB7Bv374cF0VERESkLa3CzdixY7P89W8hBMaOHZvjooiIiIi0pVW4uXv3LsqVK6fSXrZsWdy7dy/HRRERERFpS6twY2VlhQcPHqi037t3D2ZmZjkuioiIiEhbWoWbNm3aYNiwYbh//77Udu/ePfzwww9o3bq1zoojIiIi0pRW4Wb27NkwMzND2bJl4ebmBjc3N7i7u8POzg5z587VdY1EREREatPqWm4rKyucPXsWhw4dwrVr12BiYoJvvvkG9evX13V9RERERBrR+kY1CoUCTZs2Rf369WFkZJTlzzEQERERfWlanZbKyMjA1KlTUaRIEZibm+Phw4cAgB9//BF//PGHTgskIiIi0oRW4WbatGlYuXIlZs+eDUNDQ6m9QoUK+P3333VWHBEREZGmtAo3q1evxrJly+Dn5wd9fX2pvVKlSrh9+7bOiiMiIiLSlFbhJioqCiVLllRpz8jIQGpqao6LIiIiItKWVuGmXLlyOHXqlEr75s2bUaVKlRwXRURERKQtra6WmjRpEvz9/REVFYWMjAxs3boVkZGRWL16NXbv3q3rGomIiIjUpvUdinft2oXDhw/DzMwMkyZNwq1bt7Br1y40adJE1zUSERERqU3jIzdpaWmYMWMGevXqhUOHDuVGTURERERa0/jITYECBTB79mykpaXlRj1EREREOaLVaanGjRvjxIkTuq6FiIiIKMe06lDcrFkzjB07FtevX0e1atVgZmamNJy/DE5ERER5RatwM3DgQADA/PnzVYYpFAqkp6fnrCoiIiIiLWkVbjIyMnRdBxEREZFOaNznJjU1FQUKFMBff/2VG/UQERER5YjG4cbAwADFihXjqSciIiLKl7S6WmrChAkYP348Xr16pet6iIiIiHJEq3CzaNEinDx5Ek5OTihTpgyqVq2q9Jdbfv75ZygUCgwbNkxqS0pKwqBBg2BnZwdzc3P4+voiJiYm12ogIiKi/E2rDsVt27bVcRmfd/HiRfz222/45ptvlNqHDx+OPXv2ICwsDFZWVggMDMR3332HM2fOfPEaiYiIKO9pFW4mT56s6zo+KSEhAX5+fli+fDmmTZsmtcfFxeGPP/7AunXr0KhRIwDAihUr4O7ujvPnz6N27dpftE4iIiLKe1qdlsp0+fJlrF27FmvXrsWVK1d0VZOKQYMGoUWLFvD29lZZfmpqqlJ72bJlUaxYMZw7dy7b+SUnJyM+Pl7pj4iIiORBqyM3z58/R6dOnXD8+HFYW1sDAGJjY9GwYUNs2LAB9vb2Oitww4YNiIiIwMWLF1WGRUdHw9DQUKohk4ODA6Kjo7Od58yZMzFlyhSd1UhERET5h1ZHbgYPHow3b97gxo0bePXqFV69eoW//voL8fHxGDJkiM6Ke/r0KYYOHYrQ0FAYGxvrbL7jxo1DXFyc9Pf06VOdzZuIiIjyllZHbvbv34/Dhw/D3d1daitXrhxCQkLQtGlTnRV3+fJlPH/+XOkKrPT0dJw8eRKLFi3CgQMHkJKSgtjYWKWjNzExMXB0dMx2vkZGRjAyMtJZnURERJR/aP3zCwYGBirtBgYGOv1phsaNG+P69etKbT179kTZsmUxZswYODs7w8DAAEeOHIGvry8AIDIyEk+ePIGHh4fO6iAiIqKvh1bhplGjRhg6dCjWr18PJycnAEBUVBSGDx+Oxo0b66w4CwsLVKhQQanNzMwMdnZ2Unvv3r0xYsQI2NrawtLSEoMHD4aHhwevlCIiIvqP0ircLFq0CK1bt4arqyucnZ0BvO8fU6FCBaxdu1anBX7OL7/8Aj09Pfj6+iI5ORk+Pj5YvHjxF62BiIiI8g+two2zszMiIiJw+PBh3L59GwDg7u6ucql2bjh+/LjSY2NjY4SEhCAkJCTXl01ERET5n1bhBgAUCgWaNGmCJk2a6LIeIiIiohzR6FLwo0ePoly5clne9C4uLg7ly5fHqVOndFYcERERkaY0CjfBwcEICAiApaWlyjArKyv069cP8+fP11lxRERERJrSKNxcu3YN3377bbbDmzZtisuXL+e4KCIiIiJtaRRuYmJisry/TaYCBQrgxYsXOS6KiIiISFsahZsiRYrgr7/+ynb4n3/+icKFC+e4KCIiIiJtaRRumjdvjh9//BFJSUkqw969e4fJkyejZcuWOiuOiIiISFMaXQo+ceJEbN26FaVLl0ZgYCDKlCkDALh9+zZCQkKQnp6OCRMm5EqhREREROrQKNw4ODjg7NmzGDBgAMaNGwchBID397zx8fFBSEgIHBwccqVQIiIiInVofBM/FxcX7N27F69fv8a9e/cghECpUqVgY2OTG/URERERaUTrOxTb2NigRo0auqyFiIiIKMc06lBMRERElN8x3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrOTrcDNz5kzUqFEDFhYWKFSoENq2bYvIyEilcZKSkjBo0CDY2dnB3Nwcvr6+iImJyaOKiYiIKK/l63Bz4sQJDBo0COfPn8ehQ4eQmpqKpk2b4u3bt9I4w4cPx65duxAWFoYTJ07gn3/+wXfffZeHVRMREVFeKpDXBXzK/v37lR6vXLkShQoVwuXLl1G/fn3ExcXhjz/+wLp169CoUSMAwIoVK+Du7o7z58+jdu3aeVE2ERER5aF8feTmY3FxcQAAW1tbAMDly5eRmpoKb29vaZyyZcuiWLFiOHfuXLbzSU5ORnx8vNIfERERycNXE24yMjIwbNgweHp6okKFCgCA6OhoGBoawtraWmlcBwcHREdHZzuvmTNnwsrKSvpzdnbOzdKJiIjoC/pqws2gQYPw119/YcOGDTme17hx4xAXFyf9PX36VAcVEhERUX6Qr/vcZAoMDMTu3btx8uRJFC1aVGp3dHRESkoKYmNjlY7exMTEwNHRMdv5GRkZwcjIKDdLJiIiojySr4/cCCEQGBiIbdu24ejRo3Bzc1MaXq1aNRgYGODIkSNSW2RkJJ48eQIPD48vXS4RERHlA/n6yM2gQYOwbt067NixAxYWFlI/GisrK5iYmMDKygq9e/fGiBEjYGtrC0tLSwwePBgeHh68UoqIiOg/Kl+HmyVLlgAAGjRooNS+YsUK9OjRAwDwyy+/QE9PD76+vkhOToaPjw8WL178hSslIiKi/CJfhxshxGfHMTY2RkhICEJCQr5ARURERJTf5es+N0RERESaYrghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWWG4ISIiIllhuCEiIiJZYbghIiIiWZFNuAkJCYGrqyuMjY1Rq1YtXLhwIa9LIiIiojwgi3CzceNGjBgxApMnT0ZERAQqVaoEHx8fPH/+PK9LIyIioi9MFuFm/vz5CAgIQM+ePVGuXDksXboUpqam+N///pfXpREREdEXViCvC8iplJQUXL58GePGjZPa9PT04O3tjXPnzmU5TXJyMpKTk6XHcXFxAID4+Hid1paRnKjT+ZEqXa+zTFx3uY/r7uuVW+sO4Pr7EnS9/jLnJ4TQ6Xxz4qsPNy9fvkR6ejocHByU2h0cHHD79u0sp5k5cyamTJmi0u7s7JwrNVLusQrO6wpIW1x3Xy+uu69bbq2/N2/ewMrKKndmrqGvPtxoY9y4cRgxYoT0OCMjA69evYKdnR0UCkUeVpZ34uPj4ezsjKdPn8LS0jKvyyENcf19vbjuvl5cd+8JIfDmzRs4OTnldSmSrz7cFCxYEPr6+oiJiVFqj4mJgaOjY5bTGBkZwcjISKnN2to6t0r8qlhaWv6n36RfO66/rxfX3deL6w755ohNpq++Q7GhoSGqVauGI0eOSG0ZGRk4cuQIPDw88rAyIiIiygtf/ZEbABgxYgT8/f1RvXp11KxZE8HBwXj79i169uyZ16URERHRFyaLcNOxY0e8ePECkyZNQnR0NCpXroz9+/erdDKm7BkZGWHy5Mkqp+vo68D19/Xiuvt6cd3lXwqRn67dIiIiIsqhr77PDREREdGHGG6IiIhIVhhuiIiISFYYbkgtK1euVPteQJqMS7nn0aNHUCgUuHr1al6XQiR7PXr0QNu2baXHDRo0wLBhw9SaVpNxST2yuFqKcl/Hjh3RvHnzvC7jq9SgQQNUrlwZwcHBeV0K5YIePXogNjYW27dvz+tSKB/ZunUrDAwM8rqM/yyGG1KLiYkJTExM8roMonwjPT39P/tzLfR5tra2eV3CfxpPS30lNm/ejIoVK8LExAR2dnbw9vbG27dvpUOhU6ZMgb29PSwtLdG/f3+kpKRI0+7fvx9169aFtbU17Ozs0LJlS9y/f18annn6YuvWrWjYsCFMTU1RqVIlpV9V//hU07Vr19CwYUNYWFjA0tIS1apVw6VLl5RqPnDgANzd3WFubo5vv/0Wz549y70XKJ/q0aMHTpw4gQULFkChUEChUOD+/fvo3bs33NzcYGJigjJlymDBggVK06WlpWHIkCHSOhszZgz8/f2VDnt/br1m5cSJE6hZsyaMjIxQuHBhjB07FmlpadLwN2/ewM/PD2ZmZihcuDB++eUX2Rwyb9CgAQIDAxEYGAgrKysULFgQP/74o/RLxq9fv0b37t1hY2MDU1NTNGvWDHfv3pWmz3wP7Ny5E+XKlYORkRF69eqFVatWYceOHdL6PX78OI4fPw6FQoHY2Fhp+qtXr0KhUODRo0dS2/Lly+Hs7AxTU1O0a9cO8+fPV3qffXyqAwCGDRuGBg0aSI8zMjIwc+ZMaXuqVKkSNm/eLA1//fo1/Pz8YG9vDxMTE5QqVQorVqyQhj99+hQdOnSAtbU1bG1t0aZNG6Ua5eBTr1Hmujpy5AiqV68OU1NT1KlTB5GRkUrzmDZtGgoVKgQLCwv06dMHY8eOReXKlbNd5sfvm8WLF6NUqVIwNjaGg4MDvv/+e5UaR48eDVtbWzg6OuKnn37S1dP/T2K4+Qo8e/YMnTt3Rq9evXDr1i0cP34c3333nfShfOTIEal9/fr12Lp1q9Kvnr99+xYjRozApUuXcOTIEejp6aFdu3bIyMhQWs6ECRMwcuRIXL16FaVLl0bnzp2Vdnwf8vPzQ9GiRXHx4kVcvnwZY8eOVToEm5iYiLlz52LNmjU4efIknjx5gpEjR+bCq5O/LViwAB4eHggICMCzZ8/w7NkzFC1aFEWLFkVYWBhu3ryJSZMmYfz48di0aZM03axZsxAaGooVK1bgzJkziI+PVzntoe56zRQVFYXmzZujRo0auHbtGpYsWYI//vgD06ZNk8YZMWIEzpw5g507d+LQoUM4deoUIiIicuW1yQurVq1CgQIFcOHCBSxYsADz58/H77//DuB9kLh06RJ27tyJc+fOQQiB5s2bIzU1VZo+MTERs2bNwu+//44bN27g119/RYcOHaTw/uzZM9SpU0etWs6cOYP+/ftj6NChuHr1Kpo0aYLp06dr/JxmzpyJ1atXY+nSpbhx4waGDx+Orl274sSJEwCAH3/8ETdv3sS+fftw69YtLFmyBAULFgQApKamwsfHBxYWFjh16hTOnDkjfRn58AvS1+5zrxHw/vNv3rx5uHTpEgoUKIBevXpJw0JDQzF9+nTMmjULly9fRrFixbBkyRK1l3/p0iUMGTIEQUFBiIyMxP79+1G/fn2lcVatWgUzMzOEh4dj9uzZCAoKwqFDh3L+5P+rBOV7ly9fFgDEo0ePVIb5+/sLW1tb8fbtW6ltyZIlwtzcXKSnp2c5vxcvXggA4vr160IIIR4+fCgAiN9//10a58aNGwKAuHXrlhBCiBUrVggrKytpuIWFhVi5cmWW81+xYoUAIO7duye1hYSECAcHB/WftIx4eXmJoUOHfnKcQYMGCV9fX+mxg4ODmDNnjvQ4LS1NFCtWTLRp0ybbeWS3Xq9cuSKEEGL8+PGiTJkyIiMjQ5omJCRE2lbi4+OFgYGBCAsLk4bHxsYKU1PTz9b/NfDy8hLu7u5Kz3/MmDHC3d1d3LlzRwAQZ86ckYa9fPlSmJiYiE2bNgkh/m+7vnr1qtJ8/f39VdbLsWPHBADx+vVrqe3KlSsCgHj48KEQQoiOHTuKFi1aKE3n5+en9D7Lat5Dhw4VXl5eQgghkpKShKmpqTh79qzSOL179xadO3cWQgjRqlUr0bNnzyxfkzVr1qhsE8nJycLExEQcOHAgy2m+Np97jTLX1eHDh6Vhe/bsEQDEu3fvhBBC1KpVSwwaNEhpek9PT1GpUiXp8cfr6sP3/ZYtW4SlpaWIj4/PskYvLy9Rt25dpbYaNWqIMWPGaPp06f/jkZuvQKVKldC4cWNUrFgR7du3x/Lly/H69Wul4aamptJjDw8PJCQk4OnTpwCAu3fvonPnzihevDgsLS3h6uoKAHjy5InScr755hvp/4ULFwYAPH/+PMuaRowYgT59+sDb2xs///yzyukQU1NTlChRQml+2c3rvygkJATVqlWDvb09zM3NsWzZMml9xMXFISYmBjVr1pTG19fXR7Vq1ZTmoe56zXTr1i14eHgo9RPx9PREQkIC/v77bzx48ACpqalKy7WyskKZMmV09bTzXO3atZWev4eHB+7evYubN2+iQIECqFWrljTMzs4OZcqUwa1bt6Q2Q0NDpfdJTkRGRiq91gBUHn/OvXv3kJiYiCZNmsDc3Fz6W716tfSeHDBgADZs2IDKlStj9OjROHv2rDT9tWvXcO/ePVhYWEjT2traIikp6bOnOL8W6rxGwKc//3K6rpo0aQIXFxcUL14c3bp1Q2hoKBITE5XG+Xi74mdmzrBD8VdAX18fhw4dwtmzZ3Hw4EEsXLgQEyZMQHh4uFrTt2rVCi4uLli+fDmcnJyQkZGBChUqqBx2/vC0UuYOILtTHD/99BO6dOmCPXv2YN++fZg8eTI2bNiAdu3aqcwrc36Cv/QBANiwYQNGjhyJefPmwcPDAxYWFpgzZ47a6zOTuuuVdMfExEStTsR6eu+/N364zX94ektdenp6Ku+bD+eTkJAAANizZw+KFCmiNF7m7x01a9YMjx8/xt69e3Ho0CE0btwYgwYNwty5c5GQkIBq1aohNDRUZdn29vYa15sffe41ygw4mnz+acrCwgIRERE4fvw4Dh48iEmTJuGnn37CxYsXpT5WWX1m6mr5/0U8cvOVUCgU8PT0xJQpU3DlyhUYGhpi27ZtAN5/+3r37p007vnz52Fubg5nZ2f8+++/iIyMxMSJE9G4cWO4u7srHfXJidKlS2P48OE4ePAgvvvuO6VOivR/DA0NkZ6eLj0+c+YM6tSpg4EDB6JKlSooWbKk0jdIKysrODg44OLFi1Jbenq6Ut8Xbdaru7u71Jfkw1osLCxQtGhRFC9eHAYGBkrLjYuLw507d3L0/POTjwPk+fPnUapUKZQrVw5paWlKwzNf43Llyn1ynh+vX+D/gsGHneg/vt9QmTJllF5rACqP7e3tVTrifzifzI7NT548QcmSJZX+nJ2dlebj7++PtWvXIjg4GMuWLQMAVK1aFXfv3kWhQoVUpreysvrk8/5aqPsafYo66+pzChQoAG9vb8yePRt//vknHj16hKNHj2o0D1Ifj9x8BcLDw3HkyBE0bdoUhQoVQnh4OF68eAF3d3f8+eefSElJQe/evTFx4kQ8evQIkydPRmBgIPT09GBjYwM7OzssW7YMhQsXxpMnTzB27Ngc1fPu3TuMGjUK33//Pdzc3PD333/j4sWL8PX11dEzlhdXV1eEh4fj0aNHMDc3R6lSpbB69WocOHAAbm5uWLNmDS5evAg3NzdpmsGDB2PmzJkoWbIkypYti4ULF+L169fSN0pt1uvAgQMRHByMwYMHIzAwEJGRkZg8eTJGjBgBPT09WFhYwN/fH6NGjYKtrS0KFSqEyZMnQ09PTzaXPD958gQjRoxAv379EBERgYULF2LevHkoVaoU2rRpg4CAAPz222+wsLDA2LFjUaRIEbRp0+aT83R1dcWBAwcQGRkJOzs7WFlZSTvOn376CdOnT8edO3cwb948pekGDx6M+vXrY/78+WjVqhWOHj2Kffv2Kb3WjRo1wpw5c7B69Wp4eHhg7dq1+Ouvv1ClShUA748IjBw5EsOHD0dGRgbq1q2LuLg4nDlzBpaWlvD398ekSZNQrVo1lC9fHsnJydi9ezfc3d0BvL8wYM6cOWjTpg2CgoJQtGhRPH78GFu3bsXo0aNRtGhRHa+BL+9zr5GLi8tn5zF48GAEBASgevXqqFOnDjZu3Ig///wTxYsXV6uG3bt348GDB6hfvz5sbGywd+9eZGRkyOqUb76Tt11+SB03b94UPj4+wt7eXhgZGYnSpUuLhQsXCiH+rxPbpEmThJ2dnTA3NxcBAQEiKSlJmv7QoUPC3d1dGBkZiW+++UYcP35cABDbtm0TQqh2PBVCiNevXwsA4tixY0II5Q7FycnJolOnTsLZ2VkYGhoKJycnERgYKHW++7jzsRBCbNu2TfxXN7fIyEhRu3ZtYWJiIgCI27dvix49eggrKythbW0tBgwYIMaOHavUOTE1NVUEBgYKS0tLYWNjI8aMGSPat28vOnXqJI2jzXo9fvy4qFGjhjA0NBSOjo5izJgxIjU1VRoeHx8vunTpIkxNTYWjo6OYP3++qFmzphg7dmxuv0y5zsvLSwwcOFD0799fel3Hjx8vdaZ99eqV6Natm7CyshImJibCx8dH3LlzR5o+q+1aCCGeP38umjRpIszNzZXeM6dPnxYVK1YUxsbGol69eiIsLEypQ7EQQixbtkwUKVJEmJiYiLZt24pp06YJR0dHpflPmjRJODg4CCsrKzF8+HARGBgodSgWQoiMjAwRHBwsypQpIwwMDIS9vb3w8fERJ06cEEIIMXXqVOHu7i5MTEyEra2taNOmjXjw4IE0/bNnz0T37t1FwYIFhZGRkShevLgICAgQcXFxOXzF849PvUbqdP4WQoigoCBRsGBBYW5uLnr16iWGDBkiateuLQ3/VIfiU6dOCS8vL2FjYyNMTEzEN998IzZu3JjluJnatGkj/P39dfgq/LcohGBHiK8Z747635CRkQF3d3d06NABU6dO/WLLffv2LYoUKYJ58+ahd+/eX2y5ueFruFN0QEAAbt++jVOnTuV1KfQZTZo0gaOjI9asWZPXpVAWeFqKKB96/PgxDh48CC8vLyQnJ2PRokV4+PAhunTpkqvLvXLlCm7fvo2aNWsiLi4OQUFBAPDZUzOknblz56JJkyYwMzPDvn37sGrVKixevDivy6KPJCYmYunSpfDx8YG+vj7Wr1+Pw4cP8z40+RjDDVE+pKenh5UrV2LkyJEQQqBChQo4fPiw1FciN82dOxeRkZEwNDREtWrVcOrUKemmb6RbFy5cwOzZs/HmzRsUL14cv/76K/r06ZPXZdFHFAoF9u7di+nTpyMpKQllypTBli1b4O3tndelUTZ4WoqIiIhkhZeCExERkaww3BAREZGsMNwQERGRrDDcEBERkaww3BAREZGsMNwQERGRrDDcENEn9ejRA23bts3rMoiI1MZwQ0RERLLCcENEWps/fz4qVqwIMzMzODs7Y+DAgUhISJCGr1y5EtbW1jhw4ADc3d1hbm6Ob7/9Fs+ePZPGSUtLw5AhQ2BtbQ07OzuMGTMG/v7+SkeLXF1dVX4TqnLlyvjpp5/UrgUAli9fDmdnZ5iamqJdu3aYP38+rK2tlcbZsWMHqlatCmNjYxQvXhxTpkxBWlpajl8rIvpyGG6ISGt6enr49ddfcePGDaxatQpHjx7F6NGjlcZJTEzE3LlzsWbNGpw8eRJPnjzByJEjpeGzZs1CaGgoVqxYgTNnziA+Pl6rH4L9XC1nzpxB//79MXToUFy9ehVNmjTB9OnTleZx6tQpdO/eHUOHDsXNmzfx22+/YeXKlSrjEVE+l6e/SU5E+Z6/v79o06aNWuOGhYUJOzs76fGKFSsEAHHv3j2pLSQkRDg4OEiPHRwcxJw5c6THaWlpolixYkrLdHFxEb/88ovSsipVqiQmT56sdi0dO3YULVq0UBrHz89PWFlZSY8bN24sZsyYoTTOmjVrROHChbNdDhHlP/zhTCLS2uHDhzFz5kzcvn0b8fHxSEtLQ1JSEhITE2FqagoAMDU1RYkSJaRpChcujOfPnwMA4uLiEBMTg5o1a0rD9fX1Ua1aNWRkZOi0lsjISLRr105pmpo1a2L37t3S42vXruHMmTNKR2rS09NVnhMR5W88LUVEWnn06BFatmyJb775Blu2bMHly5cREhICAEhJSZHGMzAwUJpOoVBAaPh7vXp6eirTpKamalzL5yQkJGDKlCm4evWq9Hf9+nXcvXsXxsbGGtVMRHmHR26ISCuXL19GRkYG5s2bBz2999+TNm3apNE8rKys4ODggIsXL6J+/foA3h8piYiIQOXKlaXx7O3tlTohx8fH4+HDhxrVUqZMGVy8eFGp7ePHVatWRWRkJEqWLKnR8yCi/IXhhog+Ky4uDlevXlVqK1iwIFJTU7Fw4UK0atUKZ86cwdKlSzWe9+DBgzFz5kyULFkSZcuWxcKFC/H69WsoFAppnEaNGmHlypVo1aoVrK2tMWnSJOjr60vDS5Ys+dlaBg8ejPr162P+/Plo1aoVjh49in379iktZ9KkSWjZsiWKFSuG77//Hnp6erh27Rr++usvTJs2TePnRkR5g6eliOizjh8/jipVqij9rVmzBvPnz8esWbNQoUIFhIaGYubMmRrPe8yYMejcuTO6d+8ODw8PmJubw8fHR+k00Lhx4+Dl5YWWLVuiRYsWaNu2rVI/nkqVKn22Fk9PTyxduhTz589HpUqVsH//fgwfPlxpOT4+Pti9ezcOHjyIGjVqoHbt2vjll1/g4uKixatGRHlFITQ9+U1ElIsyMjLg7u6ODh06YOrUqbm6rICAANy+fRunTp3K1eUQ0ZfF01JElKceP36MgwcPwsvLC8nJyVi0aBEePnyILl266HxZc+fORZMmTWBmZoZ9+/Zh1apVWLx4sc6XQ0R5i+GGiPKUnp4eVq5ciZEjR0IIgQoVKuDw4cNwd3fX+bIuXLiA2bNn482bNyhevDh+/fVX9OnTR+fLIaK8xdNSREREJCvsUExERESywnBDREREssJwQ0RERLLCcENERESywnBDREREssJwQ0RERLLCcENERESywnBDREREsvL/ALTYUNAVXoVSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 lens/cataract 4 3 4 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 5 8 50.0 37.5 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 50.0 62.5 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAIjCAYAAABMJxI5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa6UlEQVR4nO3dd1gU1/s28HtBelmKCBZEEBWwi1ERuyixF2IsGMGC0Yg1dhMVG7FGo6jR+AU1GhNsscTeKyqWGAt2UVTUKKAidc/7hy/zc11UWJYByf25rr10z8yceXZny83MmVmFEEKAiIiISAZ6BV0AERER/XcweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHjQf9apU6dgaGiIu3fv6qS/y5cvo1ixYvjnn3900h99GsqVK4fAwEDZ1xsREQGFQoEzZ87Ivm65KRQKTJ48uaDLIB0pMsHj5s2b+Prrr+Hi4gJjY2NYWlrC29sbCxYswOvXrwu6vFy7fPkyJk+ejDt37uR62dGjR0OhUKBr1666L6wImTBhArp37w4nJyepbfPmzXBzc4NSqUS7du3w4MEDjeXat2+P/v37a7R7eHigTZs2mDhxYo7Wn/XF8fatRIkSaNq0KXbs2KH9A8tGuXLl0LZtW532Sbp1584djdfD+27afC6Q7ixcuBBKpRLp6ek67Tc5ORmTJ0/GwYMHddpvfsjLd1Qx3Zcjv+3bt6NLly4wMjJCr169UKVKFaSlpeHo0aMYNWoULl26hGXLlhV0mbly+fJlhISEoEmTJihXrlyOlxNC4LfffkO5cuWwdetWvHjxAhYWFvlX6Cfq/Pnz2Lt3L44fPy613bp1C127dkXXrl3h5eWF+fPno3fv3ti1a5c0z65du3D48GFcv349234HDBiA1q1b4+bNmyhfvnyOapkyZQqcnZ0hhEB8fDwiIiLQunVrbN26lWHhExATEwM9vbz/DWdnZ4fVq1ertc2dOxf379/Hjz/+qDEvFZzt27ejZcuWMDAw0Gm/ycnJCAkJAQA0adJEp33rmrbfUUARCB63b99Gt27d4OTkhP3796NkyZLStEGDBuHGjRvYvn17ntcjhEBKSgpMTEw0pqWkpMDQ0FAnHz55dfDgQdy/fx/79++Hr68vNm7ciICAgIIuS6cyMjKgUqlgaGiodR/h4eEoW7Ys6tWrJ7Xt3r0bZcqUwcqVK6FQKODu7o5mzZohJSUFxsbGyMjIwPDhwzFx4sT3fvD7+PjA2toaK1euxJQpU3JUS6tWrVC7dm3pft++fWFvb4/ffvuNweMTYGRkpJN+zMzM0LNnT7W2devW4fnz5xrtVHCSk5Nx6NAhLFmypKBLybFXr17BzMysoMuQFPw3ZR7NmjULL1++xIoVK9RCRxZXV1cMHTpUup+RkYGpU6eifPnyMDIyQrly5TB+/HikpqaqLZe1a3rXrl2oXbs2TExM8PPPP+PgwYNQKBRYt24dvvvuO5QuXRqmpqZISkoCAERFReHzzz+HUqmEqakpGjdujGPHjmnUFRcXh759+6JUqVIwMjKCs7MzBg4ciLS0NERERKBLly4AgKZNm0q7V3Oy+23NmjXw8PBA06ZN4ePjgzVr1mjMk/UY/vjjD0yfPh1lypSBsbExmjdvjhs3bqjNe/36dfj5+cHBwQHGxsYoU6YMunXrhsTERABA586dUatWLbVl2rVrB4VCgS1btkhtUVFRUCgUaocQEhISMGzYMDg6OsLIyAiurq6YOXMmVCqVNE/W7uc5c+Zg/vz50na7fPkygDe7PCtXrgxTU1NYW1ujdu3aWLt27Uefp82bN6NZs2ZQKBRS2+vXr2FlZSW12djYQAghHapbtGgRMjMzMXjw4Pf2a2BggCZNmuDPP//8aA3vY2VlBRMTExQr9ubvAiEEypUrhw4dOmjMm5KSAqVSia+//lrr9WU5cuQIunTpgrJly8LIyAiOjo4YPny4xqHKwMBAmJubIy4uDh07doS5uTns7OwwcuRIZGZmqs3777//4quvvoKlpSWsrKwQEBCACxcuQKFQICIiQpqvSZMm2f6FFxgYqPHX1Jw5c1C/fn3Y2trCxMQEnp6eWL9+vcayr1+/xpAhQ1C8eHFYWFigffv2iIuLy3a8QFxcHPr06QN7e3sYGRmhcuXK+N///pej5+3dMR5Zh9COHTuGESNGwM7ODmZmZujUqROePHmSoz5zIzU1NUfr2bFjBxo2bAgzMzNYWFigTZs2uHTpkto8Wds2NjYWbdu2hbm5OUqXLo2wsDAAwMWLF9GsWTOYmZnByckp2/daTt7XAPDw4UNcvXpV68MVOdlmuvysy7Jv3z6kpqaiVatWao95+PDhKFeuHIyMjFCmTBn06tULT58+BQCkpaVh4sSJ8PT0hFKphJmZGRo2bIgDBw5Ifdy5c0f6gyYkJET63M96rf79998IDAyUhhM4ODigT58++Pfff9Xqmzx5MhQKBS5fvowePXrA2toaDRo0yFUfWc9vfnxHAUVgj8fWrVvh4uKC+vXr52j+fv36YeXKlfjiiy/w7bffIioqCqGhobhy5Qo2bdqkNm9MTAy6d++Or7/+GkFBQahUqZI0berUqTA0NMTIkSORmpoKQ0ND7N+/H61atYKnpycmTZoEPT09hIeHo1mzZjhy5Ajq1KkDAHjw4AHq1KmDhIQE9O/fH25uboiLi8P69euRnJyMRo0aYciQIfjpp58wfvx4uLu7A4D07/ukpqZiw4YN+PbbbwEA3bt3R+/evfHo0SM4ODhozP/DDz9AT08PI0eORGJiImbNmgV/f39ERUUBePNm8fX1RWpqKgYPHgwHBwfExcVh27ZtSEhIgFKpRMOGDfHnn38iKSkJlpaWEELg2LFj0NPTw5EjR9C+fXsAb77U9PT04O3tDeDNXw2NGzdGXFwcvv76a5QtWxbHjx/HuHHj8PDhQ8yfP1+t1vDwcKSkpKB///4wMjKCjY0Nli9fjiFDhuCLL77A0KFDkZKSgr///htRUVHo0aPHe5+nuLg4xMbGagSmzz77DN9++y1+++031KtXD9OnT4erqyusra3x5MkThISE4Ndff/3o7lVPT0+15+RjEhMT8fTpUwgh8PjxYyxcuBAvX76U/spVKBTo2bMnZs2ahWfPnsHGxkZaduvWrUhKStLJX8SRkZFITk7GwIEDYWtri1OnTmHhwoW4f/8+IiMj1ebNzMyEr68v6tatizlz5mDv3r2YO3cuypcvj4EDBwIAVCoV2rVrh1OnTmHgwIFwc3PDn3/+mec9cAsWLED79u3h7++PtLQ0rFu3Dl26dMG2bdvQpk0bab7AwED88ccf+Oqrr1CvXj0cOnRIbXqW+Ph41KtXDwqFAsHBwbCzs8OOHTvQt29fJCUlYdiwYVrVOXjwYFhbW2PSpEm4c+cO5s+fj+DgYPz+++/aPnSt17N69WoEBATA19cXM2fORHJyMpYsWYIGDRrg3LlzauEuMzMTrVq1QqNGjTBr1iysWbMGwcHBMDMzw4QJE+Dv74/OnTtj6dKl6NWrF7y8vODs7Awgd+/rcePGYeXKlbh9+3aud9Xndpvp4rMuy19//QVPT0/Y29sDAF6+fImGDRviypUr6NOnD2rVqoWnT59iy5YtuH//PooXL46kpCT88ssv6N69O4KCgvDixQusWLECvr6+OHXqFGrUqAE7OzssWbIEAwcORKdOndC5c2cAQLVq1QAAe/bswa1bt9C7d284ODhIQwguXbqEkydPqv0RBQBdunRBhQoVMGPGDAghctVHfn1HScQnLDExUQAQHTp0yNH858+fFwBEv3791NpHjhwpAIj9+/dLbU5OTgKA2Llzp9q8Bw4cEACEi4uLSE5OltpVKpWoUKGC8PX1FSqVSmpPTk4Wzs7OokWLFlJbr169hJ6enjh9+rRGjVnLRkZGCgDiwIEDOXpsQgixfv16AUBcv35dCCFEUlKSMDY2Fj/++GO2j8Hd3V2kpqZK7QsWLBAAxMWLF4UQQpw7d04AEJGRke9d5+nTpwUA8ddffwkhhPj7778FANGlSxdRt25dab727duLmjVrSvenTp0qzMzMxLVr19T6Gzt2rNDX1xexsbFCCCFu374tAAhLS0vx+PFjtXk7dOggKleunNOnR7J3714BQGzdulVj2pAhQwQAAUDY2NhIr4mgoCDx+eef56j/tWvXCgAiKirqg/OFh4dL63r7ZmRkJCIiItTmjYmJEQDEkiVL1Nrbt28vypUrp/aay46Tk5No06bNB+d5+/WcJTQ0VCgUCnH37l2pLSAgQAAQU6ZMUZu3Zs2awtPTU7q/YcMGAUDMnz9fasvMzBTNmjUTAER4eLjU3rhxY9G4cWON9QcEBAgnJ6cP1pmWliaqVKkimjVrJrVFR0cLAGLYsGFq8wYGBgoAYtKkSVJb3759RcmSJcXTp0/V5u3WrZtQKpXZPi9vc3JyEgEBAdL9rO3q4+Ojtl2GDx8u9PX1RUJCwgf7e1ubNm00Hn9u1/PixQthZWUlgoKC1JZ/9OiRUCqVau1Z23bGjBlS2/Pnz4WJiYlQKBRi3bp1UvvVq1c1nsucvq/fXtft27c/+jxou810+VmXpWzZsmq1TJw4UQAQGzdu1Jg3a7tkZGSorV+IN8+rvb296NOnj9T25MkTjceaJbvX4W+//SYAiMOHD0ttkyZNEgBE9+7dte4jv76jsnzSh1qyDm/kdPDkX3/9BQAYMWKEWnvWHoJ3x4I4OzvD19c3274CAgLUxnucP38e169fR48ePfDvv//i6dOnePr0KV69eoXmzZvj8OHDUKlUUKlU2Lx5M9q1a6d2XD/Lu6k1N9asWYPatWvD1dUVAKTdqdkdbgGA3r17q42TaNiwIYA3gywBSCl/165dSE5OzraPmjVrwtzcHIcPHwbwZs9G1m7Gs2fPIjk5GUIIHD16VOofePPXdcOGDWFtbS09V0+fPoWPjw8yMzOl/rL4+flpjKuwsrLC/fv3cfr06Rw/RwCk3YrW1tYa0xYsWIC7d+8iKioKd+/eRdOmTXH+/HmsWrUKP/74IxITE9GzZ0+ULl0aTZo0wZUrVzT6yOo3azfrx4SFhWHPnj3Ys2cPfv31VzRt2hT9+vXDxo0bpXkqVqyIunXrqm3LZ8+eYceOHfD398/T6ybL26/nV69e4enTp6hfvz6EEDh37pzG/AMGDFC737BhQ+m1AwA7d+6EgYEBgoKCpDY9PT0MGjRIZ3U+f/4ciYmJaNiwIc6ePau2bgD45ptv1JZ99zCZEAIbNmxAu3btIIRQey36+voiMTFRrd/c6N+/v9p2adiwITIzM3V2+nZO17Nnzx4kJCSge/fuao9PX18fdevWVdvdn6Vfv37S/62srFCpUiWYmZnhyy+/lNorVaoEKysrtW2em/d1RESEdBgxN7TZZrr4rAOAf/75B7GxsWp7zjZs2IDq1aujU6dOGvNnbRd9fX1p/SqVCs+ePUNGRgZq166d49fX26/7lJQUPH36VBqjll0f774/c9pHfn5HZfmkD7Vk7cZ+8eJFjua/e/cu9PT0pC/mLA4ODrCystL4QMjafZidd6dlneXwod3IiYmJSEtLQ1JSEqpUqZKjmnMqISEBf/31F4KDg9WOXXp7e2PDhg24du0aKlasqLZM2bJl1e5nfWE+f/4cwJvHOGLECMybNw9r1qxBw4YN0b59e/Ts2VN6o+rr68PLywtHjhwB8CZ4NGzYEA0aNEBmZiZOnjwJe3t7PHv2TC14XL9+HX///fd7B2k+fvxY7X5222LMmDHYu3cv6tSpA1dXV7Rs2RI9evSQDud8jPj/ux/fVbZsWbXnZsiQIRgwYADc3NzQs2dP3Lt3D3/++SdWrlyJdu3a4erVq9J4jLf7zekbtE6dOmpv8O7du6NmzZoIDg5G27ZtpQ+sXr16ITg4GHfv3oWTkxMiIyORnp6Or776Kkfr+ZjY2FhMnDgRW7ZskV4DWd49zm1sbKyx7aytrdWWu3v3LkqWLAlTU1O1+d59/+XWtm3bMG3aNJw/f15tbNbbz3fWe/3d1827637y5AkSEhKwbNmy95759u5rMac+9v7SlY+tJ+uzqVmzZtku/+7hwOy2rVKpRJkyZTRe00qlUu3x5PZ9rQ1ttpkuPuuAN3+c2tvbq71fb968CT8/v4/WvXLlSsydO1djXMuHvmfe9uzZM4SEhGDdunUaj+/d9+f7+s1JH0+ePMmX76i3ffLBo1SpUrm+YFNOvxCyO4PlfdOyBk7Nnj0bNWrUyHYZc3NzPHv2LGdF5lJkZCRSU1Mxd+5czJ07V2P6mjVrpNO0sujr62fb19tfyHPnzkVgYCD+/PNP7N69G0OGDEFoaChOnjyJMmXKAAAaNGiA6dOnIyUlBUeOHMGECRNgZWWFKlWq4MiRI9Kx0LeDh0qlQosWLTB69Ohsa3g3JGW3Ldzd3RETE4Nt27Zh586d2LBhAxYvXoyJEydqPNa32draAsjZF8Dvv/+OK1euYMuWLcjMzMQff/yB3bt3o3bt2qhcuTKWL1+OkydPSoO33u63ePHiH+0/O3p6emjatCkWLFiA69evo3LlygCAbt26Yfjw4VizZg3Gjx+PX3/9FbVr11Ybe6StzMxMtGjRAs+ePcOYMWPg5uYGMzMzxMXFITAwUGNg4PteO9pSKBTZBsF3B6tmjRtq1KgRFi9ejJIlS8LAwADh4eE5GlT8rqzH1bNnz/f+0ZB1jD23cvL+0oWPrSfrMa5evTrbsV5vh+YP9ZeTx5Pb97U2tNlmuvqs++uvv/D555/n+q/+X3/9FYGBgejYsSNGjRqFEiVKQF9fH6Ghobh582aO+vjyyy9x/PhxjBo1CjVq1IC5uTlUKhU+//xzjfcnkP1nZm77yC+fdPAAgLZt22LZsmU4ceIEvLy8Pjivk5MTVCoVrl+/rjYIJj4+HgkJCWoXksqtrGs2WFpawsfH573z2dnZwdLS8qNhKbcv7DVr1qBKlSqYNGmSxrSff/4Za9eu/eCX8YdUrVoVVatWxXfffYfjx4/D29sbS5cuxbRp0wC8CRRpaWn47bffEBcXJwWMRo0aScGjYsWKUgAB3jxfL1++/OBzlRNmZmbStTfS0tLQuXNnTJ8+HePGjYOxsXG2y7i5uQF4cyr2hyQnJ2PUqFGYOnUqrKysEB8fj/T0dJQqVQrAmze2tbU14uLi1Ja7ffs29PT08vQhm5GRAeDNwLUsNjY20qEzf39/HDt2TGMQrrYuXryIa9euYeXKlejVq5fUvmfPHq37dHJywoEDB5CcnKy21+PdswmAN3+Bvr3LPsu7eyE3bNgAY2Nj7Nq1S+001vDwcI11q1Qq3L59GxUqVHjvuu3s7GBhYYHMzMw8vxYLq6zPphIlSuT7Y9TV+/pD8nObfeizLiEhAcePH0dwcLDaMuXLl//o5/n69evh4uKCjRs3qn22v/t5/b7P/efPn2Pfvn0ICQlRu0Dh+64nlJc+8us76m2f9BgP4M1VOs3MzNCvXz/Ex8drTL958yYWLFgAAGjdujUAaHxYz5s3DwCyHfGeU56enihfvjzmzJmj9mWRJev0Nj09PXTs2BFbt27N9lLHWQk865zrhISEj6773r17OHz4ML788kt88cUXGrfevXvjxo0b0gjunEpKSpK+ALNUrVoVenp6aru469atCwMDA8ycORM2NjbSX+gNGzbEyZMncejQIbW9HcCb5H3ixAm1i3NlSUhI0Fhvdt49BczQ0BAeHh4QQnzwFL3SpUvD0dHxo5eanjlzJqytraUxCra2tihWrBiuXr0K4M0YjidPnmj8FRkdHY3KlSur7aLNjfT0dOzevRuGhoYao8S/+uorXL58GaNGjYK+vj66deum1TrelfUX4dt/AQohpPeONnx9fZGeno7ly5dLbSqVSjo1823ly5fH1atX1U4DvXDhgsap6Pr6+lAoFGp7Qu7cuYPNmzdrrBsAFi9erNa+cOFCjf78/PywYcOGbD9o8+P0V7n5+vrC0tISM2bMyPZ9ocvHmJv3tban0+bHNsvJZ93u3bsBAC1btlSbz8/PDxcuXNA4KxL4v/dTdu+vqKgonDhxQm3+rID+7ud+dssDmt9lH5LTPvLjO+pdn/wej/Lly2Pt2rXo2rUr3N3d1a5cevz4cURGRkrn2FevXh0BAQFYtmwZEhIS0LhxY5w6dQorV65Ex44d0bRpU63r0NPTwy+//IJWrVqhcuXK6N27N0qXLo24uDgcOHAAlpaW2Lp1KwBgxowZ2L17Nxo3boz+/fvD3d0dDx8+RGRkJI4ePQorKyvUqFED+vr6mDlzJhITE2FkZIRmzZqhRIkSGuteu3YthBDSqavvat26NYoVK4Y1a9agbt26OX5M+/fvR3BwMLp06YKKFSsiIyMDq1evlt74WUxNTeHp6YmTJ09K1/AA3uzxePXqFV69eqURPEaNGoUtW7agbdu2CAwMhKenJ169eoWLFy9i/fr1uHPnzkcPVbRs2RIODg7w9vaGvb09rly5gkWLFqFNmzYfHXDcoUMHbNq0CUKIbJN7bGwsZs+eje3bt0tv2GLFiqFDhw4YNmwYYmNjsWnTJpQqVUptT1t6ejoOHTqkMajxQ3bs2CGFmcePH2Pt2rW4fv06xo4dq3H8vU2bNrC1tUVkZCRatWqV7evhfW7cuCHtpXpbzZo10bJlS5QvXx4jR45EXFwcLC0tsWHDhjyNR+jYsSPq1KmDb7/9Fjdu3ICbmxu2bNkiHW58+3nv06cP5s2bB19fX/Tt2xePHz/G0qVLUblyZWkQedbjnzdvHj7//HP06NEDjx8/RlhYGFxdXfH3339L83l6esLPzw/z58/Hv//+K51Oe+3aNY11//DDDzhw4ADq1q2LoKAgeHh44NmzZzh79iz27t2bb4dH5WJpaYklS5bgq6++Qq1atdCtWzfY2dkhNjYW27dvh7e3NxYtWqSTdeXmfZ2X02l1vc1y8lm3fft2NGjQQOMPilGjRmH9+vXo0qUL+vTpA09PTzx79gxbtmzB0qVLUb16dbRt2xYbN25Ep06d0KZNG9y+fRtLly6Fh4eH2h+qJiYm8PDwwO+//46KFSvCxsYGVapUQZUqVaTTm9PT01G6dGns3r37o3tt32ZpaZnjPnT9HaUh1+fBFFLXrl0TQUFBoly5csLQ0FBYWFgIb29vsXDhQpGSkiLNl56eLkJCQoSzs7MwMDAQjo6OYty4cWrzCPH+0w+zTs9632lX586dE507dxa2trbCyMhIODk5iS+//FLs27dPbb67d++KXr16CTs7O2FkZCRcXFzEoEGD1E65Wr58uXBxcRH6+vofPG2patWqomzZsh98fpo0aSJKlCgh0tPT3/sYsk5dzTrN8datW6JPnz6ifPnywtjYWNjY2IimTZuKvXv3avQ/atQoAUDMnDlTrd3V1VUAEDdv3tRY5sWLF2LcuHHC1dVVGBoaiuLFi4v69euLOXPmiLS0NLWaZs+erbH8zz//LBo1aiQ91+XLlxejRo0SiYmJH3wuhBDi7NmzAoA4cuRIttO7dOkiOnfurNEeHx8v2rVrJywsLEStWrXEmTNn1Kbv2LFD7ZTmD8nudFpjY2NRo0YNsWTJkveeIvvNN98IAGLt2rUfXUeWrNPDs7v17dtXCCHE5cuXhY+PjzA3NxfFixcXQUFB4sKFCxqnvgYEBAgzMzONdWSdxve2J0+eiB49eggLCwuhVCpFYGCgOHbsmACgdmqmEEL8+uuvwsXFRRgaGooaNWqIXbt2ZXs67YoVK0SFChWEkZGRcHNzE+Hh4dmu+9WrV2LQoEHCxsZGmJubi44dO0qnJf/www9q88bHx4tBgwYJR0dHYWBgIBwcHETz5s3FsmXLcvTcZnc67bunIma973Jz+mFOTqfN6XoOHDggfH19hVKpFMbGxqJ8+fIiMDBQ7TX8vm3buHHjbE9dz+5zMifv66x1QcvTaYXI2TbT1WedSqUSJUqUELNmzcq2vn///VcEBweL0qVLC0NDQ1GmTBkREBAgne6rUqnEjBkzhJOTkzAyMhI1a9YU27Zty/b1ffz4ceHp6SkMDQ3VHvf9+/dFp06dhJWVlVAqlaJLly7iwYMHGs9N1nvhyZMnGnXmtA8hdPsd9S6FEDoe6UT0iWjevDlKlSql8fsYedGxY0coFIpsd7vqyvDhw7FixQo8evRI44yRT8HmzZvRqVMnHD16NMdnIOnK+fPnUbNmTfz666/w9/eXdd306Tp16hTq1q2LS5cuwcPDo6DL+eR98mM8iLQ1Y8YM/P777zq7rsKVK1ewbds2TJ06VSf9ZSclJQW//vor/Pz8PonQ8e7l1jMzM7Fw4UJYWlpqXDk2v9cNvDmeraenh0aNGuXruqnomTFjBkOHjnzyYzyItFW3bl2kpaXprD93d/ccDYrVxuPHj7F3716sX78e//77r9rvDxVmgwcPxuvXr+Hl5YXU1FRs3LgRx48fx4wZMz54urouzJo1C9HR0WjatCmKFSuGHTt2YMeOHejfvz8cHR3zdd1UtNSpU0f6yQvKOwYPok/A5cuX4e/vjxIlSuCnn35677ViCptmzZph7ty52LZtG1JSUuDq6oqFCxdqnJKYH+rXr489e/Zg6tSpePnyJcqWLYvJkydjwoQJ+b5uIno/jvEgIiIi2XCMBxEREcmGwYOIiIhkU+THeKhUKjx48AAWFhY6+VU9IiKi/wohBF68eIFSpUpBT083+yqKfPB48OABR7ATERHlwb1796Qfy8urIh88si6dfe/ePY3LTxMREdH7JSUlwdHR8aM/Q5EbRT54ZB1esbS0ZPAgIiLSgi6HKnBwKREREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyKVbQBRAR0X9DubHbC7qEIu/OD20KuoSP4h4PIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLIp8OARFxeHnj17wtbWFiYmJqhatSrOnDkjTRdCYOLEiShZsiRMTEzg4+OD69evF2DFREREpK0CDR7Pnz+Ht7c3DAwMsGPHDly+fBlz586FtbW1NM+sWbPw008/YenSpYiKioKZmRl8fX2RkpJSgJUTERGRNooV5MpnzpwJR0dHhIeHS23Ozs7S/4UQmD9/Pr777jt06NABALBq1SrY29tj8+bN6Natm+w1ExERkfYKdI/Hli1bULt2bXTp0gUlSpRAzZo1sXz5cmn67du38ejRI/j4+EhtSqUSdevWxYkTJ7LtMzU1FUlJSWo3IiIiKhwKNHjcunULS5YsQYUKFbBr1y4MHDgQQ4YMwcqVKwEAjx49AgDY29urLWdvby9Ne1doaCiUSqV0c3R0zN8HQURERDlWoMFDpVKhVq1amDFjBmrWrIn+/fsjKCgIS5cu1brPcePGITExUbrdu3dPhxUTERFRXhRo8ChZsiQ8PDzU2tzd3REbGwsAcHBwAADEx8erzRMfHy9Ne5eRkREsLS3VbkRERFQ4FGjw8Pb2RkxMjFrbtWvX4OTkBODNQFMHBwfs27dPmp6UlISoqCh4eXnJWisRERHlXYGe1TJ8+HDUr18fM2bMwJdffolTp05h2bJlWLZsGQBAoVBg2LBhmDZtGipUqABnZ2d8//33KFWqFDp27FiQpRMREZEWCjR4fPbZZ9i0aRPGjRuHKVOmwNnZGfPnz4e/v780z+jRo/Hq1Sv0798fCQkJaNCgAXbu3AljY+MCrJyIiIi0oRBCiIIuIj8lJSVBqVQiMTGR4z2IiApQubHbC7qEIu/OD2102l9+fIcW+CXTiYiI6L+DwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZFGjwmDx5MhQKhdrNzc1Nmp6SkoJBgwbB1tYW5ubm8PPzQ3x8fAFWTERERHlR4Hs8KleujIcPH0q3o0ePStOGDx+OrVu3IjIyEocOHcKDBw/QuXPnAqyWiIiI8qJYgRdQrBgcHBw02hMTE7FixQqsXbsWzZo1AwCEh4fD3d0dJ0+eRL169eQulYiIiPKowPd4XL9+HaVKlYKLiwv8/f0RGxsLAIiOjkZ6ejp8fHyked3c3FC2bFmcOHHivf2lpqYiKSlJ7UZERESFQ4Hu8ahbty4iIiJQqVIlPHz4ECEhIWjYsCH++ecfPHr0CIaGhrCyslJbxt7eHo8ePXpvn6GhoQgJCcnnyoFyY7fn+zr+6+780KagS6BCiO+9/Mf3HuWnAg0erVq1kv5frVo11K1bF05OTvjjjz9gYmKiVZ/jxo3DiBEjpPtJSUlwdHTMc61ERESUdwV+qOVtVlZWqFixIm7cuAEHBwekpaUhISFBbZ74+Phsx4RkMTIygqWlpdqNiIiICodCFTxevnyJmzdvomTJkvD09ISBgQH27dsnTY+JiUFsbCy8vLwKsEoiIiLSVoEeahk5ciTatWsHJycnPHjwAJMmTYK+vj66d+8OpVKJvn37YsSIEbCxsYGlpSUGDx4MLy8vntFCRET0iSrQ4HH//n10794d//77L+zs7NCgQQOcPHkSdnZ2AIAff/wRenp68PPzQ2pqKnx9fbF48eKCLJmIiIjyoECDx7p16z443djYGGFhYQgLC5OpIiIiIspPhWqMBxERERVtDB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGRTTJuFbt++jSNHjuDu3btITk6GnZ0datasCS8vLxgbG+u6RiIiIioichU81qxZgwULFuDMmTOwt7dHqVKlYGJigmfPnuHmzZswNjaGv78/xowZAycnp/yqmYiIiD5ROQ4eNWvWhKGhIQIDA7FhwwY4OjqqTU9NTcWJEyewbt061K5dG4sXL0aXLl10XjARERF9unIcPH744Qf4+vq+d7qRkRGaNGmCJk2aYPr06bhz544u6iMiIqIiJMfB40Oh4122trawtbXVqiAiIiIqurQaXPq27du34+DBg8jMzIS3tzf8/Px0URcREREVQXk6nfb777/H6NGjoVAoIITA8OHDMXjwYF3VRkREREVMrvZ4nDlzBrVr15bu//7777hw4QJMTEwAAIGBgWjSpAkWLlyo2yqJiIioSMjVHo8BAwZg2LBhSE5OBgC4uLhg7ty5iImJwcWLF7FkyRJUrFgxXwolIiKiT1+ugkdUVBRKliyJWrVqYevWrfjf//6Hc+fOoX79+mjYsCHu37+PtWvX5letRERE9InL1aEWfX19jBkzBl26dMHAgQNhZmaGRYsWoVSpUvlVHxERERUhWg0udXFxwa5du9CpUyc0atQIYWFhuq6LiIiIiqBcBY+EhASMHj0a7dq1w3fffYdOnTohKioKp0+fRr169XDx4sX8qpOIiIiKgFwFj4CAAERFRaFNmzaIiYnBwIEDYWtri4iICEyfPh1du3bFmDFj8qtWIiIi+sTlKnjs378fK1aswIABA7Bu3TocPXpUmta8eXOcPXsW+vr6WhXyww8/QKFQYNiwYVJbSkoKBg0aBFtbW5ibm8PPzw/x8fFa9U9EREQFL1fBo0KFCli2bBmuXbuGpUuXavwCrbGxMWbMmJHrIk6fPo2ff/4Z1apVU2sfPnw4tm7disjISBw6dAgPHjxA586dc90/ERERFQ65Ch7/+9//sH//ftSsWRNr167FkiVL8lzAy5cv4e/vj+XLl8Pa2lpqT0xMxIoVKzBv3jw0a9YMnp6eCA8Px/Hjx3Hy5Mk8r5eIiIjkl6vgUaNGDZw5cwavXr3CsWPH4O7unucCBg0ahDZt2sDHx0etPTo6Gunp6Wrtbm5uKFu2LE6cOPHe/lJTU5GUlKR2IyIiosIhx9fxEEJAoVDodOXr1q3D2bNncfr0aY1pjx49gqGhIaysrNTa7e3t8ejRo/f2GRoaipCQEJ3WSURERLqR4z0elStXxrp165CWlvbB+a5fv46BAwfihx9++OB89+7dw9ChQ7FmzRoYGxvntIyPGjduHBITE6XbvXv3dNY3ERER5U2O93gsXLgQY8aMwTfffIMWLVqgdu3aKFWqFIyNjfH8+XNcvnwZR48exaVLlxAcHIyBAwd+sL/o6Gg8fvwYtWrVktoyMzNx+PBhLFq0CLt27UJaWhoSEhLU9nrEx8fDwcHhvf0aGRnByMgopw+LiIiIZJTj4NG8eXOcOXMGR48exe+//441a9bg7t27eP36NYoXL46aNWuiV69e8Pf3Vxsk+qH+3r3gWO/eveHm5oYxY8bA0dERBgYG2LdvH/z8/AAAMTExiI2NhZeXVy4fJhERERUGufqtFgBo0KABGjRokOcVW1hYoEqVKmptZmZmsLW1ldr79u2LESNGwMbGBpaWlhg8eDC8vLxQr169PK+fiIiI5Jfr4CGnH3/8EXp6evDz80Nqaip8fX2xePHigi6LiIiItFSogsfBgwfV7hsbGyMsLIw/QkdERFREaPXrtERERETaYPAgIiIi2TB4EBERkWy0Ch5nz55VOxX2zz//RMeOHTF+/PiPXmCMiIiI/ru0Ch5ff/01rl27BgC4desWunXrBlNTU0RGRmL06NE6LZCIiIiKDq2Cx7Vr11CjRg0AQGRkJBo1aoS1a9ciIiICGzZs0GV9REREVIRoFTyEEFCpVACAvXv3onXr1gAAR0dHPH36VHfVERERUZGiVfCoXbs2pk2bhtWrV+PQoUNo06YNAOD27duwt7fXaYFERERUdGgVPObPn4+zZ88iODgYEyZMgKurKwBg/fr1qF+/vk4LJCIioqIj11cuzczMREJCAg4fPqzxY3CzZ8+Gvr6+zoojIiKioiXXezz09fXRsmVLJCQkaEwzNjaGgYGBLuoiIiKiIkir32qpUqUKbt26BWdnZ13XQ5Tvyo3dXtAlFHl3fmhT0CUQUSGl1RiPadOmYeTIkdi2bRsePnyIpKQktRsRERFRdrTa45F1+mz79u2hUCikdiEEFAoFMjMzdVMdERERFSlaBY8DBw7oug4iIiL6D9AqeDRu3FjXdRAREdF/gNa/TnvkyBH07NkT9evXR1xcHABg9erVOHr0qM6KIyIioqJFq+CxYcMG+Pr6wsTEBGfPnkVqaioAIDExETNmzNBpgURERFR0aH1Wy9KlS7F8+XK163Z4e3vj7NmzOiuOiIiIihatgkdMTAwaNWqk0a5UKrO9sBgRERERoGXwcHBwwI0bNzTajx49ChcXlzwXRUREREWTVsEjKCgIQ4cORVRUFBQKBR48eIA1a9Zg5MiRGDhwoK5rJCIioiJCq9Npx44dC5VKhebNmyM5ORmNGjWCkZERRo4cicGDB+u6RiIiIioitAoeCoUCEyZMwKhRo3Djxg28fPkSHh4eMDc313V9REREVIRoFTz279+P+vXrw9jYGB4eHrquiYiIiIoorYJH+/btkZGRgc8++wxNmjRB48aN4e3tDRMTE13XR0REREWIVoNLnz9/jn379qFVq1Y4deoUOnXqBCsrK3h7e+O7777TdY1ERERURGgVPAwMDODt7Y3x48dj165dOHnyJLp3745Tp04hNDRU1zUSERFREaHVoZZr167h4MGDOHjwIA4dOoTU1FQ0bNgQc+bMQZMmTXRcIhERERUVWgUPNzc32NnZYejQoRg7diyqVq0KhUKh69qIiIioiNHqUMuQIUNQunRpTJkyBQMGDMCECROwe/duJCcn67o+IiIiKkK0Ch7z58/H2bNn8ejRI4wbNw5paWmYMGECihcvDm9vb13XSEREREWEVsEjS2ZmJtLT05GamoqUlBSkpqYiJiZGV7URERFREaP1oZZq1arB3t4eX3/9NR48eICgoCCcO3cOT5480XWNREREVERoNbj04cOH6N+/P5o0aYIqVarouiYiIiIqorQKHpGRkbqug4iIiP4DtDrUsnLlSmzfvl26P3r0aFhZWaF+/fq4e/euzoojIiKiokWr4DFjxgzpd1lOnDiBsLAwzJo1C8WLF8fw4cN1WiAREREVHVodarl37x5cXV0BAJs3b4afnx/69+8Pb29vXrmUiIiI3kurPR7m5ub4999/AQC7d+9GixYtAADGxsZ4/fq17qojIiKiIkWrPR4tWrRAv379ULNmTVy7dg2tW7cGAFy6dAnlypXTZX1ERERUhGi1xyMsLAxeXl548uQJNmzYAFtbWwBAdHQ0unfvrtMCiYiIqOjQao+HlZUVFi1apNEeEhKS54KIiIio6NIqeABAQkICTp06hcePH0OlUkntCoUCX331lU6KIyIioqJFq+CxdetW+Pv74+XLl7C0tIRCoZCmMXgQERHR+2g1xuPbb79Fnz598PLlSyQkJOD58+fS7dmzZ7qukYiIiIoIrYJHXFwchgwZAlNTU13XQ0REREWYVsHD19cXZ86c0XUtREREVMRpNcajTZs2GDVqFC5fvoyqVavCwMBAbXr79u11UhwREREVLVoFj6CgIADAlClTNKYpFApkZmbmrSoiIiIqkrQKHm+fPktERESUU1qN8XifhISEbC8sRkRERAToKHjs27cPPXr0QMmSJTFp0iRddElERERFkNbB4969e5gyZQqcnZ3RsmVLKBQKbNq0CY8ePdJlfURERFSE5Cp4pKenIzIyEr6+vqhUqRLOnz+P2bNnQ09PDxMmTMDnn3+ucYYLERERUZZcDS4tXbo03Nzc0LNnT6xbtw7W1tYAwF+kJSIiohzJ1R6PjIwMKBQKKBQK6Ovr51dNREREVETlKng8ePAA/fv3x2+//QYHBwf4+flh06ZNaj8SR0RERPQ+uQoexsbG8Pf3x/79+3Hx4kW4u7tjyJAhyMjIwPTp07Fnzx5ePIyIiIjeS+uzWsqXL49p06bh7t272L59O1JTU9G2bVvY29vrsj4iIiIqQvJ8HQ89PT20atUK69evx/379zF+/PgcL7tkyRJUq1YNlpaWsLS0hJeXF3bs2CFNT0lJwaBBg2Brawtzc3P4+fkhPj4+ryUTERFRAdHplUvt7OwwYsSIHM9fpkwZ/PDDD4iOjsaZM2fQrFkzdOjQAZcuXQIADB8+HFu3bkVkZCQOHTqEBw8eoHPnzrosmYiIiGSk1W+16Eq7du3U7k+fPh1LlizByZMnUaZMGaxYsQJr165Fs2bNAADh4eFwd3fHyZMnUa9evYIomYiIiPJAp3s88iIzMxPr1q3Dq1ev4OXlhejoaKSnp8PHx0eax83NDWXLlsWJEyfe209qaiqSkpLUbkRERFQ4FHjwuHjxIszNzWFkZIQBAwZg06ZN8PDwwKNHj2BoaAgrKyu1+e3t7T94WfbQ0FAolUrp5ujomM+PgIiIiHJKq+AxZcoUJCcna7S/fv0aU6ZMyVVfWZdej4qKwsCBAxEQEIDLly9rUxYAYNy4cUhMTJRu9+7d07ovIiIi0i2tgkdISAhevnyp0Z6cnIyQkJBc9WVoaAhXV1d4enoiNDQU1atXx4IFC+Dg4IC0tDQkJCSozR8fHw8HB4f39mdkZCSdJZN1IyIiosJBq+AhhMj2aqUXLlyAjY1NngpSqVRITU2Fp6cnDAwMsG/fPmlaTEwMYmNj4eXllad1EBERUcHI1Vkt1tbW0m+1VKxYUS18ZGZm4uXLlxgwYECO+xs3bhxatWqFsmXL4sWLF1i7di0OHjyIXbt2QalUom/fvhgxYgRsbGxgaWmJwYMHw8vLi2e0EBERfaJyFTzmz58PIQT69OmDkJAQKJVKaZqhoSHKlSuXq70Rjx8/Rq9evfDw4UMolUpUq1YNu3btQosWLQAAP/74I/T09ODn54fU1FT4+vpi8eLFuSmZiIiICpFcBY+AgAAAgLOzM7y9vVGsWN4uA7JixYoPTjc2NkZYWBjCwsLytB4iIiIqHLQa4/Hq1Su1sRdZdu3apXbJcyIiIqK3aRU8xo4dm+2v0AohMHbs2DwXRUREREWTVsHj+vXr8PDw0Gh3c3PDjRs38lwUERERFU1aBQ+lUolbt25ptN+4cQNmZmZ5LoqIiIiKJq2CR4cOHTBs2DDcvHlTartx4wa+/fZbtG/fXmfFERERUdGiVfCYNWsWzMzM4ObmBmdnZzg7O8Pd3R22traYM2eOrmskIiKiIkKr82GVSiWOHz+OPXv24MKFCzAxMUG1atXQqFEjXddHRERERYjWF+JQKBRo2bIlGjVqBCMjo2wvoU5ERET0Nq0OtahUKkydOhWlS5eGubk5bt++DQD4/vvvP3pRMCIiIvrv0ip4TJs2DREREZg1axYMDQ2l9ipVquCXX37RWXFERERUtGgVPFatWoVly5bB398f+vr6Unv16tVx9epVnRVHRERERYtWwSMuLg6urq4a7SqVCunp6XkuioiIiIomrYKHh4cHjhw5otG+fv161KxZM89FERERUdGk1VktEydOREBAAOLi4qBSqbBx40bExMRg1apV2LZtm65rJCIioiJC6yuXbt26FXv37oWZmRkmTpyIK1euYOvWrWjRooWuayQiIqIiItd7PDIyMjBjxgz06dMHe/bsyY+aiIiIqIjK9R6PYsWKYdasWcjIyMiPeoiIiKgI0+pQS/PmzXHo0CFd10JERERFnFaDS1u1aoWxY8fi4sWL8PT0hJmZmdp0/kItERERZUer4PHNN98AAObNm6cxTaFQIDMzM29VERERUZGkVfBQqVS6roOIiIj+A3I9xiM9PR3FihXDP//8kx/1EBERURGW6+BhYGCAsmXL8nAKERER5ZpWZ7VMmDAB48ePx7Nnz3RdDxERERVhWo3xWLRoEW7cuIFSpUrByclJ46yWs2fP6qQ4IiIiKlq0Ch4dO3bUcRlERET0X6BV8Jg0aZKu6yAiIqL/AK2CR5bo6GhcuXIFAFC5cmXUrFlTJ0URERFR0aRV8Hj8+DG6deuGgwcPwsrKCgCQkJCApk2bYt26dbCzs9NljURERFREaHVWy+DBg/HixQtcunQJz549w7Nnz/DPP/8gKSkJQ4YM0XWNREREVERotcdj586d2Lt3L9zd3aU2Dw8PhIWFoWXLljorjoiIiIoWrfZ4qFQqGBgYaLQbGBjwcupERET0XloFj2bNmmHo0KF48OCB1BYXF4fhw4ejefPmOiuOiIiIihatgseiRYuQlJSEcuXKoXz58ihfvjycnZ2RlJSEhQsX6rpGIiIiKiK0GuPh6OiIs2fPYu/evbh69SoAwN3dHT4+PjotjoiIiIoWra/joVAo0KJFC7Ro0UKX9RAREVERlqtDLfv374eHhweSkpI0piUmJqJy5co4cuSIzoojIiKioiVXwWP+/PkICgqCpaWlxjSlUomvv/4a8+bN01lxREREVLTkKnhcuHABn3/++Xunt2zZEtHR0XkuioiIiIqmXAWP+Pj4bK/fkaVYsWJ48uRJnosiIiKioilXwaN06dL4559/3jv977//RsmSJfNcFBERERVNuQoerVu3xvfff4+UlBSNaa9fv8akSZPQtm1bnRVHRERERUuuTqf97rvvsHHjRlSsWBHBwcGoVKkSAODq1asICwtDZmYmJkyYkC+FEhER0acvV8HD3t4ex48fx8CBAzFu3DgIIQC8uaaHr68vwsLCYG9vny+FEhER0acv1xcQc3Jywl9//YXnz5/jxo0bEEKgQoUKsLa2zo/6iIiIqAjR+sql1tbW+Oyzz3RZCxERERVxWv1IHBEREZE2GDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyaZAg0doaCg+++wzWFhYoESJEujYsSNiYmLU5klJScGgQYNga2sLc3Nz+Pn5IT4+voAqJiIiorwo0OBx6NAhDBo0CCdPnsSePXuQnp6Oli1b4tWrV9I8w4cPx9atWxEZGYlDhw7hwYMH6Ny5cwFWTURERNoqVpAr37lzp9r9iIgIlChRAtHR0WjUqBESExOxYsUKrF27Fs2aNQMAhIeHw93dHSdPnkS9evUKomwiIiLSUqEa45GYmAgAsLGxAQBER0cjPT0dPj4+0jxubm4oW7YsTpw4kW0fqampSEpKUrsRERFR4VBogodKpcKwYcPg7e2NKlWqAAAePXoEQ0NDWFlZqc1rb2+PR48eZdtPaGgolEqldHN0dMzv0omIiCiHCk3wGDRoEP755x+sW7cuT/2MGzcOiYmJ0u3evXs6qpCIiIjyqkDHeGQJDg7Gtm3bcPjwYZQpU0Zqd3BwQFpaGhISEtT2esTHx8PBwSHbvoyMjGBkZJTfJRMREZEWCnSPhxACwcHB2LRpE/bv3w9nZ2e16Z6enjAwMMC+ffuktpiYGMTGxsLLy0vucomIiCiPCnSPx6BBg7B27Vr8+eefsLCwkMZtKJVKmJiYQKlUom/fvhgxYgRsbGxgaWmJwYMHw8vLi2e0EBERfYIKNHgsWbIEANCkSRO19vDwcAQGBgIAfvzxR+jp6cHPzw+pqanw9fXF4sWLZa6UiIiIdKFAg4cQ4qPzGBsbIywsDGFhYTJURERERPmp0JzVQkREREUfgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGRToMHj8OHDaNeuHUqVKgWFQoHNmzerTRdCYOLEiShZsiRMTEzg4+OD69evF0yxRERElGcFGjxevXqF6tWrIywsLNvps2bNwk8//YSlS5ciKioKZmZm8PX1RUpKisyVEhERkS4UK8iVt2rVCq1atcp2mhAC8+fPx3fffYcOHToAAFatWgV7e3ts3rwZ3bp1k7NUIiIi0oFCO8bj9u3bePToEXx8fKQ2pVKJunXr4sSJE+9dLjU1FUlJSWo3IiIiKhwKbfB49OgRAMDe3l6t3d7eXpqWndDQUCiVSunm6OiYr3USERFRzhXa4KGtcePGITExUbrdu3evoEsiIiKi/6/QBg8HBwcAQHx8vFp7fHy8NC07RkZGsLS0VLsRERFR4VBog4ezszMcHBywb98+qS0pKQlRUVHw8vIqwMqIiIhIWwV6VsvLly9x48YN6f7t27dx/vx52NjYoGzZshg2bBimTZuGChUqwNnZGd9//z1KlSqFjh07FlzRREREpLUCDR5nzpxB06ZNpfsjRowAAAQEBCAiIgKjR4/Gq1ev0L9/fyQkJKBBgwbYuXMnjI2NC6pkIiIiyoMCDR5NmjSBEOK90xUKBaZMmYIpU6bIWBURERHll0I7xoOIiIiKHgYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CAiIiLZMHgQERGRbBg8iIiISDYMHkRERCQbBg8iIiKSDYMHERERyYbBg4iIiGTD4EFERESyYfAgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsmHwICIiItkweBAREZFsGDyIiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZPNJBI+wsDCUK1cOxsbGqFu3Lk6dOlXQJREREZEWCn3w+P333zFixAhMmjQJZ8+eRfXq1eHr64vHjx8XdGlERESUS4U+eMybNw9BQUHo3bs3PDw8sHTpUpiamuJ///tfQZdGREREuVSsoAv4kLS0NERHR2PcuHFSm56eHnx8fHDixIlsl0lNTUVqaqp0PzExEQCQlJSk09pUqck67Y806XqbZeG2y3/5te0Abj858L336dL1tsvqTwihsz4LdfB4+vQpMjMzYW9vr9Zub2+Pq1evZrtMaGgoQkJCNNodHR3zpUbKP8r5BV0BaYvb7tPG7ffpyq9t9+LFCyiVSp30VaiDhzbGjRuHESNGSPdVKhWePXsGW1tbKBSKAqysYCUlJcHR0RH37t2DpaVlQZdDucBt9+nitvt0cdu9IYTAixcvUKpUKZ31WaiDR/HixaGvr4/4+Hi19vj4eDg4OGS7jJGREYyMjNTarKys8qvET46lpeV/+k30KeO2+3Rx2326uO2gsz0dWQr14FJDQ0N4enpi3759UptKpcK+ffvg5eVVgJURERGRNgr1Hg8AGDFiBAICAlC7dm3UqVMH8+fPx6tXr9C7d++CLo2IiIhyqdAHj65du+LJkyeYOHEiHj16hBo1amDnzp0aA07pw4yMjDBp0iSNw1BU+HHbfbq47T5d3Hb5RyF0eY4MERER0QcU6jEeREREVLQweBAREZFsGDyIiIhINgweBACIiIjI8fVOcjMv5Z87d+5AoVDg/PnzBV0KUZEWGBiIjh07SvebNGmCYcOG5WjZ3Mz7X1Hoz2oheXTt2hWtW7cu6DI+SU2aNEGNGjUwf/78gi6F8kFgYCASEhKwefPmgi6FComNGzfCwMCgoMv4ZDF4EADAxMQEJiYmBV0GUaGRmZn5n/6ZBXo/Gxubgi7hk8ZDLYXE+vXrUbVqVZiYmMDW1hY+Pj549eqVtIsvJCQEdnZ2sLS0xIABA5CWliYtu3PnTjRo0ABWVlawtbVF27ZtcfPmTWl61i75jRs3omnTpjA1NUX16tXVfuH33cMnFy5cQNOmTWFhYQFLS0t4enrizJkzajXv2rUL7u7uMDc3x+eff46HDx/m3xNUSAUGBuLQoUNYsGABFAoFFAoFbt68ib59+8LZ2RkmJiaoVKkSFixYoLZcRkYGhgwZIm2zMWPGICAgQG137se2a3YOHTqEOnXqwMjICCVLlsTYsWORkZEhTX/x4gX8/f1hZmaGkiVL4scffywyu4KbNGmC4OBgBAcHQ6lUonjx4vj++++lX9V8/vw5evXqBWtra5iamqJVq1a4fv26tHzWe2DLli3w8PCAkZER+vTpg5UrV+LPP/+Utu/Bgwdx8OBBKBQKJCQkSMufP38eCoUCd+7ckdqWL18OR0dHmJqaolOnTpg3b57a++zdXfgAMGzYMDRp0kS6r1KpEBoaKr2eqlevjvXr10vTnz9/Dn9/f9jZ2cHExAQVKlRAeHi4NP3evXv48ssvYWVlBRsbG3To0EGtxk/dh56frO20b98+1K5dG6ampqhfvz5iYmLU+pg2bRpKlCgBCwsL9OvXD2PHjkWNGjXeu8533zOLFy9GhQoVYGxsDHt7e3zxxRcaNY4ePRo2NjZwcHDA5MmTdfXwP0kMHoXAw4cP0b17d/Tp0wdXrlzBwYMH0blzZ+kDc9++fVL7b7/9ho0bN6r9Au+rV68wYsQInDlzBvv27YOenh46deoElUqltp4JEyZg5MiROH/+PCpWrIju3burfSm9zd/fH2XKlMHp06cRHR2NsWPHqu1aTE5Oxpw5c7B69WocPnwYsbGxGDlyZD48O4XbggUL4OXlhaCgIDx8+BAPHz5EmTJlUKZMGURGRuLy5cuYOHEixo8fjz/++ENabubMmVizZg3Cw8Nx7NgxJCUlaezKz+l2zRIXF4fWrVvjs88+w4ULF7BkyRKsWLEC06ZNk+YZMWIEjh07hi1btmDPnj04cuQIzp49my/PTUFYuXIlihUrhlOnTmHBggWYN28efvnlFwBvvuTPnDmDLVu24MSJExBCoHXr1khPT5eWT05OxsyZM/HLL7/g0qVL+Omnn/Dll19Kwfrhw4eoX79+jmo5duwYBgwYgKFDh+L8+fNo0aIFpk+fnuvHFBoailWrVmHp0qW4dOkShg8fjp49e+LQoUMAgO+//x6XL1/Gjh07cOXKFSxZsgTFixcHAKSnp8PX1xcWFhY4cuQIjh07Jv2h8PYfL5+yjz0/wJvPvrlz5+LMmTMoVqwY+vTpI01bs2YNpk+fjpkzZyI6Ohply5bFkiVLcrz+M2fOYMiQIZgyZQpiYmKwc+dONGrUSG2elStXwszMDFFRUZg1axamTJmCPXv25P3Bf6oEFbjo6GgBQNy5c0djWkBAgLCxsRGvXr2S2pYsWSLMzc1FZmZmtv09efJEABAXL14UQghx+/ZtAUD88ssv0jyXLl0SAMSVK1eEEEKEh4cLpVIpTbewsBARERHZ9h8eHi4AiBs3bkhtYWFhwt7ePucPughp3LixGDp06AfnGTRokPDz85Pu29vbi9mzZ0v3MzIyRNmyZUWHDh3e28f7tuu5c+eEEEKMHz9eVKpUSahUKmmZsLAw6bWSlJQkDAwMRGRkpDQ9ISFBmJqafrT+T0Hjxo2Fu7u72uMfM2aMcHd3F9euXRMAxLFjx6RpT58+FSYmJuKPP/4QQvzf6/r8+fNq/QYEBGhslwMHDggA4vnz51LbuXPnBABx+/ZtIYQQXbt2FW3atFFbzt/fX+19ll3fQ4cOFY0bNxZCCJGSkiJMTU3F8ePH1ebp27ev6N69uxBCiHbt2onevXtn+5ysXr1a4zWRmpoqTExMxK5du7Jd5lPysecnazvt3btXmrZ9+3YBQLx+/VoIIUTdunXFoEGD1Jb39vYW1atXl+6/u53efs9v2LBBWFpaiqSkpGxrbNy4sWjQoIFa22effSbGjBmT24dbZHCPRyFQvXp1NG/eHFWrVkWXLl2wfPlyPH/+XG26qampdN/LywsvX77EvXv3AADXr19H9+7d4eLiAktLS5QrVw4AEBsbq7aeatWqSf8vWbIkAODx48fZ1jRixAj069cPPj4++OGHHzR28ZuamqJ8+fJq/b2vr/+isLAweHp6ws7ODubm5li2bJm0PRITExEfH486depI8+vr68PT01Otj5xu1yxXrlyBl5eX2rgEb29vvHz5Evfv38etW7eQnp6utl6lUolKlSrp6mEXuHr16qk9fi8vL1y/fh2XL19GsWLFULduXWmara0tKlWqhCtXrkhthoaGau+TvIiJiVF7rgFo3P+YGzduIDk5GS1atIC5ubl0W7VqlfSeHDhwINatW4caNWpg9OjROH78uLT8hQsXcOPGDVhYWEjL2tjYICUl5aOH7T4FOXl+gA9/9uV1O7Vo0QJOTk5wcXHBV199hTVr1iA5OVltnndfU//1z0sOLi0E9PX1sWfPHhw/fhy7d+/GwoULMWHCBERFReVo+Xbt2sHJyQnLly9HqVKloFKpUKVKFY1dqW8fKsn6cH7fbvvJkyejR48e2L59O3bs2IFJkyZh3bp16NSpk0ZfWf0JXn0fALBu3TqMHDkSc+fOhZeXFywsLDB79uwcb88sOd2upDsmJiY5GlCqp/fmb7a3X/NvH7LJKT09PY33zdv9vHz5EgCwfft2lC5dWm2+rN8QadWqFe7evYu//voLe/bsQfPmzTFo0CDMmTMHL1++hKenJ9asWaOxbjs7u1zXW9h87PnJCh+5+ezLLQsLC5w9exYHDx7E7t27MXHiREyePBmnT5+WxvNk93mpq/V/irjHo5BQKBTw9vZGSEgIzp07B0NDQ2zatAnAm79aXr9+Lc178uRJmJubw9HREf/++y9iYmLw3XffoXnz5nB3d1fbW5IXFStWxPDhw7F792507txZbcAa/R9DQ0NkZmZK948dO4b69evjm2++Qc2aNeHq6qr215dSqYS9vT1Onz4ttWVmZqqNtdBmu7q7u0tjF96uxcLCAmXKlIGLiwsMDAzU1puYmIhr167l6fEXJu+Gu5MnT6JChQrw8PBARkaG2vSs59jDw+ODfb67fYH/+9J+e0D1u9dTqVSpktpzDUDjvp2dncag7Lf7yRrkGhsbC1dXV7Wbo6OjWj8BAQH49ddfMX/+fCxbtgwAUKtWLVy/fh0lSpTQWF6pVH7wcX8Kcvr8fEhOttPHFCtWDD4+Ppg1axb+/vtv3LlzB/v3789VH/8l3ONRCERFRWHfvn1o2bIlSpQogaioKDx58gTu7u74+++/kZaWhr59++K7777DnTt3MGnSJAQHB0NPTw/W1tawtbXFsmXLULJkScTGxmLs2LF5quf169cYNWoUvvjiCzg7O+P+/fs4ffo0/Pz8dPSIi5Zy5cohKioKd+7cgbm5OSpUqIBVq1Zh165dcHZ2xurVq3H69Gk4OztLywwePBihoaFwdXWFm5sbFi5ciOfPn0t/jWmzXb/55hvMnz8fgwcPRnBwMGJiYjBp0iSMGDECenp6sLCwQEBAAEaNGgUbGxuUKFECkyZNgp6eXpE5bTQ2NhYjRozA119/jbNnz2LhwoWYO3cuKlSogA4dOiAoKAg///wzLCwsMHbsWJQuXRodOnT4YJ/lypXDrl27EBMTA1tbWyiVSumLbfLkyZg+fTquXbuGuXPnqi03ePBgNGrUCPPmzUO7du2wf/9+7NixQ+25btasGWbPno1Vq1bBy8sLv/76K/755x/UrFkTwJu/pkeOHInhw4dDpVKhQYMGSExMxLFjx2BpaYmAgABMnDgRnp6eqFy5MlJTU7Ft2za4u7sDeDNIfPbs2ejQoQOmTJmCMmXK4O7du9i4cSNGjx6NMmXK6HgLyOtjz4+Tk9NH+xg8eDCCgoJQu3Zt1K9fH7///jv+/vtvuLi45KiGbdu24datW2jUqBGsra3x119/QaVSFalDmDpXsENMSAghLl++LHx9fYWdnZ0wMjISFStWFAsXLhRC/N+gpokTJwpbW1thbm4ugoKCREpKirT8nj17hLu7uzAyMhLVqlUTBw8eFADEpk2bhBCagxCFEOL58+cCgDhw4IAQQn1waWpqqujWrZtwdHQUhoaGolSpUiI4OFgajPXuQFQhhNi0aZP4r76cYmJiRL169YSJiYkAIK5evSoCAwOFUqkUVlZWYuDAgWLs2LFqg9XS09NFcHCwsLS0FNbW1mLMmDGiS5cuolu3btI82mzXgwcPis8++0wYGhoKBwcHMWbMGJGeni5NT0pKEj169BCmpqbCwcFBzJs3T9SpU0eMHTs2v5+mfNe4cWPxzTffiAEDBkjP6/jx46WBlc+ePRNfffWVUCqVwsTERPj6+opr165Jy2f3uhZCiMePH4sWLVoIc3NztffM0aNHRdWqVYWxsbFo2LChiIyMVBtcKoQQy5YtE6VLlxYmJiaiY8eOYtq0acLBwUGt/4kTJwp7e3uhVCrF8OHDRXBwsDS4VAghVCqVmD9/vqhUqZIwMDAQdnZ2wtfXVxw6dEgIIcTUqVOFu7u7MDExETY2NqJDhw7i1q1b0vIPHz4UvXr1EsWLFxdGRkbCxcVFBAUFicTExDw+44XDh56fnAwCFkKIKVOmiOLFiwtzc3PRp08fMWTIEFGvXj1p+ocGlx45ckQ0btxYWFtbCxMTE1GtWjXx+++/Zztvlg4dOoiAgAAdPgufFoUQPDBfmPGqif8NKpUK7u7u+PLLLzF16lTZ1vvq1SuULl0ac+fORd++fWVbb374FK4gGxQUhKtXr+LIkSMFXQp9QIsWLeDg4IDVq1cXdClFEg+1EBWAu3fvYvfu3WjcuDFSU1OxaNEi3L59Gz169MjX9Z47dw5Xr15FnTp1kJiYiClTpgDARw83kHbmzJmDFi1awMzMDDt27MDKlSuxePHigi6L3pKcnIylS5fC19cX+vr6+O2337B3797/9nU28hmDB1EB0NPTQ0REBEaOHAkhBKpUqYK9e/dKx+bz05w5cxATEwNDQ0N4enriyJEj0gWnSLdOnTqFWbNm4cWLF3BxccFPP/2Efv36FXRZ9BaFQoG//voL06dPR0pKCipVqoQNGzbAx8enoEsrsniohYiIiGTD02mJiIhINgweREREJBsGDyIiIpINgwcRERHJhsGDiIiIZMPgQURERLJh8CD6DwsMDETHjh0Lugwi+g9h8CAiIiLZMHgQUbbmzZuHqlWrwszMDI6Ojvjmm2/w8uVLaXpERASsrKywa9cuuLu7w9zcHJ9//rnaz7xnZGRgyJAhsLKygq2tLcaMGYOAgAC1vSzlypXT+H2VGjVqYPLkyTmuBQCWL18OR0dHmJqaolOnTpg3bx6srKzU5vnzzz9Rq1YtGBsbw8XFBSEhIcjIyMjzc0VEOcfgQUTZ0tPTw08//YRLly5h5cqV2L9/P0aPHq02T3JyMubMmYPVq1fj8OHDiI2NxciRI6XpM2fOxJo1axAeHo5jx44hKSlJqx88/Fgtx44dw4ABAzB06FCcP38eLVq0wPTp09X6OHLkCHr16oWhQ4fi8uXL+PnnnxEREaExHxHlswL9bVwiKlDv/tz3h0RGRgpbW1vpfnh4uAAgbty4IbWFhYUJe3t76b69vb2YPXu2dD8jI0OULVtWbZ1OTk7ixx9/VFtX9erVxaRJk3JcS9euXUWbNm3U5vH391f7mfvmzZuLGTNmqM2zevVqUbJkyfeuh4h0jz8SR0TZ2rt3L0JDQ3H16lUkJSUhIyMDKSkpSE5OhqmpKQDA1NQU5cuXl5YpWbIkHj9+DABITExEfHw86tSpI03X19eHp6cnVCqVTmuJiYlBp06d1JapU6cOtm3bJt2/cOECjh07praHIzMzU+MxEVH+4qEWItJw584dtG3bFtWqVcOGDRsQHR2NsLAwAEBaWpo0n4GBgdpyCoUCIpe/O6mnp6exTHp6eq5r+ZiXL18iJCQE58+fl24XL17E9evXYWxsnKuaiUh73ONBRBqio6OhUqkwd+5c6Om9+fvkjz/+yFUfSqUS9vb2OH36NBo1agTgzR6Gs2fPokaNGtJ8dnZ2agNSk5KScPv27VzVUqlSJZw+fVqt7d37tWrVQkxMDFxdXXP1OIhItxg8iP7jEhMTcf78ebW24sWLIz09HQsXLkS7du1w7NgxLF26NNd9Dx48GKGhoXB1dYWbmxsWLlyI58+fQ6FQSPM0a9YMERERaNeuHaysrDBx4kTo6+tL011dXT9ay+DBg9GoUSPMmzcP7dq1w/79+7Fjxw619UycOBFt27ZF2bJl8cUXX0BPTw8XLlzAP//8g2nTpuX6sRGRlgp6kAkRFZyAgAABQOPWt29fMW/ePFGyZElhYmIifH19xapVqwQA8fz5cyHEm8Glbw/eFEKITZs2ibc/VtLT00VwcLCwtLQU1tbWYsyYMaJLly6iW7du0jyJiYmia9euwtLSUjg6OoqIiAiNwaUfq0UIIZYtWyZKly4tTExMRMeOHcW0adOEg4ODWn07d+4U9evXFyYmJsLS0lLUqVNHLFu2TGfPJxF9nEKIXB6QJSLSkkqlgru7O7788ktMnTo1X9cVFBSEq1ev4siRI/m6HiLKHR5qIaJ8c/fuXezevRuNGzdGamoqFi1ahNu3b6NHjx46X9ecOXPQokULmJmZYceOHVi5ciUWL16s8/UQUd4weBBRvtHT00NERARGjhwJIQSqVKmCvXv3wt3dXefrOnXqFGbNmoUXL17AxcUFP/30E/r166fz9RBR3vBQCxEREcmG1/EgIiIi2TB4EBERkWwYPIiIiEg2DB5EREQkGwYPIiIikg2DBxEREcmGwYOIiIhkw+BBREREsvl/ZYWv+HKN+IoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 low vision 0 1 0 0 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 0.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 0.0 0.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIjCAYAAABI0sIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbF0lEQVR4nO3dd1QU5/s28GvpfSkiRRFQLNiNLYgdlNhRY0+EqBgL1liw965YsSZfUYPRqNFEjb1iw26siFHRGAGNAgqCwD7vH77Mz3VBYd0JQq7POXsO+0y7Z2bLxcwzswohhAARERGRjPQKugAiIiIq+hg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIh06OzZszAyMkJsbKxO5nfjxg0YGBjg2rVrOpkfFQ5ubm4IDAz815cbHh4OhUKB8+fP/+vL/rcpFApMnjy5oMvIk8mTJ0OhUORrmvv370OhUCA8PFyeorTAwPEef/75J7799luULl0aJiYmsLKygre3NxYvXoxXr14VdHn5duPGDUyePBn379/P97SjRo2CQqFAly5ddF9YETJu3Dh069YNrq6uUtuOHTtQoUIFKJVKtGnTBn///bfGdG3btkXfvn012itWrIhWrVph4sSJeVp+9hfG24/ixYujSZMm2LNnj/YrlgM3Nze0bt1ap/Mk3cr+0snLQ5vPBaL8MCjoAj5Vu3fvRqdOnWBsbIyePXuicuXKeP36NU6cOIGRI0fi+vXrWL16dUGXmS83btzAlClT0LhxY7i5ueV5OiEEfvrpJ7i5uWHnzp148eIFLC0t5Su0kLp8+TIOHjyIU6dOSW13795Fly5d0KVLF3h5eWHRokX45ptvsG/fPmmcffv24fjx44iJiclxvv369UPLli3x559/okyZMnmqZerUqXB3d4cQAvHx8QgPD0fLli2xc+dOhoRCIDo6Gnp6H///oL29PTZs2KDWtmDBAvz1119YuHChxrj0aRo/fjxCQkLyNY2rqytevXoFQ0NDmarKPwaOHNy7dw9du3aFq6srDh8+DCcnJ2nYwIEDcefOHezevfujlyOEQFpaGkxNTTWGpaWlwcjISCcfOh/r6NGj+Ouvv3D48GH4+fnhl19+QUBAQEGXpVOZmZlQqVQwMjLSeh5r165FqVKl8Pnnn0tt+/fvR8mSJbFu3TooFAp4enqiadOmSEtLg4mJCTIzMzFs2DBMnDgx1w98X19f2NjYYN26dZg6dWqeamnRogVq1aolPe/duzccHBzw008/MXAUAsbGxjqZj7m5Ob766iu1tk2bNuH58+ca7fTpMjAwgIFB/r6uFQoFTExMZKpIOwX/bfYJmjt3Ll6+fIkffvhBLWxk8/DwwJAhQ6TnmZmZmDZtGsqUKQNjY2O4ublh7NixSE9PV5su+xD0vn37UKtWLZiammLVqlU4evQoFAoFNm3ahPHjx6NEiRIwMzNDcnIyACAqKgpffPEFlEolzMzM0KhRI5w8eVKjrkePHqF3795wdnaGsbEx3N3d0b9/f7x+/Rrh4eHo1KkTAKBJkybSYdSjR49+cHtERESgYsWKaNKkCXx9fREREaExTvY6/Pzzz5gxYwZKliwJExMT+Pj44M6dO2rjxsTEoGPHjnB0dISJiQlKliyJrl27IikpCQDQoUMHfPbZZ2rTtGnTBgqFAr/99pvUFhUVBYVCoXaqIDExEUOHDoWLiwuMjY3h4eGBOXPmQKVSSeNkH2aeP38+Fi1aJO23GzduAACWLl2KSpUqwczMDDY2NqhVqxY2btz4we20Y8cONG3aVO1c66tXr2BtbS212draQgghnZJbtmwZsrKyMGjQoFzna2hoiMaNG+PXX3/9YA25sba2hqmpqfShJYSAm5sb2rVrpzFuWloalEolvv32W62Xly0yMhKdOnVCqVKlYGxsDBcXFwwbNkzjlGRgYCAsLCzw6NEj+Pv7w8LCAvb29hgxYgSysrLUxv3nn3/w9ddfw8rKCtbW1ggICMCVK1c0zlc3btwYjRs31qgpMDBQ4wjf/PnzUa9ePdjZ2cHU1BQ1a9bE1q1bNaZ99eoVBg8ejGLFisHS0hJt27bFo0ePcuwP8OjRI/Tq1QsODg4wNjZGpUqV8L///S9P2+3dPhzZp8pOnjyJ4cOHw97eHubm5mjfvj2ePHmSp3nmR3p6ep6Ws2fPHjRo0ADm5uawtLREq1atcP36dbVxsvftgwcP0Lp1a1hYWKBEiRIICwsDAFy9ehVNmzaFubk5XF1dc3yv5eV9DQCPHz/GrVu3kJGRodV6X7p0CS1atICVlRUsLCzg4+ODM2fOqNWhr6+PJUuWSG1Pnz6Fnp4e7Ozs8PaPr/fv3x+Ojo65Lmvr1q1QKBQ4duyYxrBVq1ZBoVBIfbdy6sNx4MAB1K9fH9bW1rCwsED58uUxduxYaXhufTgOHz4s7TNra2u0a9cON2/eVBsne3l37txBYGAgrK2toVQq8c033yA1NfU9W/ADBGkoUaKEKF26dJ7HDwgIEADEl19+KcLCwkTPnj0FAOHv7682nqurq/Dw8BA2NjYiJCRErFy5Uhw5ckQcOXJEABAVK1YU1atXF6GhoWLWrFkiJSVFHDp0SBgZGQkvLy+xYMECsXDhQlG1alVhZGQkoqKipHk/evRIODs7CzMzMzF06FCxcuVKMWHCBOHp6SmeP38u/vzzTzF48GABQIwdO1Zs2LBBbNiwQcTFxb133dLS0oS1tbWYNm2aEEKI9evXC319ffH48WO18bLXoUaNGqJmzZpi4cKFYvLkycLMzEzUqVNHGi89PV24u7sLZ2dnMX36dPH999+LKVOmiNq1a4v79+8LIYQIDQ0Venp6IikpSQghhEqlEjY2NkJPT0+MGDFCmte8efPUxktJSRFVq1YVdnZ2YuzYsWLlypWiZ8+eQqFQiCFDhkjT3bt3T9repUuXFrNnzxYLFy4UsbGxYvXq1dK+XLVqlVi8eLHo3bu3GDx48Hu3019//SUAiCVLlqi1R0ZGCoVCITZu3Cju3r0rOnfuLDw8PIQQQiQkJAhra2uxa9eu985bCCGmT5+utq65Wbt2rQAgDh48KJ48eSISEhLEtWvXxLfffiv09PTE/v37pXHHjRsnDA0NxT///KM2j59//lkAEMePH3/vslxdXUWrVq3eO86gQYNEy5YtxcyZM8WqVatE7969hb6+vvjyyy/VxgsICBAmJiaiUqVKolevXmLFihWiY8eOAoBYvny5NF5WVpbw8vIS+vr6Ijg4WCxbtkw0a9ZMVKtWTQAQa9eulcZt1KiRaNSokUZNAQEBwtXVVa2tZMmSYsCAAWLZsmUiNDRU1KlTRwDQ2DedO3cWAMTXX38twsLCROfOnaVlT5o0SRovLi5OlCxZUri4uIipU6eKFStWiLZt2woAYuHChe/dZkK82bYBAQHS8+z9WqNGDdG0aVOxdOlS8d133wl9fX3RuXPnD87vba1atdJYf22Ws379eqFQKMQXX3whli5dKubMmSPc3NyEtbW1uHfvnjRe9r6tWLGi6NevnwgLCxP16tWT9pezs7MYOXKkWLp0qahUqZLQ19cXd+/elabP6/s6e1kA1Jafm3f32bVr14S5ublwcnIS06ZNE7Nnzxbu7u7C2NhYnDlzRhqvatWqomPHjtLz7du3Cz09PQFAXLt2TWqvVKmSxuv8bampqcLCwkIMGDBAY1iTJk1EpUqVpOeTJk0Sb39dX7t2TRgZGYlatWqJxYsXi5UrV4oRI0aIhg0bSuNkf869/Z44cOCAMDAwEOXKlRNz584VU6ZMEcWKFRM2NjZq2yx7eTVq1BAdOnQQy5cvF3369BEAxKhRo3LfqB/AwPGOpKQkAUC0a9cuT+NfvnxZABB9+vRRax8xYoQAIA4fPiy1ubq6CgBi7969auNmf1mXLl1apKamSu0qlUqULVtW+Pn5CZVKJbWnpqYKd3d30axZM6mtZ8+eQk9PT5w7d06jxuxpt2zZIgCII0eO5GndhBBi69atAoCIiYkRQgiRnJwsTExMND40s9fB09NTpKenS+2LFy8WAMTVq1eFEEJcunRJABBbtmzJdZnnzp0TAMTvv/8uhBDijz/+EABEp06dRN26daXx2rZtK2rUqCE9nzZtmjA3Nxe3b99Wm19ISIjQ19cXDx48EEL83xvRyspKJCQkqI3brl07tTd6Xh08eFAAEDt37tQYlh30AAhbW1vpNREUFCS++OKLPM1/48aNAoBayMxJ9hfGuw9jY2MRHh6uNm50dLQAIFasWKHW3rZtW+Hm5qb2mstJXgLH26/nbLNmzRIKhULExsZKbdlfFFOnTlUbNzvAZtu2bZsAIBYtWiS1ZWVliaZNm35U4Hi3ztevX4vKlSuLpk2bSm0XLlwQAMTQoUPVxg0MDNT48urdu7dwcnIST58+VRu3a9euQqlU5rhd3pZb4PD19VXbL8OGDRP6+voiMTHxvfN7W14Cx4eW8+LFC2FtbS2CgoLUpo+LixNKpVKtPXvfzpw5U2p7/vy5MDU1FQqFQmzatElqv3Xrlsa2zOv7+u1laRM4/P39hZGRkfjzzz+ltr///ltYWlqqfZEPHDhQODg4SM+HDx8uGjZsKIoXLy69l/755x+hUCjE4sWL31tDt27dRPHixUVmZqbU9vjxY6Gnp6f2Xng3cCxcuFAAEE+ePMl13jkFjurVq4vixYur/ZNx5coVoaenJ3r27KmxvF69eqnNs3379sLOzu696/Q+PKXyjuzTGHntFPn7778DAIYPH67W/t133wGARl8Pd3d3+Pn55TivgIAAtf4cly9fRkxMDLp3745//vkHT58+xdOnT5GSkgIfHx8cP34cKpUKKpUKO3bsQJs2bdTO22fL7+VUb4uIiECtWrXg4eEBANJh05xOqwDAN998o9YPokGDBgDedJ4EAKVSCeBNR8ncDs3VqFEDFhYWOH78OIA3h+VLliyJnj174uLFi0hNTYUQAidOnJDmDwBbtmxBgwYNYGNjI22rp0+fwtfXF1lZWdL8snXs2FGj34S1tTX++usvnDt3Ls/bCHhzmB8AbGxsNIYtXrwYsbGxiIqKQmxsLJo0aYLLly9j/fr1WLhwIZKSkvDVV1+hRIkSaNy4scbhzbfn+/Tp0zzVExYWhgMHDuDAgQP48ccf0aRJE/Tp0we//PKLNE65cuVQt25dtX357Nkz7NmzBz169Pio1022t1/PKSkpePr0KerVqwchBC5duqQxfr9+/dSeN2jQQHrtAMDevXthaGiIoKAgqU1PTw8DBw7UWZ3Pnz9HUlISGjRogIsXL6otGwAGDBigNu27p8OEENi2bRvatGkDIYTaa9HPzw9JSUlq882Pvn37qu2XBg0aICsrS2eXYed1OQcOHEBiYiK6deumtn76+vqoW7cujhw5ojHPPn36SH9bW1ujfPnyMDc3R+fOnaX28uXLw9raWm2f5+d9HR4eLp0uzI+srCzs378f/v7+KF26tNTu5OSE7t2748SJE9J3Q4MGDRAfH4/o6GgAbz6fGjZsiAYNGiAyMhIAcOLECQgh1D6fctKlSxckJCSondreunUrVCrVe68ItLa2BgD8+uuvGqeVcvP48WNcvnwZgYGBsLW1ldqrVq2KZs2aSd9lb8vp/fjPP/9I2yK/2Gn0HVZWVgCAFy9e5Gn82NhY6OnpSV/I2RwdHWFtba3xQeDu7p7rvN4dln3Vwvs6aCYlJeH169dITk5G5cqV81RzXiUmJuL3339HcHCwWj8Mb29vbNu2Dbdv30a5cuXUpilVqpTa8+wvyufPnwN4s47Dhw9HaGgoIiIi0KBBA7Rt2xZfffWVFEb09fXh5eUlvXkjIyPRoEED1K9fH1lZWThz5gwcHBzw7NkztTd0TEwM/vjjj1w7XyYkJKg9z2lfjB49GgcPHkSdOnXg4eGB5s2bo3v37vD29s7TNhNvncN9W6lSpdS2zeDBg9GvXz9UqFABX331FR4+fIhff/0V69atQ5s2bXDr1i21TmLZ881rCKhTp45a+OzWrRtq1KiB4OBgtG7dWgqFPXv2RHBwMGJjY+Hq6ootW7YgIyMDX3/9dZ6W8yEPHjzAxIkT8dtvv0mvgWzZfXaymZiYaOw7GxsbteliY2Ph5OQEMzMztfHeff/l165duzB9+nRcvnxZre/V29s7+73+7uvm3WU/efIEiYmJWL16da5Xsr37WsyrD72/dOVDy8n+bGratGmO02d/jmbLad8qlUqULFlS4zWtVCrV1ie/72ttPHnyBKmpqShfvrzGME9PT6hUKjx8+BCVKlWSPnOy/xG6dOkSpk+fDnt7e8yfP18aZmVlhWrVqr13udl98zZv3gwfHx8AwObNm1G9enWNz9a3denSBd9//z369OmDkJAQ+Pj4oEOHDvjyyy9zvdAg+7sot3Xct28fUlJSYG5uLrW/73Xw7j7OCwaOd1hZWcHZ2TnfN1rK6xdBTlek5DYsO7nOmzcP1atXz3EaCwsLPHv2LG9F5tOWLVuQnp6OBQsWYMGCBRrDIyIiMGXKFLU2fX39HOf19hfxggULEBgYiF9//RX79+/H4MGDMWvWLJw5cwYlS5YEANSvXx8zZsxAWloaIiMjMW7cOFhbW6Ny5cqIjIyEg4MDAKgFDpVKhWbNmmHUqFE51vDuGzinfeHp6Yno6Gjs2rULe/fuxbZt27B8+XJMnDhRY13fZmdnByBvH/ybN2/GzZs38dtvvyErKws///wz9u/fj1q1aqFSpUpYs2YNzpw5g/r160vTZM+3WLFiH5x/TvT09NCkSRMsXrwYMTExqFSpEgCga9euGDZsGCIiIjB27Fj8+OOPqFWrVo4fSvmVlZWFZs2a4dmzZxg9ejQqVKgAc3NzPHr0CIGBgRr/meX22tGWQqHIMQC+2wk1MjISbdu2RcOGDbF8+XI4OTnB0NAQa9euzVNn4Xdlr9dXX32V6z8LVatWzfd8gby9v3ThQ8vJXscNGzbk2DHy3SsqcptfXtYnv+9ruTk7O8Pd3R3Hjx+Hm5sbhBDw8vKCvb09hgwZgtjYWERGRqJevXofvMrQ2NgY/v7+2L59O5YvX474+HicPHkSM2fOfO90pqamOH78OI4cOYLdu3dj79692Lx5M5o2bYr9+/fr7L2k69cbA0cOWrdujdWrV+P06dPw8vJ677iurq5QqVSIiYmBp6en1B4fH4/ExES1G0DlV/Y9F6ysrODr65vrePb29rCysvpgSMrvIfKIiAhUrlwZkyZN0hi2atUqbNy48b1fwu9TpUoVVKlSBePHj8epU6fg7e2NlStXYvr06QDeBInXr1/jp59+wqNHj6Rg0bBhQylwlCtXTgoewJvt9fLly/duq7wwNzeX7p3x+vVrdOjQATNmzMCYMWNyvcysQoUKAN5cUv0+qampGDlyJKZNmwZra2vEx8cjIyMDzs7OAN58kNjY2ODRo0dq0927dw96enof9eGamZkJAHj58qXUZmtrK50i69GjB06ePIlFixZpvYy3Xb16Fbdv38a6devQs2dPqf3AgQNaz9PV1RVHjhxBamqq2lGOd6+EAt78N/b2ofls7x513LZtG0xMTLBv3z61y1HXrl2rsWyVSoV79+6hbNmyuS7b3t4elpaWyMrK+ujX4qcq+7OpePHisq+jrt7X72Nvbw8zMzPpNMnbbt26BT09Pbi4uEhtDRo0wPHjx+Hu7o7q1avD0tIS1apVg1KpxN69e3Hx4sU8fzZ26dIF69atw6FDh3Dz5k0IIfJ0g0U9PT34+PjAx8cHoaGhmDlzJsaNG4cjR47kuK2yv4tyW8dixYqpHd2QA/tw5GDUqFEwNzdHnz59EB8frzH8zz//xOLFiwEALVu2BACND+nQ0FAAQKtWrbSuo2bNmihTpgzmz5+v9iWRLfsyNT09Pfj7+2Pnzp053pI4O41mv5gSExM/uOyHDx/i+PHj6Ny5M7788kuNxzfffIM7d+4gKioqX+uUnJwsffFlq1KlCvT09NQOZdetWxeGhoaYM2cObG1tpf/IGzRogDNnzuDYsWMa50c7d+6M06dPq91UK1tiYqLGcnOS3Rcjm5GRESpWrAghxHsvtStRogRcXFw+eEvoOXPmwMbGRuqDYGdnBwMDA9y6dQvAmz4aT5480fiv8cKFC6hUqZJ02im/MjIysH//fhgZGakFYwD4+uuvcePGDYwcORL6+vro2rWrVst4V/Z/R2//NySEkN472vDz80NGRgbWrFkjtalUKukSy7eVKVMGt27dUruc88qVKxqXlOvr60OhUKgd+bh//z527NihsWwAWL58uVr70qVLNebXsWNHbNu2Lcd/AuS4jPXf5ufnBysrK8ycOTPH94Uu1zE/72ttL4vV19dH8+bN8euvv6rdcTU+Ph4bN25E/fr11U4hNGjQAPfv38fmzZulzyE9PT3Uq1cPoaGhyMjI+GD/jWy+vr6wtbXF5s2bsXnzZtSpU+e9p94B5HhUO/so+Lu3Y8jm5OSE6tWrY926dWrfAdeuXcP+/ful7zI58QhHDsqUKYONGzeiS5cu8PT0VLvT6KlTp7BlyxbpGvlq1aohICAAq1evRmJiIho1aoSzZ89i3bp18Pf3R5MmTbSuQ09PD99//z1atGiBSpUq4ZtvvkGJEiXw6NEjHDlyBFZWVti5cycAYObMmdi/fz8aNWqEvn37wtPTE48fP8aWLVtw4sQJWFtbo3r16tDX18ecOXOQlJQEY2NjNG3aFMWLF9dY9saNGyGEQNu2bXOsrWXLljAwMEBERATq1q2b53U6fPgwgoOD0alTJ5QrVw6ZmZnYsGGD9CGdzczMDDVr1sSZM2eke3AAb45wpKSkICUlReMNPXLkSPz2229o3bo1AgMDUbNmTaSkpODq1avYunUr7t+//8FTEs2bN4ejoyO8vb3h4OCAmzdvYtmyZWjVqtUHOxK3a9cO27dvhxAix6NJDx48wLx587B7927py9jAwADt2rXD0KFD8eDBA2zfvh3Ozs5qR9YyMjJw7Ngxjc6K77Nnzx4pxCQkJGDjxo2IiYlBSEiIxrnXVq1awc7ODlu2bEGLFi1yfD3k5s6dO9JRqbfVqFEDzZs3R5kyZTBixAg8evQIVlZW2LZt20f1N/D390edOnXw3Xff4c6dO6hQoQJ+++036QP47e3eq1cvhIaGws/PD71790ZCQgJWrlyJSpUqqXV6a9WqFUJDQ/HFF1+ge/fuSEhIQFhYGDw8PPDHH39I49WsWRMdO3bEokWL8M8//+Dzzz/HsWPHcPv2bY1lz549G0eOHEHdunURFBSEihUr4tmzZ7h48SIOHjwo22nQf4uVlRVWrFiBr7/+Gp999hm6du0Ke3t7PHjwALt374a3tzeWLVumk2Xl5309ZswYrFu3Dvfu3ct3x9Hp06dL97YYMGAADAwMsGrVKqSnp2Pu3Llq42Z/9kRHR6ud/mjYsCH27NkDY2Nj1K5dO0/LNTQ0RIcOHbBp0yakpKRI/UDeZ+rUqTh+/DhatWoFV1dXJCQkYPny5ShZsqTaqdh3zZs3Dy1atICXlxd69+6NV69eYenSpVAqlf/O78pofX3Lf8Dt27dFUFCQcHNzE0ZGRsLS0lJ4e3uLpUuXirS0NGm8jIwMMWXKFOHu7i4MDQ2Fi4uLGDNmjNo4QuR+GWH2JaW5XSp66dIl0aFDB2FnZyeMjY2Fq6ur6Ny5szh06JDaeLGxsaJnz57C3t5eGBsbi9KlS4uBAweqXaa6Zs0aUbp0aaGvr//eS2SrVKkiSpUq9d7t07hxY1G8eHGRkZGR6zq8e2nW3bt3Ra9evUSZMmWEiYmJsLW1FU2aNBEHDx7UmP/IkSMFADFnzhy1dg8PDwFA7fK1bC9evBBjxowRHh4ewsjISBQrVkzUq1dPzJ8/X7x+/Vqtpnnz5mlMv2rVKtGwYUNpW5cpU0aMHDnyg/e/EEKIixcvCgAiMjIyx+GdOnUSHTp00GiPj48Xbdq0EZaWluKzzz4T58+fVxu+Z88etUuT3yeny2JNTExE9erVxYoVK3K91HXAgAECgNi4ceMHl5Et+zLvnB69e/cWQghx48YN4evrKywsLESxYsVEUFCQuHLlisblegEBAcLc3FxjGe9eDiiEEE+ePBHdu3cXlpaWQqlUisDAQHHy5EkBQO0SSyGE+PHHH0Xp0qWFkZGRqF69uti3b1+Ol8X+8MMPomzZssLY2FhUqFBBrF27Nsdlp6SkiIEDBwpbW1thYWEh/P39pcuLZ8+erTZufHy8GDhwoHBxcRGGhobC0dFR+Pj4iNWrV+dp2+Z0Wey7l71nv+/yc6l7Xi6Lzetyjhw5Ivz8/IRSqRQmJiaiTJkyIjAwUO01nNu+bdSoUY6XoOf0OZmX93X2sqDlZbFCvHkP+/n5CQsLC2FmZiaaNGkiTp06leP0xYsXFwBEfHy81HbixAkBQDRo0OCDy3/bgQMHBAChUCjEw4cPNYa/+1o8dOiQaNeunXB2dhZGRkbC2dlZdOvWTe3S4ZwuixXizSX83t7ewtTUVFhZWYk2bdqIGzdu5Li8dy+7zX595GX75kQhhI57GxH9h/n4+MDZ2Vnj9ys+hr+/PxQKBbZv366zeb5r2LBh+OGHHxAXF6dxBUhhsGPHDrRv3x4nTpzI8xVFunL58mXUqFEDP/74I3r06PGvLpuoMGHgINKhqKgoNGjQADExMR/VYTjbzZs3UaVKFVy+fFnnlz1nS0tLg4uLC1q3bq3RUfJT9OrVK7UrjLKystC8eXOcP38ecXFx770STNfLBt7cunvDhg24f/++WsdCIlLHPhxEOlS3bl28fv1aZ/Pz9PTMU2dXbSQkJODgwYPYunUr/vnnH7XfB/qUDRo0CK9evYKXlxfS09Pxyy+/4NSpU5g5c6asYQN48ztLFy5cQJMmTWBgYIA9e/Zgz5496Nu3L8MG0QcwcBD9R924cQM9evRA8eLFsWTJklzv9fKpadq0KRYsWIBdu3YhLS0NHh4eWLp0KYKDg2Vfdr169XDgwAFMmzYNL1++RKlSpTB58mSMGzdO9mUTFXY8pUJERESy4304iIiISHYMHERERCQ79uHAmzsV/v3337C0tNTJL2QSERH9Vwgh8OLFCzg7O7/392MYOAD8/fff7GFORET0ER4+fCj9AGdOGDgA6ZbVDx8+1Oond4mIiP6rkpOT4eLi8sGff2DgwP/9BoKVlRUDBxERkRY+1CWBnUaJiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2RVo4Dh+/DjatGkDZ2dnKBQK7NixQ224EAITJ06Ek5MTTE1N4evri5iYGLVxnj17hh49esDKygrW1tbo3bs3Xr58+S+uBREREX1IgQaOlJQUVKtWDWFhYTkOnzt3LpYsWYKVK1ciKioK5ubm8PPzQ1pamjROjx49cP36dRw4cAC7du3C8ePH0bdv339rFYiIiCgPFEIIUdBFAIBCocD27dvh7+8P4M3RDWdnZ3z33XcYMWIEACApKQkODg4IDw9H165dcfPmTVSsWBHnzp1DrVq1AAB79+5Fy5Yt8ddff8HZ2TlPy05OToZSqURSUhKsrKxkWT8iIqKiKK/foZ9sH4579+4hLi4Ovr6+UptSqUTdunVx+vRpAMDp06dhbW0thQ0A8PX1hZ6eHqKionKdd3p6OpKTk9UeREREJB+Dgi4gN3FxcQAABwcHtXYHBwdpWFxcHIoXL6423MDAALa2ttI4OZk1axamTJmi44qpKHEL2V3QJRR592e3KugSiOhf9Mke4ZDTmDFjkJSUJD0ePnxY0CUREREVaZ9s4HB0dAQAxMfHq7XHx8dLwxwdHZGQkKA2PDMzE8+ePZPGyYmxsTGsrKzUHkRERCSfTzZwuLu7w9HREYcOHZLakpOTERUVBS8vLwCAl5cXEhMTceHCBWmcw4cPQ6VSoW7duv96zURERJSzAu3D8fLlS9y5c0d6fu/ePVy+fBm2trYoVaoUhg4diunTp6Ns2bJwd3fHhAkT4OzsLF3J4unpiS+++AJBQUFYuXIlMjIyEBwcjK5du+b5ChUiIiKSX4EGjvPnz6NJkybS8+HDhwMAAgICEB4ejlGjRiElJQV9+/ZFYmIi6tevj71798LExESaJiIiAsHBwfDx8YGenh46duyIJUuW/OvrQkRERLn7ZO7DUZB4Hw56F69SkR+vUiEqGgr9fTiIiIio6GDgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJLtPOnBkZWVhwoQJcHd3h6mpKcqUKYNp06ZBCCGNI4TAxIkT4eTkBFNTU/j6+iImJqYAqyYiIqJ3fdKBY86cOVixYgWWLVuGmzdvYs6cOZg7dy6WLl0qjTN37lwsWbIEK1euRFRUFMzNzeHn54e0tLQCrJyIiIjeZlDQBbzPqVOn0K5dO7Rq1QoA4Obmhp9++glnz54F8OboxqJFizB+/Hi0a9cOALB+/Xo4ODhgx44d6Nq1a4HVTkRERP/nkz7CUa9ePRw6dAi3b98GAFy5cgUnTpxAixYtAAD37t1DXFwcfH19pWmUSiXq1q2L06dP5zrf9PR0JCcnqz2IiIhIPp/0EY6QkBAkJyejQoUK0NfXR1ZWFmbMmIEePXoAAOLi4gAADg4OatM5ODhIw3Iya9YsTJkyRb7CiYiISM0nfYTj559/RkREBDZu3IiLFy9i3bp1mD9/PtatW/dR8x0zZgySkpKkx8OHD3VUMREREeXkkz7CMXLkSISEhEh9MapUqYLY2FjMmjULAQEBcHR0BADEx8fDyclJmi4+Ph7Vq1fPdb7GxsYwNjaWtXYiIiL6P5/0EY7U1FTo6amXqK+vD5VKBQBwd3eHo6MjDh06JA1PTk5GVFQUvLy8/tVaiYiIKHef9BGONm3aYMaMGShVqhQqVaqES5cuITQ0FL169QIAKBQKDB06FNOnT0fZsmXh7u6OCRMmwNnZGf7+/gVbPBEREUk+6cCxdOlSTJgwAQMGDEBCQgKcnZ3x7bffYuLEidI4o0aNQkpKCvr27YvExETUr18fe/fuhYmJSQFWTkRERG9TiLdv2/kflZycDKVSiaSkJFhZWRV0OfQJcAvZXdAlFHn3Z7cq6BKISAfy+h36SffhICIioqKBgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewMtJno3r17iIyMRGxsLFJTU2Fvb48aNWrAy8sLJiYmuq6RiIiICrl8BY6IiAgsXrwY58+fh4ODA5ydnWFqaopnz57hzz//hImJCXr06IHRo0fD1dVVrpqJiIiokMlz4KhRowaMjIwQGBiIbdu2wcXFRW14eno6Tp8+jU2bNqFWrVpYvnw5OnXqpPOCiYiIqPDJc+CYPXs2/Pz8ch1ubGyMxo0bo3HjxpgxYwbu37+vi/qIiIioCMhz4Hhf2HiXnZ0d7OzstCqIiIiIih6tOo2+bffu3Th69CiysrLg7e2Njh076qIuIiIiKkI+6rLYCRMmYNSoUVAoFBBCYNiwYRg0aJCuaiMiIqIiIl9HOM6fP49atWpJzzdv3owrV67A1NQUABAYGIjGjRtj6dKluq2SiIiICrV8HeHo168fhg4ditTUVABA6dKlsWDBAkRHR+Pq1atYsWIFypUrJ0uhREREVHjlK3BERUXByckJn332GXbu3In//e9/uHTpEurVq4cGDRrgr7/+wsaNG+WqlYiIiAqpfJ1S0dfXx+jRo9GpUyf0798f5ubmWLZsGZydneWqj4iIiIoArTqNli5dGvv27UP79u3RsGFDhIWF6bouIiIiKkLyFTgSExMxatQotGnTBuPHj0f79u0RFRWFc+fO4fPPP8fVq1flqpOIiIgKsXwFjoCAAERFRaFVq1aIjo5G//79YWdnh/DwcMyYMQNdunTB6NGj5aqViIiICql89eE4fPgwLl26BA8PDwQFBcHDw0Ma5uPjg4sXL2Lq1Kk6L5KIiIgKt3wd4ShbtixWr16N27dvY+XKlRq/CGtiYoKZM2fqtEAiIiIq/PIVOP73v//h8OHDqFGjBjZu3IgVK1bIVRcREREVIfk6pVK9enWcP39erlqIiIioiMrzEQ4hhJx1EBERURGW58BRqVIlbNq0Ca9fv37veDExMejfvz9mz5790cURERFR0ZDnUypLly7F6NGjMWDAADRr1gy1atWCs7MzTExM8Pz5c9y4cQMnTpzA9evXERwcjP79+8tZNxERERUieQ4cPj4+OH/+PE6cOIHNmzcjIiICsbGxePXqFYoVK4YaNWqgZ8+e6NGjB2xsbOSsmYiIiAqZfHUaBYD69eujfv36ctRCRERERZRWv6VCRERElB8MHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGSnVeC4ePEirl69Kj3/9ddf4e/vj7Fjx37wxmBERET036NV4Pj2229x+/ZtAMDdu3fRtWtXmJmZYcuWLRg1apROCyQiIqLCT6vAcfv2bVSvXh0AsGXLFjRs2BAbN25EeHg4tm3bpsv6iIiIqAjQKnAIIaBSqQAABw8eRMuWLQEALi4uePr0qe6qIyIioiJBq8BRq1YtTJ8+HRs2bMCxY8fQqlUrAMC9e/fg4OCg0wIfPXqEr776CnZ2djA1NUWVKlVw/vx5abgQAhMnToSTkxNMTU3h6+uLmJgYndZAREREH0erwLFo0SJcvHgRwcHBGDduHDw8PAAAW7duRb169XRW3PPnz+Ht7Q1DQ0Ps2bMHN27cwIIFC9R+q2Xu3LlYsmQJVq5ciaioKJibm8PPzw9paWk6q4OIiIg+Tr5/SyUrKwuJiYk4fvy4xo+0zZs3D/r6+jorbs6cOXBxccHatWulNnd3d+lvIQQWLVqE8ePHo127dgCA9evXw8HBATt27EDXrl11VgsRERFpL99HOPT19dG8eXMkJiZqDDMxMYGhoaEu6gIA/Pbbb6hVqxY6deqE4sWLo0aNGlizZo00/N69e4iLi4Ovr6/UplQqUbduXZw+fTrX+aanpyM5OVntQURERPLR6pRK5cqVcffuXV3XouHu3btYsWIFypYti3379qF///4YPHgw1q1bBwCIi4sDAI1+Iw4ODtKwnMyaNQtKpVJ6uLi4yLcSREREpF3gmD59OkaMGIFdu3bh8ePHsh0tUKlU+OyzzzBz5kzUqFEDffv2RVBQEFauXPlR8x0zZgySkpKkx8OHD3VUMREREeUk3304AEiXwbZt2xYKhUJqF0JAoVAgKytLJ8U5OTmhYsWKam2enp7SvT4cHR0BAPHx8XBycpLGiY+Pl+4TkhNjY2MYGxvrpEYiIiL6MK0Cx5EjR3RdR468vb0RHR2t1nb79m24uroCeNOB1NHREYcOHZICRnJyMqKiotC/f/9/pUYiIiL6MK0CR6NGjXRdR46GDRuGevXqYebMmejcuTPOnj2L1atXY/Xq1QAAhUKBoUOHYvr06Shbtizc3d0xYcIEODs7w9/f/1+pkYiIiD5M61+LjYyMxFdffYV69erh0aNHAIANGzbgxIkTOiuudu3a2L59O3766SdUrlwZ06ZNw6JFi9CjRw9pnFGjRmHQoEHo27cvateujZcvX2Lv3r0wMTHRWR1ERET0cbQKHNu2bYOfnx9MTU1x8eJFpKenAwCSkpIwc+ZMnRbYunVrXL16FWlpabh58yaCgoLUhisUCkydOhVxcXFIS0vDwYMHUa5cOZ3WQERERB9H66tUVq5ciTVr1qjdd8Pb2xsXL17UWXFERERUNGgVOKKjo9GwYUONdqVSmeMNwYiIiOi/TavA4ejoiDt37mi0nzhxAqVLl/7oooiIiKho0SpwBAUFYciQIYiKioJCocDff/+NiIgIjBgxgpejEhERkQatLosNCQmBSqWCj48PUlNT0bBhQxgbG2PEiBEYNGiQrmskIiKiQk6rwKFQKDBu3DiMHDkSd+7cwcuXL1GxYkVYWFjouj4iIiIqArQKHIcPH0a9evVgYmKicetxIiIiondpFTjatm2LzMxM1K5dG40bN0ajRo3g7e0NU1NTXddHRERERYBWnUafP3+OQ4cOoUWLFjh79izat28Pa2treHt7Y/z48bqukYiIiAo5hRBCfOxMrl+/jnnz5iEiIgIqlUpnvxb7b0lOToZSqURSUhKsrKwKuhz6BLiF7C7oEoq8+7NbFXQJRKQDef0O1eqUyu3bt3H06FEcPXoUx44dQ3p6Oho0aID58+ejcePG2tZMRERERZRWgaNChQqwt7fHkCFDEBISgipVqkChUOi6NiIiIioitOrDMXjwYJQoUQJTp05Fv379MG7cOOzfvx+pqam6ro+IiIiKAK0Cx6JFi3Dx4kXExcVhzJgxeP36NcaNG4dixYrB29tb1zUSERFRIadV4MiWlZWFjIwMpKenIy0tDenp6YiOjtZVbURERFREaH1KpWrVqnBwcMC3336Lv//+G0FBQbh06RKePHmi6xqJiIiokNOq0+jjx4/Rt29fNG7cGJUrV9Z1TURERFTEaBU4tmzZous6iIiIqAjT6pTKunXrsHv3/90YadSoUbC2tka9evUQGxurs+KIiIioaNAqcMycOVP63ZTTp08jLCwMc+fORbFixTBs2DCdFkhERESFn1anVB4+fAgPDw8AwI4dO9CxY0f07dsX3t7evNMoERERadDqCIeFhQX++ecfAMD+/fvRrFkzAICJiQlevXqlu+qIiIioSNDqCEezZs3Qp08f1KhRA7dv30bLli0BvPkRNzc3N13WR0REREWAVkc4wsLC4OXlhSdPnmDbtm2ws7MDAFy4cAHdunXTaYFERERU+Gl1hMPa2hrLli3TaJ8yZcpHF0RERERFj1aBAwASExNx9uxZJCQkQKVSSe0KhQJff/21ToojIiKiokGrwLFz50706NEDL1++hJWVldpP0zNwEBER0bu06sPx3XffoVevXnj58iUSExPx/Plz6fHs2TNd10hERESFnFaB49GjRxg8eDDMzMx0XQ8REREVQVoFDj8/P5w/f17XtRAREVERpVUfjlatWmHkyJG4ceMGqlSpAkNDQ7Xhbdu21UlxREREVDRoFTiCgoIAAFOnTtUYplAokJWV9XFVERERUZGiVeB4+zJYIiIiog/Rqg9HbhITE3O8IRgRERH9t+kkcBw6dAjdu3eHk5MTJk2apItZEhERURGideB4+PAhpk6dCnd3dzRv3hwKhQLbt29HXFycLusjIiKiIiBfgSMjIwNbtmyBn58fypcvj8uXL2PevHnQ09PDuHHj8MUXX2hcsUJERESUr06jJUqUQIUKFfDVV19h06ZNsLGxAQD+QiwRERG9V76OcGRmZkKhUEChUEBfX1+umoiIiKiIyVfg+Pvvv9G3b1/89NNPcHR0RMeOHbF9+3a1H28jIiIiele+AoeJiQl69OiBw4cP4+rVq/D09MTgwYORmZmJGTNm4MCBA7zpFxEREWnQ+iqVMmXKYPr06YiNjcXu3buRnp6O1q1bw8HBQZf1ERERURGg1Z1G36anp4cWLVqgRYsWePLkCTZs2KCLuoiIiKgI0emdRu3t7TF8+HBdzpKIiIiKAJ0GDiIiIqKcMHAQERGR7Bg4iIiISHZaBY6pU6ciNTVVo/3Vq1eYOnXqRxdFRERERYtWgWPKlCl4+fKlRntqaiqmTJny0UURERFR0aJV4BBC5Hh30StXrsDW1vajiyIiIqKiJV/34bCxsZF+S6VcuXJqoSMrKwsvX75Ev379dF4kERERFW75ChyLFi2CEAK9evXClClToFQqpWFGRkZwc3ODl5eXzoskIiKiwi1fgSMgIAAA4O7uDm9vbxgYfPSNSomIiOg/QKs+HCkpKTh06JBG+759+7Bnz56PLoqIiIiKFq0CR0hISI6/CiuEQEhIyEcXRUREREWLVoEjJiYGFStW1GivUKEC7ty589FFERERUdGiVeBQKpW4e/euRvudO3dgbm7+0UURERFR0aJV4GjXrh2GDh2KP//8U2q7c+cOvvvuO7Rt21ZnxREREVHRoFXgmDt3LszNzVGhQgW4u7vD3d0dnp6esLOzw/z583VdIxERERVyWl3XqlQqcerUKRw4cABXrlyBqakpqlatioYNG+q6PiIiIioCtL6RhkKhQPPmzdGwYUMYGxvneKtzIiIiIkDLUyoqlQrTpk1DiRIlYGFhgXv37gEAJkyYgB9++EGnBRIREVHhp1XgmD59OsLDwzF37lwYGRlJ7ZUrV8b333+vs+KIiIioaNAqcKxfvx6rV69Gjx49oK+vL7VXq1YNt27d0llxREREVDRoFTgePXoEDw8PjXaVSoWMjIyPLoqIiIiKFq0CR8WKFREZGanRvnXrVtSoUeOjiyIiIqKiRaurVCZOnIiAgAA8evQIKpUKv/zyC6Kjo7F+/Xrs2rVL1zUSERFRIaf1nUZ37tyJgwcPwtzcHBMnTsTNmzexc+dONGvWTNc1EhERUSGX7yMcmZmZmDlzJnr16oUDBw7IURMREREVMfk+wmFgYIC5c+ciMzNTjnqIiIioCNLqlIqPjw+OHTum61qIiIioiNKq02iLFi0QEhKCq1evombNmho/Sc9fjCUiIqK3aRU4BgwYAAAIDQ3VGKZQKJCVlfVxVREREVGRolXgUKlUuq6DiIiIirB89+HIyMiAgYEBrl27Jkc9REREVATlO3AYGhqiVKlSPG1CREREeabVVSrjxo3D2LFj8ezZM13XQ0REREWQVoFj2bJlOH78OJydnVG+fHl89tlnag+5zJ49GwqFAkOHDpXa0tLSMHDgQNjZ2cHCwgIdO3ZEfHy8bDUQERFR/mnVadTf31/HZXzYuXPnsGrVKlStWlWtfdiwYdi9eze2bNkCpVKJ4OBgdOjQASdPnvzXayQiIqKcaRU4Jk2apOs63uvly5fo0aMH1qxZg+nTp0vtSUlJ+OGHH7Bx40Y0bdoUALB27Vp4enrizJkz+Pzzz//VOomIiChnWp1SyXbhwgX8+OOP+PHHH3Hp0iVd1aRh4MCBaNWqFXx9fTWWn5GRodZeoUIFlCpVCqdPn851funp6UhOTlZ7EBERkXy0OsKRkJCArl274ujRo7C2tgYAJCYmokmTJti0aRPs7e11VuCmTZtw8eJFnDt3TmNYXFwcjIyMpBqyOTg4IC4uLtd5zpo1C1OmTNFZjURERPR+Wh3hGDRoEF68eIHr16/j2bNnePbsGa5du4bk5GQMHjxYZ8U9fPgQQ4YMQUREBExMTHQ23zFjxiApKUl6PHz4UGfzJiIiIk1aHeHYu3cvDh48CE9PT6mtYsWKCAsLQ/PmzXVW3IULF5CQkKB25UtWVhaOHz+OZcuWYd++fXj9+jUSExPVjnLEx8fD0dEx1/kaGxvD2NhYZ3USERHR+2l9a3NDQ0ONdkNDQ53e9tzHxwdXr15Va/vmm29QoUIFjB49Gi4uLjA0NMShQ4fQsWNHAEB0dDQePHgALy8vndVBREREH0erwNG0aVMMGTIEP/30E5ydnQEAjx49wrBhw+Dj46Oz4iwtLVG5cmW1NnNzc9jZ2UntvXv3xvDhw2FrawsrKysMGjQIXl5evEKFiIjoE6JV4Fi2bBnatm0LNzc3uLi4AHjT36Jy5cr48ccfdVrghyxcuBB6enro2LEj0tPT4efnh+XLl/+rNRAREdH7KYQQQpsJhRA4ePAgbt26BQDw9PTUuGy1sEhOToZSqURSUhKsrKwKuhz6BLiF7C7oEoq8+7NbFXQJRKQDef0O1eoIBwAoFAo0a9YMzZo103YWRERE9B+Rr8tiDx8+jIoVK+Z4o6ykpCRUqlQJkZGROiuOiIiIioZ8BY5FixYhKCgox0MmSqUS3377LUJDQ3VWHBERERUN+QocV65cwRdffJHr8ObNm+PChQsfXRQREREVLfkKHPHx8TnefyObgYEBnjx58tFFERERUdGSr8BRokQJXLt2Ldfhf/zxB5ycnD66KCIiIipa8hU4WrZsiQkTJiAtLU1j2KtXrzBp0iS0bt1aZ8URERFR0ZCvy2LHjx+PX375BeXKlUNwcDDKly8PALh16xbCwsKQlZWFcePGyVIoERERFV75ChwODg44deoU+vfvjzFjxiD7nmEKhQJ+fn4ICwuDg4ODLIUSERFR4ZXvG3+5urri999/x/Pnz3Hnzh0IIVC2bFnY2NjIUR8REREVAVrfadTGxga1a9fWZS1ERERUROWr0ygRERGRNhg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdp904Jg1axZq164NS0tLFC9eHP7+/oiOjlYbJy0tDQMHDoSdnR0sLCzQsWNHxMfHF1DFRERElJNPOnAcO3YMAwcOxJkzZ3DgwAFkZGSgefPmSElJkcYZNmwYdu7ciS1btuDYsWP4+++/0aFDhwKsmoiIiN5lUNAFvM/evXvVnoeHh6N48eK4cOECGjZsiKSkJPzwww/YuHEjmjZtCgBYu3YtPD09cebMGXz++ecFUTYRERG945M+wvGupKQkAICtrS0A4MKFC8jIyICvr680ToUKFVCqVCmcPn061/mkp6cjOTlZ7UFERETyKTSBQ6VSYejQofD29kblypUBAHFxcTAyMoK1tbXauA4ODoiLi8t1XrNmzYJSqZQeLi4ucpZORET0n1doAsfAgQNx7do1bNq06aPnNWbMGCQlJUmPhw8f6qBCIiIiys0n3YcjW3BwMHbt2oXjx4+jZMmSUrujoyNev36NxMREtaMc8fHxcHR0zHV+xsbGMDY2lrNkIiIiessnfYRDCIHg4GBs374dhw8fhru7u9rwmjVrwtDQEIcOHZLaoqOj8eDBA3h5ef3b5RIREVEuPukjHAMHDsTGjRvx66+/wtLSUuqXoVQqYWpqCqVSid69e2P48OGwtbWFlZUVBg0aBC8vL16hQkRE9An5pAPHihUrAACNGzdWa1+7di0CAwMBAAsXLoSenh46duyI9PR0+Pn5Yfny5f9ypURERPQ+n3TgEEJ8cBwTExOEhYUhLCzsX6iIiIiItPFJ9+EgIiKiooGBg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkewYOIiIiEh2DBxEREQkOwYOIiIikh0DBxEREcmOgYOIiIhkx8BBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZMfAQURERLJj4CAiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4iIiGTHwEFERESyY+AgIiIi2TFwEBERkeyKTOAICwuDm5sbTExMULduXZw9e7agSyIiIqL/r0gEjs2bN2P48OGYNGkSLl68iGrVqsHPzw8JCQkFXRoRERGhiASO0NBQBAUF4ZtvvkHFihWxcuVKmJmZ4X//+19Bl0ZEREQADAq6gI/1+vVrXLhwAWPGjJHa9PT04Ovri9OnT+c4TXp6OtLT06XnSUlJAIDk5GR5i6VCQ5WeWtAlFHl8vxEVDdnvZSHEe8cr9IHj6dOnyMrKgoODg1q7g4MDbt26leM0s2bNwpQpUzTaXVxcZKmRiDQpFxV0BUSkSy9evIBSqcx1eKEPHNoYM2YMhg8fLj1XqVR49uwZ7OzsoFAoCrCygpOcnAwXFxc8fPgQVlZWBV0O5RP3X+HFfVd4cd+9IYTAixcv4Ozs/N7xCn3gKFasGPT19REfH6/WHh8fD0dHxxynMTY2hrGxsVqbtbW1XCUWKlZWVv/pN05hx/1XeHHfFV7cd3jvkY1shb7TqJGREWrWrIlDhw5JbSqVCocOHYKXl1cBVkZERETZCv0RDgAYPnw4AgICUKtWLdSpUweLFi1CSkoKvvnmm4IujYiIiFBEAkeXLl3w5MkTTJw4EXFxcahevTr27t2r0ZGUcmdsbIxJkyZpnGqiwoH7r/Diviu8uO/yRyE+dB0LERER0Ucq9H04iIiI6NPHwEFERESyY+AgIiIi2TFwUJ6Eh4fn+V4l+RmX5HP//n0oFApcvny5oEshKvICAwPh7+8vPW/cuDGGDh2ap2nzM25hViSuUiH5denSBS1btizoMgqlxo0bo3r16li0aFFBl0IyCAwMRGJiInbs2FHQpdAn5JdffoGhoWFBl/FJYeCgPDE1NYWpqWlBl0H0ycjKyvrP/hQCfZitrW1Bl/DJ4SmVQmLr1q2oUqUKTE1NYWdnB19fX6SkpEiH8aZMmQJ7e3tYWVmhX79+eP36tTTt3r17Ub9+fVhbW8POzg6tW7fGn3/+KQ3PPvT+yy+/oEmTJjAzM0O1atXUfm333dMkV65cQZMmTWBpaQkrKyvUrFkT58+fV6t537598PT0hIWFBb744gs8fvxYvg30iQoMDMSxY8ewePFiKBQKKBQK/Pnnn+jduzfc3d1hamqK8uXLY/HixWrTZWZmYvDgwdI+Gz16NAICAtQO2X5ov+bk2LFjqFOnDoyNjeHk5ISQkBBkZmZKw1+8eIEePXrA3NwcTk5OWLhwYZE53Nu4cWMEBwcjODgYSqUSxYoVw4QJE6RfuHz+/Dl69uwJGxsbmJmZoUWLFoiJiZGmz34P/Pbbb6hYsSKMjY3Rq1cvrFu3Dr/++qu0f48ePYqjR49CoVAgMTFRmv7y5ctQKBS4f/++1LZmzRq4uLjAzMwM7du3R2hoqNr77N3D9AAwdOhQNG7cWHquUqkwa9Ys6fVUrVo1bN26VRr+/Plz9OjRA/b29jA1NUXZsmWxdu1aafjDhw/RuXNnWFtbw9bWFu3atVOrsSh43zbK3leHDh1CrVq1YGZmhnr16iE6OlptHtOnT0fx4sVhaWmJPn36ICQkBNWrV891me++b5YvX46yZcvCxMQEDg4O+PLLLzVqHDVqFGxtbeHo6IjJkyfravU/GQwchcDjx4/RrVs39OrVCzdv3sTRo0fRoUMH6YPy0KFDUvtPP/2EX375Re3XcFNSUjB8+HCcP38ehw4dgp6eHtq3bw+VSqW2nHHjxmHEiBG4fPkyypUrh27duql9Gb2tR48eKFmyJM6dO4cLFy4gJCRE7fBhamoq5s+fjw0bNuD48eN48OABRowYIcPW+bQtXrwYXl5eCAoKwuPHj/H48WOULFkSJUuWxJYtW3Djxg1MnDgRY8eOxc8//yxNN2fOHERERGDt2rU4efIkkpOTNQ7Z53W/Znv06BFatmyJ2rVr48qVK1ixYgV++OEHTJ8+XRpn+PDhOHnyJH777TccOHAAkZGRuHjxoizbpiCsW7cOBgYGOHv2LBYvXozQ0FB8//33AN58uZ8/fx6//fYbTp8+DSEEWrZsiYyMDGn61NRUzJkzB99//z2uX7+OJUuWoHPnzlKgfvz4MerVq5enWk6ePIl+/fphyJAhuHz5Mpo1a4YZM2bke51mzZqF9evXY+XKlbh+/TqGDRuGr776CseOHQMATJgwATdu3MCePXtw8+ZNrFixAsWKFQMAZGRkwM/PD5aWloiMjMTJkyelfxDe/qelsPvQNgLefP4tWLAA58+fh4GBAXr16iUNi4iIwIwZMzBnzhxcuHABpUqVwooVK/K8/PPnz2Pw4MGYOnUqoqOjsXfvXjRs2FBtnHXr1sHc3BxRUVGYO3cupk6digMHDnz8yn9KBH3yLly4IACI+/fvawwLCAgQtra2IiUlRWpbsWKFsLCwEFlZWTnO78mTJwKAuHr1qhBCiHv37gkA4vvvv5fGuX79ugAgbt68KYQQYu3atUKpVErDLS0tRXh4eI7zX7t2rQAg7ty5I7WFhYUJBweHvK90EdKoUSMxZMiQ944zcOBA0bFjR+m5g4ODmDdvnvQ8MzNTlCpVSrRr1y7XeeS2Xy9duiSEEGLs2LGifPnyQqVSSdOEhYVJr5Xk5GRhaGgotmzZIg1PTEwUZmZmH6y/MGjUqJHw9PRUW//Ro0cLT09Pcfv2bQFAnDx5Uhr29OlTYWpqKn7++WchxP+9ri9fvqw234CAAI39cuTIEQFAPH/+XGq7dOmSACDu3bsnhBCiS5cuolWrVmrT9ejRQ+19ltO8hwwZIho1aiSEECItLU2YmZmJU6dOqY3Tu3dv0a1bNyGEEG3atBHffPNNjttkw4YNGq+J9PR0YWpqKvbt25fjNIXNh7ZR9r46ePCgNGz37t0CgHj16pUQQoi6deuKgQMHqk3v7e0tqlWrJj1/d1+9/b7ftm2bsLKyEsnJyTnW2KhRI1G/fn21ttq1a4vRo0fnd3U/aTzCUQhUq1YNPj4+qFKlCjp16oQ1a9bg+fPnasPNzMyk515eXnj58iUePnwIAIiJiUG3bt1QunRpWFlZwc3NDQDw4MEDteVUrVpV+tvJyQkAkJCQkGNNw4cPR58+feDr64vZs2drHMo3MzNDmTJl1OaX27z+i8LCwlCzZk3Y29vDwsICq1evlvZHUlIS4uPjUadOHWl8fX191KxZU20eed2v2W7evAkvLy+1fgfe3t54+fIl/vrrL9y9excZGRlqy1UqlShfvryuVrvAff7552rr7+XlhZiYGNy4cQMGBgaoW7euNMzOzg7ly5fHzZs3pTYjIyO198nHiI6OVtvWADSef8idO3eQmpqKZs2awcLCQnqsX79eek/2798fmzZtQvXq1TFq1CicOnVKmv7KlSu4c+cOLC0tpWltbW2Rlpb2wdNzhUVethHw/s+/j91XzZo1g6urK0qXLo2vv/4aERERSE1NVRvn3ddVUfzMZKfRQkBfXx8HDhzAqVOnsH//fixduhTjxo1DVFRUnqZv06YNXF1dsWbNGjg7O0OlUqFy5coah0zfPiWS/aGc2+H5yZMno3v37ti9ezf27NmDSZMmYdOmTWjfvr3GvLLnJ3gXfQDApk2bMGLECCxYsABeXl6wtLTEvHnz8rw/s+V1v5LumJqa5qmjqJ7em//l3n7Nv31qJq/09PQ03jdvz+fly5cAgN27d6NEiRJq42X/vkeLFi0QGxuL33//HQcOHICPjw8GDhyI+fPn4+XLl6hZsyYiIiI0lm1vb5/vej9FH9pG2aEjP59/+WVpaYmLFy/i6NGj2L9/PyZOnIjJkyfj3LlzUp+dnD4zdbX8TwWPcBQSCoUC3t7emDJlCi5dugQjIyNs374dwJv/Ul69eiWNe+bMGVhYWMDFxQX//PMPoqOjMX78ePj4+MDT01Pt6MjHKFeuHIYNG4b9+/ejQ4cOah3R6P8YGRkhKytLen7y5EnUq1cPAwYMQI0aNeDh4aH2n5ZSqYSDgwPOnTsntWVlZan1pdBmv3p6ekp9E96uxdLSEiVLlkTp0qVhaGiottykpCTcvn37o9b/U/JuqDtz5gzKli2LihUrIjMzU2149jauWLHie+f57v4F/u/L+u2O0u/eD6V8+fJq2xqAxnN7e3uNztZvzye78+qDBw/g4eGh9nBxcVGbT0BAAH788UcsWrQIq1evBgB89tlniImJQfHixTWmVyqV713vwiKv2+h98rKvPsTAwAC+vr6YO3cu/vjjD9y/fx+HDx/O1zwKOx7hKASioqJw6NAhNG/eHMWLF0dUVBSePHkCT09P/PHHH3j9+jV69+6N8ePH4/79+5g0aRKCg4Ohp6cHGxsb2NnZYfXq1XBycsKDBw8QEhLyUfW8evUKI0eOxJdffgl3d3f89ddfOHfuHDp27KijNS5a3NzcEBUVhfv378PCwgJly5bF+vXrsW/fPri7u2PDhg04d+4c3N3dpWkGDRqEWbNmwcPDAxUqVMDSpUvx/Plz6T8vbfbrgAEDsGjRIgwaNAjBwcGIjo7GpEmTMHz4cOjp6cHS0hIBAQEYOXIkbG1tUbx4cUyaNAl6enpF5vLPBw8eYPjw4fj2229x8eJFLF26FAsWLEDZsmXRrl07BAUFYdWqVbC0tERISAhKlCiBdu3avXeebm5u2LdvH6Kjo2FnZwelUil9mU2ePBkzZszA7du3sWDBArXpBg0ahIYNGyI0NBRt2rTB4cOHsWfPHrVt3bRpU8ybNw/r16+Hl5cXfvzxR1y7dg01atQA8OY/5xEjRmDYsGFQqVSoX78+kpKScPLkSVhZWSEgIAATJ05EzZo1UalSJaSnp2PXrl3w9PQE8Kbz97x589CuXTtMnToVJUuWRGxsLH755ReMGjUKJUuW1PEe+Pd9aBu5urp+cB6DBg1CUFAQatWqhXr16mHz5s34448/ULp06TzVsGvXLty9excNGzaEjY0Nfv/9d6hUqiJ1ujJPCrYLCeXFjRs3hJ+fn7C3txfGxsaiXLlyYunSpUKI/+uoNHHiRGFnZycsLCxEUFCQSEtLk6Y/cOCA8PT0FMbGxqJq1ari6NGjAoDYvn27EEKzc6EQQjx//lwAEEeOHBFCqHcaTU9PF127dhUuLi7CyMhIODs7i+DgYKmD1bsdTIUQYvv27eK/+nKLjo4Wn3/+uTA1NRUAxK1bt0RgYKBQKpXC2tpa9O/fX4SEhKh1QMvIyBDBwcHCyspK2NjYiNGjR4tOnTqJrl27SuNos1+PHj0qateuLYyMjISjo6MYPXq0yMjIkIYnJyeL7t27CzMzM+Ho6ChCQ0NFnTp1REhIiNybSXaNGjUSAwYMEP369ZO269ixY6UOk8+ePRNff/21UCqVwtTUVPj5+Ynbt29L0+f0uhZCiISEBNGsWTNhYWGh9p45ceKEqFKlijAxMRENGjQQW7ZsUes0KoQQq1evFiVKlBCmpqbC399fTJ8+XTg6OqrNf+LEicLBwUEolUoxbNgwERwcLHUaFUIIlUolFi1aJMqXLy8MDQ2Fvb298PPzE8eOHRNCCDFt2jTh6ekpTE1Nha2trWjXrp24e/euNP3jx49Fz549RbFixYSxsbEoXbq0CAoKEklJSR+5xT8d79tGeengK4QQU6dOFcWKFRMWFhaiV69eYvDgweLzzz+Xhr+v02hkZKRo1KiRsLGxEaampqJq1api8+bNOY6brV27diIgIECHW6Hg8efpCzne5fC/QaVSwdPTE507d8a0adP+teWmpKSgRIkSWLBgAXr37v2vLVcOheGOr0FBQbh16xYiIyMLuhT6gGbNmsHR0REbNmwo6FIKDZ5SIfoExcbGYv/+/WjUqBHS09OxbNky3Lt3D927d5d1uZcuXcKtW7dQp04dJCUlYerUqQDwwdMKpJ358+ejWbNmMDc3x549e7Bu3TosX768oMuid6SmpmLlypXw8/ODvr4+fvrpJxw8eLDo3SdDZgwcRJ8gPT09hIeHY8SIERBCoHLlyjh48KB07l1O8+fPR3R0NIyMjFCzZk1ERkZKN4oi3Tp79izmzp2LFy9eoHTp0liyZAn69OlT0GXROxQKBX7//XfMmDEDaWlpKF++PLZt2wZfX9+CLq1Q4SkVIiIikh0viyUiIiLZMXAQERGR7Bg4iIiISHYMHERERCQ7Bg4iIiKSHQMHERERyY6Bg4jeKzAwEP7+/gVdBhEVcgwcREREJDsGDiLSWmhoKKpUqQJzc3O4uLhgwIABePnypTQ8PDwc1tbW2LdvHzw9PWFhYYEvvvhC7SfXMzMzMXjwYFhbW8POzg6jR49GQECA2lEVNzc3jd9AqV69OiZPnpznWgBgzZo1cHFxgZmZGdq3b4/Q0FBYW1urjfPrr7/is88+g4mJCUqXLo0pU6YgMzPzo7cV0X8dAwcRaU1PTw9LlizB9evXsW7dOhw+fBijRo1SGyc1NRXz58/Hhg0bcPz4cTx48AAjRoyQhs+ZMwcRERFYu3YtTp48ieTkZK1+jPBDtZw8eRL9+vXDkCFDcPnyZTRr1gwzZsxQm0dkZCR69uyJIUOG4MaNG1i1ahXCw8M1xiMiLRTob9US0Sfv3Z/dfp8tW7YIOzs76fnatWsFAHHnzh2pLSwsTDg4OEjPHRwcxLx586TnmZmZolSpUmrLdHV1FQsXLlRbVrVq1cSkSZPyXEuXLl1Eq1at1Mbp0aOH2k/O+/j4iJkzZ6qNs2HDBuHk5JTrcogob/jjbUSktYMHD2LWrFm4desWkpOTkZmZibS0NKSmpsLMzAwAYGZmhjJlykjTODk5ISEhAQCQlJSE+Ph41KlTRxqur6+PmjVrQqVS6bSW6OhotG/fXm2aOnXqYNeuXdLzK1eu4OTJk2pHNLKysjTWiYjyj6dUiEgr9+/fR+vWrVG1alVs27YNFy5cQFhYGADg9evX0niGhoZq0ykUCoh8/maknp6exjQZGRn5ruVDXr58iSlTpuDy5cvS4+rVq4iJiYGJiUm+aiYidTzCQURauXDhAlQqFRYsWAA9vTf/u/z888/5modSqYSDgwPOnTuHhg0bAnhzROHixYuoXr26NJ69vb1aR9Pk5GTcu3cvX7WUL18e586dU2t79/lnn32G6OhoeHh45Gs9iOjDGDiI6IOSkpJw+fJltbZixYohIyMDS5cuRZs2bXDy5EmsXLky3/MeNGgQZs2aBQ8PD1SoUAFLly7F8+fPoVAopHGaNm2K8PBwtGnTBtbW1pg4cSL09fWl4R4eHh+sZdCgQWjYsCFCQ0PRpk0bHD58GHv27FFbzsSJE9G6dWuUKlUKX375JfT09HDlyhVcu3YN06dPz/e6EdFbCroTCRF92gICAgQAjUfv3r1FaGiocHJyEqampsLPz0+sX79eABDPnz8XQrzpNPp2p0whhNi+fbt4+6MnIyNDBAcHCysrK2FjYyNGjx4tOnXqJLp27SqNk5SUJLp06SKsrKyEi4uLCA8P1+g0+qFahBBi9erVokSJEsLU1FT4+/uL6dOnC0dHR7X69u7dK+rVqydMTU2FlZWVqFOnjli9erXOtifRf5VCiHyeTCUikpFKpYKnpyc6d+6MadOmybqsoKAg3Lp1C5GRkbIuh4h4SoWIClhsbCz279+PRo0aIT09HcuWLcO9e/fQvXt3nS9r/vz5aNasGczNzbFnzx6sW7cOy5cv1/lyiEgTAwcRFSg9PT2Eh4djxIgREEKgcuXKOHjwIDw9PXW+rLNnz2Lu3Ll48eIFSpcujSVLlqBPnz46Xw4RaeIpFSIiIpId78NBREREsmPgICIiItkxcBAREZHsGDiIiIhIdgwcREREJDsGDiIiIpIdAwcRERHJjoGDiIiIZPf/AMm/WgfZ8qw1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 neuro-ophthalmology 6 5 6 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 5 7 85.714286 71.428571 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 85.714286 71.428571 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAIjCAYAAAAEOM/8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABl70lEQVR4nO3dd1QU198G8GfpfRFEilJFBawEG2JBRbFrNLaYiNFgLFhjI/aKFSvW+BM1thBLosbeYkXFEo2KvQtWQFGKcN8/PMzrCiisiyvO8zlnj+6dmTvfndmdfZi2CiGEABEREZHM6Gi7ACIiIiJtYAgiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCKJP5vjx4zAwMMCtW7c00t+FCxegp6eH8+fPa6Q/KhxcXFzQpUuXTz7fyMhIKBQKnDx58pPPmz5P+/fvh0KhwB9//KHVPt41ZswYKBQKjfVXWOatDrVD0LVr1/DTTz/Bzc0NRkZGsLCwgJ+fH2bPno1Xr15pssZP4sKFCxgzZgxu3ryZ72mHDBkChUKB9u3ba76wL8jw4cPRsWNHODs7S22bNm2Ch4cHlEolmjdvjvv372ebrkWLFujevXu2di8vLzRt2hSjRo3K0/yzvsTefhQrVgx169bFtm3b1H9hOXBxcUGzZs002idp1s2bN7O9H3J7qLNdIHrb6tWrMWvWLG2XQe/QU2eirVu3om3btjA0NETnzp1Rrlw5pKWl4dChQxg8eDD+++8/LF68WNO1FqgLFy5g7Nix8Pf3h4uLS56nE0JgzZo1cHFxwebNm/H8+XOYm5sXXKGF1JkzZ7B7924cOXJEart+/Trat2+P9u3bw9fXF7NmzcIPP/yAHTt2SOPs2LED//zzD65cuZJjvz169ECTJk1w7do1lCxZMk+1jBs3Dq6urhBCID4+HpGRkWjSpAk2b97M4FIIxMbGQkfn43di29jYYOXKlSptM2bMwN27dzFz5sxs4xJ9jNWrV+P8+fPo37+/tkuht+Q7BN24cQMdOnSAs7Mz9u7dC3t7e2lY7969cfXqVWzduvWjCxNCICUlBcbGxtmGpaSkwMDAQCMbwo+1f/9+3L17F3v37kVgYCA2bNiAoKAgbZelUa9fv0ZmZiYMDAzU7mPZsmVwcnJC9erVpbadO3eiRIkSWL58ORQKBTw9PVGvXj2kpKTAyMgIr1+/xoABAzBq1Khcv4QCAgJQpEgRLF++HOPGjctTLY0bN0blypWl5926dYOtrS3WrFnDEFQIGBoaaqQfU1NTfPfddypta9euxbNnz7K1k/a877uA6GPlO0VMnToVL168wNKlS1UCUBZ3d3f069dPev769WuMHz8eJUuWhKGhIVxcXPDLL78gNTVVZbqswwc7duxA5cqVYWxsjEWLFknHS9euXYsRI0agePHiMDExQVJSEgAgOjoajRo1glKphImJCerUqYPDhw9nq+vevXvo1q0bHBwcYGhoCFdXV/Ts2RNpaWmIjIxE27ZtAQB169aVdoHv37//g8tj1apV8PLyQt26dREQEIBVq1ZlGyfrNfz++++YOHEiSpQoASMjI9SvXx9Xr15VGffKlSto06YN7OzsYGRkhBIlSqBDhw5ITEwEALRu3RpfffWVyjTNmzeHQqHAX3/9JbVFR0dDoVCoHOZJSEhA//794ejoCENDQ7i7u2PKlCnIzMyUxsk6RDB9+nTMmjVLWm8XLlwAAMydOxdly5aFiYkJihQpgsqVK2P16tUfXE6bNm1CvXr1VI4Vv3r1CpaWllKblZUVhBDS4dR58+YhIyMDffr0ybVffX19+Pv7488///xgDbmxtLSEsbEx9PTe/E0ghICLiwtatmyZbdyUlBQolUr89NNPas8vy8GDB9G2bVs4OTnB0NAQjo6OGDBgQLbDyV26dIGZmRnu3buHVq1awczMDDY2Nhg0aBAyMjJUxn3y5Am+//57WFhYwNLSEkFBQTh79iwUCgUiIyOl8fz9/eHv75+tpi5dumTbEzp9+nTUqFED1tbWMDY2ho+PT47nL7x69Qp9+/ZF0aJFYW5ujhYtWuDevXtQKBQYM2aMyrj37t1D165dYWtrC0NDQ5QtWxb/+9//8rTc3j0nKOsw5+HDhzFw4EDY2NjA1NQUX3/9NR49epSnPvMjNTU1T/PZtm0batWqBVNTU5ibm6Np06b477//VMbJWre3b99Gs2bNYGZmhuLFiyMiIgIAcO7cOdSrVw+mpqZwdnbO8bOWl881ADx48ACXLl1Cenr6e1/f29uAxYsXS9uAKlWq4MSJE9nGv3TpEr755htYWVnByMgIlStXVtkWAbmfJ5K17t4+3JjbdwHwZu9x27ZtYWVlBRMTE1SvXj3ff3TPnz8fZcuWhaGhIRwcHNC7d28kJCSojOPv749y5cohJiYGNWrUgLGxMVxdXbFw4cIc+8zMzHzvtt3f3x9bt27FrVu3pO+Xdz9nH+oDyPs2IycKhQIhISGIioqCl5cXjI2N4evri3PnzgEAFi1aBHd3dxgZGcHf3z/HQ8BRUVHw8fGBsbExihYtiu+++w737t374LzzmgMyMzMxZswYODg4wMTEBHXr1sWFCxdUPvPXr1+HQqHItrcWAI4cOQKFQoE1a9Z8sCaJyKfixYsLNze3PI8fFBQkAIhvvvlGREREiM6dOwsAolWrVirjOTs7C3d3d1GkSBExbNgwsXDhQrFv3z6xb98+AUB4eXmJSpUqifDwcBEWFiaSk5PFnj17hIGBgfD19RUzZswQM2fOFBUqVBAGBgYiOjpa6vvevXvCwcFBmJiYiP79+4uFCxeKkSNHCk9PT/Hs2TNx7do10bdvXwFA/PLLL2LlypVi5cqVIi4u7r2vLSUlRVhaWorx48cLIYRYsWKF0NXVFQ8ePFAZL+s1eHt7Cx8fHzFz5kwxZswYYWJiIqpWrSqNl5qaKlxdXYWDg4OYMGGC+PXXX8XYsWNFlSpVxM2bN4UQQoSHhwsdHR2RmJgohBAiMzNTFClSROjo6IhBgwZJfU2bNk1lvOTkZFGhQgVhbW0tfvnlF7Fw4ULRuXNnoVAoRL9+/aTpbty4IS1vNzc3MXnyZDFz5kxx69YtsXjxYmldLlq0SMyePVt069ZN9O3b973L6e7duwKAmDNnjkr7wYMHhUKhEKtXrxbXr18X7dq1E+7u7kIIIR4+fCgsLS3Fli1b3tu3EEJMmDBB5bXmZtmyZQKA2L17t3j06JF4+PChOH/+vPjpp5+Ejo6O2LlzpzTu8OHDhb6+vnjy5IlKH7///rsAIP7555/3zsvZ2Vk0bdr0veP06dNHNGnSREyaNEksWrRIdOvWTejq6opvvvlGZbygoCBhZGQkypYtK7p27SoWLFgg2rRpIwCI+fPnS+NlZGQIX19foaurK0JCQsS8efNEgwYNRMWKFQUAsWzZMmncOnXqiDp16mSrKSgoSDg7O6u0lShRQvTq1UvMmzdPhIeHi6pVqwoA2dZNu3btBADx/fffi4iICNGuXTtp3qNHj5bGi4uLEyVKlBCOjo5i3LhxYsGCBaJFixYCgJg5c+Z7l5kQb5ZtUFCQ9DxrvXp7e4t69eqJuXPnip9//lno6uqKdu3afbC/tzVt2jTb61dnPitWrBAKhUI0atRIzJ07V0yZMkW4uLgIS0tLcePGDWm8rHXr5eUlevToISIiIkSNGjWk9eXg4CAGDx4s5s6dK8qWLSt0dXXF9evXpenz+rnOmhcAlfnnJGsb4O3tLdzd3cWUKVPE1KlTRdGiRUWJEiVEWlqaNO758+eFUqkUXl5eYsqUKWLevHmidu3aQqFQiA0bNkjjjR49WuT0dZO1TN+uKbfvgri4OGFrayvMzc3F8OHDRXh4uKhYsaLQ0dFRmdf7ZNUREBAg5s6dK0JCQoSurq6oUqWKyuuqU6eOcHBwEMWKFRMhISFizpw5ombNmgKAWLp0qTReXrftO3fuFJUqVRJFixaVvl82btyYrz6EyPs2I6flDUBUqFBBODo6ismTJ4vJkycLpVIpnJycxLx584SXl5eYMWOGGDFihDAwMBB169bNcV1VqVJFzJw5UwwbNkwYGxsLFxcX8ezZs/fOO685YMiQIQKAaN68uZg3b54IDg4WJUqUEEWLFlX5zPv5+QkfH59s67dXr17C3NxcJCcnZxuWm3yFoMTERAFAtGzZMk/jnzlzRgAQP/74o0r7oEGDBACxd+9eqc3Z2VkAENu3b1cZN+sN4ubmJl6+fCm1Z2ZmilKlSonAwECRmZkptb98+VK4urqKBg0aSG2dO3cWOjo64sSJE9lqzJo2KipKABD79u3L02sTQog//vhDABBXrlwRQgiRlJQkjIyMsm3Is16Dp6enSE1Nldpnz54tAIhz584JIYQ4ffq0ACCioqJyneeJEycEAPH3338LIYT4999/BQDRtm1bUa1aNWm8Fi1aCG9vb+n5+PHjhampqbh8+bJKf8OGDRO6urri9u3bQoj/3wBaWFiIhw8fqozbsmVLUbZs2bwuHsnu3bsFALF58+Zsw7LCJwBhZWUlvSeCg4NFo0aN8tT/6tWrBQCV4JuTrA/xuw9DQ0MRGRmpMm5sbKwAIBYsWKDS3qJFC+Hi4qLynstJXkLQ2+/nLGFhYUKhUIhbt25JbVkbkHHjxqmMm7XRzLJ+/XoBQMyaNUtqy8jIEPXq1fuoEPRunWlpaaJcuXKiXr16UltMTIwAIPr3768ybpcuXbKFoG7dugl7e3vx+PFjlXE7dOgglEpljsvlbbmFoICAAJX1MmDAAKGrqysSEhLe29/b8hKCPjSf58+fC0tLSxEcHKwyfVxcnFAqlSrtWet20qRJUtuzZ8+EsbGxUCgUYu3atVL7pUuXsi3LvH6u355XXkOQtbW1ePr0qdT+559/Zvsc169fX5QvX16kpKRIbZmZmaJGjRqiVKlSUlt+Q1BO3wX9+/cXAMTBgweltufPnwtXV1fh4uIiMjIy3vu6Hj58KAwMDETDhg1Vxp03b54AIP73v/9JbXXq1BEAxIwZM6S21NRUUalSJVGsWDEpMOV12y5E7u+t/PSR121GbiHI0NBQZVkvWrRIABB2dnYiKSlJag8NDVVZL2lpaaJYsWKiXLly4tWrV9J4W7ZsEQDEqFGjcp13XnNAXFyc0NPTyxaMxowZIwCofOaz6r548aLUlpaWli0s5UW+DodlHYLK64m/f//9NwBg4MCBKu0///wzAGTbjenq6orAwMAc+woKClI5JnzmzBlcuXIF3377LZ48eYLHjx/j8ePHSE5ORv369fHPP/8gMzMTmZmZ2LRpE5o3b65yHkiWj7mUb9WqVahcuTLc3d0BQNrlndMhMQD44YcfVM6rqVWrFoA3u/cAQKlUAnhzMvDLly9z7MPb2xtmZmb4559/ALzZPVqiRAl07twZp06dwsuXLyGEwKFDh6T+gTe7MWvVqoUiRYpIy+rx48cICAhARkaG1F+WNm3aZDsPx9LSEnfv3s1xl/j7PHnyBABQpEiRbMNmz56NW7duITo6Grdu3ULdunVx5swZrFixAjNnzkRiYiK+++47FC9eHP7+/rh48WK2PrL6ffz4cZ7qiYiIwK5du7Br1y789ttvqFu3Ln788Uds2LBBGqd06dKoVq2ayrp8+vQptm3bhk6dOmnkEtC338/Jycl4/PgxatSoASEETp8+nW38Hj16qDyvVauW9N4BgO3bt0NfXx/BwcFSm46ODnr37q2xOp89e4bExETUqlULp06dUpk3APTq1Utl2ncPZQohsH79ejRv3hxCCJX3YmBgIBITE1X6zY/u3burrJdatWohIyNDY7dkyOt8du3ahYSEBHTs2FHl9enq6qJatWrYt29ftj5//PFH6f+WlpYoU6YMTE1N0a5dO6m9TJkysLS0VFnn+flcR0ZGSod686J9+/Yqn9l3t1dPnz7F3r170a5dOzx//lya95MnTxAYGIgrV67k6VBJTnL6Lvj7779RtWpV1KxZU2ozMzND9+7dcfPmTemQfW52796NtLQ09O/fX+V80uDgYFhYWGT7PtLT01M57G1gYICffvoJDx8+RExMjMq4H9q250Ve+sjvNuNd9evXV1n/1apVA/Bme//293pWe9a8T548iYcPH6JXr14wMjKSxmvatCk8PDzee0gyrzlgz549eP369Qe3IQDQrl07GBkZqWyfd+zYgcePH+f7fL58nRhtYWEBAHj+/Hmexr916xZ0dHSkkJDFzs4OlpaW2TZOrq6uufb17rCsq4XedxJyYmIi0tLSkJSUhHLlyuWp5rxKSEjA33//jZCQEJXjtn5+fli/fj0uX76M0qVLq0zj5OSk8jxrA/Ps2TMAb17jwIEDER4ejlWrVqFWrVpo0aIFvvvuOykg6erqwtfXFwcPHgTwJgTVqlULNWvWREZGBo4dOwZbW1s8ffpUJQRduXIF//77b64nGD98+FDleU7rYujQodi9ezeqVq0Kd3d3NGzYEN9++y38/PzytMyEEDm2Ozk5qSybvn37okePHvDw8MB3332HO3fu4M8//8Ty5cvRvHlzXLp0STp/5+1+8xpMqlatqhKIO3bsCG9vb4SEhKBZs2bShqhz584ICQnBrVu34OzsjKioKKSnp+P777/P03w+5Pbt2xg1ahT++usv6T2QJescsCxGRkbZ1l2RIkVUprt16xbs7e1hYmKiMt67n7/82rJlCyZMmIAzZ86oHMN/e3lnfdbffd+8O+9Hjx4hISEBixcvzvUK0nffi3n1oc+XpnxoPlnbpnr16uU4fdZ2NEtO61apVKJEiRLZ3tNKpVLl9eT3c50fH3qdV69ehRACI0eOxMiRI3Odf/HixfM975y2P7du3ZK+nN/m6ekpDS9XrhyePn2KtLQ0abixsTGUSqX0fVOmTBmV6Q0MDODm5pbt+8jBwQGmpqYqbVnb9Js3b6pc5KGJ915e+sjPNiMv88j6XnF0dMyxPWseuS07APDw8MChQ4dynWdec0DWv++OZ2Vlle0PaEtLSzRv3hyrV6/G+PHjAbzZKVG8ePFcP3e5yXcIcnBwyPfN6fL65fS+s//fHZZ10t+0adNQqVKlHKcxMzPD06dP81ZkPkVFRSE1NRUzZszAjBkzsg1ftWoVxo4dq9Kmq6ubY19vh4MZM2agS5cu+PPPP7Fz50707dsXYWFhOHbsGEqUKAEAqFmzJiZOnIiUlBQcPHgQw4cPh6WlJcqVK4eDBw/C1tYWAFRCUGZmJho0aIAhQ4bkWMO7gS2ndeHp6YnY2Fhs2bIF27dvx/r16zF//nyMGjUq22t9m7W1NYC8bRDWrVuHixcv4q+//kJGRgZ+//137Ny5E5UrV0bZsmWxZMkSHDt2TOWvwax+ixYt+sH+c6Kjo4O6deti9uzZuHLlCsqWLQsA6NChAwYMGIBVq1bhl19+wW+//YbKlSvnuCHIr4yMDDRo0ABPnz7F0KFD4eHhAVNTU9y7dw9dunTJdlJrbu8ddSkUihxD6bsnWh88eBAtWrRA7dq1MX/+fNjb20NfXx/Lli3L0wnx78p6Xd99912uf8BUqFAh3/0Ceft8acKH5pP1GleuXAk7O7ts470d4N/XX15eT34/1/mR19c5aNCgXPfgZ32h5fYd8O77LcvHXAnWunVrHDhwQHoeFBSkclFAQdDEe+9DfeR3m5GfeXyKz46mb6DYuXNnREVF4ciRIyhfvjz++usv9OrVK99Xjef7EvlmzZph8eLFOHr0KHx9fd87rrOzMzIzM3HlyhUprQNAfHw8EhISVG6al19Z94SxsLBAQEBAruPZ2NjAwsLig8Etvyto1apVKFeuHEaPHp1t2KJFi7B69er3BoP3KV++PMqXL48RI0bgyJEj8PPzw8KFCzFhwgQAb8JNWloa1qxZg3v37klhp3bt2lIIKl26tBSGgDfL68WLF+9dVnlhamoq3dsnLS0NrVu3xsSJExEaGqqym/RtHh4eAN7cXuF9Xr58icGDB2P8+PGwtLREfHw80tPT4eDgAODNhrFIkSLZdrHfuHEDOjo6H7XBf/36NQDgxYsXUpuVlZV0eLNTp044fPiwxm52du7cOVy+fBnLly9H586dpfZdu3ap3aezszP27duHly9fquwNevcKE+DNX5k57ap/96/h9evXw8jICDt27FC5NH3ZsmXZ5p2ZmYkbN26gVKlSuc7bxsYG5ubmyMjI+Oj34ucqa9tUrFixAn+Nmvpcq8PNzQ3Amys0PzT/rL/kExISYGlpKbXn51Cls7MzYmNjs7VfunRJGg68+UPy7T+4srYfWcNjY2Ol2gEgLS0NN27cyPYa7t+/j+TkZJW9QZcvXwaAfN1LLsvHhoCC2Gbk1dvL7t09LbGxse/9Ls9rDsj69+rVqyp7Ap88eZLjH9CNGjWCjY0NVq1ahWrVquHly5dq7aXP9yXyQ4YMgampKX788UfEx8dnG37t2jXMnj0bANCkSRMAyPbFER4eDuDN8UR1+fj4oGTJkpg+fbrKF1eWrEtWdXR00KpVK2zevDnH291nJd2sN/q7l0rm5M6dO/jnn3/Qrl07fPPNN9keP/zwA65evYro6Oh8vaakpCTpyzhL+fLloaOjo3IYolq1atDX18eUKVNgZWUl7bmoVasWjh07hgMHDqjsBQLeHEM9evSoyo0IsyQkJGSbb06yzu3JYmBgAC8vLwgh3nvZbfHixeHo6PjBnxuYMmUKihQpIp3TYm1tDT09PWkj9/jxYzx69CjbX9cxMTEoW7astAs3v9LT07Fz504YGBiofEgB4Pvvv8eFCxcwePBg6OrqokOHDmrN411Zf3m9/ZeWEEL67KgjMDAQ6enpWLJkidSWmZkpXW79tpIlS+LSpUsql3afPXs22+0ldHV1oVAoVP5iv3nzJjZt2pRt3sCby4/fNnfu3Gz9tWnTBuvXr8/xD5OCuKT9UwsMDISFhQUmTZqU4+dCk68xP5/rvF4in1fFihWDv78/Fi1ahAcPHmQb/vbrzAqGb5+jlJycjOXLl+d5fk2aNMHx48dx9OhRlT4WL14MFxcXeHl5AXjz3RAQECA9stoDAgJgYGCAOXPmqHzuli5disTExGzfR69fv5YuzQfehKVFixbBxsYGPj4+ea47i6mpaZ4OWeWmILYZeVW5cmUUK1YMCxcuVPku2rZtGy5evPje7/K85oD69etDT08PCxYsUBlv3rx5Ofarp6eHjh074vfff0dkZCTKly+v1l7kfO8JKlmyJFavXo327dvD09NT5Y7RR44cQVRUlHQ9f8WKFREUFITFixcjISEBderUwfHjx7F8+XK0atUKdevWzXfBWXR0dPDrr7+icePGKFu2LH744QcUL14c9+7dw759+2BhYYHNmzcDACZNmoSdO3eiTp066N69Ozw9PfHgwQNERUXh0KFDsLS0RKVKlaCrq4spU6YgMTERhoaGqFevHooVK5Zt3qtXr4YQAi1atMixtiZNmkBPT09KqHm1d+9ehISEoG3btihdujRev36NlStXSl8cWUxMTODj44Njx45J9wgC3uwJSk5ORnJycrYQNHjwYPz1119o1qwZunTpAh8fHyQnJ+PcuXP4448/cPPmzQ8eTmrYsCHs7Ozg5+cHW1tbXLx4EfPmzUPTpk0/eLJ8y5YtsXHjRgghcvyL6Pbt25g2bRq2bt0qfdj19PTQsmVL9O/fH7dv38bGjRvh4OCgsgcyPT0dBw4cyHYy3fts27ZNClYPHz7E6tWrceXKFQwbNizb+RpNmzaFtbU1oqKi0Lhx4xzfD7m5evWqtPfubd7e3mjYsCFKliyJQYMG4d69e7CwsMD69es/6vyVVq1aoWrVqvj5559x9epVeHh44K+//pIOCb+93Lt27Yrw8HAEBgaiW7duePjwIRYuXIiyZctKF0Bkvf7w8HA0atQI3377LR4+fIiIiAi4u7vj33//lcbz8fFBmzZtMGvWLDx58gTVq1fHgQMHpL+c35735MmTsW/fPlSrVg3BwcHw8vLC06dPcerUKezevbvADmF/KhYWFliwYAG+//57fPXVV+jQoQNsbGxw+/ZtbN26FX5+frlu2PMrP5/r0NBQLF++HDdu3FBrT0ZOIiIiULNmTZQvXx7BwcFwc3NDfHw8jh49irt37+Ls2bMA3mw7nJyc0K1bN+kPiv/973/ScsmLYcOGYc2aNWjcuDH69u0LKysr6fWsX7/+g4dBbGxsEBoairFjx6JRo0Zo0aIFYmNjMX/+fFSpUiXbCbUODg6YMmUKbt68idKlS2PdunU4c+YMFi9eDH19/XwvKx8fH6xbtw4DBw5ElSpVYGZmhubNm+d5eg8PD41vM/Iq64/uH374AXXq1EHHjh0RHx+P2bNnw8XFBQMGDMh12rzmAFtbW/Tr1w8zZsxAixYt0KhRI5w9exbbtm1D0aJFc/ze6Ny5M+bMmYN9+/ZhypQp6r24fF1L9pbLly+L4OBg4eLiIgwMDIS5ubnw8/MTc+fOVblcMj09XYwdO1a4uroKfX194ejoKEJDQ1XGESL3S4qzLh/M7bLx06dPi9atWwtra2thaGgonJ2dRbt27cSePXtUxrt165bo3LmzsLGxEYaGhsLNzU307t1b5ZLEJUuWCDc3N6Grq/vey+XLly8vnJyc3rt8/P39RbFixUR6enquryHrUtSsS5evX78uunbtKkqWLCmMjIyElZWVqFu3rti9e3e2/gcPHiwAiClTpqi0u7u7CwDi2rVr2aZ5/vy5CA0NFe7u7sLAwEAULVpU1KhRQ0yfPl265DOrpmnTpmWbftGiRaJ27drSsi5ZsqQYPHjwB+/PI4QQp06dynZ569vatm0rWrduna09Pj5eNG/eXJibm4uvvvpKnDx5UmX4tm3bVG5T8D45XSJvZGQkKlWqJBYsWJDrZe+9evUSAMTq1as/OI8sWZf55vTo1q2bEEKICxcuiICAAGFmZiaKFi0qgoODxdmzZ7Ndzh4UFCRMTU2zzSOny2AfPXokvv32W2Fubi6USqXo0qWLOHz4sACgcrm1EEL89ttvws3NTRgYGIhKlSqJHTt25HiJ/NKlS0WpUqWEoaGh8PDwEMuWLctx3snJyaJ3797CyspKmJmZiVatWkm3Gpg8ebLKuPHx8aJ3797C0dFR6OvrCzs7O1G/fn2xePHiPC3bnC6Rf/cWGFmfu/zc9iIvl8jndT779u0TgYGBQqlUCiMjI1GyZEnRpUsXlfdwbuu2Tp06Od6OIqftZF4+11nzQj4ukc9pG4B3LtEXQohr166Jzp07Czs7O6Gvry+KFy8umjVrJv744w+V8WJiYkS1atWEgYGBcHJyEuHh4bleIp/b7SWuXbsmvvnmG2FpaSmMjIxE1apV83QvsbfNmzdPeHh4CH19fWFrayt69uypcp8bIf5/+Z88eVL4+voKIyMj4ezsLObNm6cyXl637UII8eLFC/Htt98KS0tLAUB6n+Wnj7xuM3K7RL537945zuPddZ1bTevWrRPe3t7C0NBQWFlZiU6dOom7d++qjJPTvPOaA16/fi1Gjhwp7OzshLGxsahXr564ePGisLa2Fj169BA5KVu2rNDR0clWR14phNDwWYNEuahfvz4cHByy/V7Tx2jVqhUUCgU2btyosT7fNWDAACxduhRxcXHZrrwqDDZt2oSvv/4ahw4dyvOVfJpy5swZeHt747fffkOnTp0+6byJ1OXv74/Hjx/n+yIg0ryEhAQUKVIEEyZMwPDhw7MN9/b2hpWVFfbs2aNW/9r/8S2SjUmTJmHdunUau2/LxYsXsWXLFukSyYKQkpKC3377DW3atCkUAejd2+dnZGRg7ty5sLCwyPZzKwU9b+DNeQA6OjqoXbt2gc6biAq/3LYhAHL8mZ+TJ0/izJkzKieK55davyJPpI5q1aqp3L/jY3l6eubphG51PHz4ELt378Yff/yBJ0+eqPwe3uesT58+ePXqFXx9fZGamooNGzbgyJEjmDRpUoH/AOXUqVMRExODunXrQk9PD9u2bcO2bdvQvXv3bPchISJ617p16xAZGYkmTZrAzMwMhw4dwpo1a9CwYUOVvdjnz59HTEwMZsyYAXt7e7Rv317teTIEEeXgwoUL6NSpE4oVK4Y5c+bkei+qz029evUwY8YMbNmyBSkpKXB3d8fcuXMREhJS4POuUaMGdu3ahfHjx+PFixdwcnLCmDFjctyFTUT0rgoVKkBPTw9Tp05FUlKSdLL0uxeY/PHHHxg3bhzKlCmDNWvW5Hp7lrzQ6jlBz58/x8iRI7Fx40Y8fPgQ3t7emD17NqpUqQLgzeV/o0ePxpIlS5CQkAA/Pz8sWLBA5T4kREREROrQ6jlBP/74I3bt2oWVK1fi3LlzaNiwIQICAqSb4U2dOhVz5szBwoULER0dDVNTUwQGBiIlJUWbZRMREdEXQGt7gl69egVzc3P8+eefKjda8vHxQePGjTF+/Hg4ODjg559/xqBBgwC8+W0UW1tbREZGauymdURERCRPWjsn6PXr18jIyMh2LM/Y2BiHDh3CjRs3EBcXp3Irc6VSiWrVquHo0aO5hqDU1FSVO1pmZmbi6dOnsLa21vhvlxAREX3JhBB4/vw5HBwc8v27XIWB1kKQubk5fH19MX78eHh6esLW1hZr1qzB0aNH4e7ujri4OABQ+f2rrOdZw3ISFham9m92ERERUXZ37tyRfsT7S6LVq8NWrlyJrl27onjx4tDV1cVXX32Fjh07IiYmRu0+Q0NDMXDgQOl5YmIinJyccOfOnWw/iUBERES5S0pKgqOj4wd/Gqmw0moIKlmyJA4cOIDk5GQkJSVJ1/u7ublJP5IZHx8Pe3t7aZr4+Pj3Xq5saGio8mvXWSwsLBiCiIiI1PClnk7yWRzgMzU1hb29PZ49e4YdO3agZcuWcHV1hZ2dncqtsJOSkhAdHa3yA5pERERE6tDqnqAdO3ZACIEyZcrg6tWrGDx4MDw8PPDDDz9AoVCgf//+mDBhAkqVKgVXV1eMHDkSDg4OaNWqlTbLJiIioi+AVkNQYmIiQkNDcffuXVhZWaFNmzaYOHEi9PX1AQBDhgxBcnIyunfvjoSEBNSsWRPbt2//qLtDEhEREQFavmP0p5CUlASlUonExESeE0RERJQPX/p36GdxThARERHRp8YQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESypKftAgorl2FbtV3CF+/m5KbaLoE+Q/zsFTx+9kguuCeIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkSashKCMjAyNHjoSrqyuMjY1RsmRJjB8/HkIIaRwhBEaNGgV7e3sYGxsjICAAV65c0WLVRERE9CXQagiaMmUKFixYgHnz5uHixYuYMmUKpk6dirlz50rjTJ06FXPmzMHChQsRHR0NU1NTBAYGIiUlRYuVExERUWGnp82ZHzlyBC1btkTTpk0BAC4uLlizZg2OHz8O4M1eoFmzZmHEiBFo2bIlAGDFihWwtbXFpk2b0KFDB63VTkRERIWbVvcE1ahRA3v27MHly5cBAGfPnsWhQ4fQuHFjAMCNGzcQFxeHgIAAaRqlUolq1arh6NGjOfaZmpqKpKQklQcRERHRu7S6J2jYsGFISkqCh4cHdHV1kZGRgYkTJ6JTp04AgLi4OACAra2tynS2trbSsHeFhYVh7NixBVs4ERERFXpa3RP0+++/Y9WqVVi9ejVOnTqF5cuXY/r06Vi+fLnafYaGhiIxMVF63LlzR4MVExER0ZdCq3uCBg8ejGHDhknn9pQvXx63bt1CWFgYgoKCYGdnBwCIj4+Hvb29NF18fDwqVaqUY5+GhoYwNDQs8NqJiIiocNPqnqCXL19CR0e1BF1dXWRmZgIAXF1dYWdnhz179kjDk5KSEB0dDV9f309aKxEREX1ZtLonqHnz5pg4cSKcnJxQtmxZnD59GuHh4ejatSsAQKFQoH///pgwYQJKlSoFV1dXjBw5Eg4ODmjVqpU2SyciIqJCTqshaO7cuRg5ciR69eqFhw8fwsHBAT/99BNGjRoljTNkyBAkJyeje/fuSEhIQM2aNbF9+3YYGRlpsXIiIiIq7BTi7dszf4GSkpKgVCqRmJgICwsLjfXrMmyrxvqinN2c3FTbJdBniJ+9gsfPHmUpqO/QzwV/O4yIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkiSGIiIiIZIkhiIiIiGSJIYiIiIhkSU/bBRB9ai7Dtmq7hC/ezclNtV0CfYb42St4/OzlD/cEERERkSwxBBEREZEsaTUEubi4QKFQZHv07t0bAJCSkoLevXvD2toaZmZmaNOmDeLj47VZMhEREX0htBqCTpw4gQcPHkiPXbt2AQDatm0LABgwYAA2b96MqKgoHDhwAPfv30fr1q21WTIRERF9IbR6YrSNjY3K88mTJ6NkyZKoU6cOEhMTsXTpUqxevRr16tUDACxbtgyenp44duwYqlevro2SiYiI6Avx2ZwTlJaWht9++w1du3aFQqFATEwM0tPTERAQII3j4eEBJycnHD16NNd+UlNTkZSUpPIgIiIietdnE4I2bdqEhIQEdOnSBQAQFxcHAwMDWFpaqoxna2uLuLi4XPsJCwuDUqmUHo6OjgVYNRERERVWn00IWrp0KRo3bgwHB4eP6ic0NBSJiYnS486dOxqqkIiIiL4kn8XNEm/duoXdu3djw4YNUpudnR3S0tKQkJCgsjcoPj4ednZ2ufZlaGgIQ0PDgiyXiIiIvgCfxZ6gZcuWoVixYmja9P/vdOnj4wN9fX3s2bNHaouNjcXt27fh6+urjTKJiIjoC6L1PUGZmZlYtmwZgoKCoKf3/+UolUp069YNAwcOhJWVFSwsLNCnTx/4+vryyjAiIiL6aFoPQbt378bt27fRtWvXbMNmzpwJHR0dtGnTBqmpqQgMDMT8+fO1UCURERF9abQegho2bAghRI7DjIyMEBERgYiIiE9cFREREX3pPotzgoiIiIg+NYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWth6B79+7hu+++g7W1NYyNjVG+fHmcPHlSGi6EwKhRo2Bvbw9jY2MEBATgypUrWqyYiIiIvgRaDUHPnj2Dn58f9PX1sW3bNly4cAEzZsxAkSJFpHGmTp2KOXPmYOHChYiOjoapqSkCAwORkpKixcqJiIiosNPT5synTJkCR0dHLFu2TGpzdXWV/i+EwKxZszBixAi0bNkSALBixQrY2tpi06ZN6NChwyevmYiIiL4MWt0T9Ndff6Fy5cpo27YtihUrBm9vbyxZskQafuPGDcTFxSEgIEBqUyqVqFatGo4ePZpjn6mpqUhKSlJ5EBEREb1LqyHo+vXrWLBgAUqVKoUdO3agZ8+e6Nu3L5YvXw4AiIuLAwDY2tqqTGdraysNe1dYWBiUSqX0cHR0LNgXQURERIWSVkNQZmYmvvrqK0yaNAne3t7o3r07goODsXDhQrX7DA0NRWJiovS4c+eOBismIiKiL4VWQ5C9vT28vLxU2jw9PXH79m0AgJ2dHQAgPj5eZZz4+Hhp2LsMDQ1hYWGh8iAiIiJ6l1ZDkJ+fH2JjY1XaLl++DGdnZwBvTpK2s7PDnj17pOFJSUmIjo6Gr6/vJ62ViIiIvixavTpswIABqFGjBiZNmoR27drh+PHjWLx4MRYvXgwAUCgU6N+/PyZMmIBSpUrB1dUVI0eOhIODA1q1aqXN0omIiKiQ02oIqlKlCjZu3IjQ0FCMGzcOrq6umDVrFjp16iSNM2TIECQnJ6N79+5ISEhAzZo1sX37dhgZGWmxciIiIirstBqCAKBZs2Zo1qxZrsMVCgXGjRuHcePGfcKqiIiI6Eun9Z/NICIiItIGtfYE3bhxAwcPHsStW7fw8uVL2NjYwNvbG76+vjxMRURERIVCvkLQqlWrMHv2bJw8eRK2trZwcHCAsbExnj59imvXrsHIyAidOnXC0KFDpSu8iIiIiD5HeQ5B3t7eMDAwQJcuXbB+/fpsd2JOTU3F0aNHsXbtWlSuXBnz589H27ZtNV4wERERkSbkOQRNnjwZgYGBuQ43NDSEv78//P39MXHiRNy8eVMT9REREREViDyHoPcFoHdZW1vD2tparYKIiIiIPoWPvkR+69at2L9/PzIyMuDn54c2bdpooi4iIiKiAvVRl8iPHDkSQ4YMgUKhgBACAwYMQJ8+fTRVGxEREVGBydeeoJMnT6Jy5crS83Xr1uHs2bMwNjYGAHTp0gX+/v6YO3euZqskIiIi0rB87Qnq0aMH+vfvj5cvXwIA3NzcMGPGDMTGxuLcuXNYsGABSpcuXSCFEhEREWlSvkJQdHQ07O3t8dVXX2Hz5s343//+h9OnT6NGjRqoVasW7t69i9WrVxdUrUREREQak6/DYbq6uhg6dCjatm2Lnj17wtTUFPPmzYODg0NB1UdERERUINQ6MdrNzQ07duzA119/jdq1ayMiIkLTdREREREVqHyFoISEBAwZMgTNmzfHiBEj8PXXXyM6OhonTpxA9erVce7cuYKqk4iIiEij8hWCgoKCEB0djaZNmyI2NhY9e/aEtbU1IiMjMXHiRLRv3x5Dhw4tqFqJiIiINCZf5wTt3bsXp0+fhru7O4KDg+Hu7i4Nq1+/Pk6dOoVx48ZpvEgiIiIiTcvXnqBSpUph8eLFuHz5MhYuXJjtl+KNjIwwadIkjRZIREREVBDyFYL+97//Ye/evfD29sbq1auxYMGCgqqLiIiIqEDl63BYpUqVcPLkyYKqhYiIiOiTyfOeICFEQdZBRERE9EnlOQSVLVsWa9euRVpa2nvHu3LlCnr27InJkyd/dHFEREREBSXPh8Pmzp2LoUOHolevXmjQoAEqV64MBwcHGBkZ4dmzZ7hw4QIOHTqE//77DyEhIejZs2dB1k1ERET0UfIcgurXr4+TJ0/i0KFDWLduHVatWoVbt27h1atXKFq0KLy9vdG5c2d06tQJRYoUKciaiYiIiD5avk6MBoCaNWuiZs2aBVELERER0Sej1m+HERERERV2DEFEREQkSwxBREREJEsMQURERCRLDEFEREQkS2qFoFOnTuHcuXPS8z///BOtWrXCL7/88sGbKRIRERF9DtQKQT/99BMuX74MALh+/To6dOgAExMTREVFYciQIRotkIiIiKggqBWCLl++jEqVKgEAoqKiULt2baxevRqRkZFYv369JusjIiIiKhBqhSAhBDIzMwEAu3fvRpMmTQAAjo6OePz4seaqIyIiIiogaoWgypUrY8KECVi5ciUOHDiApk2bAgBu3LgBW1tbjRZIREREVBDUCkGzZs3CqVOnEBISguHDh8Pd3R0A8Mcff6BGjRoaLZCIiIioIOT7t8MyMjKQkJCAf/75J9sPpU6bNg26uroaK46IiIiooOR7T5Curi4aNmyIhISEbMOMjIygr6+vibqIiIiICpRah8PKlSuH69eva7oWIiIiok9GrRA0YcIEDBo0CFu2bMGDBw+QlJSk8iAiIiL63OX7nCAA0iXxLVq0gEKhkNqFEFAoFMjIyNBMdUREREQFRK0QtG/fPo3MfMyYMRg7dqxKW5kyZXDp0iUAQEpKCn7++WesXbsWqampCAwMxPz583kZPhEREX00tUJQnTp1NFZA2bJlsXv37v8vSO//SxowYAC2bt2KqKgoKJVKhISEoHXr1jh8+LDG5k9ERETypPavyB88eBDfffcdatSogXv37gEAVq5ciUOHDuWrHz09PdjZ2UmPokWLAgASExOxdOlShIeHo169evDx8cGyZctw5MgRHDt2TN2yiYiIiACoGYLWr1+PwMBAGBsb49SpU0hNTQXwJrhMmjQpX31duXIFDg4OcHNzQ6dOnXD79m0AQExMDNLT0xEQECCN6+HhAScnJxw9ejTX/lJTU3miNhEREX2Q2leHLVy4EEuWLFG5L5Cfnx9OnTqV536qVauGyMhIbN++HQsWLMCNGzdQq1YtPH/+HHFxcTAwMIClpaXKNLa2toiLi8u1z7CwMCiVSunh6OiY79dHREREXz61zgmKjY1F7dq1s7Urlcocb6KYm8aNG0v/r1ChAqpVqwZnZ2f8/vvvMDY2Vqc0hIaGYuDAgdLzpKQkBiEiIiLKRq09QXZ2drh69Wq29kOHDsHNzU3tYiwtLVG6dGlcvXoVdnZ2SEtLyxaq4uPjYWdnl2sfhoaGsLCwUHkQERERvUutEBQcHIx+/fohOjoaCoUC9+/fx6pVqzBo0CD07NlT7WJevHiBa9euwd7eHj4+PtDX18eePXuk4bGxsbh9+zZ8fX3VngcRERERoObhsGHDhiEzMxP169fHy5cvUbt2bRgaGmLQoEHo06dPnvsZNGgQmjdvDmdnZ9y/fx+jR4+Grq4uOnbsCKVSiW7dumHgwIGwsrKChYUF+vTpA19fX1SvXl2dsomIiIgkaoUghUKB4cOHY/Dgwbh69SpevHgBLy8vmJmZ5aufu3fvomPHjnjy5AlsbGxQs2ZNHDt2DDY2NgCAmTNnQkdHB23atFG5WSIRERHRx1IrBO3duxc1atSAkZERvLy81J752rVr3zvcyMgIERERiIiIUHseRERERDlRKwS1aNECr1+/RpUqVeDv7486derAz89P7Su6iIiIiD41tU6MfvbsGfbs2YPGjRvj+PHj+Prrr2FpaQk/Pz+MGDFC0zUSERERaZxaIUhfXx9+fn745ZdfsGPHDhw7dgwdO3bE8ePHERYWpukaiYiIiDROrcNhly9fxv79+7F//34cOHAAqampqFWrFqZPnw5/f38Nl0hERESkeWqFIA8PD9jY2KBfv34YNmwYypcvD4VCoenaiIiIiAqMWofD+vbti+LFi2PcuHHo0aMHhg8fjp07d+Lly5earo+IiIioQKgVgmbNmoVTp04hLi4OoaGhSEtLw/Dhw1G0aFH4+flpukYiIiIijVMrBGXJyMhAeno6UlNTkZKSgtTUVMTGxmqqNiIiIqICo/bhsAoVKsDW1hY//fQT7t+/j+DgYJw+fRqPHj3SdI1EREREGqfWidEPHjxA9+7d4e/vj3Llymm6JiIiIqICp1YIioqK0nQdRERERJ+UWofDli9fjq1bt0rPhwwZAktLS9SoUQO3bt3SWHFEREREBUWtEDRp0iTpd8KOHj2KiIgITJ06FUWLFsWAAQM0WiARERFRQVDrcNidO3fg7u4OANi0aRPatGmD7t27w8/Pj3eMJiIiokJBrT1BZmZmePLkCQBg586daNCgAQDAyMgIr1690lx1RERERAVErT1BDRo0wI8//ghvb29cvnwZTZo0AQD8999/cHFx0WR9RERERAVCrT1BERER8PX1xaNHj7B+/XpYW1sDAGJiYtCxY0eNFkhERERUENTaE2RpaYl58+Zlax87duxHF0RERET0KagVggAgISEBx48fx8OHD5GZmSm1KxQKfP/99xopjoiIiKigqBWCNm/ejE6dOuHFixewsLCAQqGQhjEEERERUWGg1jlBP//8M7p27YoXL14gISEBz549kx5Pnz7VdI1EREREGqdWCLp37x769u0LExMTTddDRERE9EmoFYICAwNx8uRJTddCRERE9MmodU5Q06ZNMXjwYFy4cAHly5eHvr6+yvAWLVpopDgiIiKigqJWCAoODgYAjBs3LtswhUKBjIyMj6uKiIiIqICpFYLeviSeiIiIqDBS65yg3CQkJOR4E0UiIiKiz41GQtCePXvw7bffwt7eHqNHj9ZEl0REREQFSu0QdOfOHYwbNw6urq5o2LAhFAoFNm7ciLi4OE3WR0RERFQg8hWC0tPTERUVhcDAQJQpUwZnzpzBtGnToKOjg+HDh6NRo0bZrhQjIiIi+hzl68To4sWLw8PDA9999x3Wrl2LIkWKAAB/OZ6IiIgKnXztCXr9+jUUCgUUCgV0dXULqiYiIiKiApevEHT//n10794da9asgZ2dHdq0aYONGzeq/IAqERERUWGQrxBkZGSETp06Ye/evTh37hw8PT3Rt29fvH79GhMnTsSuXbt4o0QiIiIqFNS+OqxkyZKYMGECbt26ha1btyI1NRXNmjWDra2tJusjIiIiKhBq3TH6bTo6OmjcuDEaN26MR48eYeXKlZqoi4iIiKhAafSO0TY2Nhg4cKAmuyQiIiIqEBoNQURERESFBUMQERERyRJDEBEREcmSWiFo3LhxePnyZbb2V69eYdy4cWoVMnnyZCgUCvTv319qS0lJQe/evWFtbQ0zMzO0adMG8fHxavVPRERE9Da1QtDYsWPx4sWLbO0vX77E2LFj893fiRMnsGjRIlSoUEGlfcCAAdi8eTOioqJw4MAB3L9/H61bt1anZCIiIiIVaoUgIUSOd4k+e/YsrKys8tXXixcv0KlTJyxZskT6LTIASExMxNKlSxEeHo569erBx8cHy5Ytw5EjR3Ds2DF1yiYiIiKS5CsEFSlSBFZWVlAoFChdujSsrKykh1KpRIMGDdCuXbt8FdC7d280bdoUAQEBKu0xMTFIT09Xaffw8ICTkxOOHj2aa3+pqalISkpSeRARERG9K183S5w1axaEEOjatSvGjh0LpVIpDTMwMICLiwt8fX3z3N/atWtx6tQpnDhxItuwuLg4GBgYwNLSUqXd1tYWcXFxufYZFham1iE5IiIikpd8haCgoCAAgKurK/z8/KCnp/4Np+/cuYN+/fph165dMDIyUrufd4WGhqrcsDEpKQmOjo4a65+IiIi+DGqdE5ScnIw9e/Zka9+xYwe2bduWpz5iYmLw8OFDfPXVV9DT04Oenh4OHDiAOXPmQE9PD7a2tkhLS0NCQoLKdPHx8bCzs8u1X0NDQ1hYWKg8iIiIiN6lVggaNmxYjr8WL4TAsGHD8tRH/fr1ce7cOZw5c0Z6VK5cGZ06dZL+r6+vrxK2YmNjcfv27XwdciMiIiLKiVrHs65cuQIvL69s7R4eHrh69Wqe+jA3N0e5cuVU2kxNTWFtbS21d+vWDQMHDoSVlRUsLCzQp08f+Pr6onr16uqUTURERCRRKwQplUpcv34dLi4uKu1Xr16FqampJuoCAMycORM6Ojpo06YNUlNTERgYiPnz52usfyIiIpIvtUJQy5Yt0b9/f2zcuBElS5YE8CYA/fzzz2jRooXaxezfv1/luZGRESIiIhAREaF2n0REREQ5UeucoKlTp8LU1BQeHh5wdXWFq6srPD09YW1tjenTp2u6RiIiIiKNU/tw2JEjR7Br1y6cPXsWxsbGqFChAmrXrq3p+oiIiIgKhNo3+lEoFGjYsCFq164NQ0PDHH9Gg4iIiOhzpdbhsMzMTIwfPx7FixeHmZkZbty4AQAYOXIkli5dqtECiYiIiAqCWiFowoQJiIyMxNSpU2FgYCC1lytXDr/++qvGiiMiIiIqKGqFoBUrVmDx4sXo1KkTdHV1pfaKFSvi0qVLGiuOiIiIqKCoFYLu3bsHd3f3bO2ZmZlIT0//6KKIiIiICppaIcjLywsHDx7M1v7HH3/A29v7o4siIiIiKmhqXR02atQoBAUF4d69e8jMzMSGDRsQGxuLFStWYMuWLZqukYiIiEjj1NoT1LJlS2zevBm7d++GqakpRo0ahYsXL2Lz5s1o0KCBpmskIiIi0rh87wl6/fo1Jk2ahK5du2LXrl0FURMRERFRgcv3niA9PT1MnToVr1+/Loh6iIiIiD4JtQ6H1a9fHwcOHNB0LURERESfjFonRjdu3BjDhg3DuXPn4OPjA1NTU5XhH/NL8kRERESfglohqFevXgCA8PDwbMMUCgUyMjI+rioiIiKiAqZWCMrMzNR0HURERESfVL7PCUpPT4eenh7Onz9fEPUQERERfRL5DkH6+vpwcnLiIS8iIiIq1NS6Omz48OH45Zdf8PTpU03XQ0RERPRJqHVO0Lx583D16lU4ODjA2dk529Vhp06d0khxRERERAVFrRDUqlUrDZdBRERE9GmpFYJGjx6t6TqIiIiIPim1QlCWmJgYXLx4EQBQtmxZeHt7a6QoIiIiooKmVgh6+PAhOnTogP3798PS0hIAkJCQgLp162Lt2rWwsbHRZI1EREREGqfW1WF9+vTB8+fP8d9//+Hp06d4+vQpzp8/j6SkJPTt21fTNRIRERFpnFp7grZv347du3fD09NTavPy8kJERAQaNmyoseKIiIiICopae4IyMzOhr6+frV1fX58/qUFERESFglohqF69eujXrx/u378vtd27dw8DBgxA/fr1NVYcERERUUFRKwTNmzcPSUlJcHFxQcmSJVGyZEm4uroiKSkJc+fO1XSNRERERBqn1jlBjo6OOHXqFHbv3o1Lly4BADw9PREQEKDR4oiIiIgKitr3CVIoFGjQoAEaNGigyXqIiIiIPol8HQ7bu3cvvLy8kJSUlG1YYmIiypYti4MHD2qsOCIiIqKCkq8QNGvWLAQHB8PCwiLbMKVSiZ9++gnh4eEaK46IiIiooOQrBJ09exaNGjXKdXjDhg0RExPz0UURERERFbR8haD4+Pgc7w+URU9PD48ePfroooiIiIgKWr5CUPHixXH+/Plch//777+wt7f/6KKIiIiIClq+QlCTJk0wcuRIpKSkZBv26tUrjB49Gs2aNdNYcUREREQFJV+XyI8YMQIbNmxA6dKlERISgjJlygAALl26hIiICGRkZGD48OEFUigRERGRJuUrBNna2uLIkSPo2bMnQkNDIYQA8OaeQYGBgYiIiICtrW2BFEpERESkSfm+WaKzszP+/vtvPHv2DFevXoUQAqVKlUKRIkUKoj4iIiKiAqH2HaOLFCmCKlWqaLIWIiIiok9GrR9Q1ZQFCxagQoUKsLCwgIWFBXx9fbFt2zZpeEpKCnr37g1ra2uYmZmhTZs2iI+P12LFRERE9KXQaggqUaIEJk+ejJiYGJw8eRL16tVDy5Yt8d9//wEABgwYgM2bNyMqKgoHDhzA/fv30bp1a22WTERERF8ItQ+HaULz5s1Vnk+cOBELFizAsWPHUKJECSxduhSrV69GvXr1AADLli2Dp6cnjh07hurVq2ujZCIiIvpCaHVP0NsyMjKwdu1aJCcnw9fXFzExMUhPT0dAQIA0joeHB5ycnHD06NFc+0lNTUVSUpLKg4iIiOhdWg9B586dg5mZGQwNDdGjRw9s3LgRXl5eiIuLg4GBASwtLVXGt7W1RVxcXK79hYWFQalUSg9HR8cCfgVERERUGGk9BJUpUwZnzpxBdHQ0evbsiaCgIFy4cEHt/kJDQ5GYmCg97ty5o8FqiYiI6Euh1XOCAMDAwADu7u4AAB8fH5w4cQKzZ89G+/btkZaWhoSEBJW9QfHx8bCzs8u1P0NDQxgaGhZ02URERFTIaX1P0LsyMzORmpoKHx8f6OvrY8+ePdKw2NhY3L59G76+vlqskIiIiL4EWt0TFBoaisaNG8PJyQnPnz/H6tWrsX//fuzYsQNKpRLdunXDwIEDYWVlBQsLC/Tp0we+vr68MoyIiIg+mlZD0MOHD9G5c2c8ePAASqUSFSpUwI4dO9CgQQMAwMyZM6Gjo4M2bdogNTUVgYGBmD9/vjZLJiIioi+EVkPQ0qVL3zvcyMgIERERiIiI+EQVERERkVx8ducEEREREX0KDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLWg1BYWFhqFKlCszNzVGsWDG0atUKsbGxKuOkpKSgd+/esLa2hpmZGdq0aYP4+HgtVUxERERfCq2GoAMHDqB37944duwYdu3ahfT0dDRs2BDJycnSOAMGDMDmzZsRFRWFAwcO4P79+2jdurUWqyYiIqIvgZ42Z759+3aV55GRkShWrBhiYmJQu3ZtJCYmYunSpVi9ejXq1asHAFi2bBk8PT1x7NgxVK9eXRtlExER0RfgszonKDExEQBgZWUFAIiJiUF6ejoCAgKkcTw8PODk5ISjR4/m2EdqaiqSkpJUHkRERETv+mxCUGZmJvr37w8/Pz+UK1cOABAXFwcDAwNYWlqqjGtra4u4uLgc+wkLC4NSqZQejo6OBV06ERERFUKfTQjq3bs3zp8/j7Vr135UP6GhoUhMTJQed+7c0VCFRERE9CXR6jlBWUJCQrBlyxb8888/KFGihNRuZ2eHtLQ0JCQkqOwNio+Ph52dXY59GRoawtDQsKBLJiIiokJOq3uChBAICQnBxo0bsXfvXri6uqoM9/Hxgb6+Pvbs2SO1xcbG4vbt2/D19f3U5RIREdEXRKt7gnr37o3Vq1fjzz//hLm5uXSej1KphLGxMZRKJbp164aBAwfCysoKFhYW6NOnD3x9fXllGBEREX0UrYagBQsWAAD8/f1V2pctW4YuXboAAGbOnAkdHR20adMGqampCAwMxPz58z9xpURERPSl0WoIEkJ8cBwjIyNEREQgIiLiE1REREREcvHZXB1GRERE9CkxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSxpNQT9888/aN68ORwcHKBQKLBp0yaV4UIIjBo1Cvb29jA2NkZAQACuXLminWKJiIjoi6LVEJScnIyKFSsiIiIix+FTp07FnDlzsHDhQkRHR8PU1BSBgYFISUn5xJUSERHRl0ZPmzNv3LgxGjdunOMwIQRmzZqFESNGoGXLlgCAFStWwNbWFps2bUKHDh0+ZalERET0hflszwm6ceMG4uLiEBAQILUplUpUq1YNR48ezXW61NRUJCUlqTyIiIiI3vXZhqC4uDgAgK2trUq7ra2tNCwnYWFhUCqV0sPR0bFA6yQiIqLC6bMNQeoKDQ1FYmKi9Lhz5462SyIiIqLP0Gcbguzs7AAA8fHxKu3x8fHSsJwYGhrCwsJC5UFERET0rs82BLm6usLOzg579uyR2pKSkhAdHQ1fX18tVkZERERfAq1eHfbixQtcvXpVen7jxg2cOXMGVlZWcHJyQv/+/TFhwgSUKlUKrq6uGDlyJBwcHNCqVSvtFU1ERERfBK2GoJMnT6Ju3brS84EDBwIAgoKCEBkZiSFDhiA5ORndu3dHQkICatasie3bt8PIyEhbJRMREdEXQqshyN/fH0KIXIcrFAqMGzcO48aN+4RVERERkRx8tucEERERERUkhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSpUIRgiIiIuDi4gIjIyNUq1YNx48f13ZJREREVMh99iFo3bp1GDhwIEaPHo1Tp06hYsWKCAwMxMOHD7VdGhERERVin30ICg8PR3BwMH744Qd4eXlh4cKFMDExwf/+9z9tl0ZERESFmJ62C3iftLQ0xMTEIDQ0VGrT0dFBQEAAjh49muM0qampSE1NlZ4nJiYCAJKSkjRaW2bqS432R9lpep1l4boreAW17gCuv0+Bn73CS9PrLqs/IYRG+/1cfNYh6PHjx8jIyICtra1Ku62tLS5dupTjNGFhYRg7dmy2dkdHxwKpkQqOcpa2KyB1cd0Vblx/hVdBrbvnz59DqVQWTOda9FmHIHWEhoZi4MCB0vPMzEw8ffoU1tbWUCgUWqxMu5KSkuDo6Ig7d+7AwsJC2+VQPnDdFV5cd4UX190bQgg8f/4cDg4O2i6lQHzWIaho0aLQ1dVFfHy8Snt8fDzs7OxynMbQ0BCGhoYqbZaWlgVVYqFjYWEh6w90YcZ1V3hx3RVeXHf4IvcAZfmsT4w2MDCAj48P9uzZI7VlZmZiz5498PX11WJlREREVNh91nuCAGDgwIEICgpC5cqVUbVqVcyaNQvJycn44YcftF0aERERFWKffQhq3749Hj16hFGjRiEuLg6VKlXC9u3bs50sTe9naGiI0aNHZztUSJ8/rrvCi+uu8OK6kweF+FKveyMiIiJ6j8/6nCAiIiKigsIQRERERLLEEERERESyxBBEAIDIyMg8308pP+NSwbl58yYUCgXOnDmj7VKIvmhdunRBq1atpOf+/v7o379/nqbNz7j06X32V4fRp9G+fXs0adJE22UUSv7+/qhUqRJmzZql7VKoAHTp0gUJCQnYtGmTtkuhz8SGDRugr6+v7TJIAxiCCABgbGwMY2NjbZdB9NnIyMiQ9U/tUO6srKy0XQJpCA+HfSb++OMPlC9fHsbGxrC2tkZAQACSk5Ol3bBjx46FjY0NLCws0KNHD6SlpUnTbt++HTVr1oSlpSWsra3RrFkzXLt2TRqeddhkw4YNqFu3LkxMTFCxYkUcPXpUGufdQ1xnz55F3bp1YW5uDgsLC/j4+ODkyZMqNe/YsQOenp4wMzNDo0aN8ODBg4JbQJ+pLl264MCBA5g9ezYUCgUUCgWuXbuGbt26wdXVFcbGxihTpgxmz56tMt3r16/Rt29faZ0NHToUQUFBKrvcP7Rec3LgwAFUrVoVhoaGsLe3x7Bhw/D69Wtp+PPnz9GpUyeYmprC3t4eM2fO/GJ21/v7+yMkJAQhISFQKpUoWrQoRo4cKf369bNnz9C5c2cUKVIEJiYmaNy4Ma5cuSJNn/UZ+Ouvv+Dl5QVDQ0N07doVy5cvx59//imt3/3792P//v1QKBRISEiQpj9z5gwUCgVu3rwptS1ZsgSOjo4wMTHB119/jfDwcJXP2buHWQCgf//+8Pf3l55nZmYiLCxMej9VrFgRf/zxhzT82bNn6NSpE2xsbGBsbIxSpUph2bJl0vA7d+6gXbt2sLS0hJWVFVq2bKlSY2H3vuWTtZ727NmDypUrw8TEBDVq1EBsbKxKHxMmTECxYsVgbm6OH3/8EcOGDUOlSpVynee7n5n58+ejVKlSMDIygq2tLb755ptsNQ4ZMgRWVlaws7PDmDFjNPXy6SMxBH0GHjx4gI4dO6Jr1664ePEi9u/fj9atW0sb7z179kjta9aswYYNGzB27Fhp+uTkZAwcOBAnT57Enj17oKOjg6+//hqZmZkq8xk+fDgGDRqEM2fOoHTp0ujYsaPKF+TbOnXqhBIlSuDEiROIiYnBsGHDVHb/vnz5EtOnT8fKlSvxzz//4Pbt2xg0aFABLJ3P2+zZs+Hr64vg4GA8ePAADx48QIkSJVCiRAlERUXhwoULGDVqFH755Rf8/vvv0nRTpkzBqlWrsGzZMhw+fBhJSUnZDrfkdb1muXfvHpo0aYIqVarg7NmzWLBgAZYuXYoJEyZI4wwcOBCHDx/GX3/9hV27duHgwYM4depUgSwbbVi+fDn09PRw/PhxzJ49G+Hh4fj1118BvAkcJ0+exF9//YWjR49CCIEmTZogPT1dmv7ly5eYMmUKfv31V/z333+YM2cO2rVrJ4X8Bw8eoEaNGnmq5fDhw+jRowf69euHM2fOoEGDBpg4cWK+X1NYWBhWrFiBhQsX4r///sOAAQPw3Xff4cCBAwCAkSNH4sKFC9i2bRsuXryIBQsWoGjRogCA9PR0BAYGwtzcHAcPHsThw4elP1re/kOqMPvQ8gHebPtmzJiBkydPQk9PD127dpWGrVq1ChMnTsSUKVMQExMDJycnLFiwIM/zP3nyJPr27Ytx48YhNjYW27dvR+3atVXGWb58OUxNTREdHY2pU6di3Lhx2LVr18e/ePp4grQuJiZGABA3b97MNiwoKEhYWVmJ5ORkqW3BggXCzMxMZGRk5Njfo0ePBABx7tw5IYQQN27cEADEr7/+Ko3z33//CQDi4sWLQgghli1bJpRKpTTc3NxcREZG5tj/smXLBABx9epVqS0iIkLY2trm/UV/QerUqSP69ev33nF69+4t2rRpIz23tbUV06ZNk56/fv1aODk5iZYtW+baR27r9fTp00IIIX755RdRpkwZkZmZKU0TEREhvVeSkpKEvr6+iIqKkoYnJCQIExOTD9ZfGNSpU0d4enqqvP6hQ4cKT09PcfnyZQFAHD58WBr2+PFjYWxsLH7//XchxP+/r8+cOaPSb1BQULb1sm/fPgFAPHv2TGo7ffq0ACBu3LghhBCiffv2omnTpirTderUSeVzllPf/fr1E3Xq1BFCCJGSkiJMTEzEkSNHVMbp1q2b6NixoxBCiObNm4sffvghx2WycuXKbO+J1NRUYWxsLHbs2JHjNIXJh5ZP1nravXu3NGzr1q0CgHj16pUQQohq1aqJ3r17q0zv5+cnKlasKD1/dz29/Zlfv369sLCwEElJSTnWWKdOHVGzZk2VtipVqoihQ4fm9+VSAeCeoM9AxYoVUb9+fZQvXx5t27bFkiVL8OzZM5XhJiYm0nNfX1+8ePECd+7cAQBcuXIFHTt2hJubGywsLODi4gIAuH37tsp8KlSoIP3f3t4eAPDw4cMcaxo4cCB+/PFHBAQEYPLkydkOw5iYmKBkyZIq/eXWlxxFRETAx8cHNjY2MDMzw+LFi6X1kZiYiPj4eFStWlUaX1dXFz4+Pip95HW9Zrl48SJ8fX1VzmPx8/PDixcvcPfuXVy/fh3p6ekq81UqlShTpoymXrbWVa9eXeX1+/r64sqVK7hw4QL09PRQrVo1aZi1tTXKlCmDixcvSm0GBgYqn5OPERsbq7KsAWR7/iFXr17Fy5cv0aBBA5iZmUmPFStWSJ/Jnj17Yu3atahUqRKGDBmCI0eOSNOfPXsWV69ehbm5uTStlZUVUlJSPnhotTDIy/IB3r/t+9j11KBBAzg7O8PNzQ3ff/89Vq1ahZcvX6qM8+57itvLzwdPjP4M6OrqYteuXThy5Ah27tyJuXPnYvjw4YiOjs7T9M2bN4ezszOWLFkCBwcHZGZmoly5ctl2d799OCvriyK3QytjxozBt99+i61bt2Lbtm0YPXo01q5di6+//jpbX1n9Cf4CCwBg7dq1GDRoEGbMmAFfX1+Ym5tj2rRpeV6fWfK6XklzjI2N83QytI7Om78f337Pv31YLa90dHSyfW7e7ufFixcAgK1bt6J48eIq42X9plXjxo1x69Yt/P3339i1axfq16+P3r17Y/r06Xjx4gV8fHywatWqbPO2sbHJd72fmw8tn6wglJ9tX36Zm5vj1KlT2L9/P3bu3IlRo0ZhzJgxOHHihHT+V07bS03Nnz4O9wR9JhQKBfz8/DB27FicPn0aBgYG2LhxI4A3f829evVKGvfYsWMwMzODo6Mjnjx5gtjYWIwYMQL169eHp6enyl6kj1G6dGkMGDAAO3fuROvWrVVOtqT/Z2BggIyMDOn54cOHUaNGDfTq1Qve3t5wd3dX+atUqVTC1tYWJ06ckNoyMjJUzs1RZ716enpK57q8XYu5uTlKlCgBNzc36Ovrq8w3MTERly9f/qjX/zl5N2geO3YMpUqVgpeXF16/fq0yPGsZe3l5vbfPd9cv8P8B4u2LAd69X1OZMmVUljWAbM9tbGyyXVDwdj9ZJ2jfvn0b7u7uKg9HR0eVfoKCgvDbb79h1qxZWLx4MQDgq6++wpUrV1CsWLFs0yuVyve+7sIgr8vnffKynj5ET08PAQEBmDp1Kv7991/cvHkTe/fuzVcfpB3cE/QZiI6Oxp49e9CwYUMUK1YM0dHRePToETw9PfHvv/8iLS0N3bp1w4gRI3Dz5k2MHj0aISEh0NHRQZEiRWBtbY3FixfD3t4et2/fxrBhwz6qnlevXmHw4MH45ptv4Orqirt37+LEiRNo06aNhl7xl8XFxQXR0dG4efMmzMzMUKpUKaxYsQI7duyAq6srVq5ciRMnTsDV1VWapk+fPggLC4O7uzs8PDwwd+5cPHv2TPorVZ312qtXL8yaNQt9+vRBSEgIYmNjMXr0aAwcOBA6OjowNzdHUFAQBg8eDCsrKxQrVgyjR4+Gjo7OF3Mp+O3btzFw4ED89NNPOHXqFObOnYsZM2agVKlSaNmyJYKDg7Fo0SKYm5tj2LBhKF68OFq2bPnePl1cXLBjxw7ExsbC2toaSqVS+pIdM2YMJk6ciMuXL2PGjBkq0/Xp0we1a9dGeHg4mjdvjr1792Lbtm0qy7pevXqYNm0aVqxYAV9fX/z22284f/48vL29AbzZyzBo0CAMGDAAmZmZqFmzJhITE3H48GFYWFggKCgIo0aNgo+PD8qWLYvU1FRs2bIFnp6eAN5c4DBt2jS0bNkS48aNQ4kSJXDr1i1s2LABQ4YMQYkSJTS8Bj6tDy0fZ2fnD/bRp08fBAcHo3LlyqhRowbWrVuHf//9F25ubnmqYcuWLbh+/Tpq166NIkWK4O+//0ZmZuYXdZj5i6bdU5JICCEuXLggAgMDhY2NjTA0NBSlS5cWc+fOFUL8/wl5o0aNEtbW1sLMzEwEBweLlJQUafpdu3YJT09PYWhoKCpUqCD2798vAIiNGzcKIbKfQCuEEM+ePRMAxL59+4QQqidGp6amig4dOghHR0dhYGAgHBwcREhIiHQi4bsnUQshxMaNG4Vc306xsbGievXqwtjYWAAQly5dEl26dBFKpVJYWlqKnj17imHDhqmcaJmeni5CQkKEhYWFKFKkiBg6dKho27at6NChgzSOOut1//79okqVKsLAwEDY2dmJoUOHivT0dGl4UlKS+Pbbb4WJiYmws7MT4eHhomrVqmLYsGEFvZgKXJ06dUSvXr1Ejx49pOX6yy+/SCcFP336VHz//fdCqVQKY2NjERgYKC5fvixNn9P7WgghHj58KBo0aCDMzMxUPjOHDh0S5cuXF0ZGRqJWrVoiKipK5cRoIYRYvHixKF68uDA2NhatWrUSEyZMEHZ2dir9jxo1Stja2gqlUikGDBggQkJCpBOjhRAiMzNTzJo1S5QpU0bo6+sLGxsbERgYKA4cOCCEEGL8+PHC09NTGBsbCysrK9GyZUtx/fp1afoHDx6Izp07i6JFiwpDQ0Ph5uYmgoODRWJi4kcu8c/D+5ZPXk5gF0KIcePGiaJFiwozMzPRtWtX0bdvX1G9enVp+PtOjD548KCoU6eOKFKkiDA2NhYVKlQQ69aty3HcLC1bthRBQUEaXAqkLoUQPJHjc8a71cpDZmYmPD090a5dO4wfP/6TzTc5ORnFixfHjBkz0K1bt08234JQGO7cHRwcjEuXLuHgwYPaLoXeo0GDBrCzs8PKlSu1XQoVMB4OI9KCW7duYefOnahTpw5SU1Mxb9483LhxA99++22Bzvf06dO4dOkSqlatisTERIwbNw4APnhIiNQzffp0NGjQAKampti2bRuWL1+O+fPna7ssesvLly+xcOFCBAYGQldXF2vWrMHu3bt5Hx+ZYAgi0gIdHR1ERkZi0KBBEEKgXLly2L17t3QuR0GaPn06YmNjYWBgAB8fHxw8eFC6uR5p1vHjxzF16lQ8f/4cbm5umDNnDn788Udtl0VvUSgU+PvvvzFx4kSkpKSgTJkyWL9+PQICArRdGn0CPBxGREREssRL5ImIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYYgohkrEuXLmjVqpW2yyAi0gqGICIiIpIlhiAiylF4eDjKly8PU1NTODo6olevXnjx4oU0PDIyEpaWltixYwc8PT1hZmaGRo0a4cGDB9I4r1+/Rt++fWFpaQlra2sMHToUQUFBKnufXFxcsv3eV6VKlTBmzJg81wIAS5YsgaOjI0xMTPD1118jPDwclpaWKuP8+eef+Oqrr2BkZAQ3NzeMHTsWr1+//uhlRUSFE0MQEeVIR0cHc+bMwX///Yfly5dj7969GDJkiMo4L1++xPTp07Fy5Ur8888/uH37NgYNGiQNnzJlClatWoVly5bh8OHDSEpKUuvHgD9Uy+HDh9GjRw/069cPZ86cQYMGDTBx4kSVPg4ePIjOnTujX79+uHDhAhYtWoTIyMhs4xGRjGj1N+yJSKuCgoJEy5Yt8zRuVFSUsLa2lp4vW7ZMABBXr16V2iIiIoStra303NbWVkybNk16/vr1a+Hk5KQyT2dnZzFz5kyVeVWsWFGMHj06z7W0b99eNG3aVGWcTp06CaVSKT2vX7++mDRpkso4K1euFPb29rnOh4i+bPwBVSLK0e7duxEWFoZLly4hKSkJr1+/RkpKCl6+fAkTExMAgImJCUqWLClNY29vj4cPHwIAEhMTER8fj6pVq0rDdXV14ePjg8zMTI3WEhsbi6+//lplmqpVq2LLli3S87Nnz+Lw4cMqe34yMjKyvSYikg8eDiOibG7evIlmzZqhQoUKWL9+PWJiYhAREQEASEtLk8bT19dXmU6hUEDk8zeZdXR0sk2Tnp6e71o+5MWLFxg7dizOnDkjPc6dO4crV67AyMgoXzUT0ZeBe4KIKJuYmBhkZmZixowZ0NF587fS77//nq8+lEolbG1tceLECdSuXRvAmz0vp06dQqVKlaTxbGxsVE6mTkpKwo0bN/JVS5kyZXDixAmVtneff/XVV4iNjYW7u3u+XgcRfbkYgohkLjExEWfOnFFpK1q0KNLT0zF37lw0b94chw8fxsKFC/Pdd58+fRAWFgZ3d3d4eHhg7ty5ePbsGRQKhTROvXr1EBkZiebNm8PS0hKjRo2Crq6uNNzd3f2DtfTp0we1a9dGeHg4mjdvjr1792Lbtm0q8xk1ahSaNWsGJycnfPPNN9DR0cHZs2dx/vx5TJgwId+vjYgKPx4OI5K5/fv3w9vbW+WxcuVKhIeHY8qUKShXrhxWrVqFsLCwfPc9dOhQdOzYEZ07d4avry/MzMwQGBiocvgpNDQUderUQbNmzdC0aVO0atVK5TyjihUrfrAWPz8/LFy4EOHh4ahYsSK2b9+OAQMGqMwnMDAQW7Zswc6dO1GlShVUr14dM2fOhLOzsxpLjYi+BAqR3wP4RERqyszMhKenJ9q1a4fx48cX6LyCg4Nx6dIlHDx4sEDnQ0SFFw+HEVGBuXXrFnbu3Ik6deogNTUV8+bNw40bN/Dtt99qfF7Tp09HgwYNYGpqim3btmH58uWYP3++xudDRF8OhiAiKjA6OjqIjIzEoEGDIIRAuXLlsHv3bnh6emp8XsePH8fUqVPx/PlzuLm5Yc6cOfjxxx81Ph8i+nLwcBgRERHJEk+MJiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZ+j/nLHR6RorTZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 ocular plastic surgery 11 8 9 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 9 16 68.75 50.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 56.25 56.25 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAIjCAYAAAAEOM/8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABh5UlEQVR4nO3deVxN+f8H8Ndtu+23RUqkspadDBIK0diX7IxsGcZubDFjyTZ2xoRh5htDxkz2Zez7WEKWMZaUQYSsFaVFfX5/eHR+rlvUdRPO6/l43Af3LJ/zvvfcc3rdcz7nXIUQQoCIiIhIZvQKuwAiIiKiwsAQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEH8ypU6dgZGSEW7du6aS9y5cvw8DAAP/++69O2qNPg4uLC3r16vXBl7ty5UooFAqcOXPmgy9bDg4dOgSFQoFDhw4VdilqCuvzVljLlRutQ9D169fx9ddfo1SpUjA2NoalpSW8vLywaNEivHjxQpc1fhCXL1/G5MmTcfPmzXzPO2bMGCgUCnTu3Fn3hX1GJkyYgK5du8LZ2VkatnnzZri5uUGlUqFVq1a4e/euxnytW7dG//79NYZXqFABLVq0wMSJE/O0/Ow/Yq8/ihYtioYNG2Lnzp3av7AcuLi4oGXLljptk3Tr5s2bGp+H3B7a7BeI3uX48eOYPHkyEhISCrsU2TLQZqYdO3agY8eOUCqV6NmzJypVqoT09HT8/fffGD16NC5duoTly5frutYCdfnyZUyZMgU+Pj5wcXHJ83xCCPz+++9wcXHBtm3b8OzZM1hYWBRcoZ+o8+fPY9++fTh+/Lg07L///kPnzp3RuXNneHp6YuHChejduzd2794tTbN7924cOXIE0dHRObY7YMAANG/eHNevX0fp0qXzVEtwcDBcXV0hhEB8fDxWrlyJ5s2bY9u2bQwun4CoqCjo6b3/QWw7OzusXr1abdi8efNw584dLFiwQGNaIl07fvw4pkyZgl69esHKykptnK4+5/R2+Q5BN27cQJcuXeDs7IwDBw6gWLFi0rhBgwYhJiYGO3bseO/ChBBITU2FiYmJxrjU1FQYGRl9FB+QQ4cO4c6dOzhw4AD8/PywceNGBAQEFHZZOvXy5UtkZWXByMhI6zZCQ0NRsmRJ1KlTRxq2Z88elChRAqtWrYJCoYC7uzsaNWqE1NRUGBsb4+XLlxgxYgQmTpyY6x8hX19fWFtbY9WqVQgODs5TLc2aNUPNmjWl53379oW9vT1+//13hqBPgFKp1Ek7ZmZm6NGjh9qwdevW4enTpxrD6dOTnJwMMzOzwi5Da7r6nH8IKSkpMDU1/SDL0vV6zXeKmD17Np4/f45ff/1VLQBlK1OmDIYNGyY9f/nyJaZOnYrSpUtDqVTCxcUF48ePR1pamtp82acPdu/ejZo1a8LExAQ///yzdJ543bp1+O6771C8eHGYmpoiKSkJABAREYEvv/wSKpUKpqam8Pb2xrFjxzTqiouLQ9++feHo6AilUglXV1cMHDgQ6enpWLlyJTp27AgAaNiwoXQIPC/npsPCwlChQgU0bNgQvr6+CAsL05gm+zX8+eefmD59OkqUKAFjY2M0btwYMTExatNGR0fD398fDg4OMDY2RokSJdClSxckJiYCANq3b48aNWqozdOqVSsoFAps3bpVGhYREQGFQqF2michIQHDhw+Hk5MTlEolypQpg1mzZiErK0uaJvsUwdy5c7Fw4UJpvV2+fBkAsHjxYlSsWBGmpqawtrZGzZo1sXbt2ne+T5s3b0ajRo2gUCikYS9evICVlZU0zMbGBkII6XTqTz/9hMzMTAwZMiTXdg0NDeHj44MtW7a8s4bcWFlZwcTEBAYGr74TCCHg4uKCNm3aaEybmpoKlUqFr7/+WuvlZTt69Cg6duyIkiVLQqlUwsnJCSNGjNA4ndyrVy+Ym5sjLi4Obdu2hbm5Oezs7DBq1ChkZmaqTfv48WN89dVXsLS0hJWVFQICAnDhwgUoFAqsXLlSms7Hxwc+Pj4aNfXq1UvjSOjcuXNRt25d2NrawsTEBB4eHli/fr3GvC9evMDQoUNRpEgRWFhYoHXr1oiLi4NCocDkyZPVpo2Li0OfPn1gb28PpVKJihUr4n//+1+e3rc3+0pkn+Y8duwYRo4cCTs7O5iZmaFdu3Z4+PBhntrMj7S0tDwtZ+fOnahfvz7MzMxgYWGBFi1a4NKlS2rTZK/b2NhYtGzZEubm5ihevDhCQkIAABcvXkSjRo1gZmYGZ2fnHLe1vGzXAHDv3j1cvXoVGRkZ73yNycnJ+Pbbb6U2y5cvj7lz50IIoTHtmjVrUKtWLWmf0KBBA+zZs0can9P6B/LW5yW/28j169fRvHlzWFhYoHv37rm2O3nyZCgUCly9ehWdOnWCpaUlbG1tMWzYMKSmpr61pidPnmDUqFGoXLkyzM3NYWlpiWbNmuHChQsa075tfzl58mSMHj0aAODq6qpx6jWn9ychIQEjRoyAi4sLlEolSpQogZ49e+LRo0dvrXnv3r2oV68erKysYG5ujvLly2P8+PHS+Oxt6M3Tvjn10/Lx8UGlSpUQGRmJBg0awNTUVGorr/sfALh69So6dOgAGxsbGBsbo2bNmmp/w16v6/Dhw/jmm29QtGhRlChRAgcPHoRCocCmTZs0XuvatWuhUChw4sSJt74n2fJ9JGjbtm0oVaoU6tatm6fp+/Xrh1WrVqFDhw749ttvERERgZkzZ+LKlSsaLyAqKgpdu3bF119/jcDAQJQvX14aN3XqVBgZGWHUqFFIS0uDkZERDhw4gGbNmsHDwwOTJk2Cnp4eQkND0ahRIxw9ehS1atUCANy9exe1atVCQkIC+vfvDzc3N8TFxWH9+vVISUlBgwYNMHToUPz4448YP3483N3dAUD6NzdpaWnYsGEDvv32WwBA165d0bt3b9y/fx8ODg4a0//www/Q09PDqFGjkJiYiNmzZ6N79+6IiIgAAKSnp8PPzw9paWkYMmQIHBwcEBcXh+3btyMhIQEqlQr169fHli1bkJSUBEtLSwghcOzYMejp6eHo0aNo3bo1gFc7Dz09PXh5eQF4ldS9vb0RFxeHr7/+GiVLlsTx48cRFBSEe/fuYeHChWq1hoaGIjU1Ff3794dSqYSNjQ1WrFiBoUOHokOHDtLO4p9//kFERAS6deuW6/sUFxeH2NhYjfD2xRdf4Ntvv8Xvv/+OOnXqYPr06ShTpgysra3x8OFDTJkyBWvWrIGhoeFb14OHh4fae/IuiYmJePToEYQQePDgARYvXoznz59L3/4VCgV69OiB2bNn48mTJ7CxsZHm3bZtG5KSknRypCA8PBwpKSkYOHAgbG1tcerUKSxevBh37txBeHi42rSZmZnw8/ND7dq1MXfuXOzbtw/z5s1D6dKlMXDgQABAVlYWWrVqhVOnTmHgwIFwc3PDli1b3vvI5KJFi9C6dWt0794d6enpWLduHTp27Ijt27ejRYsW0nS9evXCn3/+ia+++gp16tTB4cOH1cZni4+PR506daBQKDB48GDY2dlh586d6Nu3L5KSkjB8+HCt6hwyZAisra0xadIk3Lx5EwsXLsTgwYPxxx9/aPvStV7O6tWrERAQAD8/P8yaNQspKSlYunQp6tWrh3PnzqkFzczMTDRr1gwNGjTA7NmzERYWhsGDB8PMzAwTJkxA9+7d0b59eyxbtgw9e/aEp6cnXF1dAeRvuw4KCsKqVatw48aNt57yF0KgdevWOHjwIPr27Ytq1aph9+7dGD16NOLi4tROFU6ZMgWTJ09G3bp1ERwcDCMjI0RERODAgQNo2rTpe7/X+dlGXr58CT8/P9SrVw9z587N05GJTp06wcXFBTNnzsTJkyfx448/4unTp/jtt99ynee///7D5s2b0bFjR7i6uiI+Ph4///wzvL29cfnyZTg6OgLAO/eX7du3x7Vr1/D7779jwYIFKFKkCIDcT70+f/4c9evXx5UrV9CnTx/UqFEDjx49wtatW3Hnzh1p/jddunQJLVu2RJUqVRAcHAylUomYmJgcDxbk1ePHj9GsWTN06dIFPXr0gL29fb72P5cuXYKXlxeKFy+OcePGwczMDH/++Sfatm2LDRs2oF27dmrTf/PNN7Czs8PEiRORnJwMHx8fODk5ISwsTGPasLAwlC5dGp6ennl7MSIfEhMTBQDRpk2bPE1//vx5AUD069dPbfioUaMEAHHgwAFpmLOzswAgdu3apTbtwYMHBQBRqlQpkZKSIg3PysoSZcuWFX5+fiIrK0sanpKSIlxdXUWTJk2kYT179hR6enri9OnTGjVmzxseHi4AiIMHD+bptQkhxPr16wUAER0dLYQQIikpSRgbG4sFCxbk+Brc3d1FWlqaNHzRokUCgLh48aIQQohz584JACI8PDzXZZ4+fVoAEH/99ZcQQoh//vlHABAdO3YUtWvXlqZr3bq1qF69uvR86tSpwszMTFy7dk2tvXHjxgl9fX0RGxsrhBDixo0bAoCwtLQUDx48UJu2TZs2omLFinl9eyT79u0TAMS2bds0xg0dOlQAEACEjY2N9JkIDAwUX375ZZ7aX7t2rQAgIiIi3jpdaGiotKzXH0qlUqxcuVJt2qioKAFALF26VG1469athYuLi9pnLifOzs6iRYsWb53m9c9ztpkzZwqFQiFu3bolDQsICBAARHBwsNq01atXFx4eHtLzDRs2CABi4cKF0rDMzEzRqFEjAUCEhoZKw729vYW3t7fG8gMCAoSzs/Nb60xPTxeVKlUSjRo1koZFRkYKAGL48OFq0/bq1UsAEJMmTZKG9e3bVxQrVkw8evRIbdouXboIlUqV4/vyOmdnZxEQECA9z16vvr6+autlxIgRQl9fXyQkJLy1vde1aNFC4/XndznPnj0TVlZWIjAwUG3++/fvC5VKpTY8e93OmDFDGvb06VNhYmIiFAqFWLdunTT86tWrGu9lXrfr15d148aNt74HmzdvFgDEtGnT1IZ36NBBKBQKERMTI4QQIjo6Wujp6Yl27dqJzMxMtWlff3/erDnbm+sxez/5+j44v9vIuHHj3vrask2aNEkAEK1bt1Yb/s033wgA4sKFC7nWmZqaqvF6b9y4IZRKpdo2mpf95Zw5c3JdJ28ud+LEiQKA2Lhxo8a0b9sfLViwQAAQDx8+zHWa7M/2m3XktE68vb0FALFs2TK1afOz/2ncuLGoXLmySE1NVXsNdevWFWXLltWoq169euLly5dqywsKChJKpVJt+37w4IEwMDDI8fOWm3ydDss+BZXXjr9//fUXAGDkyJFqw7OPnLzZd8jV1RV+fn45thUQEKDWP+j8+fOIjo5Gt27d8PjxYzx69AiPHj1CcnIyGjdujCNHjiArKwtZWVnYvHkzWrVqpdYPJNvrp2fyKywsDDVr1kSZMmUAQDrkndMpMQDo3bu3Wr+a+vXrA3j1zQIAVCoVgFedgVNSUnJso3r16jA3N8eRI0cAvDrik31I9OzZs0hJSYEQAn///bfUPvDqG1X9+vVhbW0tvVePHj2Cr68vMjMzpfay+fv7a3wjsbKywp07d3D69Ok8v0fAq28NAGBtba0xbtGiRbh16xYiIiJw69YtNGzYEOfPn8dvv/2GBQsWIDExET169EDx4sXh4+ODK1euaLSR3e67DglnCwkJwd69e7F3716sWbMGDRs2RL9+/bBx40ZpmnLlyqF27dpq6/LJkyfYuXMnunfv/l6fm2yvf56Tk5Px6NEj1K1bF0IInDt3TmP6AQMGqD2vX7++9NkBgF27dsHQ0BCBgYHSMD09PQwaNEhndT59+hSJiYmoX78+zp49q7Zs4NU3tte9eSpTCIENGzagVatWEEKofRb9/PyQmJio1m5+9O/fX2291K9fH5mZmTq7JUNel7N3714kJCSga9euaq9PX18ftWvXxsGDBzXa7Nevn/R/KysrlC9fHmZmZujUqZM0vHz58rCyslJb5/nZrleuXCmd6n2bv/76C/r6+hg6dKja8G+//RZCCOkU++bNm5GVlYWJEydq9M/UxfYB5H8byT4qmldvbhvZn9fsv105USqV0uvNzMzE48ePpVNMr392td1f5mbDhg2oWrWqxpEP4O3vd3aH6y1btmicItWWUqlE79691Ybldf/z5MkTHDhwAJ06dcKzZ8+kz+zjx4/h5+eH6OhoxMXFqc0TGBgIfX19tWE9e/ZEWlqa2qn5P/74Ay9fvszXkfp8nQ7LPtXw7NmzPE1/69Yt6OnpSSEhm4ODA6ysrDR2TtmHeHPy5rjsq4Xedqg/MTER6enpSEpKQqVKlfJUc14lJCTgr7/+wuDBg9X69Xh5eWHDhg24du0aypUrpzZPyZIl1Z5n//F++vQpgFevceTIkZg/fz7CwsJQv359tG7dGj169JACkr6+Pjw9PXH06FEAr0JQ/fr1Ua9ePWRmZuLkyZOwt7fHkydP1EJQdHQ0/vnnn1wPtT548EDteU7rYuzYsdi3bx9q1aqFMmXKoGnTpujWrZt0yu1dRA79CYBX78vr783QoUMxYMAAuLm5oUePHrh9+za2bNmCVatWoVWrVrh69arUf+f1dvO6461Vq5ZaIO7atSuqV6+OwYMHo2XLllJQ7dmzJwYPHoxbt27B2dkZ4eHhyMjIwFdffZWn5bxLbGwsJk6ciK1bt0qfgWzZfcCyGRsba6w7a2trtflu3bqFYsWKaZwGeHP7y6/t27dj2rRpOH/+vFpfvtff7+xt/c3PzZvLfvjwIRISErB8+fJcryB987OYV+/avnTlXcvJ3jc1atQox/nfPGWb07pVqVQoUaKExmdapVKpvZ78btd5cevWLTg6Omp82c3uHpC9375+/Tr09PRQoUKFfC8jr/KzjRgYGKBEiRL5ar9s2bJqz0uXLg09Pb233hIhKysLixYtwpIlS3Djxg21fnm2trbS/993f/mm69evw9/fP9/zde7cGb/88gv69euHcePGoXHjxmjfvj06dOig9cVFxYsX17hQJq/7n5iYGAgh8P333+P777/Psf0HDx6gePHi0vOc/h65ubnhiy++QFhYGPr27Qvg1YGJOnXq5Gufl+8Q5OjomO+b0+X1j1NOV4LlNi470c6ZMwfVqlXLcR5zc3M8efIkb0XmU3h4ONLS0jBv3jzMmzdPY3xYWBimTJmiNuzNJJvt9XAwb9489OrVC1u2bMGePXswdOhQ6Xx19gZer149TJ8+HampqTh69CgmTJgAKysrVKpUCUePHoW9vT0AqIWgrKwsNGnSBGPGjMmxhjcDW07rwt3dHVFRUdi+fTt27dqFDRs2YMmSJZg4caLGa31d9o4hL3+M/vjjD1y5cgVbt25FZmYm/vzzT+zZswc1a9ZExYoVsWLFCpw8eRL16tWT5sluN7dz4u+ip6eHhg0bYtGiRYiOjkbFihUBAF26dMGIESMQFhaG8ePHY82aNahZs6ZaXzVtZWZmokmTJnjy5AnGjh0LNzc3mJmZIS4uDr169dL4xpbbZ0dbCoUix1D6Zkfr7H5mDRo0wJIlS1CsWDEYGhoiNDQ0Tx3i35T9unr06JHrF5gqVarku10gb9uXLrxrOdmvcfXq1Tn2DXw9wL+tvby8nvxu1x+TNz9rOY3Pzzby+hEabeXlb9WMGTPw/fffo0+fPpg6dSpsbGygp6eH4cOHq9Wk7f5S10xMTHDkyBEcPHgQO3bswK5du/DHH3+gUaNG2LNnD/T19XN93bmto7f9rX6X7Pdo1KhRuZ75eTPE5La8nj17YtiwYbhz5w7S0tJw8uRJ/PTTT/mqJ98do1u2bInly5fjxIkT7+x45OzsjKysLERHR6t1Mo6Pj0dCQoLaTfPyK/ueMJaWlvD19c11Ojs7O1haWr4zuOX38G1YWBgqVaqESZMmaYz7+eefsXbtWq0/6JUrV0blypXx3Xff4fjx4/Dy8sKyZcswbdo0AK/CTXp6On7//XfExcVJYadBgwZSCCpXrpwUhoBX79fz58/f+l7lhZmZmXRvn/T0dLRv3x7Tp09HUFAQjI2Nc5zHzc0NwKvbK7xNSkoKRo8ejalTp8LKygrx8fHIyMiQOhqamJjA2tpa41DpjRs3oKen9147/JcvXwJ41fkwm42NjXR6s3v37jh27JhGB3JtXbx4EdeuXcOqVavQs2dPafjevXu1btPZ2RkHDx7UuFz1zSsQgVdHL14/rZLtzaOzGzZsgLGxMXbv3q12yW5oaKjGsrOysnDjxg21b9dvLtvOzg4WFhbIzMx878/ixyp731S0aNECf4262q5f5+zsjH379mnc8+zq1avS+OxlZ2Vl4fLly7l+EQVefdbevBlgeno67t2799Y6CmIbeVN0dLTaUYaYmBhkZWW99ZTh+vXr0bBhQ/z6669qwxMSEjS+iL1rf5mfvzulS5fW+u74enp6aNy4MRo3boz58+djxowZmDBhAg4ePCjdZiT7NbwuP6eS87r/KVWqFIBXV/a+7+e2S5cuGDlyJH7//Xe8ePEChoaG+b5pcb5j85gxY2BmZoZ+/fohPj5eY/z169exaNEiAEDz5s0BQOMPx/z58wEgxytH8srDwwOlS5fG3Llz1f5wZcu+ZFVPTw9t27bFtm3bcrzdffa3quz7DuTlzp23b9/GkSNH0KlTJ3To0EHj0bt3b8TExEhXfeVVUlKS9Mc4W+XKlaGnp6d2GqJ27dowNDTErFmzYGNjIx25qF+/Pk6ePInDhw+rHQUCXl0FceLECbUbEWZLSEjQWG5Osvv2ZDMyMkKFChUghHjrZbfFixeHk5PTO39uYNasWbC2tpbOKdva2sLAwEDa+T569AgPHz7U+HYdGRmJihUrSqcM8ysjIwN79uyBkZGRxhWBX331FS5fvozRo0dDX18fXbp00WoZb8r+lv/6t3ohhLTtaMPPzw8ZGRlYsWKFNCwrK0u63Pp1pUuXxtWrV9Uu7b5w4YLGFSPZ3xJf/0Z48+ZNbN68WWPZALBkyRK14YsXL9Zoz9/fHxs2bMhxh14Ql7R/aH5+frC0tMSMGTNy3C50+Rrzs13n9RL55s2bIzMzU+Mb9YIFC6BQKNCsWTMAQNu2baGnp4fg4GCNozKvf65Lly6t0edw+fLl7zwSVBDbyJve3DayP6/ZrzG3ut48uhgeHq7x5Swv+8v8/N3x9/fHhQsXcrws/G1HO3M6G5IdWrP/rmQH99fXU2ZmZr5uepzX/U/RokXh4+ODn3/+OccgnJ/to0iRImjWrBnWrFmDsLAwfPnll/k+I5DvI0GlS5fG2rVr0blzZ7i7u6vdMfr48eMIDw+X7m1QtWpVBAQEYPny5UhISIC3tzdOnTqFVatWoW3btmjYsGF+Fy/R09PDL7/8gmbNmqFixYro3bs3ihcvjri4OBw8eBCWlpbYtm0bgFeHL/fs2QNvb2/0798f7u7uuHfvHsLDw/H333/DysoK1apVg76+PmbNmoXExEQolUo0atQIRYsW1Vj22rVrpctIc9K8eXMYGBggLCwMtWvXzvNrOnDgAAYPHoyOHTuiXLlyePnyJVavXi394chmamoKDw8PnDx5UrpHEPDqSFBycjKSk5M1QtDo0aOxdetWtGzZEr169YKHhweSk5Nx8eJFrF+/Hjdv3nznh6dp06ZwcHCAl5cX7O3tceXKFfz0009o0aLFOzvLt2nTBps2bYIQIsdvP7GxsZgzZw527Ngh7fwMDAzQpk0bDB8+HLGxsdi0aRMcHR3VjkBmZGRI95DIq507d0rB6sGDB1i7di2io6Mxbtw4jf4aLVq0gK2tLcLDw9GsWbMcPw+5iYmJkY7eva569epo2rQpSpcujVGjRiEuLg6WlpbYsGHDe/Vfadu2LWrVqoVvv/0WMTExcHNzw9atW6Wd4Ovve58+fTB//nz4+fmhb9++ePDgAZYtW4aKFStKF0Bkv/758+fjyy+/RLdu3fDgwQOEhISgTJky+Oeff6TpPDw84O/vj4ULF+Lx48fSJfLXrl3TWPYPP/yAgwcPonbt2ggMDESFChXw5MkTnD17Fvv27SuwU9gfiqWlJZYuXYqvvvoKNWrUQJcuXWBnZ4fY2Fjs2LEDXl5e+T5kn5v8bNd5vUS+VatWaNiwISZMmICbN2+iatWq2LNnD7Zs2YLhw4dLfzDLlCmDCRMmYOrUqahfvz7at28PpVKJ06dPw9HRETNnzgTwqtP3gAED4O/vjyZNmuDChQvYvXv3O/c3bm5uOt9G3nTjxg20bt0aX375JU6cOIE1a9agW7duqFq1aq7ztGzZEsHBwejduzfq1q2LixcvIiwsTDrCkS0v+0sPDw8Ar35SqEuXLjA0NESrVq1yvBng6NGjsX79enTs2BF9+vSBh4cHnjx5gq1bt2LZsmW51hwcHIwjR46gRYsWcHZ2xoMHD7BkyRKUKFFC6lZQsWJF1KlTB0FBQdJtQdatW5enL8fZ8rP/CQkJQb169VC5cmUEBgaiVKlSiI+Px4kTJ3Dnzp0c77mUm549e6JDhw4AXt1KJ9/yfB3ZG65duyYCAwOFi4uLMDIyEhYWFsLLy0ssXrxY7bK3jIwMMWXKFOHq6ioMDQ2Fk5OTCAoKUptGiNwvKc6+RC+3y8bPnTsn2rdvL2xtbYVSqRTOzs6iU6dOYv/+/WrT3bp1S/Ts2VPY2dkJpVIpSpUqJQYNGqR2yfqKFStEqVKlhL6+/lsvl69cubIoWbLkW98fHx8fUbRoUZGRkZHra8i+HD370sH//vtP9OnTR5QuXVoYGxsLGxsb0bBhQ7Fv3z6N9kePHi0AiFmzZqkNL1OmjAAgrl+/rjHPs2fPRFBQkChTpowwMjISRYoUEXXr1hVz584V6enpajXNmTNHY/6ff/5ZNGjQQHqvS5cuLUaPHi0SExPf+l4IIcTZs2cFAHH06NEcx3fs2FG0b99eY3h8fLxo1aqVsLCwEDVq1BBnzpxRG79z50612xS8TU6XyBsbG4tq1aqJpUuX5nqZafZls2vXrn3nMrJl3/Ihp0ffvn2FEEJcvnxZ+Pr6CnNzc1GkSBERGBgoLly4oHE5aUBAgDAzM9NYRvZlvq97+PCh6Natm7CwsBAqlUr06tVLHDt2TABQu9xaCCHWrFkjSpUqJYyMjES1atXE7t27c7xE/tdffxVly5YVSqVSuLm5idDQ0ByXnZycLAYNGiRsbGyEubm5aNu2rXSrgR9++EFt2vj4eDFo0CDh5OQkDA0NhYODg2jcuLFYvnx5nt7bnC6Rf/MWGDld3vsueblEPq/LOXjwoPDz8xMqlUoYGxuL0qVLi169eql9hnNbt97e3jleXp3TfjIv23X2spCHS+Sz2xwxYoRwdHQUhoaGomzZsmLOnDk5biP/+9//RPXq1YVSqRTW1tbC29tb7N27VxqfmZkpxo4dK4oUKSJMTU2Fn5+fiImJydMl8u+7jeQm+/N7+fJl0aFDB2FhYSGsra3F4MGDxYsXL9SmzekS+W+//VYUK1ZMmJiYCC8vL3HixAmN207kdX85depUUbx4caGnp6e2ft5crhBCPH78WAwePFgUL15cGBkZiRIlSoiAgACN2028bv/+/aJNmzbC0dFRGBkZCUdHR9G1a1eN2ypcv35d+Pr6CqVSKezt7cX48ePF3r17c7xEPrdL//Oz/7l+/bro2bOncHBwEIaGhqJ48eKiZcuWYv369dI0uW1zr0tLSxPW1tZCpVJprLu80DoEEeVXo0aNRI8ePXTaZps2bUTbtm112uabhg8fLiwsLERycnKBLqegbNq0SQAQf//99wdfdva9r9asWfPBl02Um+wQ9LZ755BuFPT+JyMjQ9jZ2Yk+ffpoNX/h//gWycaMGTPwxx9/6Oy+LVeuXMH27du1OwSaR6mpqVizZg38/f0/2G/jvI83f04gMzMTixcvhqWlpcYduwt62cCr/oB6enpo0KBBgS6biApfYex/Nm/ejIcPH6p1ns8PrX5FnkgbtWvXRnp6us7ac3d3z9c56/x48OAB9u3bh/Xr1+Px48dqv4f3MRsyZAhevHgBT09PpKWlYePGjTh+/DhmzJjxXpe15sXs2bMRGRmJhg0bwsDAADt37sTOnTvRv39/ODk5Feiyiajwfcj9T0REBP755x9MnToV1atXh7e3t3YN6fjIFNFnIbt/QtGiRcXixYsLu5w8CwsLEzVq1BCWlpbCyMhIVKhQ4YPVv2fPHuHl5SWsra2FoaGhKF26tJg8ebLIyMj4IMsnyiueDisYH3L/ExAQIPT19YWHh4f001PaUAih4zuJEREREX0C2CeIiIiIZIkhiIiIiGTps+8YnZWVhbt378LCwkJnv2xMREQkB0IIPHv2DI6Oju/922wfo88+BN29e5dXphAREb2H27dvSz/i/Tn57ENQ9u3Jb9++rfGTCERERJS7pKQkODk5vfOnkT5Vn30Iyj4FZmlpyRBERESkhc+1O8nnd4KPiIiIKA8YgoiIiEiWGIKIiIhIlhiCiIiISJYYgoiIiEiWGIKIiIhIlhiCiIiISJYKNQS5uLhAoVBoPAYNGgQASE1NxaBBg2Brawtzc3P4+/sjPj6+MEsmIiKiz0ShhqDTp0/j3r170mPv3r0AgI4dOwIARowYgW3btiE8PByHDx/G3bt30b59+8IsmYiIiD4TCiGEKOwisg0fPhzbt29HdHQ0kpKSYGdnh7Vr16JDhw4AgKtXr8Ld3R0nTpxAnTp18tRmUlISVCoVEhMTecdoIiKifPjc/4Z+NH2C0tPTsWbNGvTp0wcKhQKRkZHIyMiAr6+vNI2bmxtKliyJEydO5NpOWloakpKS1B5EREREb/poQtDmzZuRkJCAXr16AQDu378PIyMjWFlZqU1nb2+P+/fv59rOzJkzoVKppAd/QZ6IiIhy8tGEoF9//RXNmjWDo6Pje7UTFBSExMRE6XH79m0dVUhERESfk4/iV+Rv3bqFffv2YePGjdIwBwcHpKenIyEhQe1oUHx8PBwcHHJtS6lUQqlUFmS5RERE9Bn4KI4EhYaGomjRomjRooU0zMPDA4aGhti/f780LCoqCrGxsfD09CyMMomIiOgzUuhHgrKyshAaGoqAgAAYGPx/OSqVCn379sXIkSNhY2MDS0tLDBkyBJ6ennm+MoyIiIgoN4Uegvbt24fY2Fj06dNHY9yCBQugp6cHf39/pKWlwc/PD0uWLCmEKomIiOhz81HdJ6ggfO73OCAiIioon/vf0I+iTxARERHRh1bop8M+VS7jdhR2CZ+9mz+0ePdEREREWuKRICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikqVCD0FxcXHo0aMHbG1tYWJigsqVK+PMmTPSeCEEJk6ciGLFisHExAS+vr6Ijo4uxIqJiIjoc1CoIejp06fw8vKCoaEhdu7cicuXL2PevHmwtraWppk9ezZ+/PFHLFu2DBERETAzM4Ofnx9SU1MLsXIiIiL61BkU5sJnzZoFJycnhIaGSsNcXV2l/wshsHDhQnz33Xdo06YNAOC3336Dvb09Nm/ejC5dunzwmomIiOjzUKhHgrZu3YqaNWuiY8eOKFq0KKpXr44VK1ZI42/cuIH79+/D19dXGqZSqVC7dm2cOHEixzbT0tKQlJSk9iAiIiJ6U6GGoP/++w9Lly5F2bJlsXv3bgwcOBBDhw7FqlWrAAD3798HANjb26vNZ29vL41708yZM6FSqaSHk5NTwb4IIiIi+iQVagjKyspCjRo1MGPGDFSvXh39+/dHYGAgli1bpnWbQUFBSExMlB63b9/WYcVERET0uSjUEFSsWDFUqFBBbZi7uztiY2MBAA4ODgCA+Ph4tWni4+OlcW9SKpWwtLRUexARERG9qVBDkJeXF6KiotSGXbt2Dc7OzgBedZJ2cHDA/v37pfFJSUmIiIiAp6fnB62ViIiIPi+FenXYiBEjULduXcyYMQOdOnXCqVOnsHz5cixfvhwAoFAoMHz4cEybNg1ly5aFq6srvv/+ezg6OqJt27aFWToRERF94go1BH3xxRfYtGkTgoKCEBwcDFdXVyxcuBDdu3eXphkzZgySk5PRv39/JCQkoF69eti1axeMjY0LsXIiIiL61CmEEKKwiyhISUlJUKlUSExM1Gn/IJdxO3TWFuXs5g8tCrsEIiJZK6i/oR+LQv/ZDCIiIqLCwBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREssQQRERERLLEEERERESyxBBEREREsmRQ2AUQEeWHy7gdhV3CZ+/mDy0KpF2uu4JXUOvuc8UjQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkSwxBREREJEsMQURERCRLDEFEREQkS4UagiZPngyFQqH2cHNzk8anpqZi0KBBsLW1hbm5Ofz9/REfH1+IFRMREdHnotCPBFWsWBH37t2THn///bc0bsSIEdi2bRvCw8Nx+PBh3L17F+3bty/EaomIiOhzYVDoBRgYwMHBQWN4YmIifv31V6xduxaNGjUCAISGhsLd3R0nT55EnTp1PnSpRERE9Bkp9CNB0dHRcHR0RKlSpdC9e3fExsYCACIjI5GRkQFfX19pWjc3N5QsWRInTpzItb20tDQkJSWpPYiIiIjeVKhHgmrXro2VK1eifPnyuHfvHqZMmYL69evj33//xf3792FkZAQrKyu1eezt7XH//v1c25w5cyamTJlSwJXTp8xl3I7CLuGzd/OHFoVdAhHROxVqCGrWrJn0/ypVqqB27dpwdnbGn3/+CRMTE63aDAoKwsiRI6XnSUlJcHJyeu9aiYiI6PNS6KfDXmdlZYVy5cohJiYGDg4OSE9PR0JCgto08fHxOfYhyqZUKmFpaan2ICIiInrTRxWCnj9/juvXr6NYsWLw8PCAoaEh9u/fL42PiopCbGwsPD09C7FKIiIi+hwU6umwUaNGoVWrVnB2dsbdu3cxadIk6Ovro2vXrlCpVOjbty9GjhwJGxsbWFpaYsiQIfD09OSVYURERPTeCjUE3blzB127dsXjx49hZ2eHevXq4eTJk7CzswMALFiwAHp6evD390daWhr8/PywZMmSwiyZiIiIPhOFGoLWrVv31vHGxsYICQlBSEjIB6qIiIiI5OKj6hNERERE9KEwBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSxp9SvyN27cwNGjR3Hr1i2kpKTAzs4O1atXh6enJ4yNjXVdIxEREZHO5SsEhYWFYdGiRThz5gzs7e3h6OgIExMTPHnyBNevX4exsTG6d++OsWPHwtnZuaBqJiIiInpveQ5B1atXh5GREXr16oUNGzbAyclJbXxaWhpOnDiBdevWoWbNmliyZAk6duyo84KJiIiIdCHPIeiHH36An59fruOVSiV8fHzg4+OD6dOn4+bNm7qoj4iIiKhA5DkEvS0AvcnW1ha2trZaFURERET0IWjVMfp1O3bswKFDh5CZmQkvLy/4+/vroi4iIiKiAvVel8h///33GDNmDBQKBYQQGDFiBIYMGaKr2oiIiIgKTL6OBJ05cwY1a9aUnv/xxx+4cOECTExMAAC9evWCj48PFi9erNsqiYiIiHQsX0eCBgwYgOHDhyMlJQUAUKpUKcybNw9RUVG4ePEili5dinLlyhVIoURERES6lK8QFBERgWLFiqFGjRrYtm0b/ve//+HcuXOoW7cu6tevjzt37mDt2rUFVSsRERGRzuTrdJi+vj7Gjh2Ljh07YuDAgTAzM8NPP/0ER0fHgqqPiIiIqEBo1TG6VKlS2L17N9q1a4cGDRogJCRE13URERERFah8haCEhASMGTMGrVq1wnfffYd27dohIiICp0+fRp06dXDx4sWCqpOIiIhIp/IVggICAhAREYEWLVogKioKAwcOhK2tLVauXInp06ejc+fOGDt2bEHVSkRERKQz+eoTdODAAZw7dw5lypRBYGAgypQpI41r3Lgxzp49i+DgYJ0XSURERKRr+ToSVLZsWSxfvhzXrl3DsmXLNH4p3tjYGDNmzNBpgUREREQFIV8h6H//+x8OHDiA6tWrY+3atVi6dGlB1UVERERUoPJ1OqxatWo4c+ZMQdVCRERE9MHk+UiQEKIg6yAiIiL6oPIcgipWrIh169YhPT39rdNFR0dj4MCB+OGHH967OCIiIqKCkufTYYsXL8bYsWPxzTffoEmTJqhZsyYcHR1hbGyMp0+f4vLly/j7779x6dIlDB48GAMHDizIuomIiIjeS55DUOPGjXHmzBn8/fff+OOPPxAWFoZbt27hxYsXKFKkCKpXr46ePXuie/fusLa2LsiaiYiIiN5bvjpGA0C9evVQr169gqiFiIiI6IPR6rfDiIiIiD51DEFEREQkSwxBREREJEsMQURERCRLDEFEREQkS1qFoLNnz+LixYvS8y1btqBt27YYP378O2+mSERERPQx0CoEff3117h27RoA4L///kOXLl1gamqK8PBwjBkzRqcFEhERERUErULQtWvXUK1aNQBAeHg4GjRogLVr12LlypXYsGGDLusjIiIiKhBahSAhBLKysgAA+/btQ/PmzQEATk5OePToke6qIyIiIiogWoWgmjVrYtq0aVi9ejUOHz6MFi1aAABu3LgBe3t7nRZIREREVBC0CkELFy7E2bNnMXjwYEyYMAFlypQBAKxfvx5169bVaYFEREREBSHfvx2WmZmJhIQEHDlyROOHUufMmQN9fX2dFUdERERUUPJ9JEhfXx9NmzZFQkKCxjhjY2MYGhrqoi4iIiKiAqXV6bBKlSrhv//+03UtRERERB+MViFo2rRpGDVqFLZv34579+4hKSlJ7UFERET0sct3nyAA0iXxrVu3hkKhkIYLIaBQKJCZmamb6oiIiIgKiFYh6ODBg7qug4iIiOiD0ioEeXt767oO/PDDDwgKCsKwYcOwcOFCAEBqaiq+/fZbrFu3DmlpafDz88OSJUt4LyIiIiJ6b1r/ivzRo0fRo0cP1K1bF3FxcQCA1atX4++//853W6dPn8bPP/+MKlWqqA0fMWIEtm3bhvDwcBw+fBh3795F+/bttS2ZiIiISKJVCNqwYQP8/PxgYmKCs2fPIi0tDQCQmJiIGTNm5Kut58+fo3v37lixYoXafYcSExPx66+/Yv78+WjUqBE8PDwQGhqK48eP4+TJk9qUTURERCTR+uqwZcuWYcWKFWr3BfLy8sLZs2fz1dagQYPQokUL+Pr6qg2PjIxERkaG2nA3NzeULFkSJ06cyLW9tLQ0Xq1GRERE76RVn6CoqCg0aNBAY7hKpcrxJoq5WbduHc6ePYvTp09rjLt//z6MjIxgZWWlNtze3h7379/Ptc2ZM2diypQpea6BiIiI5EmrI0EODg6IiYnRGP7333+jVKlSeWrj9u3bGDZsGMLCwmBsbKxNGTkKCgpCYmKi9Lh9+7bO2iYiIqLPh1YhKDAwEMOGDUNERAQUCgXu3r2LsLAwjBo1CgMHDsxTG5GRkXjw4AFq1KgBAwMDGBgY4PDhw/jxxx9hYGAAe3t7pKenaxxZio+Ph4ODQ67tKpVKWFpaqj2IiIiI3qTV6bBx48YhKysLjRs3RkpKCho0aAClUolRo0ZhyJAheWqjcePGuHjxotqw3r17w83NDWPHjoWTkxMMDQ2xf/9++Pv7A3h1Gi42Nhaenp7alE1EREQk0SoEKRQKTJgwAaNHj0ZMTAyeP3+OChUqwNzcPM9tWFhYoFKlSmrDzMzMYGtrKw3v27cvRo4cCRsbG1haWmLIkCHw9PREnTp1tCmbiIiISKJVCDpw4ADq1q0LY2NjVKhQQdc1SRYsWAA9PT34+/ur3SyRiIiI6H1pFYJat26Nly9f4osvvoCPjw+8vb3h5eUFExOT9yrm0KFDas+NjY0REhKCkJCQ92qXiIiI6E1adYx++vQp9u/fj2bNmuHUqVNo164drKys4OXlhe+++07XNRIRERHpnFYhyNDQEF5eXhg/fjx2796NkydPomvXrjh16hRmzpyp6xqJiIiIdE6r02HXrl3DoUOHcOjQIRw+fBhpaWmoX78+5s6dCx8fHx2XSERERKR7WoUgNzc32NnZYdiwYRg3bhwqV64MhUKh69qIiIiICoxWp8OGDh2K4sWLIzg4GAMGDMCECROwZ88epKSk6Lo+IiIiogKhVQhauHAhzp49i/v37yMoKAjp6emYMGECihQpAi8vL13XSERERKRzWoWgbJmZmcjIyEBaWhpSU1ORlpaGqKgoXdVGREREVGC0Ph1WpUoV2Nvb4+uvv8bdu3cRGBiIc+fO4eHDh7qukYiIiEjntOoYfe/ePfTv3x8+Pj4aP31BRERE9CnQKgSFh4frug4iIiKiD0qr02GrVq3Cjh07pOdjxoyBlZUV6tati1u3bumsOCIiIqKColUImjFjhvQ7YSdOnEBISAhmz56NIkWKYMSIETotkIiIiKggaHU67Pbt2yhTpgwAYPPmzfD390f//v3h5eXFO0YTERHRJ0GrI0Hm5uZ4/PgxAGDPnj1o0qQJgFe/+v7ixQvdVUdERERUQLQ6EtSkSRP069cP1atXx7Vr19C8eXMAwKVLl+Di4qLL+oiIiIgKhFZHgkJCQuDp6YmHDx9iw4YNsLW1BQBERkaia9euOi2QiIiIqCBodSTIysoKP/30k8bwKVOmvHdBRERERB+CViEIABISEnDq1Ck8ePAAWVlZ0nCFQoGvvvpKJ8URERERFRStQtC2bdvQvXt3PH/+HJaWllAoFNI4hiAiIiL6FGjVJ+jbb79Fnz598Pz5cyQkJODp06fS48mTJ7qukYiIiEjntApBcXFxGDp0KExNTXVdDxEREdEHoVUI8vPzw5kzZ3RdCxEREdEHo1WfoBYtWmD06NG4fPkyKleuDENDQ7XxrVu31klxRERERAVFqxAUGBgIAAgODtYYp1AokJmZ+X5VERERERUwrULQ65fEExEREX2KtOoTlJuEhIQcb6JIRERE9LHRSQjav38/unXrhmLFimHSpEm6aJKIiIioQGkdgm7fvo3g4GC4urqiadOmUCgU2LRpE+7fv6/L+oiIiIgKRL5CUEZGBsLDw+Hn54fy5cvj/PnzmDNnDvT09DBhwgR8+eWXGleKEREREX2M8tUxunjx4nBzc0OPHj2wbt06WFtbAwB/OZ6IiIg+Ofk6EvTy5UsoFAooFAro6+sXVE1EREREBS5fIeju3bvo378/fv/9dzg4OMDf3x+bNm1S+wFVIiIiok9BvkKQsbExunfvjgMHDuDixYtwd3fH0KFD8fLlS0yfPh179+7ljRKJiIjok6D11WGlS5fGtGnTcOvWLezYsQNpaWlo2bIl7O3tdVkfERERUYHQ6o7Rr9PT00OzZs3QrFkzPHz4EKtXr9ZFXUREREQFSqd3jLazs8PIkSN12SQRERFRgdBpCCIiIiL6VDAEERERkSwxBBEREZEsaRWCgoODkZKSojH8xYsXCA4Ofu+iiIiIiAqaViFoypQpeP78ucbwlJQUTJky5b2LIiIiIipoWoUgIUSOd4m+cOECbGxs3rsoIiIiooKWr/sEWVtbS78dVq5cObUglJmZiefPn2PAgAE6L5KIiIhI1/IVghYuXAghBPr06YMpU6ZApVJJ44yMjODi4gJPT0+dF0lERESka/kKQQEBAQAAV1dXeHl5wcDgvW84TURERFQotOoTlJycjP3792sM3717N3bu3PneRREREREVNK1C0Lhx43L8tXghBMaNG/feRREREREVNK1CUHR0NCpUqKAx3M3NDTExMe9dFBEREVFB0yoEqVQq/PfffxrDY2JiYGZm9t5FERERERU0rUJQmzZtMHz4cFy/fl0aFhMTg2+//RatW7fWWXFEREREBUWrEDR79myYmZnBzc0Nrq6ucHV1hbu7O2xtbTF37lxd10hERESkc1pd465SqXD8+HHs3bsXFy5cgImJCapUqYIGDRrouj4iIiKiAqH1jX4UCgWaNm2KBg0aQKlU5vgzGkREREQfK61Oh2VlZWHq1KkoXrw4zM3NcePGDQDA999/j19//TXP7SxduhRVqlSBpaUlLC0t4enpqXafodTUVAwaNAi2trYwNzeHv78/4uPjtSmZiIiISI1WIWjatGlYuXIlZs+eDSMjI2l4pUqV8Msvv+S5nRIlSuCHH35AZGQkzpw5g0aNGqFNmza4dOkSAGDEiBHYtm0bwsPDcfjwYdy9exft27fXpmQiIiIiNVqdDvvtt9+wfPlyNG7cWO0HU6tWrYqrV6/muZ1WrVqpPZ8+fTqWLl2KkydPokSJEvj111+xdu1aNGrUCAAQGhoKd3d3nDx5EnXq1NGmdCIiIiIAWh4JiouLQ5kyZTSGZ2VlISMjQ6tCMjMzsW7dOiQnJ8PT0xORkZHIyMiAr6+vNI2bmxtKliyJEydO5NpOWloakpKS1B5EREREb9IqBFWoUAFHjx7VGL5+/XpUr149X21dvHgR5ubmUCqVGDBgADZt2oQKFSrg/v37MDIygpWVldr09vb2uH//fq7tzZw5EyqVSno4OTnlqx4iIiKSB61Oh02cOBEBAQGIi4tDVlYWNm7ciKioKPz222/Yvn17vtoqX748zp8/j8TERKxfvx4BAQE4fPiwNmUBAIKCgjBy5EjpeVJSEoMQERERadAqBLVp0wbbtm1DcHAwzMzMMHHiRNSoUQPbtm1DkyZN8tWWkZGRdGrNw8MDp0+fxqJFi9C5c2ekp6cjISFB7WhQfHw8HBwccm1PqVRCqVRq87KIiIhIRvIdgl6+fIkZM2agT58+2Lt3r84LysrKQlpaGjw8PGBoaIj9+/fD398fABAVFYXY2Fh4enrqfLlEREQkL/kOQQYGBpg9ezZ69uz53gsPCgpCs2bNULJkSTx79gxr167FoUOHsHv3bqhUKvTt2xcjR46EjY0NLC0tMWTIEHh6evLKMCIiInpvWp0Oa9y4MQ4fPgwXF5f3WviDBw/Qs2dP3Lt3DyqVClWqVMHu3bulU2oLFiyAnp4e/P39kZaWBj8/PyxZsuS9lklEREQEaBmCmjVrhnHjxuHixYvw8PCAmZmZ2vi8/pL8u+4ubWxsjJCQEISEhGhTJhEREVGutApB33zzDQBg/vz5GuMUCgUyMzPfryoiIiKiAqZVCMrKytJ1HUREREQfVL5vlpiRkQEDAwP8+++/BVEPERER0QeR7xBkaGiIkiVL8pQXERERfdK0+tmMCRMmYPz48Xjy5Imu6yEiIiL6ILTqE/TTTz8hJiYGjo6OcHZ21rg67OzZszopjoiIiKigaBWC2rZtq+MyiIiIiD4srULQpEmTdF0HERER0QelVQjKFhkZiStXrgAAKlasiOrVq+ukKCIiIqKCplUIevDgAbp06YJDhw5Jv/CekJCAhg0bYt26dbCzs9NljUREREQ6p9XVYUOGDMGzZ89w6dIlPHnyBE+ePMG///6LpKQkDB06VNc1EhEREemcVkeCdu3ahX379sHd3V0aVqFCBYSEhKBp06Y6K46IiIiooGh1JCgrKwuGhoYaww0NDfmTGkRERPRJ0CoENWrUCMOGDcPdu3elYXFxcRgxYgQaN26ss+KIiIiICopWIeinn35CUlISXFxcULp0aZQuXRqurq5ISkrC4sWLdV0jERERkc5p1SfIyckJZ8+exb59+3D16lUAgLu7O3x9fXVaHBEREVFB0fo+QQqFAk2aNEGTJk10WQ8RERHRB5Gv02EHDhxAhQoVkJSUpDEuMTERFStWxNGjR3VWHBEREVFByVcIWrhwIQIDA2FpaakxTqVS4euvv8b8+fN1VhwRERFRQclXCLpw4QK+/PLLXMc3bdoUkZGR710UERERUUHLVwiKj4/P8f5A2QwMDPDw4cP3LoqIiIiooOUrBBUvXhz//vtvruP/+ecfFCtW7L2LIiIiIipo+QpBzZs3x/fff4/U1FSNcS9evMCkSZPQsmVLnRVHREREVFDydYn8d999h40bN6JcuXIYPHgwypcvDwC4evUqQkJCkJmZiQkTJhRIoURERES6lK8QZG9vj+PHj2PgwIEICgqCEALAq3sG+fn5ISQkBPb29gVSKBEREZEu5ftmic7Ozvjrr7/w9OlTxMTEQAiBsmXLwtrauiDqIyIiIioQWt8x2traGl988YUuayEiIiL6YLT6AVUiIiKiTx1DEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREclSoYagmTNn4osvvoCFhQWKFi2Ktm3bIioqSm2a1NRUDBo0CLa2tjA3N4e/vz/i4+MLqWIiIiL6XBRqCDp8+DAGDRqEkydPYu/evcjIyEDTpk2RnJwsTTNixAhs27YN4eHhOHz4MO7evYv27dsXYtVERET0OTAozIXv2rVL7fnKlStRtGhRREZGokGDBkhMTMSvv/6KtWvXolGjRgCA0NBQuLu74+TJk6hTp05hlE1ERESfgY+qT1BiYiIAwMbGBgAQGRmJjIwM+Pr6StO4ubmhZMmSOHHiRI5tpKWlISkpSe1BRERE9KaPJgRlZWVh+PDh8PLyQqVKlQAA9+/fh5GREaysrNSmtbe3x/3793NsZ+bMmVCpVNLDycmpoEsnIiKiT9BHE4IGDRqEf//9F+vWrXuvdoKCgpCYmCg9bt++raMKiYiI6HNSqH2Csg0ePBjbt2/HkSNHUKJECWm4g4MD0tPTkZCQoHY0KD4+Hg4ODjm2pVQqoVQqC7pkIiIi+sQV6pEgIQQGDx6MTZs24cCBA3B1dVUb7+HhAUNDQ+zfv18aFhUVhdjYWHh6en7ocomIiOgzUqhHggYNGoS1a9diy5YtsLCwkPr5qFQqmJiYQKVSoW/fvhg5ciRsbGxgaWmJIUOGwNPTk1eGERER0Xsp1BC0dOlSAICPj4/a8NDQUPTq1QsAsGDBAujp6cHf3x9paWnw8/PDkiVLPnClRERE9Lkp1BAkhHjnNMbGxggJCUFISMgHqIiIiIjk4qO5OoyIiIjoQ2IIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlliCCIiIiJZYggiIiIiWWIIIiIiIlkq1BB05MgRtGrVCo6OjlAoFNi8ebPaeCEEJk6ciGLFisHExAS+vr6Ijo4unGKJiIjos1KoISg5ORlVq1ZFSEhIjuNnz56NH3/8EcuWLUNERATMzMzg5+eH1NTUD1wpERERfW4MCnPhzZo1Q7NmzXIcJ4TAwoUL8d1336FNmzYAgN9++w329vbYvHkzunTp8iFLJSIios/MR9sn6MaNG7h//z58fX2lYSqVCrVr18aJEydynS8tLQ1JSUlqDyIiIqI3fbQh6P79+wAAe3t7teH29vbSuJzMnDkTKpVKejg5ORVonURERPRp+mhDkLaCgoKQmJgoPW7fvl3YJREREdFH6KMNQQ4ODgCA+Ph4teHx8fHSuJwolUpYWlqqPYiIiIje9NGGIFdXVzg4OGD//v3SsKSkJERERMDT07MQKyMiIqLPQaFeHfb8+XPExMRIz2/cuIHz58/DxsYGJUuWxPDhwzFt2jSULVsWrq6u+P777+Ho6Ii2bdsWXtFERET0WSjUEHTmzBk0bNhQej5y5EgAQEBAAFauXIkxY8YgOTkZ/fv3R0JCAurVq4ddu3bB2Ni4sEomIiKiz0ShhiAfHx8IIXIdr1AoEBwcjODg4A9YFREREcnBR9sniIiIiKggMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLDEEERERkSwxBBEREZEsMQQRERGRLH0SISgkJAQuLi4wNjZG7dq1cerUqcIuiYiIiD5xH30I+uOPPzBy5EhMmjQJZ8+eRdWqVeHn54cHDx4UdmlERET0CfvoQ9D8+fMRGBiI3r17o0KFCli2bBlMTU3xv//9r7BLIyIiok+YQWEX8Dbp6emIjIxEUFCQNExPTw++vr44ceJEjvOkpaUhLS1Nep6YmAgASEpK0mltWWkpOm2PNOl6nWXjuit4BbXuAK6/D4Hb3qdL1+suuz0hhE7b/Vh81CHo0aNHyMzMhL29vdpwe3t7XL16Ncd5Zs6ciSlTpmgMd3JyKpAaqeCoFhZ2BaQtrrtPG9ffp6ug1t2zZ8+gUqkKpvFC9FGHIG0EBQVh5MiR0vOsrCw8efIEtra2UCgUhVhZ4UpKSoKTkxNu374NS0vLwi6H8oHr7tPFdffp4rp7RQiBZ8+ewdHRsbBLKRAfdQgqUqQI9PX1ER8frzY8Pj4eDg4OOc6jVCqhVCrVhllZWRVUiZ8cS0tLWW/QnzKuu08X192ni+sOn+URoGwfdcdoIyMjeHh4YP/+/dKwrKws7N+/H56enoVYGREREX3qPuojQQAwcuRIBAQEoGbNmqhVqxYWLlyI5ORk9O7du7BLIyIiok/YRx+COnfujIcPH2LixIm4f/8+qlWrhl27dml0lqa3UyqVmDRpksapQvr4cd19urjuPl1cd/KgEJ/rdW9EREREb/FR9wkiIiIiKigMQURERCRLDEFEREQkSwxBBABYuXJlnu+nlJ9pqeDcvHkTCoUC58+fL+xSiD5rvXr1Qtu2baXnPj4+GD58eJ7mzc+09OF99FeH0YfRuXNnNG/evLDL+CT5+PigWrVqWLhwYWGXQgWgV69eSEhIwObNmwu7FPpIbNy4EYaGhoVdBukAQxABAExMTGBiYlLYZRB9NDIzM2X9UzuUOxsbm8IugXSEp8M+EuvXr0flypVhYmICW1tb+Pr6Ijk5WToMO2XKFNjZ2cHS0hIDBgxAenq6NO+uXbtQr149WFlZwdbWFi1btsT169el8dmnTTZu3IiGDRvC1NQUVatWxYkTJ6Rp3jzFdeHCBTRs2BAWFhawtLSEh4cHzpw5o1bz7t274e7uDnNzc3z55Ze4d+9ewb1BH6levXrh8OHDWLRoERQKBRQKBa5fv46+ffvC1dUVJiYmKF++PBYtWqQ238uXLzF06FBpnY0dOxYBAQFqh9zftV5zcvjwYdSqVQtKpRLFihXDuHHj8PLlS2n8s2fP0L17d5iZmaFYsWJYsGDBZ3O43sfHB4MHD8bgwYOhUqlQpEgRfP/999KvXz99+hQ9e/aEtbU1TE1N0axZM0RHR0vzZ28DW7duRYUKFaBUKtGnTx+sWrUKW7ZskdbvoUOHcOjQISgUCiQkJEjznz9/HgqFAjdv3pSGrVixAk5OTjA1NUW7du0wf/58te3szdMsADB8+HD4+PhIz7OysjBz5kzp81S1alWsX79eGv/06VN0794ddnZ2MDExQdmyZREaGiqNv337Njp16gQrKyvY2NigTZs2ajV+6t72/mSvp/3796NmzZowNTVF3bp1ERUVpdbGtGnTULRoUVhYWKBfv34YN24cqlWrlusy39xmlixZgrJly8LY2Bj29vbo0KGDRo1jxoyBjY0NHBwcMHnyZF29fHpPDEEfgXv37qFr167o06cPrly5gkOHDqF9+/bSznv//v3S8N9//x0bN27ElClTpPmTk5MxcuRInDlzBvv374eenh7atWuHrKwsteVMmDABo0aNwvnz51GuXDl07dpV7Q/k67p3744SJUrg9OnTiIyMxLhx49QO/6akpGDu3LlYvXo1jhw5gtjYWIwaNaoA3p2P26JFi+Dp6YnAwEDcu3cP9+7dQ4kSJVCiRAmEh4fj8uXLmDhxIsaPH48///xTmm/WrFkICwtDaGgojh07hqSkJI3TLXldr9ni4uLQvHlzfPHFF7hw4QKWLl2KX3/9FdOmTZOmGTlyJI4dO4atW7di7969OHr0KM6ePVsg701hWLVqFQwMDHDq1CksWrQI8+fPxy+//ALgVeA4c+YMtm7dihMnTkAIgebNmyMjI0OaPyUlBbNmzcIvv/yCS5cu4ccff0SnTp2kkH/v3j3UrVs3T7UcO3YMAwYMwLBhw3D+/Hk0adIE06dPz/drmjlzJn777TcsW7YMly5dwogRI9CjRw8cPnwYAPD999/j8uXL2LlzJ65cuYKlS5eiSJEiAICMjAz4+fnBwsICR48exbFjx6QvLa9/kfqUvev9AV7t++bNm4czZ87AwMAAffr0kcaFhYVh+vTpmDVrFiIjI1GyZEksXbo0z8s/c+YMhg4diuDgYERFRWHXrl1o0KCB2jSrVq2CmZkZIiIiMHv2bAQHB2Pv3r3v/+Lp/QkqdJGRkQKAuHnzpsa4gIAAYWNjI5KTk6VhS5cuFebm5iIzMzPH9h4+fCgAiIsXLwohhLhx44YAIH755RdpmkuXLgkA4sqVK0IIIUJDQ4VKpZLGW1hYiJUrV+bYfmhoqAAgYmJipGEhISHC3t4+7y/6M+Lt7S2GDRv21mkGDRok/P39pef29vZizpw50vOXL1+KkiVLijZt2uTaRm7r9dy5c0IIIcaPHy/Kly8vsrKypHlCQkKkz0pSUpIwNDQU4eHh0viEhARhamr6zvo/Bd7e3sLd3V3t9Y8dO1a4u7uLa9euCQDi2LFj0rhHjx4JExMT8eeffwoh/v9zff78ebV2AwICNNbLwYMHBQDx9OlTadi5c+cEAHHjxg0hhBCdO3cWLVq0UJuve/fuattZTm0PGzZMeHt7CyGESE1NFaampuL48eNq0/Tt21d07dpVCCFEq1atRO/evXN8T1avXq3xmUhLSxMmJiZi9+7dOc7zKXnX+5O9nvbt2yeN27FjhwAgXrx4IYQQonbt2mLQoEFq83t5eYmqVatKz99cT69v8xs2bBCWlpYiKSkpxxq9vb1FvXr11IZ98cUXYuzYsfl9uVQAeCToI1C1alU0btwYlStXRseOHbFixQo8ffpUbbypqan03NPTE8+fP8ft27cBANHR0ejatStKlSoFS0tLuLi4AABiY2PVllOlShXp/8WKFQMAPHjwIMeaRo4ciX79+sHX1xc//PCDxmkYU1NTlC5dWq293NqSo5CQEHh4eMDOzg7m5uZYvny5tD4SExMRHx+PWrVqSdPr6+vDw8NDrY28rtdsV65cgaenp1o/Fi8vLzx//hx37tzBf//9h4yMDLXlqlQqlC9fXlcvu9DVqVNH7fV7enoiOjoaly9fhoGBAWrXri2Ns7W1Rfny5XHlyhVpmJGRkdp28j6ioqLU3msAGs/fJSYmBikpKWjSpAnMzc2lx2+//SZtkwMHDsS6detQrVo1jBkzBsePH5fmv3DhAmJiYmBhYSHNa2Njg9TU1HeeWv0U5OX9Ad6+73vf9dSkSRM4OzujVKlS+OqrrxAWFoaUlBS1ad78THF/+fFgx+iPgL6+Pvbu3Yvjx49jz549WLx4MSZMmICIiIg8zd+qVSs4OztjxYoVcHR0RFZWFipVqqRxuPv101nZfyhyO7UyefJkdOvWDTt27MDOnTsxadIkrFu3Du3atdNoK7s9wV9gAQCsW7cOo0aNwrx58+Dp6QkLCwvMmTMnz+szW17XK+mOiYlJnjpD6+m9+v74+mf+9dNqeaWnp6ex3bzezvPnzwEAO3bsQPHixdWmy/5Nq2bNmuHWrVv466+/sHfvXjRu3BiDBg3C3Llz8fz5c3h4eCAsLExj2XZ2dvmu92PzrvcnOwjlZ9+XXxYWFjh79iwOHTqEPXv2YOLEiZg8eTJOnz4t9f/KaX+pq+XT++GRoI+EQqGAl5cXpkyZgnPnzsHIyAibNm0C8Orb3IsXL6RpT548CXNzczg5OeHx48eIiorCd999h8aNG8Pd3V3tKNL7KFeuHEaMGIE9e/agffv2ap0t6f8ZGRkhMzNTen7s2DHUrVsX33zzDapXr44yZcqofStVqVSwt7fH6dOnpWGZmZlqfXO0Wa/u7u5SX5fXa7GwsECJEiVQqlQpGBoaqi03MTER165de6/X/zF5M2iePHkSZcuWRYUKFfDy5Uu18dnvcYUKFd7a5pvrF/j/APH6xQBv3q+pfPnyau81AI3ndnZ2GhcUvN5Odgft2NhYlClTRu3h5OSk1k5AQADWrFmDhQsXYvny5QCAGjVqIDo6GkWLFtWYX6VSvfV1fwry+v68TV7W07sYGBjA19cXs2fPxj///IObN2/iwIED+WqDCgePBH0EIiIisH//fjRt2hRFixZFREQEHj58CHd3d/zzzz9IT09H37598d133+HmzZuYNGkSBg8eDD09PVhbW8PW1hbLly9HsWLFEBsbi3Hjxr1XPS9evMDo0aPRoUMHuLq64s6dOzh9+jT8/f119Io/Ly4uLoiIiMDNmzdhbm6OsmXL4rfffsPu3bvh6uqK1atX4/Tp03B1dZXmGTJkCGbOnIkyZcrAzc0NixcvxtOnT6Vvqdqs12+++QYLFy7EkCFDMHjwYERFRWHSpEkYOXIk9PT0YGFhgYCAAIwePRo2NjYoWrQoJk2aBD09vc/mUvDY2FiMHDkSX3/9Nc6ePYvFixdj3rx5KFu2LNq0aYPAwED8/PPPsLCwwLhx41C8eHG0adPmrW26uLhg9+7diIqKgq2tLVQqlfRHdvLkyZg+fTquXbuGefPmqc03ZMgQNGjQAPPnz0erVq1w4MAB7Ny5U+29btSoEebMmYPffvsNnp6eWLNmDf79919Ur14dwKujDKNGjcKIESOQlZWFevXqITExEceOHYOlpSUCAgIwceJEeHh4oGLFikhLS8P27dvh7u4O4NUFDnPmzEGbNm0QHByMEiVK4NatW9i4cSPGjBmDEiVK6HgNfFjven+cnZ3f2caQIUMQGBiImjVrom7duvjjjz/wzz//oFSpUnmqYfv27fjvv//QoEEDWFtb46+//kJWVtZndZr5s1a4XZJICCEuX74s/Pz8hJ2dnVAqlaJcuXJi8eLFQoj/75A3ceJEYWtrK8zNzUVgYKBITU2V5t+7d69wd3cXSqVSVKlSRRw6dEgAEJs2bRJCaHagFUKIp0+fCgDi4MGDQgj1jtFpaWmiS5cuwsnJSRgZGQlHR0cxePBgqSPhm52ohRBi06ZNQq4fp6ioKFGnTh1hYmIiAIirV6+KXr16CZVKJaysrMTAgQPFuHHj1DpaZmRkiMGDBwtLS0thbW0txo4dKzp27Ci6dOkiTaPNej106JD44osvhJGRkXBwcBBjx44VGRkZ0vikpCTRrVs3YWpqKhwcHMT8+fNFrVq1xLhx4wr6bSpw3t7e4ptvvhEDBgyQ3tfx48dLnYKfPHkivvrqK6FSqYSJiYnw8/MT165dk+bP6XMthBAPHjwQTZo0Eebm5mrbzN9//y0qV64sjI2NRf369UV4eLhax2ghhFi+fLkoXry4MDExEW3bthXTpk0TDg4Oau1PnDhR2NvbC5VKJUaMGCEGDx4sdYwWQoisrCyxcOFCUb58eWFoaCjs7OyEn5+fOHz4sBBCiKlTpwp3d3dhYmIibGxsRJs2bcR///0nzX/v3j3Rs2dPUaRIEaFUKkWpUqVEYGCgSExMfM93/OPwtvcnLx3YhRAiODhYFClSRJibm4s+ffqIoUOHijp16kjj39Yx+ujRo8Lb21tYW1sLExMTUaVKFfHHH3/kOG22Nm3aiICAAB2+C6QthRDsyPEx491q5SErKwvu7u7o1KkTpk6d+sGWm5ycjOLFi2PevHno27fvB1tuQfgU7twdGBiIq1ev4ujRo4VdCr1FkyZN4ODggNWrVxd2KVTAeDqMqBDcunULe/bsgbe3N9LS0vDTTz/hxo0b6NatW4Eu99y5c7h69Spq1aqFxMREBAcHA8A7TwmRdubOnYsmTZrAzMwMO3fuxKpVq7BkyZLCLotek5KSgmXLlsHPzw/6+vr4/fffsW/fPt7HRyYYgogKgZ6eHlauXIlRo0ZBCIFKlSph3759Ul+OgjR37lxERUXByMgIHh4eOHr0qHRzPdKtU6dOYfbs2Xj27BlKlSqFH3/8Ef369Svssug1CoUCf/31F6ZPn47U1FSUL18eGzZsgK+vb2GXRh8AT4cRERGRLPESeSIiIpIlhiAiIiKSJYYgIiIikiWGICIiIpIlhiAiIiKSJYYgIiIikiWGICIZ69WrF9q2bVvYZRARFQqGICIiIpIlhiAiytH8+fNRuXJlmJmZwcnJCd988w2eP38ujV+5ciWsrKywe/duuLu7w9zcHF9++SXu3bsnTfPy5UsMHToUVlZWsLW1xdixYxEQEKB29MnFxUXj976qVauGyZMn57kWAFixYgWcnJxgamqKdu3aYf78+bCyslKbZsuWLahRowaMjY1RqlQpTJkyBS9fvnzv94qIPk0MQUSUIz09Pfz444+4dOkSVq1ahQMHDmDMmDFq06SkpGDu3LlYvXo1jhw5gtjYWIwaNUoaP2vWLISFhSE0NBTHjh1DUlKSVj8G/K5ajh07hgEDBmDYsGE4f/48mjRpgunTp6u1cfToUfTs2RPDhg3D5cuX8fPPP2PlypUa0xGRjBTqb9gTUaEKCAgQbdq0ydO04eHhwtbWVnoeGhoqAIiYmBhpWEhIiLC3t5ee29vbizlz5kjPX758KUqWLKm2TGdnZ7FgwQK1ZVWtWlVMmjQpz7V07txZtGjRQm2a7t27C5VKJT1v3LixmDFjhto0q1evFsWKFct1OUT0eeMPqBJRjvbt24eZM2fi6tWrSEpKwsuXL5GamoqUlBSYmpoCAExNTVG6dGlpnmLFiuHBgwcAgMTERMTHx6NWrVrSeH19fXh4eCArK0untURFRaFdu3Zq89SqVQvbt2+Xnl+4cAHHjh1TO/KTmZmp8ZqISD54OoyINNy8eRMtW7ZElSpVsGHDBkRGRiIkJAQAkJ6eLk1naGioNp9CoYDI528y6+npacyTkZGR71re5fnz55gyZQrOnz8vPS5evIjo6GgYGxvnq2Yi+jzwSBARaYiMjERWVhbmzZsHPb1X35X+/PPPfLWhUqlgb2+P06dPo0GDBgBeHXk5e/YsqlWrJk1nZ2en1pk6KSkJN27cyFct5cuXx+nTp9WGvfm8Ro0aiIqKQpkyZfL1Oojo88UQRCRziYmJOH/+vNqwIkWKICMjA4sXL0arVq1w7NgxLFu2LN9tDxkyBDNnzkSZMmXg5uaGxYsX4+nTp1AoFNI0jRo1wsqVK9GqVStYWVlh4sSJ0NfXl8aXKVPmnbUMGTIEDRo0wPz589GqVSscOHAAO3fuVFvOxIkT0bJlS5QsWRIdOnSAnp4eLly4gH///RfTpk3L92sjok8fT4cRydyhQ4dQvXp1tcfq1asxf/58zJo1C5UqVUJYWBhmzpyZ77bHjh2Lrl27omfPnvD09IS5uTn8/PzUTj8FBQXB29sbLVu2RIsWLdC2bVu1fkZVq1Z9Zy1eXl5YtmwZ5s+fj6pVq2LXrl0YMWKE2nL8/Pywfft27NmzB1988QXq1KmDBQsWwNnZWYt3jYg+BwqR3xP4RERaysrKgru7Ozp16oSpU6cW6LICAwNx9epVHD16tECXQ0SfLp4OI6ICc+vWLezZswfe3t5IS0vDTz/9hBs3bqBbt246X9bcuXPRpEkTmJmZYefOnVi1ahWWLFmi8+UQ0eeDIYiICoyenh5WrlyJUaNGQQiBSpUqYd++fXB3d9f5sk6dOoXZs2fj2bNnKFWqFH788Uf069dP58shos8HT4cRERGRLLFjNBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJEkMQERERyRJDEBEREckSQxARERHJ0v8B11EYzQYEzXYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog \\\n", "0 oncology/ocular plastic surgery 3 1 \n", "\n", " match_portuguese match_english Total spanish_ratio_percentage \\\n", "0 3 3 3 100.0 \n", "\n", " tagalog_ratio_percentage portuguese_ratio_percentage \\\n", "0 33.333333 100.0 \n", "\n", " english_ratio_percentage \n", "0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAIjCAYAAABbKUC1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABl9ElEQVR4nO3deZyN9f//8eeZYRazmsHM2McSYwmRbexLE7KUFCljiZIlZE0RkQgpiVQfZElJVPYtQrKTLIOyJYZiZmIYzLx/f/Sb83XMYC4Nx2ke99vt3Djv6zrX9TrXda7rPOda3sdmjDECAAAALHBzdgEAAABwPYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESNwTW7ZskYeHh44dO5Yp09u3b5+yZcumX375JVOmB9dQuHBhtW/f/p7Pd/r06bLZbNq2bds9nzf+z9GjR2Wz2TR9+nRnl3Lfad++vQoXLuzsMhysXbtWNptNa9euzRLzzYruKET++uuveuGFF1SkSBF5eXnJ399fkZGReu+993Tp0qXMrvGu27dvn9544w0dPXrU8mv79+8vm82mp59+OvML+w8ZPHiw2rRpo0KFCtnbFi5cqJIlSyogIEBNmzbVH3/8keZ1zZo1U5cuXdK0lypVSk2aNNGQIUMyNP/UEHD9I0+ePKpbt66WLl16528sHYULF9Zjjz2WqdNE5koNIxl53Ml+AVnLK6+8olKlSjm7jCznww8/5A8KJ8tm9QWLFy9Wq1at5OnpqXbt2qlMmTK6cuWKNmzYoH79+mnv3r2aOnXq3aj1rtm3b5+GDRumOnXqWPpLzhijzz//XIULF9Z3332nv//+W35+fnevUBe1a9curVq1Sj/++KO97bffftPTTz+tp59+WtWqVdOECRPUoUMHLV++3D7O8uXL9cMPP+jQoUPpTvfFF19U48aN9euvv6po0aIZqmX48OEKDw+XMUaxsbGaPn26GjdurO+++47g5wJiYmLk5vbvT6Dkzp1bM2fOdGgbN26cfv/9d7377rtpxgVuZfHixWratKmzy8hyPvzwQ+XKlSvN2YlatWrp0qVL8vDwcE5hWYilEHnkyBG1bt1ahQoV0po1axQWFmYf1q1bNx0+fFiLFy/+10UZY3T58mV5e3unGXb58mV5eHhkyhfJv7V27Vr9/vvvWrNmjaKiovT1118rOjra2WVlqmvXriklJeVfbYzTpk1TwYIFVbVqVXvbihUrlD9/fs2YMUM2m00RERGqV6+eLl++LC8vL127dk29e/fWkCFDbvol3qBBA+XMmVMzZszQ8OHDM1RLo0aNVKlSJfvzTp06KSQkRJ9//jkh0gV4enpmynR8fHz07LPPOrTNnTtX58+fT9MO3Mpvv/2mmJgYTZkyxdmlZJqUlBRduXJFXl5ezi7ljri5ublM7ZnxHWtFYmKicuTIkWnTs5TExowZowsXLujTTz91CJCpihUrppdfftn+/Nq1a3rzzTdVtGhReXp6qnDhwnr11VeVlJTk8LrU03/Lly9XpUqV5O3trY8++sh+XcPcuXP12muvKV++fMqRI4cSEhIkSZs3b9ajjz6qgIAA5ciRQ7Vr19bGjRvT1HXy5El16tRJefPmlaenp8LDw9W1a1dduXJF06dPV6tWrSRJdevWtZ/Cysi1FLNnz1apUqVUt25dNWjQQLNnz04zTup7+PLLLzVy5Ejlz59fXl5eql+/vg4fPuww7qFDh9SyZUuFhobKy8tL+fPnV+vWrRUfHy9JeuKJJ/TQQw85vKZp06ay2Wz69ttv7W2bN2+WzWZzOE0bFxenXr16qUCBAvL09FSxYsU0evRopaSk2MdJPcU3duxYTZgwwb7e9u3bJ0maOHGiSpcurRw5cihnzpyqVKmS5syZc9vltHDhQtWrV082m83edunSJQUGBtrbgoKCZIyxXw7xwQcfKDk5WT169LjpdLNnz646derom2++uW0NNxMYGChvb29ly/bP31PGGBUuXFjNmzdPM+7ly5cVEBCgF1544Y7nl2r9+vVq1aqVChYsKE9PTxUoUEC9e/dOczlI+/bt5evrq5MnT6pFixby9fVV7ty51bdvXyUnJzuM+9dff+m5556Tv7+/AgMDFR0drd27d6e5hqxOnTqqU6dOmprSu6Zq7Nixql69uoKDg+Xt7a2KFSvqq6++SvPaS5cuqWfPnsqVK5f8/PzUrFkznTx5UjabTW+88YbDuCdPnlTHjh0VEhIiT09PlS5dWv/73/8ytNxuvCYy9TKFjRs3qk+fPsqdO7d8fHz0+OOP6+zZsxmaphVJSUkZms/SpUtVs2ZN+fj4yM/PT02aNNHevXsdxkldt8ePH9djjz0mX19f5cuXT5MmTZIk7dmzR/Xq1ZOPj48KFSqU7raWke1akk6dOqUDBw7o6tWrt32PFy9e1CuvvGKfZokSJTR27FgZYxzGs9ls6t69uxYuXKgyZcrY1+WyZcvSTPNW++BUv/32m1q1aqWgoCDlyJFDVatWzfBBiTVr1tiXd2BgoJo3b679+/enGW/t2rWqVKmSvLy8VLRoUX300Ud64403HPZNtWvXVrly5dKdT4kSJRQVFeXQtnjxYgUEBKhGjRr2tp07d6pRo0by9/eXr6+v6tevr59++inN9OLi4tS7d28VLlxYnp6eyp8/v9q1a6c///xT0v99vm+8pCKj1/xldPtNXZezZ89W6dKl5enpme56TJX6nb1ixQqVL19eXl5eKlWqlL7++utb1iNlfN93+vRpdejQQfnz55enp6fCwsLUvHlz+7IoXLiw9u7dq3Xr1tm/t1P3azdbPps3b1bjxo2VM2dO+fj46MEHH9R77713y3qvXr2qYcOGqXjx4vLy8lJwcLBq1KihlStX2sfJ6D71dt+xGfl8ppo1a5YqVqwob29vBQUFqXXr1jpx4oTDOHXq1FGZMmW0fft21apVSzly5NCrr76q6Oho5cqVK939wSOPPKISJUrccplcz9KRyO+++05FihRR9erVMzT+888/rxkzZujJJ5/UK6+8os2bN2vUqFHav3+/FixY4DBuTEyM2rRpoxdeeEGdO3d2eBNvvvmmPDw81LdvXyUlJcnDw0Nr1qxRo0aNVLFiRQ0dOlRubm6aNm2a6tWrp/Xr16ty5cqSpD/++EOVK1dWXFycunTpopIlS+rkyZP66quvlJiYqFq1aqlnz556//339eqrryoiIkKS7P/eTFJSkubPn69XXnlFktSmTRt16NBBp0+fVmhoaJrx3377bbm5ualv376Kj4/XmDFj1LZtW23evFmSdOXKFUVFRSkpKUk9evRQaGioTp48qUWLFikuLk4BAQGqWbOmvvnmGyUkJMjf31/GGG3cuFFubm5av369mjVrJumfjdTNzU2RkZGS/vnLo3bt2jp58qReeOEFFSxYUD/++KMGDRqkU6dOacKECQ61Tps2TZcvX1aXLl3k6empoKAgffzxx+rZs6eefPJJvfzyy7p8+bJ+/vlnbd68Wc8888xNl9PJkyd1/PjxNOH34Ycf1iuvvKLPP/9cVatW1ciRI1WsWDHlzJlTZ8+e1bBhwzRr1ixlz579luuhYsWKDsvkduLj4/Xnn3/KGKMzZ85o4sSJunDhgv3ok81m07PPPqsxY8bo3LlzCgoKsr/2u+++U0JCQqYcqZo3b54SExPVtWtXBQcHa8uWLZo4caJ+//13zZs3z2Hc5ORkRUVFqUqVKho7dqxWrVqlcePGqWjRourataukf44cNG3aVFu2bFHXrl1VsmRJffPNN//6yPh7772nZs2aqW3btrpy5Yrmzp2rVq1aadGiRWrSpIl9vPbt2+vLL7/Uc889p6pVq2rdunUOw1PFxsaqatWq9i+t3Llza+nSperUqZMSEhLUq1evO6qzR48eypkzp4YOHaqjR49qwoQJ6t69u7744os7fet3PJ+ZM2cqOjpaUVFRGj16tBITEzV58mTVqFFDO3fudPhSSU5OVqNGjVSrVi2NGTNGs2fPVvfu3eXj46PBgwerbdu2euKJJzRlyhS1a9dO1apVU3h4uCRr2/WgQYM0Y8YMHTly5JaX7Bhj1KxZM33//ffq1KmTypcvr+XLl6tfv346efJkmlP9GzZs0Ndff62XXnpJfn5+ev/999WyZUsdP35cwcHBkm6/D/bw8FBsbKyqV6+uxMRE9ezZU8HBwZoxY4aaNWumr776So8//vhNa161apUaNWqkIkWK6I033tClS5c0ceJERUZGaseOHfb3u3PnTj366KMKCwvTsGHDlJycrOHDh6c50/Hcc8+pc+fO+uWXX1SmTBl7+9atW3Xw4EG99tprDuMvWbJEDRs2tP8hunfvXtWsWVP+/v7q37+/smfPro8++kh16tTRunXrVKVKFUnShQsXVLNmTe3fv18dO3bUQw89pD///FPffvutfv/9d+XKleum7zmjMrr9Sv8E8S+//FLdu3dXrly5bntp16FDh/T000/rxRdfVHR0tKZNm6ZWrVpp2bJlatiw4U1fl9F9X8uWLbV371716NFDhQsX1pkzZ7Ry5UodP35chQsX1oQJE9SjRw/5+vpq8ODBkqSQkJCbznflypV67LHHFBYWppdfflmhoaHav3+/Fi1a5HDw60ZvvPGGRo0apeeff16VK1dWQkKCtm3bph07dtzyfd5Ket+xGf18StLIkSP1+uuv66mnntLzzz+vs2fPauLEiapVq5Z27typwMBA+7h//fWXGjVqpNatW+vZZ59VSEiIfHx89Nlnn2n58uUOZ+BOnz6tNWvWaOjQoRl/MyaD4uPjjSTTvHnzDI2/a9cuI8k8//zzDu19+/Y1ksyaNWvsbYUKFTKSzLJlyxzG/f77740kU6RIEZOYmGhvT0lJMcWLFzdRUVEmJSXF3p6YmGjCw8NNw4YN7W3t2rUzbm5uZuvWrWlqTH3tvHnzjCTz/fffZ+i9GWPMV199ZSSZQ4cOGWOMSUhIMF5eXubdd99N9z1ERESYpKQke/t7771nJJk9e/YYY4zZuXOnkWTmzZt303lu3brVSDJLliwxxhjz888/G0mmVatWpkqVKvbxmjVrZipUqGB//uabbxofHx9z8OBBh+kNHDjQuLu7m+PHjxtjjDly5IiRZPz9/c2ZM2ccxm3evLkpXbp0RheP3apVq4wk891336UZ1rNnTyPJSDJBQUH2z0Tnzp3No48+mqHpz5kzx0gymzdvvuV406ZNs8/r+oenp6eZPn26w7gxMTFGkpk8ebJDe7NmzUzhwoUdPnPpKVSokGnSpMktx7n+85xq1KhRxmazmWPHjtnboqOjjSQzfPhwh3ErVKhgKlasaH8+f/58I8lMmDDB3pacnGzq1atnJJlp06bZ22vXrm1q166dZv7R0dGmUKFCt6zzypUrpkyZMqZevXr2tu3btxtJplevXg7jtm/f3kgyQ4cOtbd16tTJhIWFmT///NNh3NatW5uAgIB0l8v1ChUqZKKjo+3PU9drgwYNHNZL7969jbu7u4mLi7vl9K7XpEmTNO/f6nz+/vtvExgYaDp37uzw+tOnT5uAgACH9tR1+9Zbb9nbzp8/b7y9vY3NZjNz5861tx84cCDNsszodn39vI4cOXLLZbBw4UIjyYwYMcKh/cknnzQ2m80cPnzY3ibJeHh4OLTt3r3bSDITJ060t2VkH9yrVy8jyaxfv94+7O+//zbh4eGmcOHCJjk52Rjzf/uo6z/P5cuXN3ny5DF//fWXQx1ubm6mXbt29ramTZuaHDlymJMnT9rbDh06ZLJly2au/yqMi4szXl5eZsCAAQ619uzZ0/j4+JgLFy7Y2y5evGi8vLwc6mnRooXx8PAwv/76q73tjz/+MH5+fqZWrVr2tiFDhhhJ5uuvv77pckn93N243lK/V67/zrrT7deYf9alm5ub2bt3b5pa0pP6nT1//nx7W3x8vAkLC3P47kmvzozs+86fP28kmXfeeeeWdZQuXTrdfdmN87127ZoJDw83hQoVMufPn3cY93b783Llyt12f57RfeqtvmMz+vk8evSocXd3NyNHjnR4/Z49e0y2bNkc2mvXrm0kmSlTpjiMm5ycbPLnz2+efvpph/bx48cbm81mfvvtt1u+3+tl+HR26inkjN44smTJEklSnz59HNpTj9zdeJoiPDw8zWmCVNHR0Q7XR+7atUuHDh3SM888o7/++kt//vmn/vzzT128eFH169fXDz/8oJSUFKWkpGjhwoVq2rSpw3VwqdI7RJxRs2fPVqVKlVSsWDFJsp+ySu+UtiR16NDB4ZqHmjVrSvrnFI4kBQQESPrnZpLExMR0p1GhQgX5+vrqhx9+kPTPEcfU0x87duxQYmKijDHasGGDffrSP3/51axZUzlz5rQvqz///FMNGjRQcnKyfXqpWrZsmeavn8DAQP3+++/aunVrhpeR9M9fQZKUM2fONMPee+89HTt2TJs3b9axY8dUt25d7dq1S5999pneffddxcfH69lnn1W+fPlUp06ddE9PpU439fTP7UyaNEkrV67UypUrNWvWLNWtW1fPP/+8w2mYBx54QFWqVHFYl+fOndPSpUvVtm3bf/W5SXX95/nixYv6888/Vb16dRljtHPnzjTjv/jiiw7Pa9asaf/sSNKyZcuUPXt2de7c2d7m5uambt26ZVqd58+fV3x8vGrWrKkdO3Y4zFuSXnrpJYfX3ngpgjFG8+fPV9OmTWWMcfgsRkVFKT4+3mG6VnTp0sVhvdSsWVPJycmZ1qVURuezcuVKxcXFqU2bNg7vz93dXVWqVNH333+fZprPP/+8/f+BgYEqUaKEfHx89NRTT9nbS5QoocDAQId1bmW7nj59uv1SjVtZsmSJ3N3d1bNnT4f2V155RcaYND0ZNGjQwOGmtgcffFD+/v72OjO6D16yZIkqV67scErY19dXXbp00dGjR+2n+2506tQp7dq1S+3bt3c4a/Dggw+qYcOG9u+h5ORkrVq1Si1atFDevHnt4xUrVkyNGjVymGZAQICaN2+uzz//3H4KPzk5WV988YVatGghHx8f+7hr1qxRUlKSfRrJyclasWKFWrRooSJFitjHCwsL0zPPPKMNGzbYv0vnz5+vcuXKpXuUNTP2MVLGtt9UtWvXtnSHed68eR1q9/f3V7t27bRz506dPn06QzXdbN/n7e0tDw8PrV27VufPn89wTTezc+dOHTlyRL169XI4SifdflkHBgZq7969N73B807c+B1r5fP59ddfKyUlRU899ZTDdh8aGqrixYun2cd4enqqQ4cODm1ubm5q27atvv32W/3999/29tmzZ6t69er2sx0ZkeEQmXqq8PoZ3sqxY8fk5uZmD1mpQkNDFRgYmGbnfquibxyWujKjo6OVO3duh8cnn3yipKQkxcfH6+zZs0pISHA4JZEZ4uLitGTJEtWuXVuHDx+2PyIjI7Vt2zYdPHgwzWsKFizo8Dw1/KRuIOHh4erTp48++eQT5cqVS1FRUZo0aZL9ekhJcnd3V7Vq1bR+/XpJ/4TImjVrqkaNGkpOTtZPP/2kffv26dy5cw4h8tChQ1q2bFmaZdWgQQNJ0pkzZxxqS29dDBgwQL6+vqpcubKKFy+ubt26pXv96c2k7ozTWy6VK1eWr6+vJKlnz5568cUXVbJkSXXr1k0nTpzQN998o7Jly6pp06a6du1autPN6E63cuXKatCggRo0aKC2bdtq8eLFKlWqlLp37+5wfVa7du20ceNG++d03rx5unr1qp577rkMv+dbOX78uP2LL/U6x9q1a0uSwzqXJC8vrzShPmfOnA4712PHjiksLCzNBdM3bn9WLVq0SFWrVpWXl5eCgoKUO3duTZ482aHG1G39xs/NjfM+e/as4uLiNHXq1DSfxdSd3I2fxYy63faVWW43n9R9U7169dK8xxUrVqR5f+mt24CAAOXPnz/NZzogIMDh/VjdrjPi2LFjyps3b5qDBamX99y4375xeUiOn82M7oOPHTuW7nVYN5vv9a+TdNPXph5cOHPmjC5dupTu9pBeW7t27XT8+HH7vnbVqlWKjY1Ns/0vXrxYlSpVsp9GPXv2rBITE29aT0pKiv26tV9//TXTv5tulJHtN5WV4CD9s9xu/Iw+8MADknTLbrEysu/z9PTU6NGjtXTpUoWEhNgv97hVOL2VX3/9VZLuaHkPHz5ccXFxeuCBB1S2bFn169dPP//88x3VkerGZW3l83no0CEZY1S8ePE02/7+/fvTbPf58uVL96addu3a6dKlS/ZLC2NiYrR9+3bL33EZvibS399fefPmtdy5c0a/3NO7E/tmw1IvGn/nnXdUvnz5dF/j6+urc+fOZaxIi+bNm6ekpCSNGzdO48aNSzN89uzZGjZsmEObu7t7utO6PlyNGzdO7du31zfffKMVK1aoZ8+eGjVqlH766Sflz59fklSjRg2NHDlSly9f1vr16zV48GAFBgaqTJkyWr9+vX1ndn2ITElJUcOGDdW/f/90a0jd8FOlty4iIiIUExOjRYsWadmyZZo/f74+/PBDDRkyJM17vV7qdVEZ+TL/4osvtH//fn377bdKTk7Wl19+qRUrVqhSpUoqXbq0Pv74Y/30008ORytSp3un1w+5ubmpbt26eu+993To0CGVLl1aktS6dWv17t1bs2fP1quvvqpZs2apUqVKli44vpnk5GQ1bNhQ586d04ABA1SyZEn5+Pjo5MmTat++fZqbIm722blTNpst3VB/4406qdfZ1qpVSx9++KHCwsKUPXt2TZs2LUM3VN0o9X09++yzN71W88EHH7Q8XSlj21dmuN18Ut/jzJkz0702OvW6udtNLyPvx+p2fTfcq+V+r0VFRSkkJESzZs1SrVq1NGvWLIWGhtoDeqolS5akOcqTmW72/Xnjtpoeq9vvrb6DM4uVfV+vXr3UtGlTLVy4UMuXL9frr7+uUaNGac2aNapQocJdrzVVrVq19Ouvv9q/lz/55BO9++67mjJliv0sQkb3qan+zbJOSUmx3zib3vaXekDmdvMqVaqUKlasqFmzZqldu3aaNWuWPDw8HM6AZISlG2see+wxTZ06VZs2bVK1atVuOW6hQoWUkpKiQ4cOOdykEhsbq7i4OIdOp61KPX3i7++fZqO+Xu7cueXv73/b4Gv11MHs2bNVpkyZdC8+/eijjzRnzpxbBqtbKVu2rMqWLavXXntNP/74oyIjIzVlyhSNGDFC0j/h8MqVK/r888918uRJe1isVauWPUQ+8MADDhcYFy1aVBcuXLjlssoIHx8fe9+OV65c0RNPPKGRI0dq0KBBN+1OoWTJkpL+6R7qVhITE9WvXz+9+eabCgwMVGxsrK5evWo/tO/t7a2cOXPq5MmTDq87cuSI3Nzc/tUXZurRzQsXLtjbgoKC7JcntG3bVhs3bkxzA9Kd2rNnjw4ePKgZM2aoXbt29vbr7/azqlChQvr+++/TdN9wYw8A0j9Hiq4/LZrqxqM98+fPl5eXl5YvX+7Qtc60adPSzDslJUVHjhxR8eLFbzrv3Llzy8/PT8nJyf/6s3i/St035cmT566/x8zarq9XqFAhrVq1Kk2ftwcOHLAPtyKj++BChQopJiYmTfvt5pvafrPX5sqVSz4+PvLy8pKXl1e620N6be7u7nrmmWc0ffp0jR49WgsXLlTnzp0dvrR/+eUXHT9+3OEGldy5cytHjhw3rcfNzU0FChSQ9M/6u91yST3SHRcX59Cekcs0Mrr93qnDhw/LGOPw/Zl6Fu5ml01Y3fcVLVpUr7zyil555RUdOnRI5cuX17hx4zRr1ixJGf/uTt0uf/nllzvaXoKCgtShQwd16NBBFy5cUK1atfTGG2/YQ2RG96k3kydPngx/PosWLSpjjMLDw//1H4rt2rVTnz59dOrUKc2ZM0dNmjRJ99KzW7HUxU///v3l4+Oj559/XrGxsWmG//rrr/bb5Rs3bixJab54x48fL0np3rmZURUrVlTRokU1duxYhy/+VKldbri5ualFixb67rvv0v25stS/HFKvcblxQ03PiRMn9MMPP+ipp57Sk08+mebRoUMHHT582H7XdUYlJCSkOVVbtmxZubm5OXSJVKVKFWXPnl2jR49WUFCQ/chZzZo19dNPP2ndunUORyEl6amnntKmTZscOvJOFRcXl2a+6Um9tjGVh4eHSpUqJWPMLbsNyZcvnwoUKHDbn4sbPXq0cubMab+mLzg4WNmyZbN/ifz55586e/ZsmqM727dvV+nSpe3XlFp19epVrVixQh4eHmnuyH/uuee0b98+9evXT+7u7mrduvUdzeNGqV9E1//laoy5bVcTtxIVFaWrV6/q448/trelpKTYu4u5XtGiRXXgwAGHrml2796d5vIEd3d32Ww2h7+mjx49qoULF6aZt/RPx7/XmzhxYprptWzZUvPnz0/3y/NudMlzr0VFRcnf319vvfVWuttFZr5HK9t1Rrv4ady4sZKTk/XBBx84tL/77ruy2Wxprs+6nYzugxs3bqwtW7Zo06ZN9mEXL17U1KlTVbhw4ZteqxcWFqby5ctrxowZDvvvX375RStWrLB/D7m7u6tBgwZauHChwy9jHT58+Ka/WPXcc8/p/PnzeuGFFxx6cEi1ZMkShYSEOFzr6e7urkceeUTffPONwynd2NhYzZkzRzVq1LBfGtayZUvt3r07TU8l1y+X1PBz/fWtycnJGfpBj4xuv3fqjz/+cKg9ISFBn332mcqXL5/uUfjUmqTb7/sSExN1+fJlh7aiRYvKz8/P4fvQx8cnQ9/bDz30kMLDwzVhwoQ049/uqPmN332+vr4qVqyYQx0Z3afejJXP5xNPPCF3d3cNGzYsTe3GmDT13kqbNm1ks9n08ssv67fffrujnkcsHYksWrSo5syZo6effloREREOv1jz448/at68efY+3MqVK6fo6GhNnTpVcXFxql27trZs2aIZM2aoRYsWqlu3ruViU7m5uemTTz5Ro0aNVLp0aXXo0EH58uXTyZMn9f3338vf31/fffedJOmtt97SihUrVLt2bXXp0kURERE6deqU5s2bpw0bNigwMFDly5eXu7u7Ro8erfj4eHl6eqpevXrKkydPmnnPmTPH3g1Geho3bqxs2bJp9uzZ9q4cMmLNmjXq3r27WrVqpQceeEDXrl3TzJkz7V+8qXLkyKGKFSvqp59+svcRKf1zJPLixYu6ePFimhDZr18/ffvtt3rsscfUvn17VaxYURcvXtSePXv01Vdf6ejRo7c9HfzII48oNDRUkZGRCgkJ0f79+/XBBx+oSZMmt73Zqnnz5lqwYEGav1pTHT9+XO+8844WL15s38lky5ZNzZs3V69evXT8+HEtWLBAefPmdTgCfvXqVa1bty7NDR23snTpUnswPXPmjObMmaNDhw5p4MCBaboIatKkiYKDgzVv3jw1atQo3c/DzRw+fNh+9Ph6FSpU0COPPKKiRYuqb9++OnnypPz9/TV//vx/df1eixYtVLlyZb3yyis6fPiwSpYsqW+//dZ+Scf1y71jx44aP368oqKi1KlTJ505c0ZTpkxR6dKl7Rf9p77/8ePH69FHH9UzzzyjM2fOaNKkSSpWrJjDNUEVK1ZUy5YtNWHCBP3111/2Ln5Sj0pcP++3335b33//vapUqaLOnTurVKlSOnfunHbs2KFVq1bdtUtQ7hV/f39NnjxZzz33nB566CG1bt1auXPn1vHjx7V48WJFRkamCWh3ysp2ndEufpo2baq6detq8ODBOnr0qMqVK6cVK1bom2++Ua9evTL8y1DXy8g+eODAgfr888/VqFEj9ezZU0FBQfZ658+ff8sfl3jnnXfUqFEjVatWTZ06dbJ38RMQEODQR+kbb7yhFStWKDIyUl27drWH5TJlymjXrl1ppluhQgWVKVNG8+bNU0RERJpuyhYvXqxGjRql2aeNGDFCK1euVI0aNfTSSy8pW7Zs+uijj5SUlKQxY8bYx+vXr5+++uortWrVSh07dlTFihV17tw5ffvtt5oyZYrKlSun0qVLq2rVqho0aJC9y7G5c+dm6A//jG6/d+qBBx5Qp06dtHXrVoWEhOh///ufYmNjb3mks2TJkhna9x08eFD169fXU089pVKlSilbtmxasGCBYmNjHf6Yr1ixoiZPnqwRI0aoWLFiypMnj+rVq5dmvm5ubpo8ebKaNm2q8uXLq0OHDgoLC9OBAwe0d+/edP8QS1WqVCnVqVNHFStWVFBQkLZt26avvvpK3bt3t4+T0X3qrWT081m0aFGNGDFCgwYN0tGjR9WiRQv5+fnpyJEjWrBggbp06aK+fftmaJ65c+fWo48+qnnz5ikwMPDODu5l+D7u6xw8eNB07tzZFC5c2Hh4eBg/Pz8TGRlpJk6caC5fvmwf7+rVq2bYsGEmPDzcZM+e3RQoUMAMGjTIYRxjbt4lSupt+jfr9mbnzp3miSeeMMHBwcbT09MUKlTIPPXUU2b16tUO4x07dsy0a9fO5M6d23h6epoiRYqYbt26OXS58/HHH5siRYoYd3f3W3b3U7ZsWVOwYMFbLp86deqYPHnymKtXr970PdzYVcVvv/1mOnbsaIoWLWq8vLxMUFCQqVu3rlm1alWa6ffr189IMqNHj3ZoL1asmJHk0LVEqr///tsMGjTIFCtWzHh4eJhcuXKZ6tWrm7Fjx5orV6441JRetwofffSRqVWrln1ZFy1a1PTr18/Ex8ffclkYY8yOHTvSdN9xvVatWpknnngiTXtsbKxp2rSp8fPzMw899JDZtm2bw/ClS5c6dLN0K+l18ePl5WXKly9vJk+efNNuHl566SUjycyZM+e280iV2v1Feo9OnToZY4zZt2+fadCggfH19TW5cuUynTt3tnePcn13IdHR0cbHxyfNPIYOHWpu3HzPnj1rnnnmGePn52cCAgJM+/btzcaNG40kh+5ijDFm1qxZpkiRIsbDw8OUL1/eLF++PN0uQj799FNTvHhx4+npaUqWLGmmTZuW7rwvXrxounXrZoKCgoyvr69p0aKFvaukt99+22Hc2NhY061bN1OgQAGTPXt2ExoaaurXr2+mTp2aoWWbXhc/N3Yfk17XIreTkS5+Mjqf77//3kRFRZmAgADj5eVlihYtatq3b+/wGb7Zuq1du3a63Wmlt5/MyHadOi9loIuf1Gn27t3b5M2b12TPnt0UL17cvPPOO2m2EUmmW7du6dZ5/ToyJmP74F9//dU8+eSTJjAw0Hh5eZnKlSubRYsWOUwnvS5+jPmnK7HIyEjj7e1t/P39TdOmTc2+ffvS1LZ69WpToUIF4+HhYYoWLWo++eQT88orrxgvL690l8WYMWPSdMNkzD/dAGXLls18+eWX6b5ux44dJioqyvj6+pocOXKYunXrmh9//DHNeH/99Zfp3r27yZcvn/Hw8DD58+c30dHRDl1g/frrr6ZBgwbG09PThISEmFdffdWsXLkyQ138ZHT7vdm6vJnUz+Ly5cvNgw8+aJ/+jd9z6W0fGdn3/fnnn6Zbt26mZMmSxsfHxwQEBJgqVaqkWd6nT582TZo0MX5+fkaSvZudm22XGzZsMA0bNjR+fn7Gx8fHPPjggw7dUaVnxIgRpnLlyiYwMNB4e3ubkiVLmpEjRzpsX8ZkbJ96q+9YY6x9PufPn29q1KhhfHx8jI+PjylZsqTp1q2biYmJsY9zs33J9b788ksjyXTp0uWW493MHYVIwKp69eqZZ599NlOn2bx5c9OiRYtMneaNevXqZfz8/MzFixfv6nzulgULFhhJZsOGDfd83ql9n86aNeuezxvIqObNm5tixYqlO2zChAlp+m41xpgvvvjCZMuWzVI/pP8lGekLF5njVp/PzJDaN+wPP/xwR693/g9QI0t466239MUXX2Rav32pvzTw5ptvZsr00nP58mXNmjVLLVu2zNTfGr1bbvzZsOTkZE2cOFH+/v5pTsXd7XlL/1wP7ebmplq1at3VeQMZdePn9NChQ1qyZEm6P1lnjNGnn36q2rVrp+nKKDAwUO+///4dX4sNpMfK5zOzfPzxxypSpIhDrydWWLomErhTVapUceiH8d+KiIjI0HVBd+LMmTNatWqVvvrqK/3111+3/Ems+0mPHj106dIlVatWTUlJSfr666/1448/6q233rrr3XeMGTNG27dvV926dZUtWzYtXbpUS5cuVZcuXex3owLOVqRIEbVv315FihTRsWPHNHnyZHl4eDh0k3Tx4kV9++23+v7777Vnzx598803aabzyCOP3MuykUVk5POZWebOnauff/5Zixcv1nvvvXfnHdxn7oFRwPWlXk+TJ0+e214vcz+ZPXu2eeihh4y/v7/x8PAwpUqVumf1r1ixwkRGRpqcOXOa7Nmzm6JFi5o33njDXL169Z7MH8iI9u3bm0KFChlPT0/j7+9voqKizPbt2x3GSb1uLTAw0Lz66qtOqvT+xunsuyMjn8/MIsn4+vqaTp06/av9tO3/TwwAAADIMK6JBAAAgGWESAAAAFjGjTVOlJKSoj/++EN+fn53flErAABZkDFGf//9t/LmzXvLDulx9xAineiPP/7gzlUAAP6FEydOKH/+/M4uI0siRDpR6s8FnjhxIs1P7gEAgJtLSEhQgQIFbvvTu7h7CJFOlHoK29/fnxAJAMAd4HIw5+EiAgAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYlmVD5A8//KCmTZsqb968stlsWrhwocNwY4yGDBmisLAweXt7q0GDBjp06JDDOOfOnVPbtm3l7++vwMBAderUSRcuXLiH7wIAAMA5smyIvHjxosqVK6dJkyalO3zMmDF6//33NWXKFG3evFk+Pj6KiorS5cuX7eO0bdtWe/fu1cqVK7Vo0SL98MMP6tKly716CwAAAE5jM8YYZxfhbDabTQsWLFCLFi0k/XMUMm/evHrllVfUt29fSVJ8fLxCQkI0ffp0tW7dWvv371epUqW0detWVapUSZK0bNkyNW7cWL///rvy5s172/kmJCQoICBA8fHx8vf3v2vvDwCA/xq+Q50vyx6JvJUjR47o9OnTatCggb0tICBAVapU0aZNmyRJmzZtUmBgoD1ASlKDBg3k5uamzZs3pzvdpKQkJSQkODwAAABcUTZnF3A/On36tCQpJCTEoT0kJMQ+7PTp08qTJ4/D8GzZsikoKMg+zo1GjRqlYcOG3YWKHRUeuPiuzyOrO/p2E2eXgPsQ297dd7e2Pdbd3cd+87+HI5H30KBBgxQfH29/nDhxwtklAQAA3BFCZDpCQ0MlSbGxsQ7tsbGx9mGhoaE6c+aMw/Br167p3Llz9nFu5OnpKX9/f4cHAACAKyJEpiM8PFyhoaFavXq1vS0hIUGbN29WtWrVJEnVqlVTXFyctm/fbh9nzZo1SklJUZUqVe55zQAAAPdSlr0m8sKFCzp8+LD9+ZEjR7Rr1y4FBQWpYMGC6tWrl0aMGKHixYsrPDxcr7/+uvLmzWu/gzsiIkKPPvqoOnfurClTpujq1avq3r27WrdunaE7swEAAFxZlg2R27ZtU926de3P+/TpI0mKjo7W9OnT1b9/f128eFFdunRRXFycatSooWXLlsnLy8v+mtmzZ6t79+6qX7++3Nzc1LJlS73//vv3/L0AAADca1k2RNapU0e36iLTZrNp+PDhGj58+E3HCQoK0pw5c+5GeQAAAPc1rokEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhMibSE5O1uuvv67w8HB5e3uraNGievPNN2WMsY9jjNGQIUMUFhYmb29vNWjQQIcOHXJi1QAAAPcGIfImRo8ercmTJ+uDDz7Q/v37NXr0aI0ZM0YTJ060jzNmzBi9//77mjJlijZv3iwfHx9FRUXp8uXLTqwcAADg7svm7ALuVz/++KOaN2+uJk2aSJIKFy6szz//XFu2bJH0z1HICRMm6LXXXlPz5s0lSZ999plCQkK0cOFCtW7d2mm1AwAA3G0cibyJ6tWra/Xq1Tp48KAkaffu3dqwYYMaNWokSTpy5IhOnz6tBg0a2F8TEBCgKlWqaNOmTelOMykpSQkJCQ4PAAAAV8SRyJsYOHCgEhISVLJkSbm7uys5OVkjR45U27ZtJUmnT5+WJIWEhDi8LiQkxD7sRqNGjdKwYcPubuEAAAD3AEcib+LLL7/U7NmzNWfOHO3YsUMzZszQ2LFjNWPGjDue5qBBgxQfH29/nDhxIhMrBgAAuHc4EnkT/fr108CBA+3XNpYtW1bHjh3TqFGjFB0drdDQUElSbGyswsLC7K+LjY1V+fLl052mp6enPD0973rtAAAAdxtHIm8iMTFRbm6Oi8fd3V0pKSmSpPDwcIWGhmr16tX24QkJCdq8ebOqVat2T2sFAAC41zgSeRNNmzbVyJEjVbBgQZUuXVo7d+7U+PHj1bFjR0mSzWZTr169NGLECBUvXlzh4eF6/fXXlTdvXrVo0cK5xQMAANxlhMibmDhxol5//XW99NJLOnPmjPLmzasXXnhBQ4YMsY/Tv39/Xbx4UV26dFFcXJxq1KihZcuWycvLy4mVAwAA3H2EyJvw8/PThAkTNGHChJuOY7PZNHz4cA0fPvzeFQYAAHAf4JpIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFiWzdkFWHHkyBGtX79ex44dU2JionLnzq0KFSqoWrVq8vLycnZ5AAAAWYZLhMjZs2frvffe07Zt2xQSEqK8efPK29tb586d06+//iovLy+1bdtWAwYMUKFChZxdLgAAwH/efR8iK1SoIA8PD7Vv317z589XgQIFHIYnJSVp06ZNmjt3ripVqqQPP/xQrVq1clK1AAAAWcN9HyLffvttRUVF3XS4p6en6tSpozp16mjkyJE6evTovSsOAAAgi7rvQ+StAuSNgoODFRwcfBerAQAAgOQCIfJmFi9erLVr1yo5OVmRkZFq2bKls0sCAADIMlyyi5/XX39d/fv3l81mkzFGvXv3Vo8ePZxdFgAAQJbhEkcit23bpkqVKtmff/HFF9q9e7e8vb0lSe3bt1edOnU0ceJEZ5UIAACQpbjEkcgXX3xRvXr1UmJioiSpSJEiGjdunGJiYrRnzx5NnjxZDzzwgJOrBAAAyDpcIkRu3rxZYWFheuihh/Tdd9/pf//7n3bu3Knq1aurZs2a+v333zVnzhxnlwkAAJBluMTpbHd3dw0YMECtWrVS165d5ePjow8++EB58+Z1dmkAAABZkksciUxVpEgRLV++XI8//rhq1aqlSZMmObskAACALMklQmRcXJz69++vpk2b6rXXXtPjjz+uzZs3a+vWrapatar27Nnj7BIBAACyFJcIkdHR0dq8ebOaNGmimJgYde3aVcHBwZo+fbpGjhypp59+WgMGDHB2mQAAAFmGS1wTuWbNGu3cuVPFihVT586dVaxYMfuw+vXra8eOHRo+fLgTKwQAAMhaXOJIZPHixTV16lQdPHhQU6ZMUaFChRyGe3l56a233nJSdQAAAFmPS4TI//3vf1qzZo0qVKigOXPmaPLkyc4uCQAAIEtzidPZ5cuX17Zt25xdBgAAAP6/+/5IpDHG2SUAAADgBvd9iCxdurTmzp2rK1eu3HK8Q4cOqWvXrnr77bfvUWUAAABZ131/OnvixIkaMGCAXnrpJTVs2FCVKlVS3rx55eXlpfPnz2vfvn3asGGD9u7dq+7du6tr167OLhkAAOA/774PkfXr19e2bdu0YcMGffHFF5o9e7aOHTumS5cuKVeuXKpQoYLatWuntm3bKmfOnM4uFwAAIEu470Nkqho1aqhGjRrOLgMAAABygWsiAQAAcP8hRAIAAMAyQiQAAAAsI0QCAADAMkIkAAAALHOpELljxw7t2bPH/vybb75RixYt9Oqrr962M3IAAABkHpcKkS+88IIOHjwoSfrtt9/UunVr5ciRQ/PmzVP//v2dXB0AAEDW4VIh8uDBgypfvrwkad68eapVq5bmzJmj6dOna/78+c4tDgAAIAtxqRBpjFFKSookadWqVWrcuLEkqUCBAvrzzz+dWRoAAECW4lIhslKlShoxYoRmzpypdevWqUmTJpKkI0eOKCQkJNPnd/LkST377LMKDg6Wt7e3ypYtq23bttmHG2M0ZMgQhYWFydvbWw0aNNChQ4cyvQ4AAID7jUuFyAkTJmjHjh3q3r27Bg8erGLFikmSvvrqK1WvXj1T53X+/HlFRkYqe/bsWrp0qfbt26dx48Y5/D73mDFj9P7772vKlCnavHmzfHx8FBUVpcuXL2dqLQAAAPcbl/nt7OTkZMXFxemHH35wCHKS9M4778jd3T1T5zd69GgVKFBA06ZNs7eFh4fb/2+M0YQJE/Taa6+pefPmkqTPPvtMISEhWrhwoVq3bp2p9QAAANxPXOZIpLu7ux555BHFxcWlGebl5aXs2bNn6vy+/fZbVapUSa1atVKePHlUoUIFffzxx/bhR44c0enTp9WgQQN7W0BAgKpUqaJNmzalO82kpCQlJCQ4PAAAAFyRy4RISSpTpox+++23ezKv3377TZMnT1bx4sW1fPlyde3aVT179tSMGTMkSadPn5akNNdihoSE2IfdaNSoUQoICLA/ChQocHffBAAAwF3iUiFyxIgR6tu3rxYtWqRTp07d1aN6KSkpeuihh/TWW2+pQoUK6tKlizp37qwpU6bc8TQHDRqk+Ph4++PEiROZWDEAAMC94zLXREqyd+nTrFkz2Ww2e7sxRjabTcnJyZk2r7CwMJUqVcqhLSIiwt4fZWhoqCQpNjZWYWFh9nFiY2PtfVneyNPTU56enplWIwAAgLO4VIj8/vvv79m8IiMjFRMT49B28OBBFSpUSNI/N9mEhoZq9erV9tCYkJCgzZs3q2vXrvesTgAAAGdwqRBZu3btezav3r17q3r16nrrrbf01FNPacuWLZo6daqmTp0qSbLZbOrVq5dGjBih4sWLKzw8XK+//rry5s2rFi1a3LM6AQAAnMGlromUpPXr1+vZZ59V9erVdfLkSUnSzJkztWHDhkydz8MPP6wFCxbo888/V5kyZfTmm29qwoQJatu2rX2c/v37q0ePHurSpYsefvhhXbhwQcuWLZOXl1em1gIAAHC/cakQOX/+fEVFRcnb21s7duxQUlKSJCk+Pl5vvfVWps/vscce0549e3T58mXt379fnTt3dhhus9k0fPhwnT59WpcvX9aqVav0wAMPZHodAAAA9xuXCpEjRozQlClT9PHHHzv0CxkZGakdO3Y4sTIAAICsxaVCZExMjGrVqpWmPSAgIN1OyAEAAHB3uFSIDA0N1eHDh9O0b9iwQUWKFHFCRQAAAFmTS4XIzp076+WXX9bmzZtls9n0xx9/aPbs2erbty/d6gAAANxDLtXFz8CBA5WSkqL69esrMTFRtWrVkqenp/r27asePXo4uzwAAIAsw6VCpM1m0+DBg9WvXz8dPnxYFy5cUKlSpeTr6+vs0gAAALIUlwqRa9asUfXq1eXl5ZXmJwkBAABw77hUiGzWrJmuXbumhx9+WHXq1FHt2rUVGRkpb29vZ5cGAACQpbjUjTXnz5/X6tWr1ahRI23ZskWPP/64AgMDFRkZqddee83Z5QEAAGQZLhUis2fPrsjISL366qtavny5fvrpJ7Vp00ZbtmzRqFGjnF0eAABAluFSp7MPHjyotWvXau3atVq3bp2SkpJUs2ZNjR07VnXq1HF2eQAAAFmGS4XIkiVLKnfu3Hr55Zc1cOBAlS1bVjabzdllAQAAZDkudTq7Z8+eypcvn4YPH64XX3xRgwcP1ooVK5SYmOjs0gAAALIUlwqREyZM0I4dO3T69GkNGjRIV65c0eDBg5UrVy5FRkY6uzwAAIAsw6VCZKrk5GRdvXpVSUlJunz5spKSkhQTE+PssgAAALIMlwqRPXv21IMPPqiQkBC98MIL+uOPP9S5c2ft3LlTZ8+edXZ5AAAAWYZL3Vhz6tQpdenSRXXq1FGZMmWcXQ4AAECW5VIhct68ec4uAQAAAHKx09kzZszQ4sWL7c/79++vwMBAVa9eXceOHXNiZQAAAFmLS4XIt956y/472Zs2bdKkSZM0ZswY5cqVS71793ZydQAAAFmHS53OPnHihIoVKyZJWrhwoVq2bKkuXbooMjKSX6wBAAC4h1zqSKSvr6/++usvSdKKFSvUsGFDSZKXl5cuXbrkzNIAAACyFJc6EtmwYUM9//zzqlChgg4ePKjGjRtLkvbu3avChQs7tzgAAIAsxKWORE6aNEnVqlXT2bNnNX/+fAUHB0uStm/frjZt2ji5OgAAgKzDpY5EBgYG6oMPPkjTPmzYMCdUAwAAkHW5VIiUpLi4OG3ZskVnzpxRSkqKvd1ms+m5555zYmUAAABZh0uFyO+++05t27bVhQsX5O/vL5vNZh9GiAQAALh3XOqayFdeeUUdO3bUhQsXFBcXp/Pnz9sf586dc3Z5AAAAWYZLhciTJ0+qZ8+eypEjh7NLAQAAyNJcKkRGRUVp27Ztzi4DAAAgy3OpayKbNGmifv36ad++fSpbtqyyZ8/uMLxZs2ZOqgwAACBrcakQ2blzZ0nS8OHD0wyz2WxKTk6+1yUBAABkSS4VIq/v0gcAAADO41LXRN5MXFxcup2QAwAA4O5w6RC5evVqPfPMMwoLC9PQoUOdXQ4AAECW4XIh8sSJExo+fLjCw8P1yCOPyGazacGCBTp9+rSzSwMAAMgyXCJEXr16VfPmzVNUVJRKlCihXbt26Z133pGbm5sGDx6sRx99NM2d2gAAALh7XOLGmnz58qlkyZJ69tlnNXfuXOXMmVOS1KZNGydXBgAAkDW5xJHIa9euyWazyWazyd3d3dnlAAAAZHkuESL/+OMPdenSRZ9//rlCQ0PVsmVLLViwQDabzdmlAQAAZEkuESK9vLzUtm1brVmzRnv27FFERIR69uypa9euaeTIkVq5ciUdjQMAANxDLhEir1e0aFGNGDFCx44d0+LFi5WUlKTHHntMISEhzi4NAAAgy3CJG2vS4+bmpkaNGqlRo0Y6e/asZs6c6eySAAAAsgyXOxKZnty5c6tPnz7OLgMAACDL+E+ESAAAANxbhEgAAABYRogEAACAZS4VIocPH67ExMQ07ZcuXdLw4cOdUBEAAEDW5FIhctiwYbpw4UKa9sTERA0bNswJFQEAAGRNLhUijTHp/krN7t27FRQU5ISKAAAAsiaX6CcyZ86c9t/OfuCBBxyCZHJysi5cuKAXX3zRiRUCAABkLS4RIidMmCBjjDp27Khhw4YpICDAPszDw0OFCxdWtWrVnFghAABA1uISITI6OlqSFB4ersjISGXL5hJlAwAA/Ge51DWRFy9e1OrVq9O0L1++XEuXLnVCRQAAAFmTS4XIgQMHKjk5OU27MUYDBw50QkUAAABZk0uFyEOHDqlUqVJp2kuWLKnDhw87oSIAAICsyaVCZEBAgH777bc07YcPH5aPj48TKgIAAMiaXCpENm/eXL169dKvv/5qbzt8+LBeeeUVNWvWzImVAQAAZC0uFSLHjBkjHx8flSxZUuHh4QoPD1dERISCg4M1duxYZ5cHAACQZbhUXzkBAQH68ccftXLlSu3evVve3t568MEHVatWLWeXBgAAkKW4VIiUJJvNpkceeUS1atWSp6dnuj+DCAAAgLvLpU5np6Sk6M0331S+fPnk6+urI0eOSJJef/11ffrpp06uDgAAIOtwqRA5YsQITZ8+XWPGjJGHh4e9vUyZMvrkk0+cWBkAAEDW4lIh8rPPPtPUqVPVtm1bubu729vLlSunAwcOOLEyAACArMWlQuTJkydVrFixNO0pKSm6evWqEyoCAADImlwqRJYqVUrr169P0/7VV1+pQoUKTqgIAAAga3Kpu7OHDBmi6OhonTx5UikpKfr6668VExOjzz77TIsWLXJ2eQAAAFmGSx2JbN68ub777jutWrVKPj4+GjJkiPbv36/vvvtODRs2dHZ5AAAAWYbLHIm8du2a3nrrLXXs2FErV650djkAAABZmsscicyWLZvGjBmja9euObsUAACALM9lQqQk1a9fX+vWrXN2GQAAAFmey5zOlqRGjRpp4MCB2rNnjypWrCgfHx+H4c2aNXNSZQAAAFmLS4XIl156SZI0fvz4NMNsNpuSk5PvdUkAAABZkkuFyJSUFGeXAAAAALnQNZFXr15VtmzZ9Msvvzi7FAAAgCzPZUJk9uzZVbBgQU5ZAwAA3AdcJkRK0uDBg/Xqq6/q3Llzzi4FAAAgS3OpEPnBBx/ohx9+UN68eVWiRAk99NBDDo+76e2335bNZlOvXr3sbZcvX1a3bt0UHBwsX19ftWzZUrGxsXe1DgAAgPuBS91Y06JFC6fMd+vWrfroo4/04IMPOrT37t1bixcv1rx58xQQEKDu3bvriSee0MaNG51SJwAAwL3iUiFy6NCh93yeFy5cUNu2bfXxxx9rxIgR9vb4+Hh9+umnmjNnjurVqydJmjZtmiIiIvTTTz+patWq97xWAACAe8WlTmen2r59u2bNmqVZs2Zp586dd3Ve3bp1U5MmTdSgQYM0NVy9etWhvWTJkipYsKA2bdqU7rSSkpKUkJDg8AAAAHBFLnUk8syZM2rdurXWrl2rwMBASVJcXJzq1q2ruXPnKnfu3Jk6v7lz52rHjh3aunVrmmGnT5+Wh4eHvY5UISEhOn36dLrTGzVqlIYNG5apNQIAADiDSx2J7NGjh/7++2/t3btX586d07lz5/TLL78oISFBPXv2zNR5nThxQi+//LJmz54tLy+vTJnmoEGDFB8fb3+cOHEiU6YLAABwr7nUkchly5Zp1apVioiIsLeVKlVKkyZN0iOPPJKp89q+fbvOnDnjcNd3cnKyfvjhB33wwQdavny5rly5ori4OIejkbGxsQoNDU13mp6envL09MzUOgEAAJzBpUJkSkqKsmfPnqY9e/bsmf6TiPXr19eePXsc2jp06KCSJUtqwIABKlCggLJnz67Vq1erZcuWkqSYmBgdP35c1apVy9RaAAAA7jcuFSLr1aunl19+WZ9//rny5s0rSTp58qR69+6t+vXrZ+q8/Pz8VKZMGYc2Hx8fBQcH29s7deqkPn36KCgoSP7+/urRo4eqVavGndkAAOA/z6VC5AcffKBmzZqpcOHCKlCggKR/rl0sU6aMZs2adc/reffdd+Xm5qaWLVsqKSlJUVFR+vDDD+95HQAAAPeaS4XIAgUKaMeOHVq1apUOHDggSYqIiEjT/c7dsnbtWofnXl5emjRpkiZNmnRP5g8AAHC/cKkQKUk2m00NGzZUw4YNnV0KAABAluUSXfysWbNGpUqVSrdz7vj4eJUuXVrr1693QmUAAABZk0uEyAkTJqhz587y9/dPMywgIEAvvPCCxo8f74TKAAAAsiaXCJG7d+/Wo48+etPhjzzyiLZv334PKwIAAMjaXCJExsbGpts/ZKps2bLp7Nmz97AiAACArM0lQmS+fPn0yy+/3HT4zz//rLCwsHtYEQAAQNbmEiGycePGev3113X58uU0wy5duqShQ4fqsccec0JlAAAAWZNLdPHz2muv6euvv9YDDzyg7t27q0SJEpKkAwcOaNKkSUpOTtbgwYOdXCUAAEDW4RIhMiQkRD/++KO6du2qQYMGyRgj6Z8+I6OiojRp0iSFhIQ4uUoAAICswyVCpCQVKlRIS5Ys0fnz53X48GEZY1S8eHHlzJnT2aUBAABkOS4TIlPlzJlTDz/8sLPLAAAAyNJc4sYaAAAA3F8IkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAy1zut7OB/7rCAxc7u4T/vKNvN3F2CQDg8jgSCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAAAAsIwQeROjRo3Sww8/LD8/P+XJk0ctWrRQTEyMwziXL19Wt27dFBwcLF9fX7Vs2VKxsbFOqhgAAODeIUTexLp169StWzf99NNPWrlypa5evapHHnlEFy9etI/Tu3dvfffdd5o3b57WrVunP/74Q0888YQTqwYAALg3sjm7gPvVsmXLHJ5Pnz5defLk0fbt21WrVi3Fx8fr008/1Zw5c1SvXj1J0rRp0xQREaGffvpJVatWdUbZAAAA9wRHIjMoPj5ekhQUFCRJ2r59u65evaoGDRrYxylZsqQKFiyoTZs2pTuNpKQkJSQkODwAAABcESEyA1JSUtSrVy9FRkaqTJkykqTTp0/Lw8NDgYGBDuOGhITo9OnT6U5n1KhRCggIsD8KFChwt0sHAAC4KwiRGdCtWzf98ssvmjt37r+azqBBgxQfH29/nDhxIpMqBAAAuLe4JvI2unfvrkWLFumHH35Q/vz57e2hoaG6cuWK4uLiHI5GxsbGKjQ0NN1peXp6ytPT826XDAAAcNdxJPImjDHq3r27FixYoDVr1ig8PNxheMWKFZU9e3atXr3a3hYTE6Pjx4+rWrVq97pcAACAe4ojkTfRrVs3zZkzR9988438/Pzs1zkGBATI29tbAQEB6tSpk/r06aOgoCD5+/urR48eqlatGndmAwCA/zxC5E1MnjxZklSnTh2H9mnTpql9+/aSpHfffVdubm5q2bKlkpKSFBUVpQ8//PAeVwoAAHDvESJvwhhz23G8vLw0adIkTZo06R5UBAAAcP/gmkgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiAQAAIBlhEgAAABYRogEAACAZYRIAAAAWEaIBAAAgGWESAAAAFhGiMwEkyZNUuHCheXl5aUqVapoy5Ytzi4JAADgriJE/ktffPGF+vTpo6FDh2rHjh0qV66coqKidObMGWeXBgAAcNcQIv+l8ePHq3PnzurQoYNKlSqlKVOmKEeOHPrf//7n7NIAAADummzOLsCVXblyRdu3b9egQYPsbW5ubmrQoIE2bdqUZvykpCQlJSXZn8fHx0uSEhISMrWulKTETJ0e0srsdXY91t/dd7fWH+vu7mPdua7MXnep0zPGZOp0kXGEyH/hzz//VHJyskJCQhzaQ0JCdODAgTTjjxo1SsOGDUvTXqBAgbtWI+6OgAnOrgD/BuvPdbHuXNfdWnd///23AgIC7s7EcUuEyHto0KBB6tOnj/15SkqKzp07p+DgYNlsNidW5lwJCQkqUKCATpw4IX9/f2eXAwtYd66LdefaWH//HIH8+++/lTdvXmeXkmURIv+FXLlyyd3dXbGxsQ7tsbGxCg0NTTO+p6enPD09HdoCAwPvZokuxd/fP8vuDF0d6851se5cW1ZffxyBdC5urPkXPDw8VLFiRa1evdrelpKSotWrV6tatWpOrAwAAODu4kjkv9SnTx9FR0erUqVKqly5siZMmKCLFy+qQ4cOzi4NAADgriFE/ktPP/20zp49qyFDhuj06dMqX768li1bluZmG9ycp6enhg4dmuZUP+5/rDvXxbpzbaw/3A9shnvjAQAAYBHXRAIAAMAyQiQAAAAsI0QCAADAMkIk7nvTp0/PcH+aVsbF3XP06FHZbDbt2rXL2aUA/2nt27dXixYt7M/r1KmjXr16Zei1VsYF0sPd2bjvPf3002rcuLGzy3BJderUUfny5TVhwgRnl4K7oH379oqLi9PChQudXQruE19//bWyZ8/u7DKQRRAicd/z9vaWt7e3s8sA7hvJyclZ+qdScXNBQUHOLgFZCKezcVtfffWVypYtK29vbwUHB6tBgwa6ePGi/TTKsGHDlDt3bvn7++vFF1/UlStX7K9dtmyZatSoocDAQAUHB+uxxx7Tr7/+ah+eetrz66+/Vt26dZUjRw6VK1dOmzZtso9z4ynq3bt3q27duvLz85O/v78qVqyobdu2OdS8fPlyRUREyNfXV48++qhOnTp19xbQfap9+/Zat26d3nvvPdlsNtlsNv3666/q1KmTwsPD5e3trRIlSui9995zeN21a9fUs2dP+zobMGCAoqOjHU6Z3W69pmfdunWqXLmyPD09FRYWpoEDB+ratWv24X///bfatm0rHx8fhYWF6d133/3PnG6rU6eOunfvru7duysgIEC5cuXS66+/rtQe1s6fP6927dopZ86cypEjhxo1aqRDhw7ZX5+6DXz77bcqVaqUPD091bFjR82YMUPffPONff2uXbtWa9eulc1mU1xcnP31u3btks1m09GjR+1tH3/8sQoUKKAcOXLo8ccf1/jx4x22sxtPk0pSr169VKdOHfvzlJQUjRo1yv55KleunL766iv78PPnz6tt27bKnTu3vL29Vbx4cU2bNs0+/MSJE3rqqacUGBiooKAgNW/e3KFGV3er5ZO6nlavXq1KlSopR44cql69umJiYhymMWLECOXJk0d+fn56/vnnNXDgQJUvX/6m87xxm/nwww9VvHhxeXl5KSQkRE8++WSaGvv376+goCCFhobqjTfeyKy3jyyAEIlbOnXqlNq0aaOOHTtq//79Wrt2rZ544gn7l9/q1avt7Z9//rm+/vprDRs2zP76ixcvqk+fPtq2bZtWr14tNzc3Pf7440pJSXGYz+DBg9W3b1/t2rVLDzzwgNq0aeMQMK7Xtm1b5c+fX1u3btX27ds1cOBAh9M3iYmJGjt2rGbOnKkffvhBx48fV9++fe/C0rm/vffee6pWrZo6d+6sU6dO6dSpU8qfP7/y58+vefPmad++fRoyZIheffVVffnll/bXjR49WrNnz9a0adO0ceNGJSQkpDldmtH1murkyZNq3LixHn74Ye3evVuTJ0/Wp59+qhEjRtjH6dOnjzZu3Khvv/1WK1eu1Pr167Vjx467smycYcaMGcqWLZu2bNmi9957T+PHj9cnn3wi6Z/Atm3bNn377bfatGmTjDFq3Lixrl69an99YmKiRo8erU8++UR79+7V+++/r6eeesr+R9KpU6dUvXr1DNWyceNGvfjii3r55Ze1a9cuNWzYUCNHjrT8nkaNGqXPPvtMU6ZM0d69e9W7d289++yzWrdunSTp9ddf1759+7R06VLt379fkydPVq5cuSRJV69eVVRUlPz8/LR+/Xpt3LjR/kff9X+IurLbLR/pn33fuHHjtG3bNmXLlk0dO3a0D5s9e7ZGjhyp0aNHa/v27SpYsKAmT56c4flv27ZNPXv21PDhwxUTE6Nly5apVq1aDuPMmDFDPj4+2rx5s8aMGaPhw4dr5cqV//7NI2swwC1s377dSDJHjx5NMyw6OtoEBQWZixcv2tsmT55sfH19TXJycrrTO3v2rJFk9uzZY4wx5siRI0aS+eSTT+zj7N2710gy+/fvN8YYM23aNBMQEGAf7ufnZ6ZPn57u9KdNm2YkmcOHD9vbJk2aZEJCQjL+pv9DateubV5++eVbjtOtWzfTsmVL+/OQkBDzzjvv2J9fu3bNFCxY0DRv3vym07jZet25c6cxxphXX33VlChRwqSkpNhfM2nSJPtnJSEhwWTPnt3MmzfPPjwuLs7kyJHjtvW7gtq1a5uIiAiH9z9gwAATERFhDh48aCSZjRs32of9+eefxtvb23z55ZfGmP/7XO/atcthutHR0WnWy/fff28kmfPnz9vbdu7caSSZI0eOGGOMefrpp02TJk0cXte2bVuH7Sy9ab/88sumdu3axhhjLl++bHLkyGF+/PFHh3E6depk2rRpY4wxpmnTpqZDhw7pLpOZM2em+UwkJSUZb29vs3z58nRf40put3xS19OqVavswxYvXmwkmUuXLhljjKlSpYrp1q2bw+sjIyNNuXLl7M9vXE/Xb/Pz5883/v7+JiEhId0aa9eubWrUqOHQ9vDDD5sBAwZYfbvIojgSiVsqV66c6tevr7Jly6pVq1b6+OOPdf78eYfhOXLksD+vVq2aLly4oBMnTkiSDh06pDZt2qhIkSLy9/dX4cKFJUnHjx93mM+DDz5o/39YWJgk6cyZM+nW1KdPHz3//PNq0KCB3n777TSnUXPkyKGiRYs6TO9m08qKJk2apIoVKyp37tzy9fXV1KlT7esjPj5esbGxqly5sn18d3d3VaxY0WEaGV2vqfbv369q1ao5XMcXGRmpCxcu6Pfff9dvv/2mq1evOsw3ICBAJUqUyKy37XRVq1Z1eP/VqlXToUOHtG/fPmXLlk1VqlSxDwsODlaJEiW0f/9+e5uHh4fDdvJvxMTEOCxrSWme387hw4eVmJiohg0bytfX1/747LPP7Ntk165dNXfuXJUvX179+/fXjz/+aH/97t27dfjwYfn5+dlfGxQUpMuXL9/20ghXkJHlI9163/dv11PDhg1VqFAhFSlSRM8995xmz56txMREh3Fu/Eyxv4QV3FiDW3J3d9fKlSv1448/asWKFZo4caIGDx6szZs3Z+j1TZs2VaFChfTxxx8rb968SklJUZkyZdKcrrr+dHTqF+3NTo2+8cYbeuaZZ7R48WItXbpUQ4cO1dy5c/X444+nmVbq9Ay/7ilJmjt3rvr27atx48apWrVq8vPz0zvvvJPh9Zkqo+sVmcfb2ztDN9O4uf1zbOD6z/z1p8Uzys3NLc12c/10Lly4IElavHix8uXL5zBe6u85N2rUSMeOHdOSJUu0cuVK1a9fX926ddPYsWN14cIFVaxYUbNnz04z79y5c1uu935zu+WTGiSt7Pus8vPz044dO7R27VqtWLFCQ4YM0RtvvKGtW7far39Nb3+ZWfPHfx9HInFbNptNkZGRGjZsmHbu3CkPDw8tWLBA0j9HEy5dumQf96effpKvr68KFCigv/76SzExMXrttddUv359RUREOBzF/DceeOAB9e7dWytWrNATTzzhcLE+/o+Hh4eSk5Ptzzdu3Kjq1avrpZdeUoUKFVSsWDGHoyIBAQEKCQnR1q1b7W3JyckO1ybeyXqNiIiwX+t3fS1+fn7Knz+/ihQpouzZszvMNz4+XgcPHvxX7/9+cmNQ/+mnn1S8eHGVKlVK165dcxieuoxLlSp1y2neuH6l/wtg199MdmN/nSVKlHBY1pLSPM+dO3eaG9Kun07qDT7Hjx9XsWLFHB4FChRwmE50dLRmzZqlCRMmaOrUqZKkhx56SIcOHVKePHnSvD4gIOCW79sVZHT53EpG1tPtZMuWTQ0aNNCYMWP0888/6+jRo1qzZo2laQA3w5FI3NLmzZu1evVqPfLII8qTJ482b96ss2fPKiIiQj///LOuXLmiTp066bXXXtPRo0c1dOhQde/eXW5ubsqZM6eCg4M1depUhYWF6fjx4xo4cOC/qufSpUvq16+fnnzySYWHh+v333/X1q1b1bJly0x6x/8thQsX1ubNm3X06FH5+vqqePHi+uyzz7R8+XKFh4dr5syZ2rp1q8LDw+2v6dGjh0aNGqVixYqpZMmSmjhxos6fP28/SnIn6/Wll17ShAkT1KNHD3Xv3l0xMTEaOnSo+vTpIzc3N/n5+Sk6Olr9+vVTUFCQ8uTJo6FDh8rNze0/05XN8ePH1adPH73wwgvasWOHJk6cqHHjxql48eJq3ry5OnfurI8++kh+fn4aOHCg8uXLp+bNm99ymoULF9by5csVExOj4OBgBQQE2EPKG2+8oZEjR+rgwYMaN26cw+t69OihWrVqafz48WratKnWrFmjpUuXOizrevXq6Z133tFnn32matWqadasWfrll19UoUIFSf8c5erbt6969+6tlJQU1ahRQ/Hx8dq4caP8/f0VHR2tIUOGqGLFiipdurSSkpK0aNEiRURESPrnBrl33nlHzZs31/Dhw5U/f34dO3ZMX3/9tfr376/8+fNn8hq4t263fAoVKnTbafTo0UOdO3dWpUqVVL16dX3xxRf6+eefVaRIkQzVsGjRIv3222+qVauWcubMqSVLliglJeU/dZkInMy5l2Tifrdv3z4TFRVlcufObTw9Pc0DDzxgJk6caIz5vwu6hwwZYoKDg42vr6/p3LmzuXz5sv31K1euNBEREcbT09M8+OCDZu3atUaSWbBggTEm7Q0Yxhhz/vx5I8l8//33xhjHG2uSkpJM69atTYECBYyHh4fJmzev6d69u/1C9BtvwjHGmAULFpis+lGPiYkxVatWNd7e3kaSOXDggGnfvr0JCAgwgYGBpmvXrmbgwIEOF+pfvXrVdO/e3fj7+5ucOXOaAQMGmFatWpnWrVvbx7mT9bp27Vrz8MMPGw8PDxMaGmoGDBhgrl69ah+ekJBgnnnmGZMjRw4TGhpqxo8fbypXrmwGDhx4txfTXVe7dm3z0ksvmRdffNG+XF999VX7TSXnzp0zzz33nAkICDDe3t4mKirKHDx40P769D7Xxhhz5swZ07BhQ+Pr6+uwzWzYsMGULVvWeHl5mZo1a5p58+Y53FhjjDFTp041+fLlM97e3qZFixZmxIgRJjQ01GH6Q4YMMSEhISYgIMD07t3bdO/e3X5jjTHGpKSkmAkTJpgSJUqY7Nmzm9y5c5uoqCizbt06Y4wxb775pomIiDDe3t4mKCjING/e3Pz222/21586dcq0a9fO5MqVy3h6epoiRYqYzp07m/j4+H+5xO8Pt1o+GbkByhhjhg8fbnLlymV8fX1Nx44dTc+ePU3VqlXtw291Y8369etN7dq1Tc6cOY23t7d58MEHzRdffJHuuKmaN29uoqOjM3Ep4L/MZgwXi+HO8GsZWUNKSooiIiL01FNP6c0337xn87148aLy5cuncePGqVOnTvdsvneDK/xyUOfOnXXgwAGtX7/e2aXgFho2bKjQ0FDNnDnT2aUAnM4G4OjYsWNasWKFateuraSkJH3wwQc6cuSInnnmmbs63507d+rAgQOqXLmy4uPjNXz4cEm67Sld3JmxY8eqYcOG8vHx0dKlSzVjxgx9+OGHzi4L10lMTNSUKVMUFRUld3d3ff7551q1ahX9OOK+QYgE4MDNzU3Tp09X3759ZYxRmTJltGrVKvu1bHfT2LFjFRMTIw8PD1WsWFHr16+3d06NzLVlyxaNGTNGf//9t4oUKaL3339fzz//vLPLwnVsNpuWLFmikSNH6vLlyypRooTmz5+vBg0aOLs0QJLE6WwAAABYRhc/AAAAsIwQCQAAAMsIkQAAALCMEAkAAADLCJEAAACwjBAJAAAAywiRAO5b7du3V4sWLZxdBgAgHYRIAAAAWEaIBOCSxo8fr7Jly8rHx0cFChTQSy+9pAsXLtiHT58+XYGBgVq+fLkiIiLk6+urRx99VKdOnbKPc+3aNfXs2VOBgYEKDg7WgAEDFB0d7XD0s3Dhwml+87p8+fJ64403MlyLJH388ccqUKCAcuTIoccff1zjx49XYGCgwzjffPONHnroIXl5ealIkSIaNmyYrl279q+XFQDcDYRIAC7Jzc1N77//vvbu3asZM2ZozZo16t+/v8M4iYmJGjt2rGbOnKkffvhBx48fV9++fe3DR48erdmzZ2vatGnauHGjEhIStHDhwkyvZePGjXrxxRf18ssva9euXWrYsKFGjhzpMI3169erXbt2evnll7Vv3z599NFHmj59eprxAOC+YQDgPhUdHW2aN2+eoXHnzZtngoOD7c+nTZtmJJnDhw/b2yZNmmRCQkLsz0NCQsw777xjf37t2jVTsGBBh3kWKlTIvPvuuw7zKleunBk6dGiGa3n66adNkyZNHMZp27atCQgIsD+vX7++eeuttxzGmTlzpgkLC7vpfADAmbI5O8QCwJ1YtWqVRo0apQMHDighIUHXrl3T5cuXlZiYqBw5ckiScuTIoaJFi9pfExYWpjNnzkiS4uPjFRsbq8qVK9uHu7u7q2LFikpJScnUWmJiYvT44487vKZy5cpatGiR/fnu3bu1ceNGhyOPycnJad4TANwvOJ0NwOUcPXpUjz32mB588EHNnz9f27dv16RJkyRJV65csY+XPXt2h9fZbDYZYyzNy83NLc1rrl69armW27lw4YKGDRumXbt22R979uzRoUOH5OXlZalmALgXOBIJwOVs375dKSkpGjdunNzc/vlb+Msvv7Q0jYCAAIWEhGjr1q2qVauWpH+O/O3YsUPly5e3j5c7d26Hm3ESEhJ05MgRS7WUKFFCW7dudWi78flDDz2kmJgYFStWzNL7AABnIUQCuK/Fx8dr165dDm25cuXS1atXNXHiRDVt2lQbN27UlClTLE+7R48eGjVqlIoVK6aSJUtq4sSJOn/+vGw2m32cevXqafr06WratKkCAwM1ZMgQubu724cXK1bstrX06NFDtWrV0vjx49W0aVOtWbNGS5cudZjPkCFD9Nhjj6lgwYJ68skn5ebmpt27d+uXX37RiBEjLL83ALjbOJ0N4L62du1aVahQweExc+ZMjR8/XqNHj1aZMmU0e/ZsjRo1yvK0BwwYoDZt2qhdu3aqVq2afH19FRUV5XD6eNCgQapdu7Yee+wxNWnSRC1atHC4zrJcuXK3rSUyMlJTpkzR+PHjVa5cOS1btky9e/d2mE9UVJQWLVqkFStW6OGHH1bVqlX17rvvqlChQnew1ADg7rMZqxcIAcB/VEpKiiIiIvTUU0/pzTffvKvz6ty5sw4cOKD169ff1fkAwN3C6WwAWdaxY8e0YsUK1a5dW0lJSfrggw905MgRPfPMM5k+r7Fjx6phw4by8fHR0qVLNWPGDH344YeZPh8AuFcIkQCyLDc3N02fPl19+/aVMUZlypTRqlWrFBERkenz2rJli8aMGaO///5bRYoU0fvvv6/nn38+0+cDAPcKp7MBAABgGTfWAAAAwDJCJAAAACwjRAIAAMAyQiQAAAAsI0QCAADAMkIkAAAALCNEAgAAwDJCJAAAACz7f8gtNHHEoeoYAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 optics 1 0 1 1 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 100.0 0.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIjCAYAAABI0sIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYeElEQVR4nO3dd3QU5f/28WsT0iEJBEgIBAg9FAFBMCAdjII0EURRgmCwEBCQKkovUkUhgqhfmiCKiAWkI0VApIvSlSZKUUhCMSEk9/OHT/bHkgBJ2BES369z9pzsPe0zM7uba2fumbUZY4wAAAAs5HK3CwAAADkfgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBA7jH/PDDD3J3d9fx48edMr99+/YpV65c+umnn5wyP2QPxYsXV6dOnf715c6aNUs2m03bt2//15edk92t/elMBA6L/fLLL3rhhRdUokQJeXp6ytfXV7Vr19bbb7+tv//++26Xl2n79u3T0KFDdezYsUxP269fP9lsNj355JPOLywHGTRokJ566ikVK1bM3vbFF1+oXLly8vPzU/PmzfX777+nma5Fixbq2rVrmvby5curWbNmGjx4cIaWn/oP4/pHwYIF1aBBAy1btizrK5aO4sWL67HHHnPqPOFcx44dS/N6uNkjK58L+D+bN2/W0KFDFRsbe7dLsUSuu11ATrZ06VK1bdtWHh4e6tixoypWrKirV6/qu+++U9++ffXzzz9rxowZd7vMTNm3b5+GDRum+vXrq3jx4hmezhijjz/+WMWLF9fXX3+tixcvKk+ePNYVmk3t3r1bq1ev1ubNm+1tv/76q5588kk9+eSTCg8P1+TJk/Xcc89pxYoV9nFWrFihDRs26PDhw+nO98UXX1TTpk31yy+/qGTJkhmqZfjw4QoNDZUxRmfOnNGsWbPUtGlTff3114SEbODgwYNycbnz75QFChTQ3LlzHdomTpyo3377TW+99VaacZF1mzdv1rBhw9SpUyf5+/s7DHPW/rybCBwWOXr0qNq3b69ixYpp7dq1KlSokH1Yt27ddOTIES1duvSOl2OMUUJCgry8vNIMS0hIkLu7+z3xIl23bp1+++03rV27VhEREfr8888VGRl5t8tyqmvXriklJUXu7u5ZnsfMmTNVtGhRPfjgg/a2lStXqkiRIpo9e7ZsNpvCwsLUsGFDJSQkyNPTU9euXVOvXr00ePDgm37gN27cWHnz5tXs2bM1fPjwDNXy6KOPqnr16vbnXbp0UWBgoD7++GMCRzbg4eHhlPn4+PjomWeecWhbsGCBLly4kKYd1nHW/ryb7v5/ohxq3LhxunTpkj788EOHsJGqVKlSeuWVV+zPr127phEjRqhkyZLy8PBQ8eLF9dprrykxMdFhutRD0CtWrFD16tXl5eWl9957T+vWrZPNZtOCBQv0+uuvq3DhwvL29lZ8fLwkaevWrXrkkUfk5+cnb29v1atXT5s2bUpT16lTp9SlSxcFBwfLw8NDoaGheumll3T16lXNmjVLbdu2lSQ1aNDAfhh13bp1t90e8+bNU/ny5dWgQQM1btxY8+bNSzNO6jp8+umnGjVqlIoUKSJPT081atRIR44ccRj38OHDatOmjYKCguTp6akiRYqoffv2iouLkyQ9/vjjuv/++x2mad68uWw2m7766it729atW2Wz2RxOFcTGxqpnz54KCQmRh4eHSpUqpbFjxyolJcU+Tuph5gkTJmjy5Mn2/bZv3z5J0pQpU1ShQgV5e3srb968ql69uubPn3/b7fTFF1+oYcOGstls9ra///5b/v7+9rZ8+fLJGGM/JTd16lQlJyere/fuN52vm5ub6tevry+//PK2NdyMv7+/vLy8lCvXP99TjDEqXry4WrZsmWbchIQE+fn56YUXXsjy8lJt3LhRbdu2VdGiReXh4aGQkBD16tUrzSnJTp06KXfu3Dp16pRatWql3Llzq0CBAurTp4+Sk5Mdxv3rr7/07LPPytfXV/7+/oqMjNSePXtks9k0a9Ys+3j169dX/fr109TUqVOnNEf4JkyYoFq1aikgIEBeXl6qVq2aPvvsszTT/v333+rRo4fy58+vPHnyqEWLFjp16pRsNpuGDh3qMO6pU6fUuXNnBQYGysPDQxUqVND//ve/DG23G8/5p54q27Rpk3r37q0CBQrIx8dHrVu31rlz5zI0z8xITEzM0HKWLVumOnXqyMfHR3ny5FGzZs30888/O4yTum9PnDihxx57TLlz51bhwoUVExMjSdq7d68aNmwoHx8fFStWLN33Wkbe15L0xx9/6MCBA0pKSrrtOl6+fFmvvvqqfZ5ly5bVhAkTdOOPsNtsNkVHR2vevHkqW7asPD09Va1aNW3YsME+ztChQ9W3b19JUmhoaJrTVOn14YiNjVWvXr1UvHhxeXh4qEiRIurYsaP+/PNP+zhZ/SyyhIElChcubEqUKJHh8SMjI40k88QTT5iYmBjTsWNHI8m0atXKYbxixYqZUqVKmbx585oBAwaY6dOnm2+//dZ8++23RpIpX768qVKlipk0aZIZM2aMuXz5slmzZo1xd3c34eHhZuLEieatt94y9913n3F3dzdbt261z/vUqVMmODjYeHt7m549e5rp06ebN954w4SFhZkLFy6YX375xfTo0cNIMq+99pqZO3eumTt3rjl9+vQt1y0hIcH4+/ubESNGGGOMmTNnjnF1dTV//PGHw3ip61C1alVTrVo189Zbb5mhQ4cab29vU6NGDft4iYmJJjQ01AQHB5uRI0eaDz74wAwbNsw88MAD5tixY8YYYyZNmmRcXFxMXFycMcaYlJQUkzdvXuPi4mL69Oljn9f48eMdxrt8+bK57777TEBAgHnttdfM9OnTTceOHY3NZjOvvPKKfbqjR4/at3eJEiXMm2++ad566y1z/PhxM2PGDPu+fO+998zbb79tunTpYnr06HHL7fTbb78ZSeadd95xaN+4caOx2Wxm/vz55tdffzXt2rUzpUqVMsYYc/bsWePv72+WLFlyy3kbY8zIkSMd1vVmZs6caSSZ1atXm3PnzpmzZ8+an376ybzwwgvGxcXFrFy50j7uoEGDjJubm/nrr78c5vHpp58aSWbDhg23XFaxYsVMs2bNbjlO9+7dTdOmTc3o0aPNe++9Z7p06WJcXV3NE0884TBeZGSk8fT0NBUqVDCdO3c206ZNM23atDGSzLvvvmsfLzk52YSHhxtXV1cTHR1tpk6dapo0aWIqV65sJJmZM2fax61Xr56pV69empoiIyNNsWLFHNqKFCliXn75ZTN16lQzadIkU6NGDSMpzb5p166dkWSeffZZExMTY9q1a2df9pAhQ+zjnT592hQpUsSEhISY4cOHm2nTppkWLVoYSeatt9665TYz5p9tGxkZaX+eul+rVq1qGjZsaKZMmWJeffVV4+rqatq1a3fb+V2vWbNmadY/K8uZM2eOsdls5pFHHjFTpkwxY8eONcWLFzf+/v7m6NGj9vFS92358uXNiy++aGJiYkytWrXs+ys4ONj07dvXTJkyxVSoUMG4urqaX3/91T59Rt/XqcuS5LD89KSkpJiGDRsam81mnn/+eTN16lTTvHlzI8n07NnTYVxJpmLFiiZ//vxm+PDhZuzYsaZYsWLGy8vL7N271xhjzJ49e8xTTz1l37+pn6+XLl0yxqTdnxcvXjQVK1Y0rq6uJioqykybNs2MGDHCPPDAA2bXrl3GGJPlzyKrEDgsEBcXZySZli1bZmj83bt3G0nm+eefd2jv06ePkWTWrl1rbytWrJiRZJYvX+4wbuo/6xIlSpgrV67Y21NSUkzp0qVNRESESUlJsbdfuXLFhIaGmiZNmtjbOnbsaFxcXMy2bdvS1Jg67cKFC40k8+2332Zo3Ywx5rPPPjOSzOHDh40xxsTHxxtPT880H5qp6xAWFmYSExPt7W+//baRZH9j7tq1y0gyCxcuvOkyt23bZiSZb775xhhjzI8//mgkmbZt25qaNWvax2vRooWpWrWq/fmIESOMj4+POXTokMP8BgwYYFxdXc2JEyeMMf8XOHx9fc3Zs2cdxm3ZsqWpUKFCRjeP3erVq40k8/XXX6cZlhr0JJl8+fLZXxNRUVHmkUceydD858+fbyQ5hMz0pP7DuPHh4eFhZs2a5TDuwYMHjSQzbdo0h/YWLVqY4sWLO7zm0pORwHH96znVmDFjjM1mM8ePH7e3pf6jGD58uMO4qQE21aJFi4wkM3nyZHtbcnKyadiw4R0FjhvrvHr1qqlYsaJp2LChvW3Hjh3p/kPq1KlTmsDRpUsXU6hQIfPnn386jNu+fXvj5+eX7na53s0CR+PGjR32S69evYyrq6uJjY295fyul5HAcbvlXLx40fj7+5uoqCiH6U+fPm38/Pwc2lP37ejRo+1tFy5cMF5eXsZms5kFCxbY2w8cOJBmW2b0fX39sm4XOL744gsjyYwcOdKh/YknnjA2m80cOXLE3pb6Htq+fbu97fjx48bT09O0bt3a3jZ+/PibLvvG/Tl48GAjyXz++edpxk3d7ln9LLIKp1QskHoaI6OdIr/55htJUu/evR3aX331VUlK09cjNDRUERER6c4rMjLSoT/H7t27dfjwYT399NP666+/9Oeff+rPP//U5cuX1ahRI23YsEEpKSlKSUnRF198oebNmzuct091/SH+zJo3b56qV6+uUqVKSZL9sGl6p1Uk6bnnnnPoB1GnTh1J/3SelCQ/Pz9J/3SUvHLlSrrzqFq1qnLnzm0/ZLlx40b74cadO3fqypUrMsbou+++s89fkhYuXKg6deoob9689m31559/qnHjxkpOTnY4BCpJbdq0SdNvwt/fX7/99pu2bduW4W0k/XOYX5Ly5s2bZtjbb7+t48ePa+vWrTp+/LgaNGig3bt3a86cOXrrrbcUFxenZ555RoULF1b9+vW1f//+NPNIne/1h1tvJSYmRqtWrdKqVav00UcfqUGDBnr++ef1+eef28cpU6aMatas6bAvz58/r2XLlqlDhw539LpJdf3r+fLly/rzzz9Vq1YtGWO0a9euNOO/+OKLDs/r1Kljf+1I0vLly+Xm5qaoqCh7m4uLi7p16+a0Oi9cuKC4uDjVqVNHO3fudFi2JL388ssO0954OswYo0WLFql58+Yyxji8FiMiIhQXF+cw38zo2rWrw36pU6eOkpOTnXYZdkaXs2rVKsXGxuqpp55yWD9XV1fVrFlT3377bZp5Pv/88/a//f39VbZsWfn4+Khdu3b29rJly8rf399hn2fmfT1r1iz76cJb+eabb+Tq6qoePXo4tL/66qsyxqS5ois8PFzVqlWzPy9atKhatmypFStWpDnllxGLFi1S5cqV1bp16zTDUrd7Vj+LrEKnUQv4+vpKki5evJih8Y8fPy4XFxf7P+RUQUFB8vf3T/NBEBoaetN53Tgs9aqFW3XQjIuL09WrVxUfH6+KFStmqOaMio2N1TfffKPo6GiHfhi1a9fWokWLdOjQIZUpU8ZhmqJFizo8T/1HeeHCBUn/rGPv3r01adIkzZs3T3Xq1FGLFi30zDPP2MOIq6urwsPDtXHjRkn/BI46derooYceUnJysr7//nsFBgbq/PnzDoHj8OHD+vHHH2/a+fLs2bMOz9PbF/3799fq1atVo0YNlSpVSg8//LCefvpp1a5dO0PbzNxw/jdV0aJFHbZNjx499OKLL6pcuXJ65plndPLkSX355ZeaPXu2mjdvrgMHDtj7W1w/34yGgBo1ajiEz6eeekpVq1ZVdHS0HnvsMXso7Nixo6Kjo3X8+HEVK1ZMCxcuVFJSkp599tkMLed2Tpw4ocGDB+urr76yvwZSpfbZSeXp6Zlm3+XNm9dhuuPHj6tQoULy9vZ2GO/G919mLVmyRCNHjtTu3bsd+l5dv71T3+s3vm5uXPa5c+cUGxurGTNm3PRKthtfixl1u/eXs9xuOamfTQ0bNkx3+tTP0VTp7Vs/Pz8VKVIkzWvaz8/PYX0y+77OiOPHjys4ODjNF8uwsDD78OuVLl06zTzKlCmjK1eu6Ny5cwoKCsrU8n/55Re1adPmluPc6WeRsxE4LODr66vg4OBM32gpo/8I0rsi5WbDUjtEjR8/XlWqVEl3mty5c+v8+fMZKzKTFi5cqMTERE2cOFETJ05MM3zevHkaNmyYQ5urq2u687r+H/HEiRPVqVMnffnll1q5cqV69OihMWPG6Pvvv1eRIkUkSQ899JBGjRqlhIQEbdy4UYMGDZK/v78qVqyojRs3KjAwUJIcAkdKSoqaNGmifv36pVvDjeEovX0RFhamgwcPasmSJVq+fLkWLVqkd999V4MHD06zrtcLCAiQlLEP/k8++UT79+/XV199peTkZH366adauXKlqlevrgoVKuj999/X999/r4ceesg+Tep88+fPf9v5p8fFxUUNGjTQ22+/rcOHD6tChQqSpPbt26tXr16aN2+eXnvtNX300UeqXr26ypYtm6XlXC85OVlNmjTR+fPn1b9/f5UrV04+Pj46deqUOnXqlKbD381eO1lls9nSDYA3fiPduHGjWrRoobp16+rdd99VoUKF5ObmppkzZ2apg17qej3zzDM3/bJw3333ZXq+UsbeX85wu+WkruPcuXPT/Wd7fVi+1fwysj6ZfV/nFFn9LLIKgcMijz32mGbMmKEtW7YoPDz8luMWK1ZMKSkpOnz4sD0dS9KZM2cUGxvrcAOozEq954Kvr68aN2580/EKFCggX1/f24akzB4inzdvnipWrKghQ4akGfbee+9p/vz5WX7hV6pUSZUqVdLrr7+uzZs3q3bt2po+fbpGjhwp6Z8gcfXqVX388cc6deqUPVjUrVvXHjjKlCljDx7SP9vr0qVLt9xWGeHj42O/d8bVq1f1+OOPa9SoURo4cKA8PT3TnaZcuXKS/rmk+lauXLmivn37asSIEfL399eZM2eUlJSk4OBgSf+EoLx58+rUqVMO0x09elQuLi539OF67do1SdKlS5fsbfny5bOfIuvQoYM2bdqkyZMnZ3kZ19u7d68OHTqk2bNnq2PHjvb2VatWZXmexYoV07fffqsrV644HOW48Uoo6Z9v5dcfmk9147fXRYsWydPTUytWrHC4fHHmzJlplp2SkqKjR486fOO9cdkFChRQnjx5lJycfMevxXtV6mdTwYIFLV9HZ72vr1esWDGtXr06zT2FDhw4YB9+vfTukXPo0CF5e3vbj7xk5vO1ZMmSGfpSm5XPIqvQh8Mi/fr1k4+Pj55//nmdOXMmzfBffvlFb7/9tiSpadOmkpTmQ3rSpEmSpGbNmmW5jmrVqqlkyZKaMGGCwz+JVKmXqbm4uKhVq1b6+uuv070lceq3BR8fH0nK0J3wTp48qQ0bNqhdu3Z64okn0jyee+45HTlyRFu3bs3UOsXHx9v/8aWqVKmSXFxcHA5l16xZU25ubho7dqzy5ctn/0Zep04dff/991q/fr3D0Q1JateunbZs2eJwU61UsbGxaZabntS+GKnc3d1Vvnx5GWNueald4cKFFRIScttbQo8dO1Z58+a190EICAhQrly57B90f/75Z7qHaHfs2KEKFSrYTztlVlJSklauXCl3d3eHYCxJzz77rPbt26e+ffvK1dVV7du3z9IybpT67fX6b6vGGPt7JysiIiKUlJSk999/396WkpJiv8TyeiVLltSBAwccLufcs2dPmkvKXV1dZbPZHI58HDt2TF988UWaZUvSu+++69A+ZcqUNPNr06aNFi1alO4/FSsuY/23RUREyNfXV6NHj073feHMdczM+zqjl8U2bdpUycnJmjp1qkP7W2+9JZvNpkcffdShfcuWLQ79blJPgT788MP213lmPl/btGmjPXv2aPHixWmGpb5fsvpZZBWOcFikZMmSmj9/vp588kmFhYU53Gl08+bNWrhwof2a6sqVKysyMlIzZsxQbGys6tWrpx9++EGzZ89Wq1at1KBBgyzX4eLiog8++ECPPvqoKlSooOeee06FCxfWqVOn9O2338rX11dff/21JGn06NFauXKl6tWrp65duyosLEx//PGHFi5cqO+++07+/v6qUqWKXF1dNXbsWMXFxcnDw0MNGzZUwYIF0yx7/vz5MsaoRYsW6dbWtGlT5cqVS/PmzVPNmjUzvE5r165VdHS02rZtqzJlyujatWuaO3eu/UM6lbe3t6pVq6bvv//efg8O6Z8jHJcvX9bly5fTBI6+ffvqq6++0mOPPaZOnTqpWrVqunz5svbu3avPPvtMx44du+0piYcfflhBQUGqXbu2AgMDtX//fk2dOlXNmjW7bUfili1bavHixTLGpPtt58SJExo/fryWLl1q/5DKlSuXWrZsqZ49e+rEiRNavHixgoODHY6sJSUlaf369Wk6K97KsmXL7CHm7Nmzmj9/vg4fPqwBAwakOb/erFkzBQQEaOHChXr00UfTfT3czJEjR+xHpa5XtWpVPfzwwypZsqT69OmjU6dOydfXV4sWLbqj/gatWrVSjRo19Oqrr+rIkSMqV66cvvrqK/tpxeu3e+fOnTVp0iRFRESoS5cuOnv2rKZPn64KFSrYO4enrv+kSZP0yCOP6Omnn9bZs2cVExOjUqVK6ccff7SPV61aNbVp00aTJ0/WX3/9pQcffFDr16/XoUOH0iz7zTff1LfffquaNWsqKipK5cuX1/nz57Vz506tXr3astOg/xZfX19NmzZNzz77rO6//361b99eBQoU0IkTJ7R06VLVrl07zT/zrMrM+3rgwIGaPXu2jh49esuOo82bN1eDBg00aNAgHTt2TJUrV9bKlSv15ZdfqmfPnmnu6FuxYkVFRESoR48e8vDwsIfO64/wpnYqHTRokNq3by83Nzc1b97cHkRuXKfPPvtMbdu2VefOnVWtWjWdP39eX331laZPn67KlSvf0WeRJf7Va2L+gw4dOmSioqJM8eLFjbu7u8mTJ4+pXbu2mTJliklISLCPl5SUZIYNG2ZCQ0ONm5ubCQkJMQMHDnQYx5ibX0aYeknpzS4V3bVrl3n88cdNQECA8fDwMMWKFTPt2rUza9ascRjv+PHjpmPHjqZAgQLGw8PDlChRwnTr1s3hMtX333/flChRwri6ut7yEtlKlSqZokWL3nL71K9f3xQsWNAkJSXddB1SL0FNvVzx119/NZ07dzYlS5Y0np6eJl++fKZBgwZm9erVaebft29fI8mMHTvWob1UqVJGkvnll1/STHPx4kUzcOBAU6pUKePu7m7y589vatWqZSZMmGCuXr3qUNP48ePTTP/ee++ZunXr2rd1yZIlTd++fW97/wtjjNm5c6eRZDZu3Jju8LZt25rHH388TfuZM2dM8+bNTZ48ecz999/vcPmdMcYsW7bM4dLkW0nvslhPT09TpUoVM23atJte6vryyy8bSWb+/Pm3XUaq1Mu803t06dLFGGPMvn37TOPGjU3u3LlN/vz5TVRUlNmzZ0+aS1gjIyONj49PmmUMGTLE3PhRd+7cOfP000+bPHnyGD8/P9OpUyezadMmI8nhEktjjPnoo49MiRIljLu7u6lSpYpZsWJFupfFfvjhh6Z06dLGw8PDlCtXzsycOTPdZV++fNl069bN5MuXz+TOndu0atXKfnnxm2++6TDumTNnTLdu3UxISIhxc3MzQUFBplGjRmbGjBkZ2rbpXRZ742Xvqe+7zFzqnpHLYjO6nG+//dZEREQYPz8/4+npaUqWLGk6derk8Bq+2b6tV69eupd9pvc5mZH3deqylIHLYlPn2atXLxMcHGzc3NxM6dKlzfjx49O8RySZbt26mY8++sj+GqlatWq623zEiBGmcOHCxsXFxaGOG/enMcb89ddfJjo62hQuXNi4u7ubIkWKmMjISPul1HfyWWQFmzFO7ikE4I40atRIwcHBaX6/4k60atVKNpst3cOvztKrVy99+OGHOn36dJorQLKDL774Qq1bt9Z33333r/fi3717t6pWraqPPvpIHTp0+FeXDevZbDZ169bNaUdssiv6cAD3mNGjR+uTTz5x2n0R9u/fryVLlmjEiBFOmV96EhIS9NFHH6lNmzbZImzceFv05ORkTZkyRb6+vmluiW/1sqV/+m+5uLiobt26li4buJvowwHcY2rWrKmrV686bX5hYWEZ6uyaFWfPntXq1av12Wef6a+//nL4faB7Wffu3fX3338rPDxciYmJ+vzzz7V582aNHj36lpedO8O4ceO0Y8cONWjQQLly5dKyZcu0bNkyde3aVSEhIZYuG7ibCBwAsmzfvn3q0KGDChYsqHfeeeem93q51zRs2FATJ07UkiVLlJCQoFKlSmnKlCmKjo62fNm1atXSqlWrNGLECF26dElFixbV0KFDNWjQIMuXDdxN9OEAAACWow8HAACwHIEDAABYjj4c+ucug7///rvy5MnjlF+3BADgv8IYo4sXLyo4OFguLjc/jkHgkPT777/TOxwAgDtw8uRJ+49npofAIdlv8Xry5Mk0t2wGAAA3Fx8fr5CQkNveLp3Aof/7/QJfX18CBwAAWXC7Lgl0GgUAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABY7q4Gjg0bNqh58+YKDg6WzWbTF1984TDcGKPBgwerUKFC8vLyUuPGjXX48GGHcc6fP68OHTrI19dX/v7+6tKliy5duvQvrgUAALiduxo4Ll++rMqVKysmJibd4ePGjdM777yj6dOna+vWrfLx8VFERIQSEhLs43To0EE///yzVq1apSVLlmjDhg3q2rXrv7UKAAAgA2zGGHO3i5Akm82mxYsXq1WrVpL+OboRHBysV199VX369JEkxcXFKTAwULNmzVL79u21f/9+lS9fXtu2bVP16tUlScuXL1fTpk3122+/KTg4OEPLjo+Pl5+fn+Li4uTr62vJ+gEAkBNl9H/oPduH4+jRozp9+rQaN25sb/Pz81PNmjW1ZcsWSdKWLVvk7+9vDxuS1LhxY7m4uGjr1q03nXdiYqLi4+MdHgAAwDq57nYBN3P69GlJUmBgoEN7YGCgfdjp06dVsGBBh+G5cuVSvnz57OOkZ8yYMRo2bJiTK06r+IClli/jv+7Ym83udgm4x/C+s56V7zv2n/Xu1ufmPXuEw0oDBw5UXFyc/XHy5Mm7XRIAADnaPRs4goKCJElnzpxxaD9z5ox9WFBQkM6ePesw/Nq1azp//rx9nPR4eHjI19fX4QEAAKxzzwaO0NBQBQUFac2aNfa2+Ph4bd26VeHh4ZKk8PBwxcbGaseOHfZx1q5dq5SUFNWsWfNfrxkAAKTvrvbhuHTpko4cOWJ/fvToUe3evVv58uVT0aJF1bNnT40cOVKlS5dWaGio3njjDQUHB9uvZAkLC9MjjzyiqKgoTZ8+XUlJSYqOjlb79u0zfIUKAACw3l0NHNu3b1eDBg3sz3v37i1JioyM1KxZs9SvXz9dvnxZXbt2VWxsrB566CEtX75cnp6e9mnmzZun6OhoNWrUSC4uLmrTpo3eeeedf31dAADAzd3VwFG/fn3d6jYgNptNw4cP1/Dhw286Tr58+TR//nwrygMAAE5yz/bhAAAAOQeBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAy93TgSM5OVlvvPGGQkND5eXlpZIlS2rEiBEyxtjHMcZo8ODBKlSokLy8vNS4cWMdPnz4LlYNAABudE8HjrFjx2ratGmaOnWq9u/fr7Fjx2rcuHGaMmWKfZxx48bpnXfe0fTp07V161b5+PgoIiJCCQkJd7FyAABwvVx3u4Bb2bx5s1q2bKlmzZpJkooXL66PP/5YP/zwg6R/jm5MnjxZr7/+ulq2bClJmjNnjgIDA/XFF1+offv2d612AADwf+7pIxy1atXSmjVrdOjQIUnSnj179N133+nRRx+VJB09elSnT59W48aN7dP4+fmpZs2a2rJly03nm5iYqPj4eIcHAACwzj19hGPAgAGKj49XuXLl5OrqquTkZI0aNUodOnSQJJ0+fVqSFBgY6DBdYGCgfVh6xowZo2HDhllXOAAAcHBPH+H49NNPNW/ePM2fP187d+7U7NmzNWHCBM2ePfuO5jtw4EDFxcXZHydPnnRSxQAAID339BGOvn37asCAAfa+GJUqVdLx48c1ZswYRUZGKigoSJJ05swZFSpUyD7dmTNnVKVKlZvO18PDQx4eHpbWDgAA/s89fYTjypUrcnFxLNHV1VUpKSmSpNDQUAUFBWnNmjX24fHx8dq6davCw8P/1VoBAMDN3dNHOJo3b65Ro0apaNGiqlChgnbt2qVJkyapc+fOkiSbzaaePXtq5MiRKl26tEJDQ/XGG28oODhYrVq1urvFAwAAu3s6cEyZMkVvvPGGXn75ZZ09e1bBwcF64YUXNHjwYPs4/fr10+XLl9W1a1fFxsbqoYce0vLly+Xp6XkXKwcAANe7pwNHnjx5NHnyZE2ePPmm49hsNg0fPlzDhw//9woDAACZck/34QAAADkDgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADL5crKREePHtXGjRt1/PhxXblyRQUKFFDVqlUVHh4uT09PZ9cIAACyuUwFjnnz5untt9/W9u3bFRgYqODgYHl5een8+fP65Zdf5OnpqQ4dOqh///4qVqyYVTUDAIBsJsOBo2rVqnJ3d1enTp20aNEihYSEOAxPTEzUli1btGDBAlWvXl3vvvuu2rZt6/SCAQBA9pPhwPHmm28qIiLipsM9PDxUv3591a9fX6NGjdKxY8ecUR8AAMgBMhw4bhU2bhQQEKCAgIAsFQQAAHKeLHUavd7SpUu1bt06JScnq3bt2mrTpo0z6gIAADnIHV0W+8Ybb6hfv36y2WwyxqhXr17q3r27s2oDAAA5RKaOcGzfvl3Vq1e3P//kk0+0Z88eeXl5SZI6deqk+vXra8qUKc6tEgAAZGuZOsLx4osvqmfPnrpy5YokqUSJEpo4caIOHjyovXv3atq0aSpTpowlhQIAgOwrU4Fj69atKlSokO6//359/fXX+t///qddu3apVq1aqlOnjn777TfNnz/fqloBAEA2lalTKq6ururfv7/atm2rl156ST4+Ppo6daqCg4Otqg8AAOQAWeo0WqJECa1YsUKtW7dW3bp1FRMT4+y6AABADpKpwBEbG6t+/fqpefPmev3119W6dWtt3bpV27Zt04MPPqi9e/daVScAAMjGMhU4IiMjtXXrVjVr1kwHDx7USy+9pICAAM2aNUujRo3Sk08+qf79+1tVKwAAyKYy1Ydj7dq12rVrl0qVKqWoqCiVKlXKPqxRo0bauXOnhg8f7vQiAQBA9papIxylS5fWjBkzdOjQIU2fPj3NL8J6enpq9OjRTi0QAABkf5kKHP/73/+0du1aVa1aVfPnz9e0adOsqgsAAOQgmTqlUqVKFW3fvt2qWgAAQA6V4SMcxhgr6wAAADlYhgNHhQoVtGDBAl29evWW4x0+fFgvvfSS3nzzzTsuDgAA5AwZPqUyZcoU9e/fXy+//LKaNGmi6tWrKzg4WJ6enrpw4YL27dun7777Tj///LOio6P10ksvWVk3AADIRjIcOBo1aqTt27fru+++0yeffKJ58+bp+PHj+vvvv5U/f35VrVpVHTt2VIcOHZQ3b14rawYAANlMpjqNStJDDz2khx56yIpaAABADpWl31IBAADIDAIHAACwHIEDAABYjsABAAAsR+AAAACWy1Lg2Llzp/bu3Wt//uWXX6pVq1Z67bXXbntjMAAA8N+TpcDxwgsv6NChQ5KkX3/9Ve3bt5e3t7cWLlyofv36ObVAAACQ/WUpcBw6dEhVqlSRJC1cuFB169bV/PnzNWvWLC1atMiZ9QEAgBwgS4HDGKOUlBRJ0urVq9W0aVNJUkhIiP7880/nVQcAAHKELAWO6tWra+TIkZo7d67Wr1+vZs2aSZKOHj2qwMBApxZ46tQpPfPMMwoICJCXl5cqVaqk7du324cbYzR48GAVKlRIXl5eaty4sQ4fPuzUGgAAwJ3JUuCYPHmydu7cqejoaA0aNEilSpWSJH322WeqVauW04q7cOGCateuLTc3Ny1btkz79u3TxIkTHX6rZdy4cXrnnXc0ffp0bd26VT4+PoqIiFBCQoLT6gAAAHcm07+lkpycrNjYWG3YsCHNj7SNHz9erq6uTitu7NixCgkJ0cyZM+1toaGh9r+NMZo8ebJef/11tWzZUpI0Z84cBQYG6osvvlD79u2dVgsAAMi6TB/hcHV11cMPP6zY2Ng0wzw9PeXm5uaMuiRJX331lapXr662bduqYMGCqlq1qt5//3378KNHj+r06dNq3Lixvc3Pz081a9bUli1bbjrfxMRExcfHOzwAAIB1snRKpWLFivr111+dXUsav/76q6ZNm6bSpUtrxYoVeumll9SjRw/Nnj1bknT69GlJStNvJDAw0D4sPWPGjJGfn5/9ERISYt1KAACArAWOkSNHqk+fPlqyZIn++OMPy44WpKSk6P7779fo0aNVtWpVde3aVVFRUZo+ffodzXfgwIGKi4uzP06ePOmkigEAQHoy3YdDkv0y2BYtWshms9nbjTGy2WxKTk52SnGFChVS+fLlHdrCwsLs9/oICgqSJJ05c0aFChWyj3PmzBn7fULS4+HhIQ8PD6fUCAAAbi9LgePbb791dh3pql27tg4ePOjQdujQIRUrVkzSPx1Ig4KCtGbNGnvAiI+P19atW/XSSy/9KzUCAIDby1LgqFevnrPrSFevXr1Uq1YtjR49Wu3atdMPP/ygGTNmaMaMGZIkm82mnj17auTIkSpdurRCQ0P1xhtvKDg4WK1atfpXagQAALeX5V+L3bhxo5555hnVqlVLp06dkiTNnTtX3333ndOKe+CBB7R48WJ9/PHHqlixokaMGKHJkyerQ4cO9nH69eun7t27q2vXrnrggQd06dIlLV++XJ6enk6rAwAA3JksBY5FixYpIiJCXl5e2rlzpxITEyVJcXFxGj16tFMLfOyxx7R3714lJCRo//79ioqKchhus9k0fPhwnT59WgkJCVq9erXKlCnj1BoAAMCdyfJVKtOnT9f777/vcN+N2rVra+fOnU4rDgAA5AxZChwHDx5U3bp107T7+fmle0MwAADw35alwBEUFKQjR46kaf/uu+9UokSJOy4KAADkLFkKHFFRUXrllVe0detW2Ww2/f7775o3b5769OnD5agAACCNLF0WO2DAAKWkpKhRo0a6cuWK6tatKw8PD/Xp00fdu3d3do0AACCby1LgsNlsGjRokPr27asjR47o0qVLKl++vHLnzu3s+gAAQA6QpcCxdu1a1apVS56enmluPQ4AAHCjLAWOFi1a6Nq1a3rggQdUv3591atXT7Vr15aXl5ez6wMAADlAljqNXrhwQWvWrNGjjz6qH374Qa1bt5a/v79q166t119/3dk1AgCAbC5LgcPNzU21a9fWa6+9phUrVuj777/XU089pR9++EFjxoxxdo0AACCby9IplUOHDmndunVat26d1q9fr8TERNWpU0cTJkxQ/fr1nVwiAADI7rIUOMqVK6cCBQrolVde0YABA1SpUiXZbDZn1wYAAHKILJ1S6dGjhwoXLqzhw4frxRdf1KBBg7Ry5UpduXLF2fUBAIAcIEuBY/Lkydq5c6dOnz6tgQMH6urVqxo0aJDy58+v2rVrO7tGAACQzWUpcKRKTk5WUlKSEhMTlZCQoMTERB08eNBZtQEAgBwiy6dU7rvvPgUGBuqFF17Q77//rqioKO3atUvnzp1zdo0AACCby1Kn0T/++ENdu3ZV/fr1VbFiRWfXBAAAcpgsBY6FCxc6uw4AAJCDZemUyuzZs7V06VL78379+snf31+1atXS8ePHnVYcAADIGbIUOEaPHm3/3ZQtW7YoJiZG48aNU/78+dWrVy+nFggAALK/LJ1SOXnypEqVKiVJ+uKLL9SmTRt17dpVtWvX5k6jAAAgjSwd4cidO7f++usvSdLKlSvVpEkTSZKnp6f+/vtv51UHAAByhCwd4WjSpImef/55Va1aVYcOHVLTpk0lST///LOKFy/uzPoAAEAOkKUjHDExMQoPD9e5c+e0aNEiBQQESJJ27Nihp556yqkFAgCA7C9LRzj8/f01derUNO3Dhg2744IAAEDOk6XAIUmxsbH64YcfdPbsWaWkpNjbbTabnn32WacUBwAAcoYsBY6vv/5aHTp00KVLl+Tr6+vw0/QEDgAAcKMs9eF49dVX1blzZ126dEmxsbG6cOGC/XH+/Hln1wgAALK5LAWOU6dOqUePHvL29nZ2PQAAIAfKUuCIiIjQ9u3bnV0LAADIobLUh6NZs2bq27ev9u3bp0qVKsnNzc1heIsWLZxSHAAAyBmyFDiioqIkScOHD08zzGazKTk5+c6qAgAAOUqWAsf1l8ECAADcTpb6cNxMbGxsujcEAwAA/21OCRxr1qzR008/rUKFCmnIkCHOmCUAAMhBshw4Tp48qeHDhys0NFQPP/ywbDabFi9erNOnTzuzPgAAkANkKnAkJSVp4cKFioiIUNmyZbV7926NHz9eLi4uGjRokB555JE0V6wAAABkqtNo4cKFVa5cOT3zzDNasGCB8ubNK0n8QiwAALilTB3huHbtmmw2m2w2m1xdXa2qCQAA5DCZChy///67unbtqo8//lhBQUFq06aNFi9e7PDjbQAAADfKVODw9PRUhw4dtHbtWu3du1dhYWHq0aOHrl27plGjRmnVqlXc9AsAAKSR5atUSpYsqZEjR+r48eNaunSpEhMT9dhjjykwMNCZ9QEAgBwgS3cavZ6Li4seffRRPfroozp37pzmzp3rjLoAAEAO4tQ7jRYoUEC9e/d25iwBAEAO4NTAAQAAkB4CBwAAsByBAwAAWC5LgWP48OG6cuVKmva///5bw4cPv+OiAABAzpKlwDFs2DBdunQpTfuVK1c0bNiwOy4KAADkLFkKHMaYdO8uumfPHuXLl++OiwIAADlLpu7DkTdvXvtvqZQpU8YhdCQnJ+vSpUt68cUXnV4kAADI3jIVOCZPnixjjDp37qxhw4bJz8/PPszd3V3FixdXeHi404sEAADZW6YCR2RkpCQpNDRUtWvXVq5cd3yjUgAA8B+QpT4cly9f1po1a9K0r1ixQsuWLbvjogAAQM6SpcAxYMCAdH8V1hijAQMG3HFRAAAgZ8lS4Dh8+LDKly+fpr1cuXI6cuTIHRcFAAByliwFDj8/P/36669p2o8cOSIfH587LgoAAOQsWQocLVu2VM+ePfXLL7/Y244cOaJXX31VLVq0cFpxAAAgZ8hS4Bg3bpx8fHxUrlw5hYaGKjQ0VGFhYQoICNCECROcXSMAAMjmsnRdq5+fnzZv3qxVq1Zpz5498vLy0n333ae6des6uz4AAJADZPlGGjabTQ8//LDq1q0rDw+PdG91DgAAIGXxlEpKSopGjBihwoULK3fu3Dp69Kgk6Y033tCHH37o1AIBAED2l6XAMXLkSM2aNUvjxo2Tu7u7vb1ixYr64IMPnFYcAADIGbIUOObMmaMZM2aoQ4cOcnV1tbdXrlxZBw4ccFpxAAAgZ8hS4Dh16pRKlSqVpj0lJUVJSUl3XBQAAMhZshQ4ypcvr40bN6Zp/+yzz1S1atU7LgoAAOQsWbpKZfDgwYqMjNSpU6eUkpKizz//XAcPHtScOXO0ZMkSZ9cIAACyuSzfafTrr7/W6tWr5ePjo8GDB2v//v36+uuv1aRJE2fXCAAAsrlMH+G4du2aRo8erc6dO2vVqlVW1AQAAHKYTB/hyJUrl8aNG6dr165ZUQ8AAMiBsnRKpVGjRlq/fr2zawEAADlUljqNPvrooxowYID27t2ratWqpflJen4xFgAAXC9LgePll1+WJE2aNCnNMJvNpuTk5DurCgAA5ChZChwpKSnOrgMAAORgme7DkZSUpFy5cumnn36yoh4AAJADZTpwuLm5qWjRopw2AQAAGZalq1QGDRqk1157TefPn3d2PQAAIAfKUuCYOnWqNmzYoODgYJUtW1b333+/w8Mqb775pmw2m3r27GlvS0hIULdu3RQQEKDcuXOrTZs2OnPmjGU1AACAzMtSp9FWrVo5uYzb27Ztm9577z3dd999Du29evXS0qVLtXDhQvn5+Sk6OlqPP/64Nm3a9K/XCAAA0pelwDFkyBBn13FLly5dUocOHfT+++9r5MiR9va4uDh9+OGHmj9/vho2bChJmjlzpsLCwvT999/rwQcf/FfrBAAA6cvSKZVUO3bs0EcffaSPPvpIu3btclZNaXTr1k3NmjVT48aN0yw/KSnJob1cuXIqWrSotmzZctP5JSYmKj4+3uEBAACsk6UjHGfPnlX79u21bt06+fv7S5JiY2PVoEEDLViwQAUKFHBagQsWLNDOnTu1bdu2NMNOnz4td3d3ew2pAgMDdfr06ZvOc8yYMRo2bJjTagQAALeWpSMc3bt318WLF/Xzzz/r/PnzOn/+vH766SfFx8erR48eTivu5MmTeuWVVzRv3jx5eno6bb4DBw5UXFyc/XHy5EmnzRsAAKSVpSMcy5cv1+rVqxUWFmZvK1++vGJiYvTwww87rbgdO3bo7NmzDle+JCcna8OGDZo6dapWrFihq1evKjY21uEox5kzZxQUFHTT+Xp4eMjDw8NpdQIAgFvL8q3N3dzc0rS7ubk59bbnjRo10t69ex3annvuOZUrV079+/dXSEiI3NzctGbNGrVp00aSdPDgQZ04cULh4eFOqwMAANyZLAWOhg0b6pVXXtHHH3+s4OBgSdKpU6fUq1cvNWrUyGnF5cmTRxUrVnRo8/HxUUBAgL29S5cu6t27t/LlyydfX191795d4eHhXKECAMA9JEuBY+rUqWrRooWKFy+ukJAQSf/0t6hYsaI++ugjpxZ4O2+99ZZcXFzUpk0bJSYmKiIiQu++++6/WgMAALi1LAWOkJAQ7dy5U6tXr9aBAwckSWFhYWkuW7XCunXrHJ57enoqJiZGMTExli8bAABkTZYChyTZbDY1adJETZo0cWY9AAAgB8rUZbFr165V+fLl071RVlxcnCpUqKCNGzc6rTgAAJAzZCpwTJ48WVFRUfL19U0zzM/PTy+88IImTZrktOIAAEDOkKnAsWfPHj3yyCM3Hf7www9rx44dd1wUAADIWTIVOM6cOZPu/TdS5cqVS+fOnbvjogAAQM6SqcBRuHBh/fTTTzcd/uOPP6pQoUJ3XBQAAMhZMhU4mjZtqjfeeEMJCQlphv39998aMmSIHnvsMacVBwAAcoZMXRb7+uuv6/PPP1eZMmUUHR2tsmXLSpIOHDigmJgYJScna9CgQZYUCgAAsq9MBY7AwEBt3rxZL730kgYOHChjjKR/7skRERGhmJgYBQYGWlIoAADIvjJ9469ixYrpm2++0YULF3TkyBEZY1S6dGnlzZvXivoAAEAOkOU7jebNm1cPPPCAM2sBAAA5VKY6jQIAAGQFgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABY7p4OHGPGjNEDDzygPHnyqGDBgmrVqpUOHjzoME5CQoK6deumgIAA5c6dW23atNGZM2fuUsUAACA993TgWL9+vbp166bvv/9eq1atUlJSkh5++GFdvnzZPk6vXr309ddfa+HChVq/fr1+//13Pf7443exagAAcKNcd7uAW1m+fLnD81mzZqlgwYLasWOH6tatq7i4OH344YeaP3++GjZsKEmaOXOmwsLC9P333+vBBx+8G2UDAIAb3NNHOG4UFxcnScqXL58kaceOHUpKSlLjxo3t45QrV05FixbVli1bbjqfxMRExcfHOzwAAIB1sk3gSElJUc+ePVW7dm1VrFhRknT69Gm5u7vL39/fYdzAwECdPn36pvMaM2aM/Pz87I+QkBArSwcA4D8v2wSObt266aefftKCBQvueF4DBw5UXFyc/XHy5EknVAgAAG7mnu7DkSo6OlpLlizRhg0bVKRIEXt7UFCQrl69qtjYWIejHGfOnFFQUNBN5+fh4SEPDw8rSwYAANe5p49wGGMUHR2txYsXa+3atQoNDXUYXq1aNbm5uWnNmjX2toMHD+rEiRMKDw//t8sFAAA3cU8f4ejWrZvmz5+vL7/8Unny5LH3y/Dz85OXl5f8/PzUpUsX9e7dW/ny5ZOvr6+6d++u8PBwrlABAOAeck8HjmnTpkmS6tev79A+c+ZMderUSZL01ltvycXFRW3atFFiYqIiIiL07rvv/suVAgCAW7mnA4cx5rbjeHp6KiYmRjExMf9CRQAAICvu6T4cAAAgZyBwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFiOwAEAACxH4AAAAJYjcAAAAMsROAAAgOUIHAAAwHIEDgAAYDkCBwAAsByBAwAAWI7AAQAALEfgAAAAliNwAAAAyxE4AACA5QgcAADAcgQOAABguRwTOGJiYlS8eHF5enqqZs2a+uGHH+52SQAA4P/LEYHjk08+Ue/evTVkyBDt3LlTlStXVkREhM6ePXu3SwMAAMohgWPSpEmKiorSc889p/Lly2v69Ony9vbW//73v7tdGgAAkJTrbhdwp65evaodO3Zo4MCB9jYXFxc1btxYW7ZsSXeaxMREJSYm2p/HxcVJkuLj451aW0riFafOD2k5e58h++N9Zz0r33fsP+s5e/+lzs8Yc8vxsn3g+PPPP5WcnKzAwECH9sDAQB04cCDdacaMGaNhw4alaQ8JCbGkRljHb/LdrgD47+F9l71Ztf8uXrwoPz+/mw7P9oEjKwYOHKjevXvbn6ekpOj8+fMKCAiQzWa7i5XdPfHx8QoJCdHJkyfl6+t7t8tBJrH/si/2XfbFvvuHMUYXL15UcHDwLcfL9oEjf/78cnV11ZkzZxzaz5w5o6CgoHSn8fDwkIeHh0Obv7+/VSVmK76+vv/pN052x/7Lvth32Rf7Trc8spEq23cadXd3V7Vq1bRmzRp7W0pKitasWaPw8PC7WBkAAEiV7Y9wSFLv3r0VGRmp6tWrq0aNGpo8ebIuX76s55577m6XBgAAlEMCx5NPPqlz585p8ODBOn36tKpUqaLly5en6UiKm/Pw8NCQIUPSnGpC9sD+y77Yd9kX+y5zbOZ217EAAADcoWzfhwMAANz7CBwAAMByBA4AAGA5AgcyZNasWRm+V0lmxoV1jh07JpvNpt27d9/tUoAcr1OnTmrVqpX9ef369dWzZ88MTZuZcbOzHHGVCqz35JNPqmnTpne7jGypfv36qlKliiZPnny3S4EFOnXqpNjYWH3xxRd3uxTcQz7//HO5ubnd7TLuKQQOZIiXl5e8vLzudhnAPSM5Ofk/+1MIuL18+fLd7RLuOZxSySY+++wzVapUSV5eXgoICFDjxo11+fJl+2G8YcOGqUCBAvL19dWLL76oq1ev2qddvny5HnroIfn7+ysgIECPPfaYfvnlF/vw1EPvn3/+uRo0aCBvb29VrlzZ4dd2bzxNsmfPHjVo0EB58uSRr6+vqlWrpu3btzvUvGLFCoWFhSl37tx65JFH9Mcff1i3ge5RnTp10vr16/X222/LZrPJZrPpl19+UZcuXRQaGiovLy+VLVtWb7/9tsN0165dU48ePez7rH///oqMjHQ4ZHu7/Zqe9evXq0aNGvLw8FChQoU0YMAAXbt2zT784sWL6tChg3x8fFSoUCG99dZbOeZwb/369RUdHa3o6Gj5+fkpf/78euONN+y/cHnhwgV17NhRefPmlbe3tx599FEdPnzYPn3qe+Crr75S+fLl5eHhoc6dO2v27Nn68ssv7ft33bp1WrdunWw2m2JjY+3T7969WzabTceOHbO3vf/++woJCZG3t7dat26tSZMmObzPbjxML0k9e/ZU/fr17c9TUlI0ZswY++upcuXK+uyzz+zDL1y4oA4dOqhAgQLy8vJS6dKlNXPmTPvwkydPql27dvL391e+fPnUsmVLhxpzgltto9R9tWbNGlWvXl3e3t6qVauWDh486DCPkSNHqmDBgsqTJ4+ef/55DRgwQFWqVLnpMm9837z77rsqXbq0PD09FRgYqCeeeCJNjf369VO+fPkUFBSkoUOHOmv17xkEjmzgjz/+0FNPPaXOnTtr//79WrdunR5//HH7B+WaNWvs7R9//LE+//xzh1/DvXz5snr37q3t27drzZo1cnFxUevWrZWSkuKwnEGDBqlPnz7avXu3ypQpo6eeesrhn9H1OnTooCJFimjbtm3asWOHBgwY4HD48MqVK5owYYLmzp2rDRs26MSJE+rTp48FW+fe9vbbbys8PFxRUVH6448/9Mcff6hIkSIqUqSIFi5cqH379mnw4MF67bXX9Omnn9qnGzt2rObNm6eZM2dq06ZNio+PT3PIPqP7NdWpU6fUtGlTPfDAA9qzZ4+mTZumDz/8UCNHjrSP07t3b23atElfffWVVq1apY0bN2rnzp2WbJu7Yfbs2cqVK5d++OEHvf3225o0aZI++OADSf/8c9++fbu++uorbdmyRcYYNW3aVElJSfbpr1y5orFjx+qDDz7Qzz//rHfeeUft2rWzB+o//vhDtWrVylAtmzZt0osvvqhXXnlFu3fvVpMmTTRq1KhMr9OYMWM0Z84cTZ8+XT///LN69eqlZ555RuvXr5ckvfHGG9q3b5+WLVum/fv3a9q0acqfP78kKSkpSREREcqTJ482btyoTZs22b8gXP+lJbu73TaS/vn8mzhxorZv365cuXKpc+fO9mHz5s3TqFGjNHbsWO3YsUNFixbVtGnTMrz87du3q0ePHho+fLgOHjyo5cuXq27dug7jzJ49Wz4+Ptq6davGjRun4cOHa9WqVXe+8vcSg3vejh07jCRz7NixNMMiIyNNvnz5zOXLl+1t06ZNM7lz5zbJycnpzu/cuXNGktm7d68xxpijR48aSeaDDz6wj/Pzzz8bSWb//v3GGGNmzpxp/Pz87MPz5MljZs2ale78Z86caSSZI0eO2NtiYmJMYGBgxlc6B6lXr5555ZVXbjlOt27dTJs2bezPAwMDzfjx4+3Pr127ZooWLWpatmx503ncbL/u2rXLGGPMa6+9ZsqWLWtSUlLs08TExNhfK/Hx8cbNzc0sXLjQPjw2NtZ4e3vftv7soF69eiYsLMxh/fv372/CwsLMoUOHjCSzadMm+7A///zTeHl5mU8//dQY83+v6927dzvMNzIyMs1++fbbb40kc+HCBXvbrl27jCRz9OhRY4wxTz75pGnWrJnDdB06dHB4n6U371deecXUq1fPGGNMQkKC8fb2Nps3b3YYp0uXLuapp54yxhjTvHlz89xzz6W7TebOnZvmNZGYmGi8vLzMihUr0p0mu7ndNkrdV6tXr7YPW7p0qZFk/v77b2OMMTVr1jTdunVzmL527dqmcuXK9uc37qvr3/eLFi0yvr6+Jj4+Pt0a69WrZx566CGHtgceeMD0798/s6t7T+MIRzZQuXJlNWrUSJUqVVLbtm31/vvv68KFCw7Dvb297c/Dw8N16dIlnTx5UpJ0+PBhPfXUUypRooR8fX1VvHhxSdKJEycclnPffffZ/y5UqJAk6ezZs+nW1Lt3bz3//PNq3Lix3nzzzTSH8r29vVWyZEmH+d1sXv9FMTExqlatmgoUKKDcuXNrxowZ9v0RFxenM2fOqEaNGvbxXV1dVa1aNYd5ZHS/ptq/f7/Cw8Md+h3Url1bly5d0m+//aZff/1VSUlJDsv18/NT2bJlnbXad92DDz7osP7h4eE6fPiw9u3bp1y5cqlmzZr2YQEBASpbtqz2799vb3N3d3d4n9yJgwcPOmxrSWme386RI0d05coVNWnSRLlz57Y/5syZY39PvvTSS1qwYIGqVKmifv36afPmzfbp9+zZoyNHjihPnjz2afPly6eEhITbnp7LLjKyjaRbf/7d6b5q0qSJihUrphIlSujZZ5/VvHnzdOXKFYdxbnxd5cTPTDqNZgOurq5atWqVNm/erJUrV2rKlCkaNGiQtm7dmqHpmzdvrmLFiun9999XcHCwUlJSVLFixTSHTK8/JZL6oXyzw/NDhw7V008/raVLl2rZsmUaMmSIFixYoNatW6eZV+r8DHfRlyQtWLBAffr00cSJExUeHq48efJo/PjxGd6fqTK6X+E8Xl5eGeoo6uLyz3e561/z15+aySgXF5c075vr53Pp0iVJ0tKlS1W4cGGH8VJ/3+PRRx/V8ePH9c0332jVqlVq1KiRunXrpgkTJujSpUuqVq2a5s2bl2bZBQoUyHS996LbbaPU0JGZz7/MypMnj3bu3Kl169Zp5cqVGjx4sIYOHapt27bZ++yk95nprOXfKzjCkU3YbDbVrl1bw4YN065du+Tu7q7FixdL+udbyt9//20f9/vvv1fu3LkVEhKiv/76SwcPHtTrr7+uRo0aKSwszOHoyJ0oU6aMevXqpZUrV+rxxx936IiG/+Pu7q7k5GT7802bNqlWrVp6+eWXVbVqVZUqVcrhm5afn58CAwO1bds2e1tycrJDX4qs7NewsDB734Tra8mTJ4+KFCmiEiVKyM3NzWG5cXFxOnTo0B2t/73kxlD3/fffq3Tp0ipfvryuXbvmMDx1G5cvX/6W87xx/0r/98/6+o7SN94PpWzZsg7bWlKa5wUKFEjT2fr6+aR2Xj1x4oRKlSrl8AgJCXGYT2RkpD766CNNnjxZM2bMkCTdf//9Onz4sAoWLJhmej8/v1uud3aR0W10KxnZV7eTK1cuNW7cWOPGjdOPP/6oY8eOae3atZmaR3bHEY5sYOvWrVqzZo0efvhhFSxYUFu3btW5c+cUFhamH3/8UVevXlWXLl30+uuv69ixYxoyZIiio6Pl4uKivHnzKiAgQDNmzFChQoV04sQJDRgw4I7q+fvvv9W3b1898cQTCg0N1W+//aZt27apTZs2TlrjnKV48eLaunWrjh07pty5c6t06dKaM2eOVqxYodDQUM2dO1fbtm1TaGiofZru3btrzJgxKlWqlMqVK6cpU6bowoUL9m9eWdmvL7/8siZPnqzu3bsrOjpaBw8e1JAhQ9S7d2+5uLgoT548ioyMVN++fZUvXz4VLFhQQ4YMkYuLS465/PPEiRPq3bu3XnjhBe3cuVNTpkzRxIkTVbp0abVs2VJRUVF67733lCdPHg0YMECFCxdWy5YtbznP4sWLa8WKFTp48KACAgLk5+dn/2c2dOhQjRo1SocOHdLEiRMdpuvevbvq1q2rSZMmqXnz5lq7dq2WLVvmsK0bNmyo8ePHa86cOQoPD9dHH32kn376SVWrVpX0zzfnPn36qFevXkpJSdFDDz2kuLg4bdq0Sb6+voqMjNTgwYNVrVo1VahQQYmJiVqyZInCwsIk/dP5e/z48WrZsqWGDx+uIkWK6Pjx4/r888/Vr18/FSlSxMl74N93u21UrFix286je/fuioqKUvXq1VWrVi198skn+vHHH1WiRIkM1bBkyRL9+uuvqlu3rvLmzatvvvlGKSkpOep0ZYbc3S4kyIh9+/aZiIgIU6BAAePh4WHKlCljpkyZYoz5v45KgwcPNgEBASZ37twmKirKJCQk2KdftWqVCQsLMx4eHua+++4z69atM5LM4sWLjTFpOxcaY8yFCxeMJPPtt98aYxw7jSYmJpr27dubkJAQ4+7uboKDg010dLS9g9WNHUyNMWbx4sXmv/pyO3jwoHnwwQeNl5eXkWQOHDhgOnXqZPz8/Iy/v7956aWXzIABAxw6oCUlJZno6Gjj6+tr8ubNa/r372/atm1r2rdvbx8nK/t13bp15oEHHjDu7u4mKCjI9O/f3yQlJdmHx8fHm6efftp4e3uboKAgM2nSJFOjRg0zYMAAqzeT5erVq2defvll8+KLL9q362uvvWbvMHn+/Hnz7LPPGj8/P+Pl5WUiIiLMoUOH7NOn97o2xpizZ8+aJk2amNy5czu8Z7777jtTqVIl4+npaerUqWMWLlzo0GnUGGNmzJhhChcubLy8vEyrVq3MyJEjTVBQkMP8Bw8ebAIDA42fn5/p1auXiY6OtncaNcaYlJQUM3nyZFO2bFnj5uZmChQoYCIiIsz69euNMcaMGDHChIWFGS8vL5MvXz7TsmVL8+uvv9qn/+OPP0zHjh1N/vz5jYeHhylRooSJiooycXFxd7jF7x232kYZ6eBrjDHDhw83+fPnN7lz5zadO3c2PXr0MA8++KB9+K06jW7cuNHUq1fP5M2b13h5eZn77rvPfPLJJ+mOm6ply5YmMjLSiVvh7uPn6bM57nL435CSkqKwsDC1a9dOI0aM+NeWe/nyZRUuXFgTJ05Uly5d/rXlWiE73PE1KipKBw4c0MaNG+92KbiNJk2aKCgoSHPnzr3bpWQbnFIB7kHHjx/XypUrVa9ePSUmJmrq1Kk6evSonn76aUuXu2vXLh04cEA1atRQXFychg8fLkm3Pa2ArJkwYYKaNGkiHx8fLVu2TLNnz9a77757t8vCDa5cuaLp06crIiJCrq6u+vjjj7V69eqcd58MixE4gHuQi4uLZs2apT59+sgYo4oVK2r16tX2c+9WmjBhgg4ePCh3d3dVq1ZNGzdutN8oCs71ww8/aNy4cbp48aJKlCihd955R88///zdLgs3sNls+uabbzRq1CglJCSobNmyWrRokRo3bny3S8tWOKUCAAAsx2WxAADAcgQOAABgOQIHAACwHIEDAABYjsABAAAsR+AAAACWI3AAuKVOnTqpVatWd7sMANkcgQMAAFiOwAEgyyZNmqRKlSrJx8dHISEhevnll3Xp0iX78FmzZsnf318rVqxQWFiYcufOrUceecThJ9evXbumHj16yN/fXwEBAerfv78iIyMdjqoUL148zW+gVKlSRUOHDs1wLZL0/vvvKyQkRN7e3mrdurUmTZokf39/h3G+/PJL3X///fL09FSJEiU0bNgwXbt27Y63FfBfR+AAkGUuLi5655139PPPP2v27Nlau3at+vXr5zDOlStXNGHCBM2dO1cbNmzQiRMn1KdPH/vwsWPHat68eZo5c6Y2bdqk+Pj4LP0Y4e1q2bRpk1588UW98sor2r17t5o0aaJRo0Y5zGPjxo3q2LGjXnnlFe3bt0/vvfeeZs2alWY8AFlwV3+rFsA978af3b6VhQsXmoCAAPvzmTNnGknmyJEj9raYmBgTGBhofx4YGGjGjx9vf37t2jVTtGhRh2UWK1bMvPXWWw7Lqly5shkyZEiGa3nyySdNs2bNHMbp0KGDw0/ON2rUyIwePdphnLlz55pChQrddDkAMoYfbwOQZatXr9aYMWN04MABxcfH69q1a0pISNCVK1fk7e0tSfL29lbJkiXt0xQqVEhnz56VJMXFxenMmTOqUaOGfbirq6uqVaumlJQUp9Zy8OBBtW7d2mGaGjVqaMmSJfbne/bs0aZNmxyOaCQnJ6dZJwCZxykVAFly7NgxPfbYY7rvvvu0aNEi7dixQzExMZKkq1ev2sdzc3NzmM5ms8lk8jcjXVxc0kyTlJSU6Vpu59KlSxo2bJh2795tf+zdu1eHDx+Wp6dnpmoG4IgjHACyZMeOHUpJSdHEiRPl4vLPd5dPP/00U/Pw8/NTYGCgtm3bprp160r654jCzp07VaVKFft4BQoUcOhoGh8fr6NHj2aqlrJly2rbtm0ObTc+v//++3Xw4EGVKlUqU+sB4PYIHABuKy4uTrt373Zoy58/v5KSkjRlyhQ1b95cmzZt0vTp0zM97+7du2vMmDEqVaqUypUrpylTpujChQuy2Wz2cRo2bKhZs2apefPm8vf31+DBg+Xq6mofXqpUqdvW0r17d9WtW1eTJk1S8+bNtXbtWi1btsxhOYMHD9Zjjz2mokWL6oknnpCLi4v27Nmjn376SSNHjsz0ugG4zt3uRALg3hYZGWkkpXl06dLFTJo0yRQqVMh4eXmZiIgIM2fOHCPJXLhwwRjzT6fR6ztlGmPM4sWLzfUfPUlJSSY6Otr4+vqavHnzmv79+5u2bdua9u3b28eJi4szTz75pPH19TUhISFm1qxZaTqN3q4WY4yZMWOGKVy4sPHy8jKtWrUyI0eONEFBQQ71LV++3NSqVct4eXkZX19fU6NGDTNjxgynbU/gv8pmTCZPpgKAhVJSUhQWFqZ27dppxIgRli4rKipKBw4c0MaNGy1dDgBOqQC4y44fP66VK1eqXr16SkxM1NSpU3X06FE9/fTTTl/WhAkT1KRJE/n4+GjZsmWaPXu23n33XacvB0BaBA4Ad5WLi4tmzZqlPn36yBijihUravXq1QoLC3P6sn744QeNGzdOFy9eVIkSJfTOO+/o+eefd/pyAKTFKRUAAGA57sMBAAAsR+AAAACWI3AAAADLETgAAIDlCBwAAMByBA4AAGA5AgcAALAcgQMAAFju/wGYJuktO8haYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 optics/refraction 1 0 1 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 1 100.0 0.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAIjCAYAAAAUWIEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc8ElEQVR4nO3dd1QU5/s28GtBehVEiiKCKIJYsSF2UWLXEI3GRIyKsWDvGhsWYsOKGk2+YsGYWGPvvWE3xoIN0RhBjQICgpTn/cOX+bkuZVkXYZLrcw7nsM+0e2d2dq+deWZWIYQQICIiIpIxnaIugIiIiOhjMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0NB/wvnz56Gvr4+YmBitzO/mzZsoUaIE/vzzT63Mj+ShfPny6NWr1ydfbnh4OBQKBS5evPjJl/1vVlTb82MkJSWhb9++sLOzg0KhwLBhw4q6JADA1KlToVAoirQGWQaa+/fv47vvvoOLiwsMDQ1hbm4OHx8fLFq0CG/evCnq8grs5s2bmDp1Kh4+fFjgaceMGQOFQoEvv/xS+4X9i0ycOBHdu3eHk5OT1LZ9+3ZUrlwZFhYWaN++Pf7++2+V6Tp06IB+/fqptHt4eKBt27aYPHmyWsvP/kB6/6906dJo1qwZ9u7dq/kTy0H58uXRrl07rc6TtOvhw4cqr4fc/jR5X6D/c+bMGUydOhXx8fGffNlZWVmwsbHBnDlztDbPWbNmITw8HAMGDMC6devwzTffaG3e+UlJScHUqVNx7NixT7bMgihR1AUU1O7du9GlSxcYGBigZ8+e8PT0xNu3b3Hq1CmMHj0aN27cwMqVK4u6zAK5efMmpk2bhqZNm6J8+fJqTyeEwC+//ILy5ctj586deP36NczMzAqvUJm6evUqDh06hDNnzkhtDx48wJdffokvv/wS3t7eWLhwIb799lvs379fGmf//v04ceIE7t69m+N8+/fvjzZt2uD+/fuoUKGCWrUEBwfD2dkZQgjExcUhPDwcbdq0wc6dOxlCZCAqKgo6Oh//PdDGxgbr1q1Taps/fz7++usvLFiwQGVc0tyZM2cwbdo09OrVC5aWlkrDtLU9c3P+/Hm8ePECbdu21do8jxw5gvr162PKlClam6e6UlJSMG3aNABA06ZNlYZ9//33GDdu3Cev6X2yCjTR0dHo1q0bnJyccOTIEdjb20vDBg0ahHv37mH37t0fvRwhBFJTU2FkZKQyLDU1Ffr6+oW6E6jr2LFj+Ouvv3DkyBH4+flh69atCAgIKOqytCojIwNZWVnQ19fXeB6rV69GuXLlUL9+fantwIEDKFu2LNasWQOFQgF3d3c0b94cqampMDQ0REZGBoYPH47Jkyfn+oHi6+uLkiVLYs2aNQgODlarltatW6N27drS4z59+sDW1ha//PILA40MGBgYaGU+JiYm+Prrr5XaNm7ciFevXqm0U+HR1vbMzZ49e+Dk5IQqVarkODyvz5rcPHv2DB4eHvmO96k/q0qUKIESJYo2UhT9p3IBzJkzB0lJSfj555+Vwkw2V1dXDB06VHqckZGB6dOno0KFCjAwMED58uUxYcIEpKWlKU2XfYh+//79qF27NoyMjPDjjz/i2LFjUCgU2LhxI77//nuUKVMGxsbGSExMBABERkbis88+g4WFBYyNjdGkSROcPn1apa4nT56gT58+cHBwgIGBAZydnTFgwAC8ffsW4eHh6NKlCwCgWbNm0mFmdQ7pRUREwMPDA82aNYOvry8iIiJUxsl+Dr/99htmzpyJsmXLwtDQEC1atMC9e/eUxr179y78/f1hZ2cHQ0NDlC1bFt26dUNCQgIA4PPPP0etWrWUpmnfvj0UCgV27NghtUVGRkKhUCidSomPj8ewYcPg6OgIAwMDuLq6Yvbs2cjKypLGyT4MP2/ePCxcuFDabjdv3gQALFmyBFWqVIGxsTFKliyJ2rVrY8OGDfmup+3bt6N58+ZK53ffvHkDS0tLqc3KygpCCOmU5dKlS5GZmYnBgwfnOl89PT00bdoUv//+e7415MbS0hJGRkbSG4EQAuXLl0fHjh1Vxk1NTYWFhQW+++47jZeX7eTJk+jSpQvKlSsHAwMDODo6Yvjw4SqnbHv16gVTU1M8efIEnTp1gqmpKWxsbDBq1ChkZmYqjfvPP//gm2++gbm5OSwtLREQEIBr165BoVAgPDxcGq9p06Yq3+6yl/XhEcp58+ahQYMGsLa2hpGREby8vLB582aVad+8eYMhQ4agVKlSMDMzQ4cOHfDkyRMoFApMnTpVadwnT56gd+/esLW1hYGBAapUqYL//e9/aq23D/tcZJ9KPH36NEaMGAEbGxuYmJigc+fOeP78uVrzLIi0tDS1lrN37140atQIJiYmMDMzQ9u2bXHjxg2lcbK37aNHj9CuXTuYmpqiTJkyCAsLAwBcv34dzZs3h4mJCZycnHLc19TZrwHg6dOnuH37NtLT0/N9jsnJyRg5cqQ0Tzc3N8ybNw9CCKXxFAoFgoKCEBERATc3NxgaGsLLywsnTpyQxpk6dSpGjx4NAHB2dlY5jZdTH5r4+HgMHz4c5cuXh4GBAcqWLYuePXvixYsX0jjqvhft3r1b6ehMbp816qzL7Pfy6Oho7N69W+m55PVZ9fLlS4waNQpVq1aFqakpzM3N0bp1a1y7dk2l3tTUVEydOhWVKlWCoaEh7O3t8fnnn+P+/ft4+PCh9OVu2rRp0vKz96+c+tAU9DP41KlTqFu3LgwNDeHi4oK1a9eq1JgnISNlypQRLi4uao8fEBAgAIgvvvhChIWFiZ49ewoAolOnTkrjOTk5CVdXV1GyZEkxbtw4sWLFCnH06FFx9OhRAUB4eHiIGjVqiNDQUBESEiKSk5PF4cOHhb6+vvD29hbz588XCxYsENWqVRP6+voiMjJSmveTJ0+Eg4ODMDY2FsOGDRMrVqwQkyZNEu7u7uLVq1fi/v37YsiQIQKAmDBhgli3bp1Yt26diI2NzfO5paamCktLSzF9+nQhhBBr164Vurq64unTp0rjZT+HmjVrCi8vL7FgwQIxdepUYWxsLOrWrSuNl5aWJpydnYWDg4OYMWOG+Omnn8S0adNEnTp1xMOHD4UQQoSGhgodHR2RkJAghBAiKytLlCxZUujo6IhRo0ZJ85o7d67SeMnJyaJatWrC2tpaTJgwQaxYsUL07NlTKBQKMXToUGm66OhoaX27uLiIH374QSxYsEDExMSIlStXStvyxx9/FIsWLRJ9+vQRQ4YMyXM9/fXXXwKAWLx4sVL7yZMnhUKhEBs2bBAPHjwQXbt2Fa6urkIIIZ49eyYsLS3Frl278py3EELMmDFD6bnmZvXq1QKAOHTokHj+/Ll49uyZ+PPPP8V3330ndHR0xIEDB6RxJ06cKPT09MQ///yjNI/ffvtNABAnTpzIc1lOTk6ibdu2eY4zePBg0aZNGzFr1izx448/ij59+ghdXV3xxRdfKI0XEBAgDA0NRZUqVUTv3r3F8uXLhb+/vwAgli1bJo2XmZkpvL29ha6urggKChJLly4VLVu2FNWrVxcAxOrVq6VxmzRpIpo0aaJSU0BAgHByclJqK1u2rBg4cKBYunSpCA0NFXXr1hUAVLZN165dBQDxzTffiLCwMNG1a1dp2VOmTJHGi42NFWXLlhWOjo4iODhYLF++XHTo0EEAEAsWLMhznQnxbt0GBARIj7O3a82aNUXz5s3FkiVLxMiRI4Wurq7o2rVrvvN7X9u2bVWevybLWbt2rVAoFOKzzz4TS5YsEbNnzxbly5cXlpaWIjo6Whove9t6eHiI/v37i7CwMNGgQQNpezk4OIjRo0eLJUuWiCpVqghdXV3x4MEDaXp19+vsZQFQWn5OsrKyRPPmzYVCoRB9+/YVS5cuFe3btxcAxLBhw5TGBSA8PT1FqVKlRHBwsJg9e7ZwcnISRkZG4vr160IIIa5duya6d+8ubd/s99ekpCQhhOr2fP36tfD09BS6uroiMDBQLF++XEyfPl3UqVNHXLlyRQgh1H4vevr0qVAoFEqv1dw+a9RZl7GxsWLdunWiVKlSokaNGkrPJa/PqgsXLogKFSqIcePGiR9//FEEBweLMmXKCAsLC/HkyROptoyMDNGiRQsBQHTr1k0sXbpUhISEiObNm4vt27eLpKQksXz5cgFAdO7cWVr+tWvXhBBCTJkyRXwYKQryGezm5iZsbW3FhAkTxNKlS0WtWrWEQqEQf/75Z56vGaXXhNpjFrGEhAQBQHTs2FGt8a9evSoAiL59+yq1jxo1SgAQR44ckdqcnJwEALFv3z6lcbNfJC4uLiIlJUVqz8rKEhUrVhR+fn4iKytLak9JSRHOzs6iZcuWUlvPnj2Fjo6OuHDhgkqN2dNu2rRJABBHjx5V67kJIcTmzZsFAHH37l0hhBCJiYnC0NBQ5U05+zm4u7uLtLQ0qX3RokUCgLTjX7lyRQAQmzZtynWZFy5cEADEnj17hBBC/PHHHwKA6NKli6hXr540XocOHUTNmjWlx9OnTxcmJibizp07SvMbN26c0NXVFY8ePRJC/F+gMTc3F8+ePVMat2PHjqJKlSrqrh7JoUOHBACxc+dOlWHZQRKAsLKykl4TgYGB4rPPPlNr/hs2bBAAlEJsTrI/kD78MzAwEOHh4UrjRkVFCQBi+fLlSu0dOnQQ5cuXV3rN5USdQPP+6zlbSEiIUCgUIiYmRmrLfkMKDg5WGjc7IGfbsmWLACAWLlwotWVmZormzZt/VKD5sM63b98KT09P0bx5c6nt0qVLOX7g9erVSyXQ9OnTR9jb24sXL14ojdutWzdhYWGR43p5X26BxtfXV2m7DB8+XOjq6or4+Pg85/c+dQJNfst5/fq1sLS0FIGBgUrTx8bGCgsLC6X27G07a9Ysqe3Vq1fCyMhIKBQKsXHjRqn99u3bKutS3f36/WXlF2i2b98uAIgZM2YotX/xxRdCoVCIe/fuSW3Z+9DFixeltpiYGGFoaCg6d+4stc2dOzfXZX+4PSdPniwAiK1bt6qMm73e1X0v+vnnn4WRkZHSayq3z5qCrMuc9u/cPquEePflNzMzU6ktOjpaGBgYKO3X//vf/wQAERoamutzf/78ucrrINuHgUaTz+D3v6w9e/ZMGBgYiJEjR6osKzeyOeWUfZpH3U6ve/bsAQCMGDFCqX3kyJEAoNLXxtnZGX5+fjnOKyAgQOkc59WrV3H37l189dVX+Oeff/DixQu8ePECycnJaNGiBU6cOIGsrCxkZWVh+/btaN++vVK/iWwfc4lbREQEateuDVdXVwCQDivndNoJAL799lulfiiNGjUC8K5zLABYWFgAeNcRNiUlJcd51KxZE6amptIh3ZMnT0qHYy9fvoyUlBQIIXDq1Clp/gCwadMmNGrUCCVLlpTW1YsXL+Dr64vMzEylQ8QA4O/vr9JvxdLSEn/99RcuXLig9joC3p0GAYCSJUuqDFu0aBFiYmIQGRmJmJgYNGvWDFevXsXatWuxYMECJCQk4Ouvv0aZMmXQtGlT3Lp1S2Ue2fN9/3B0XsLCwnDw4EEcPHgQ69evR7NmzdC3b19s3bpVGqdSpUqoV6+e0rZ8+fIl9u7dix49emjl0sj3X8/Jycl48eIFGjRoACEErly5ojJ+//79lR43atRIeu0AwL59+6Cnp4fAwECpTUdHB4MGDdJana9evUJCQgIaNWqEy5cvKy0bAAYOHKg07YenC4UQ2LJlC9q3bw8hhNJr0c/PDwkJCUrzLYh+/fopbZdGjRohMzNTa7cJUHc5Bw8eRHx8PLp37670/HR1dVGvXj0cPXpUZZ59+/aV/re0tISbmxtMTEzQtWtXqd3NzQ2WlpZK27wg+3V4eLh0OjUve/bsga6uLoYMGaLUPnLkSAghVK4I9Pb2hpeXl/S4XLly6NixI/bv369ySlQdW7ZsQfXq1dG5c2eVYdnrXd33oj179qBZs2Yq/WNy+qwp6Htkbj78rALe9RPK7keTmZmJf/75B6ampnBzc1N6vW/ZsgWlSpXK8TS7Ju85Bf0M9vDwUPrcsLGxgZubm9JrLj+y6RRsbm4OAHj9+rVa48fExEBHR0f6wM9mZ2cHS0tLlTcaZ2fnXOf14bDsq17y6oCbkJCAt2/fIjExEZ6enmrVrK74+Hjs2bMHQUFBSv1gfHx8sGXLFty5cweVKlVSmqZcuXJKj7M/iF+9egXg3XMcMWIEQkNDERERgUaNGqFDhw74+uuvpbCjq6sLb29vnDx5EsC7QNOoUSM0bNgQmZmZOHfuHGxtbfHy5UulF+bdu3fxxx9/5Nq59tmzZ0qPc9oWY8eOxaFDh1C3bl24urqiVatW+Oqrr+Dj46PWOhMfnH/PVq5cOaV1M2TIEPTv3x+VK1fG119/jcePH+P333/HmjVr0L59e9y+fVup41v2fNXd4evWrasUbrt3746aNWsiKCgI7dq1k0Jnz549ERQUhJiYGDg5OWHTpk1IT0/X2iWajx49wuTJk7Fjxw7pNZAtu89UNkNDQ5VtV7JkSaXpYmJiYG9vD2NjY6XxPtz/CmrXrl2YMWMGrl69qnTe/f31nb2vf/i6+XDZz58/R3x8PFauXJnrlZAfvhbVld/+pS35LSf7val58+Y5Tp/9Ppotp21rYWGBsmXLqrymLSwslJ5PQfdrdcTExMDBwUHli6u7u7s0/H0VK1ZUmUelSpWQkpKC58+fw87OrkDLv3//Pvz9/fMcR533ovT0dBw8eBAhISEq0+f0/qatdZnTvLOysrBo0SIsW7YM0dHRSkHP2tpa+v/+/ftwc3PTWsfegn4Gf/jaBlTfZ/Ijq0Dj4OBQ4BuZqftBk1cv8w+HZXfSmjt3LmrUqJHjNKampnj58qV6RRbQpk2bkJaWhvnz52P+/PkqwyMiIqRL67Lp6urmOK/3P+jnz5+PXr164ffff8eBAwcwZMgQhISE4Ny5cyhbtiwAoGHDhpg5cyZSU1Nx8uRJTJw4EZaWlvD09MTJkydha2sLAEqBJisrCy1btsSYMWNyrOHD8JXTtnB3d0dUVBR27dqFffv2YcuWLVi2bBkmT56s8lzfl73DqrNT/Prrr7h16xZ27NiBzMxM/Pbbbzhw4ABq166NKlWqYNWqVTh37hwaNmwoTZM931KlSuU7/5zo6OigWbNmWLRoEe7evStdDdGtWzcMHz4cERERmDBhAtavX4/atWvDzc1No+W8LzMzEy1btsTLly8xduxYVK5cGSYmJnjy5Al69eql0qEzt9eOphQKRY4B88Nv1CdPnkSHDh3QuHFjLFu2DPb29tDT08Pq1avV6gz+oezn9fXXX+f6ZaRatWoFni+g3v6lDfktJ/s5rlu3LscP8w8/rHKbnzrPp6D79b+FOu9Fp06dQmJiItq0aaMyfU7vb9palznNe9asWZg0aRJ69+6N6dOnw8rKCjo6Ohg2bJjKvl4Y1P0M1sY+JJtAAwDt2rXDypUrcfbsWXh7e+c5rpOTE7KysnD37l0p3QNAXFwc4uPjlW6wVlDZ9xwxNzeHr69vruPZ2NjA3Nw83xBW0MN5ERER8PT0zPE+BD/++CM2bNiQ54d8XqpWrYqqVavi+++/x5kzZ+Dj44MVK1ZgxowZAN4Flbdv3+KXX37BkydPpODSuHFjKdBUqlRJCjbAu/WVlJSU57pSh4mJiXTvmLdv3+Lzzz/HzJkzMX78eBgaGuY4TeXKlQG8u+Q/LykpKRg9ejSmT58OS0tLxMXFIT09HQ4ODgDevVGULFkST548UZouOjoaOjo6H/XmnZGRAeDdHUCzWVlZSacQe/TogdOnT2PhwoUaL+N9169fx507d7BmzRr07NlTaj948KDG83RycsLRo0eRkpKidJTmwyvpgHffunI6jPzhN7YtW7bA0NAQ+/fvV7q8dvXq1SrLzsrKQnR0tNI39g+XbWNjAzMzM2RmZn70a7G4yn5vKl26dKE/R23t1+9zcnLCoUOHVO6pdfv2bWn4+3K6R9SdO3dgbGwsHe0oyPtrhQoV1PrSnN970e7du+Hh4aH2fcUKY11m27x5M5o1a4aff/5ZqT0+Pl7pi1iFChUQGRmJ9PR06Onp5TivgqzLwvwMzo1s+tAA7+6Ka2Jigr59+yIuLk5l+P3797Fo0SIAkJLxhx8CoaGhAPBRNzry8vJChQoVMG/ePKUPoWzZl1Hq6OigU6dO2LlzZ463LM9OniYmJgCg1p0sHz9+jBMnTqBr16744osvVP6+/fZb3Lt3D5GRkQV6TomJidIHa7aqVatCR0dH6VB/vXr1oKenh9mzZ8PKyko6otCoUSOcO3cOx48fVzo6AwBdu3bF2bNnlW5aly0+Pl5luTnJ7guTTV9fHx4eHhBC5HkpaJkyZeDo6JjvLeNnz56NkiVLSn1ArK2tUaJECemN9MWLFzkewr506RKqVKkinZYrqPT0dBw4cAD6+vpKOz0AfPPNN7h58yZGjx4NXV1ddOvWTaNlfCj7m9D733yEENK+owk/Pz+kp6dj1apVUltWVpZ0CfD7KlSogNu3bytdbnzt2jWVWx7o6upCoVAoHbl5+PAhtm/frrJsAFi2bJlS+5IlS1Tm5+/vjy1btuT4oVUYl1l/an5+fjA3N8esWbNy3C+0+RwLsl+re9l2mzZtkJmZiaVLlyq1L1iwAAqFAq1bt1ZqP3v2rFI/kOxTxK1atZJe5wV5f/X398e1a9ewbds2lWHZ+4s670V79uwp0GeMNt4jc6Orq6tylGPTpk0qX878/f3x4sULlXUP/N9zz/6yos66LMzP4NzI6ghNhQoVsGHDBnz55Zdwd3dXulPwmTNnsGnTJumeAtWrV0dAQABWrlyJ+Ph4NGnSBOfPn8eaNWvQqVMnNGvWTOM6dHR08NNPP6F169aoUqUKvv32W5QpUwZPnjzB0aNHYW5ujp07dwJ4d7jvwIEDaNKkCfr16wd3d3c8ffoUmzZtwqlTp2BpaYkaNWpAV1cXs2fPRkJCAgwMDNC8eXOULl1aZdkbNmyAEAIdOnTIsbY2bdqgRIkSiIiIQL169dR+TkeOHEFQUBC6dOmCSpUqISMjA+vWrZM+BLIZGxvDy8sL586dk+5BA7w7QpOcnIzk5GSVQDN69Gjs2LED7dq1Q69eveDl5YXk5GRcv34dmzdvxsOHD/M9ZdOqVSvY2dnBx8cHtra2uHXrFpYuXYq2bdvm21G8Y8eO2LZtG4QQOX7DePToEebOnYvdu3dLb4IlSpRAx44dMWzYMDx69Ajbtm2Dg4OD0pHB9PR0HD9+XKUzal727t0rhaRnz55hw4YNuHv3LsaNG6fSv6Ft27awtrbGpk2b0Lp16xxfD7m5d++edFTtfTVr1kSrVq1QoUIFjBo1Ck+ePIG5uTm2bNnyUf09OnXqhLp162LkyJG4d+8eKleujB07dkinXd9f771790ZoaCj8/PzQp08fPHv2DCtWrECVKlWkzv/Zzz80NBSfffYZvvrqKzx79gxhYWFwdXXFH3/8IY3n5eUFf39/LFy4EP/88w/q16+P48eP486dOyrL/uGHH3D06FHUq1cPgYGB8PDwwMuXL3H58mUcOnSo0E4Tfyrm5uZYvnw5vvnmG9SqVQvdunWDjY0NHj16hN27d8PHxyfHDyxNFGS/Hj9+PNasWYPo6Og8j1q0b98ezZo1w8SJE/Hw4UNUr14dBw4cwO+//45hw4ap3JHb09MTfn5+GDJkCAwMDKRQ+/4R6uxOwxMnTkS3bt2gp6eH9u3bS0Hnw+e0efNmdOnSBb1794aXlxdevnyJHTt2YMWKFahevXq+70XR0dG4desWli9fXijrsqDatWuH4OBgfPvtt2jQoAGuX7+OiIgIuLi4KI3Xs2dPrF27FiNGjMD58+fRqFEjJCcn49ChQxg4cCA6duwIIyMjeHh44Ndff0WlSpVgZWUFT0/PHPuJFuZncK7Uvh6qGLlz544IDAwU5cuXF/r6+sLMzEz4+PiIJUuWiNTUVGm89PR0MW3aNOHs7Cz09PSEo6OjGD9+vNI4QuR+mWv2pXC5Xcp85coV8fnnnwtra2thYGAgnJycRNeuXcXhw4eVxouJiRE9e/YUNjY2wsDAQLi4uIhBgwYpXUa9atUq4eLiInR1dfO8hLtq1aqiXLlyea6fpk2bitKlS4v09PRcn0P2JdLZl9M+ePBA9O7dW1SoUEEYGhoKKysr0axZM3Ho0CGV+Y8ePVoAELNnz1Zqd3V1FQDE/fv3VaZ5/fq1GD9+vHB1dRX6+vqiVKlSokGDBmLevHni7du3SjXNnTtXZfoff/xRNG7cWFrXFSpUEKNHj873/i9CCHH58mUBQJw8eTLH4V26dBGff/65SntcXJxo3769MDMzE7Vq1VK6PFQIIfbu3at06Xxecrps29DQUNSoUUMsX74810uxBw4cKACIDRs25LuMbNmXQOb016dPHyGEEDdv3hS+vr7C1NRUlCpVSgQGBopr166pXGIdEBAgTExMVJaR0z0nnj9/Lr766ithZmYmLCwsRK9evcTp06cFAKVLgIUQYv369cLFxUXo6+uLGjVqiP379+d42fbPP/8sKlasKAwMDETlypXF6tWrc1x2cnKyGDRokLCyshKmpqaiU6dO0uXvP/zwg9K4cXFxYtCgQcLR0VHo6ekJOzs70aJFC7Fy5Uq11m1Ol21/eFuG7P2uILdiUOeybXWXc/ToUeHn5ycsLCyEoaGhqFChgujVq5fSazi3bdukSZMcL0vO6X1Snf06e1lQ47Lt7HkOHz5cODg4CD09PVGxYkUxd+5clX0EgBg0aJBYv3699BqpWbNmjut8+vTpokyZMkJHR0epjg+3pxBC/PPPPyIoKEiUKVNG6Ovri7Jly4qAgADpUv/83ouWLl0qLCwsRHp6ulrrsKDrMq/LtnP6rEpNTRUjR44U9vb2wsjISPj4+IizZ8/mePuElJQUMXHiROkz087OTnzxxRdK7+lnzpwRXl5eQl9fX+kS7pz2y4/9DM7tFg+5UQih5V5rRMVQixYt4ODgoPL7OR+jU6dOUCgUOR6e1pbhw4fj559/RmxsrMoVRHKwfft2dO7cGadOnVL7ijRtuXr1KmrWrIn169ejR48en3TZVPgUCgUGDRqktSNO2tKmTRuYmprit99+K+pS/nNkdcqJSFOzZs1Co0aNMGPGDK10Rrt16xZ27dqFq1evfnxxuUhNTcX69evh7+8vizDz5s0bpassMjMzsWTJEpibm6v8ZEZhLxt4d+5eR0cHjRs3LtRlE72vadOmKqfd6dNgoKH/hHr16uHt27dam5+7u/tHddTLy7Nnz3Do0CFs3rwZ//zzj9LvkxVngwcPxps3b+Dt7Y20tDRs3boVZ86cwaxZswr043uamDNnDi5duoRmzZqhRIkS2Lt3L/bu3Yt+/frB0dGxUJdN9L7cLr2mwsdAQ1TM3Lx5Ez169EDp0qWxePHiXO91VNw0b94c8+fPx65du5CamgpXV1csWbIEQUFBhb7sBg0a4ODBg5g+fTqSkpJQrlw5TJ06FRMnTiz0ZRNR8cA+NERERCR7sroPDREREVFOGGiIiIhI9tiHBu/uaPr333/DzMxMK79kTERE9F8hhMDr16/h4OAg/bJ3UWCgAfD333/zSggiIqKP8PjxY+mHjIsCAw0g3Tr/8ePHKrefJyIiotwlJibC0dEx35+hKWwMNPi/33oxNzdnoCEiItJAUXfZYKdgIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSvSINNCdOnED79u3h4OAAhUKB7du3Kw0XQmDy5Mmwt7eHkZERfH19cffuXaVxXr58iR49esDc3ByWlpbo06cPkpKSPuGzICIioqJWpIEmOTkZ1atXR1hYWI7D58yZg8WLF2PFihWIjIyEiYkJ/Pz8kJqaKo3To0cP3LhxAwcPHsSuXbtw4sQJ9OvX71M9BSIiIioGFEIIUdRFAIBCocC2bdvQqVMnAO+Ozjg4OGDkyJEYNWoUACAhIQG2trYIDw9Ht27dcOvWLXh4eODChQuoXbs2AGDfvn1o06YN/vrrLzg4OKi17MTERFhYWCAhIQHm5uaF8vyIiIj+jYrLZ2ix7UMTHR2N2NhY+Pr6Sm0WFhaoV68ezp49CwA4e/YsLC0tpTADAL6+vtDR0UFkZGSu805LS0NiYqLSHxEREclXiaIuIDexsbEAAFtbW6V2W1tbaVhsbCxKly6tNLxEiRKwsrKSxslJSEgIpk2bpuWKVZUft7vQl/Ff9/CHtkVdAhUz3O8KX2Hud9x+he/f+r5ZbI/QFKbx48cjISFB+nv8+HFRl0REREQfodgGGjs7OwBAXFycUntcXJw0zM7ODs+ePVManpGRgZcvX0rj5MTAwADm5uZKf0RERCRfxTbQODs7w87ODocPH5baEhMTERkZCW9vbwCAt7c34uPjcenSJWmcI0eOICsrC/Xq1fvkNRMREVHRKNI+NElJSbh37570ODo6GlevXoWVlRXKlSuHYcOGYcaMGahYsSKcnZ0xadIkODg4SFdCubu747PPPkNgYCBWrFiB9PR0BAUFoVu3bmpf4URERETyV6SB5uLFi2jWrJn0eMSIEQCAgIAAhIeHY8yYMUhOTka/fv0QHx+Phg0bYt++fTA0NJSmiYiIQFBQEFq0aAEdHR34+/tj8eLFn/y5EBERUdEp0kDTtGlT5HUbHIVCgeDgYAQHB+c6jpWVFTZs2FAY5REREZFMFNs+NERERETqYqAhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2WOgISIiItljoCEiIiLZY6AhIiIi2SvWgSYzMxOTJk2Cs7MzjIyMUKFCBUyfPh1CCGkcIQQmT54Me3t7GBkZwdfXF3fv3i3CqomIiOhTK9aBZvbs2Vi+fDmWLl2KW7duYfbs2ZgzZw6WLFkijTNnzhwsXrwYK1asQGRkJExMTODn54fU1NQirJyIiIg+pRJFXUBezpw5g44dO6Jt27YAgPLly+OXX37B+fPnAbw7OrNw4UJ8//336NixIwBg7dq1sLW1xfbt29GtW7ciq52IiIg+nWJ9hKZBgwY4fPgw7ty5AwC4du0aTp06hdatWwMAoqOjERsbC19fX2kaCwsL1KtXD2fPns11vmlpaUhMTFT6IyIiIvkq1kdoxo0bh8TERFSuXBm6urrIzMzEzJkz0aNHDwBAbGwsAMDW1lZpOltbW2lYTkJCQjBt2rTCK5yIiIg+qWJ9hOa3335DREQENmzYgMuXL2PNmjWYN28e1qxZ81HzHT9+PBISEqS/x48fa6liIiIiKgrF+gjN6NGjMW7cOKkvTNWqVRETE4OQkBAEBATAzs4OABAXFwd7e3tpuri4ONSoUSPX+RoYGMDAwKBQayciIqJPp1gfoUlJSYGOjnKJurq6yMrKAgA4OzvDzs4Ohw8floYnJiYiMjIS3t7en7RWIiIiKjrF+ghN+/btMXPmTJQrVw5VqlTBlStXEBoait69ewMAFAoFhg0bhhkzZqBixYpwdnbGpEmT4ODggE6dOhVt8URERPTJFOtAs2TJEkyaNAkDBw7Es2fP4ODggO+++w6TJ0+WxhkzZgySk5PRr18/xMfHo2HDhti3bx8MDQ2LsHIiIiL6lIp1oDEzM8PChQuxcOHCXMdRKBQIDg5GcHDwpyuMiIiIipVi3YeGiIiISB0MNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeww0REREJHsMNERERCR7DDREREQkeyU0mSg6OhonT55ETEwMUlJSYGNjg5o1a8Lb2xuGhobarpGIiIgoTwUKNBEREVi0aBEuXrwIW1tbODg4wMjICC9fvsT9+/dhaGiIHj16YOzYsXByciqsmomIiIiUqB1oatasCX19ffTq1QtbtmyBo6Oj0vC0tDScPXsWGzduRO3atbFs2TJ06dJF6wUTERERfUjtQPPDDz/Az88v1+EGBgZo2rQpmjZtipkzZ+Lhw4faqI+IiIgoX2oHmrzCzIesra1hbW2tUUFEREREBaVRp+D37d69G8eOHUNmZiZ8fHzg7++vjbqIiIiI1PZRl21PmjQJY8aMgUKhgBACw4cPx+DBg7VVGxEREZFaCnSE5uLFi6hdu7b0+Ndff8W1a9dgZGQEAOjVqxeaNm2KJUuWaLdKIiIiojwU6AhN//79MWzYMKSkpAAAXFxcMH/+fERFReH69etYvnw5KlWqVCiFEhEREeWmQIEmMjIS9vb2qFWrFnbu3In//e9/uHLlCho0aIBGjRrhr7/+woYNGwqrViIiIqIcFeiUk66uLsaOHYsuXbpgwIABMDExwdKlS+Hg4FBY9RERERHlS6NOwS4uLti/fz86d+6Mxo0bIywsTNt1EREREamtQIEmPj4eY8aMQfv27fH999+jc+fOiIyMxIULF1C/fn1cv369sOokIiIiylWBAk1AQAAiIyPRtm1bREVFYcCAAbC2tkZ4eDhmzpyJL7/8EmPHji2sWomIiIhyVKA+NEeOHMGVK1fg6uqKwMBAuLq6SsNatGiBy5cvIzg4WOtFEhEREeWlQEdoKlasiJUrV+LOnTtYsWKFyi9qGxoaYtasWVotkIiIiCg/BQo0//vf/3DkyBHUrFkTGzZswPLlywurLiIiIiK1FeiUU40aNXDx4sXCqoWIiIhII2ofoRFCFGYdRERERBpTO9BUqVIFGzduxNu3b/Mc7+7duxgwYAB++OGHjy6OiIiISB1qn3JasmQJxo4di4EDB6Jly5aoXbs2HBwcYGhoiFevXuHmzZs4deoUbty4gaCgIAwYMKAw6yYiIiKSqB1oWrRogYsXL+LUqVP49ddfERERgZiYGLx58walSpVCzZo10bNnT/To0QMlS5YszJqJiIiIlBSoUzAANGzYEA0bNiyMWoiIiIg0otFvOREREREVJww0REREJHsMNERERCR7DDREREQkeww0REREJHsaBZrLly/j+vXr0uPff/8dnTp1woQJE/K98R4RERGRtmkUaL777jvcuXMHAPDgwQN069YNxsbG2LRpE8aMGaPVAomIiIjyo1GguXPnDmrUqAEA2LRpExo3bowNGzYgPDwcW7Zs0WZ9RERERPnSKNAIIZCVlQUAOHToENq0aQMAcHR0xIsXL7RXHREREZEaNAo0tWvXxowZM7Bu3TocP34cbdu2BQBER0fD1tZWqwU+efIEX3/9NaytrWFkZISqVavi4sWL0nAhBCZPngx7e3sYGRnB19cXd+/e1WoNREREVLxpFGgWLlyIy5cvIygoCBMnToSrqysAYPPmzWjQoIHWinv16hV8fHygp6eHvXv34ubNm5g/f77Sb0XNmTMHixcvxooVKxAZGQkTExP4+fkhNTVVa3UQERFR8Vbg33LKzMxEfHw8Tpw4ofIjlHPnzoWurq7Wips9ezYcHR2xevVqqc3Z2Vn6XwiBhQsX4vvvv0fHjh0BAGvXroWtrS22b9+Obt26aa0WIiIiKr4KfIRGV1cXrVq1Qnx8vMowQ0ND6OnpaaMuAMCOHTtQu3ZtdOnSBaVLl0bNmjWxatUqaXh0dDRiY2Ph6+srtVlYWKBevXo4e/ZsrvNNS0tDYmKi0h8RERHJl0annDw9PfHgwQNt16LiwYMHWL58OSpWrIj9+/djwIABGDJkCNasWQMAiI2NBQCVfju2trbSsJyEhITAwsJC+nN0dCy8J0FERESFTqNAM2PGDIwaNQq7du3C06dPC+1oR1ZWFmrVqoVZs2ahZs2a6NevHwIDA7FixYqPmu/48eORkJAg/T1+/FhLFRMREVFRKHAfGgDSZdodOnSAQqGQ2oUQUCgUyMzM1Epx9vb28PDwUGpzd3eX7nVjZ2cHAIiLi4O9vb00TlxcnHSfnJwYGBjAwMBAKzUSERFR0dMo0Bw9elTbdeTIx8cHUVFRSm137tyBk5MTgHcdhO3s7HD48GEpwCQmJiIyMhIDBgz4JDUSERFR0dMo0DRp0kTbdeRo+PDhaNCgAWbNmoWuXbvi/PnzWLlyJVauXAkAUCgUGDZsGGbMmIGKFSvC2dkZkyZNgoODAzp16vRJaiQiIqKip/GvbZ88eRJff/01GjRogCdPngAA1q1bh1OnTmmtuDp16mDbtm345Zdf4OnpienTp2PhwoXo0aOHNM6YMWMwePBg9OvXD3Xq1EFSUhL27dsHQ0NDrdVBRERExZtGgWbLli3w8/ODkZERLl++jLS0NABAQkICZs2apdUC27Vrh+vXryM1NRW3bt1CYGCg0nCFQoHg4GDExsYiNTUVhw4dQqVKlbRaAxERERVvGl/ltGLFCqxatUrpvjM+Pj64fPmy1oojIiIiUodGgSYqKgqNGzdWabewsMjxhntEREREhUmjQGNnZ4d79+6ptJ86dQouLi4fXRQRERFRQWgUaAIDAzF06FBERkZCoVDg77//RkREBEaNGsXLpYmIiOiT0+iy7XHjxiErKwstWrRASkoKGjduDAMDA4waNQqDBw/Wdo1EREREedIo0CgUCkycOBGjR4/GvXv3kJSUBA8PD5iammq7PiIiIqJ8aRRojhw5ggYNGsDQ0FDlpwmIiIiIPjWNAk2HDh2QkZGBOnXqoGnTpmjSpAl8fHxgZGSk7fqIiIiI8qVRp+BXr17h8OHDaN26Nc6fP4/OnTvD0tISPj4++P7777VdIxEREVGeNAo0enp68PHxwYQJE7B//36cO3cO3bt3x/nz5xESEqLtGomIiIjypNEppzt37uDYsWM4duwYjh8/jrS0NDRq1Ajz5s1D06ZNtVwiERERUd40CjSVK1eGjY0Nhg4dinHjxqFq1apQKBTaro2IiIhILRqdchoyZAjKlCmD4OBg9O/fHxMnTsSBAweQkpKi7fqIiIiI8qVRoFm4cCEuX76M2NhYjB8/Hm/fvsXEiRNRqlQp+Pj4aLtGIiIiojxpFGiyZWZmIj09HWlpaUhNTUVaWhqioqK0VRsRERGRWjQ+5VStWjXY2triu+++w99//43AwEBcuXIFz58/13aNRERERHnSqFPw06dP0a9fPzRt2hSenp7aromIiIioQDQKNJs2bdJ2HUREREQa0+iU05o1a7B7927p8ZgxY2BpaYkGDRogJiZGa8URERERqUOjQDNr1izpd5vOnj2LsLAwzJkzB6VKlcLw4cO1WiARERFRfjQ65fT48WO4uroCALZv3w5/f3/069cPPj4+vFMwERERfXIaHaExNTXFP//8AwA4cOAAWrZsCQAwNDTEmzdvtFcdERERkRo0OkLTsmVL9O3bFzVr1sSdO3fQpk0bAMCNGzdQvnx5bdZHRERElC+NjtCEhYXB29sbz58/x5YtW2BtbQ0AuHTpErp3767VAomIiIjyo9ERGktLSyxdulSlfdq0aR9dEBEREVFBaRRoACA+Ph7nz5/Hs2fPkJWVJbUrFAp88803WimOiIiISB0aBZqdO3eiR48eSEpKgrm5ORQKhTSMgYaIiIg+NY360IwcORK9e/dGUlIS4uPj8erVK+nv5cuX2q6RiIiIKE8aBZonT55gyJAhMDY21nY9RERERAWmUaDx8/PDxYsXtV0LERERkUY06kPTtm1bjB49Gjdv3kTVqlWhp6enNLxDhw5aKY6IiIhIHRoFmsDAQABAcHCwyjCFQoHMzMyPq4qIiIioADQKNO9fpk1ERERU1DTqQ5Ob+Pj4HG+4R0RERFSYtBJoDh8+jK+++gr29vaYMmWKNmZJREREpDaNA83jx48RHBwMZ2dntGrVCgqFAtu2bUNsbKw26yMiIiLKV4ECTXp6OjZt2gQ/Pz+4ubnh6tWrmDt3LnR0dDBx4kR89tlnKlc8ERERERW2AnUKLlOmDCpXroyvv/4aGzduRMmSJQGAv7BNRERERapAR2gyMjKgUCigUCigq6tbWDURERERFUiBAs3ff/+Nfv364ZdffoGdnR38/f2xbds2pR+nJCIiIvrUChRoDA0N0aNHDxw5cgTXr1+Hu7s7hgwZgoyMDMycORMHDx7kTfWIiIjok9P4KqcKFSpgxowZiImJwe7du5GWloZ27drB1tZWm/URERER5UujOwW/T0dHB61bt0br1q3x/PlzrFu3Tht1EREREalNq3cKtrGxwYgRI7Q5SyIiIqJ8aTXQEBERERUFBhoiIiKSPQYaIiIikj2NAk1wcDBSUlJU2t+8eYPg4OCPLoqIiIioIDQKNNOmTUNSUpJKe0pKCqZNm/bRRREREREVhEaBRgiR492Br127Bisrq48uioiIiKggCnQfmpIlS0q/5VSpUiWlUJOZmYmkpCT0799f60USERER5aVAgWbhwoUQQqB3796YNm0aLCwspGH6+vooX748vL29tV4kERERUV4KFGgCAgIAAM7OzvDx8UGJEh99o2EiIiKij6ZRH5rk5GQcPnxYpX3//v3Yu3fvRxdFREREVBAaBZpx48bl+KvaQgiMGzfuo4siIiIiKgiNAs3du3fh4eGh0l65cmXcu3fvo4siIiIiKgiNAo2FhQUePHig0n7v3j2YmJh8dFFEREREBaFRoOnYsSOGDRuG+/fvS2337t3DyJEj0aFDB60VR0RERKQOjQLNnDlzYGJigsqVK8PZ2RnOzs5wd3eHtbU15s2bp+0aiYiIiPKk0XXXFhYWOHPmDA4ePIhr167ByMgI1apVQ+PGjbVdHxEREVG+NL6RjEKhQKtWrdC4cWMYGBjk+FMIRERERJ+CRqecsrKyMH36dJQpUwampqaIjo4GAEyaNAk///yzVgskIiIiyo9GgWbGjBkIDw/HnDlzoK+vL7V7enrip59+0lpxREREROrQKNCsXbsWK1euRI8ePaCrqyu1V69eHbdv39ZacURERETq0CjQPHnyBK6urirtWVlZSE9P/+iiiIiIiApCo0Dj4eGBkydPqrRv3rwZNWvW/OiiiIiIiApCo6ucJk+ejICAADx58gRZWVnYunUroqKisHbtWuzatUvbNRIRERHlSeM7Be/cuROHDh2CiYkJJk+ejFu3bmHnzp1o2bKltmskIiIiylOBj9BkZGRg1qxZ6N27Nw4ePFgYNREREREVSIGP0JQoUQJz5sxBRkZGYdRDREREVGAanXJq0aIFjh8/ru1aiIiIiDSiUafg1q1bY9y4cbh+/Tq8vLxgYmKiNJy/uE1ERESfkkaBZuDAgQCA0NBQlWEKhQKZmZkfVxURERFRAWgUaLKysrRdBxEREZHGCtyHJj09HSVKlMCff/5ZGPUQERERFViBA42enh7KlSvH00pERERUbGh0ldPEiRMxYcIEvHz5Utv1EBERERWYRoFm6dKlOHHiBBwcHODm5oZatWop/RWWH374AQqFAsOGDZPaUlNTMWjQIFhbW8PU1BT+/v6Ii4srtBqIiIio+NGoU3CnTp20XEb+Lly4gB9//BHVqlVTah8+fDh2796NTZs2wcLCAkFBQfj8889x+vTpT14jERERFQ2NAs2UKVO0XUeekpKS0KNHD6xatQozZsyQ2hMSEvDzzz9jw4YNaN68OQBg9erVcHd3x7lz51C/fv1PWicREREVDY1OOWW7dOkS1q9fj/Xr1+PKlSvaqknFoEGD0LZtW/j6+qosPz09Xam9cuXKKFeuHM6ePZvr/NLS0pCYmKj0R0RERPKl0RGaZ8+eoVu3bjh27BgsLS0BAPHx8WjWrBk2btwIGxsbrRW4ceNGXL58GRcuXFAZFhsbC319famGbLa2toiNjc11niEhIZg2bZrWaiQiIqKipdERmsGDB+P169e4ceMGXr58iZcvX+LPP/9EYmIihgwZorXiHj9+jKFDhyIiIgKGhoZam+/48eORkJAg/T1+/Fhr8yYiIqJPT6MjNPv27cOhQ4fg7u4utXl4eCAsLAytWrXSWnGXLl3Cs2fPlK6cyszMxIkTJ7B06VLs378fb9++RXx8vNJRmri4ONjZ2eU6XwMDAxgYGGitTiIiIipaGv/0gZ6enkq7np6eVn8WoUWLFrh+/bpS27fffovKlStj7NixcHR0hJ6eHg4fPgx/f38AQFRUFB49egRvb2+t1UFERETFm0aBpnnz5hg6dCh++eUXODg4AACePHmC4cOHo0WLFlorzszMDJ6enkptJiYmsLa2ltr79OmDESNGwMrKCubm5hg8eDC8vb15hRMREdF/iEaBZunSpejQoQPKly8PR0dHAO/6u3h6emL9+vVaLTA/CxYsgI6ODvz9/ZGWlgY/Pz8sW7bsk9ZARERERUujQOPo6IjLly/j0KFDuH37NgDA3d1d5bLqwnDs2DGlx4aGhggLC0NYWFihL5uIiIiKJ40CDQAoFAq0bNkSLVu21GY9RERERAVWoMu2jxw5Ag8PjxxvRJeQkIAqVarg5MmTWiuOiIiISB0FCjQLFy5EYGAgzM3NVYZZWFjgu+++Q2hoqNaKIyIiIlJHgQLNtWvX8Nlnn+U6vFWrVrh06dJHF0VERERUEAUKNHFxcTnefyZbiRIl8Pz5848uioiIiKggChRoypQpgz///DPX4X/88Qfs7e0/uigiIiKigihQoGnTpg0mTZqE1NRUlWFv3rzBlClT0K5dO60VR0RERKSOAl22/f3332Pr1q2oVKkSgoKC4ObmBgC4ffs2wsLCkJmZiYkTJxZKoURERES5KVCgsbW1xZkzZzBgwACMHz8eQggA7+5J4+fnh7CwMNja2hZKoURERES5KfCN9ZycnLBnzx68evUK9+7dgxACFStWRMmSJQujPiIiIqJ8aXyn4JIlS6JOnTrarIWIiIhIIwXqFExERERUHDHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsMdAQERGR7DHQEBERkewx0BAREZHsFetAExISgjp16sDMzAylS5dGp06dEBUVpTROamoqBg0aBGtra5iamsLf3x9xcXFFVDEREREVhWIdaI4fP45Bgwbh3LlzOHjwINLT09GqVSskJydL4wwfPhw7d+7Epk2bcPz4cfz999/4/PPPi7BqIiIi+tRKFHUBedm3b5/S4/DwcJQuXRqXLl1C48aNkZCQgJ9//hkbNmxA8+bNAQCrV6+Gu7s7zp07h/r16xdF2URERPSJFesjNB9KSEgAAFhZWQEALl26hPT0dPj6+krjVK5cGeXKlcPZs2dznU9aWhoSExOV/oiIiEi+ZBNosrKyMGzYMPj4+MDT0xMAEBsbC319fVhaWiqNa2tri9jY2FznFRISAgsLC+nP0dGxMEsnIiKiQiabQDNo0CD8+eef2Lhx40fPa/z48UhISJD+Hj9+rIUKiYiIqKgU6z402YKCgrBr1y6cOHECZcuWldrt7Ozw9u1bxMfHKx2liYuLg52dXa7zMzAwgIGBQWGWTERERJ9QsT5CI4RAUFAQtm3bhiNHjsDZ2VlpuJeXF/T09HD48GGpLSoqCo8ePYK3t/enLpeIiIiKSLE+QjNo0CBs2LABv//+O8zMzKR+MRYWFjAyMoKFhQX69OmDESNGwMrKCubm5hg8eDC8vb15hRMREdF/SLEONMuXLwcANG3aVKl99erV6NWrFwBgwYIF0NHRgb+/P9LS0uDn54dly5Z94kqJiIioKBXrQCOEyHccQ0NDhIWFISws7BNURERERMVRse5DQ0RERKQOBhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSPQYaIiIikj0GGiIiIpI9BhoiIiKSvX9NoAkLC0P58uVhaGiIevXq4fz580VdEhEREX0i/4pA8+uvv2LEiBGYMmUKLl++jOrVq8PPzw/Pnj0r6tKIiIjoE/hXBJrQ0FAEBgbi22+/hYeHB1asWAFjY2P873//K+rSiIiI6BMoUdQFfKy3b9/i0qVLGD9+vNSmo6MDX19fnD17Nsdp0tLSkJaWJj1OSEgAACQmJmq1tqy0FK3Oj1Rpe5uR/HG/K3yFud9x+xU+bW+/7PkJIbQ634KSfaB58eIFMjMzYWtrq9Rua2uL27dv5zhNSEgIpk2bptLu6OhYKDVS4bFYWNQVEP33cL+Tt8Lafq9fv4aFhUXhzFwNsg80mhg/fjxGjBghPc7KysLLly9hbW0NhUJRhJUVncTERDg6OuLx48cwNzcv6nKogLj95IvbTr647d4RQuD169dwcHAo0jpkH2hKlSoFXV1dxMXFKbXHxcXBzs4ux2kMDAxgYGCg1GZpaVlYJcqKubn5f3rHlDtuP/nitpMvbjsU6ZGZbLLvFKyvrw8vLy8cPnxYasvKysLhw4fh7e1dhJURERHRpyL7IzQAMGLECAQEBKB27dqoW7cuFi5ciOTkZHz77bdFXRoRERF9Av+KQPPll1/i+fPnmDx5MmJjY1GjRg3s27dPpaMw5c7AwABTpkxRORVH8sDtJ1/cdvLFbVe8KERRX2dFRERE9JFk34eGiIiIiIGGiIiIZI+BhoiIiGSPgYbUEh4erva9egoyLhWehw8fQqFQ4OrVq0VdCtG/Xq9evdCpUyfpcdOmTTFs2DC1pi3IuJS7f8VVTlT4vvzyS7Rp06aoy5Clpk2bokaNGli4cGFRl0KFoFevXoiPj8f27duLuhQqRrZu3Qo9Pb2iLuM/hYGG1GJkZAQjI6OiLoOo2MjMzPzP/lQK5c/KyqqoS/jP4Sknmdi8eTOqVq0KIyMjWFtbw9fXF8nJydJhzmnTpsHGxgbm5ubo378/3r59K027b98+NGzYEJaWlrC2tka7du1w//59aXj2qYmtW7eiWbNmMDY2RvXq1ZV+rfzD00jXrl1Ds2bNYGZmBnNzc3h5eeHixYtKNe/fvx/u7u4wNTXFZ599hqdPnxbeCiqmevXqhePHj2PRokVQKBRQKBS4f/8++vTpA2dnZxgZGcHNzQ2LFi1Smi4jIwNDhgyRttnYsWMREBCgdEg7v+2ak+PHj6Nu3bowMDCAvb09xo0bh4yMDGn469ev0aNHD5iYmMDe3h4LFiz41xwOb9q0KYKCghAUFAQLCwuUKlUKkyZNkn4h+NWrV+jZsydKliwJY2NjtG7dGnfv3pWmz94HduzYAQ8PDxgYGKB3795Ys2YNfv/9d2n7Hjt2DMeOHYNCoUB8fLw0/dWrV6FQKPDw4UOpbdWqVXB0dISxsTE6d+6M0NBQpf3sw9MYADBs2DA0bdpUepyVlYWQkBDp9VS9enVs3rxZGv7q1Sv06NEDNjY2MDIyQsWKFbF69Wpp+OPHj9G1a1dYWlrCysoKHTt2VKrx3yCvdZS9rQ4fPozatWvD2NgYDRo0QFRUlNI8ZsyYgdKlS8PMzAx9+/bFuHHjUKNGjVyX+eF+s2zZMlSsWBGGhoawtbXFF198oVLjmDFjYGVlBTs7O0ydOlVbT/8/g4FGBp4+fYru3bujd+/euHXrFo4dO4bPP/9ceiM+fPiw1P7LL79g69atSr8mnpycjBEjRuDixYs4fPgwdHR00LlzZ2RlZSktZ+LEiRg1ahSuXr2KSpUqoXv37kofdu/r0aMHypYtiwsXLuDSpUsYN26c0uHVlJQUzJs3D+vWrcOJEyfw6NEjjBo1qhDWTvG2aNEieHt7IzAwEE+fPsXTp09RtmxZlC1bFps2bcLNmzcxefJkTJgwAb/99ps03ezZsxEREYHVq1fj9OnTSExMVDmloe52zfbkyRO0adMGderUwbVr17B8+XL8/PPPmDFjhjTOiBEjcPr0aezYsQMHDx7EyZMncfny5UJZN0VhzZo1KFGiBM6fP49FixYhNDQUP/30E4B34eHixYvYsWMHzp49CyEE2rRpg/T0dGn6lJQUzJ49Gz/99BNu3LiBxYsXo2vXrlJgf/r0KRo0aKBWLadPn0b//v0xdOhQXL16FS1btsTMmTML/JxCQkKwdu1arFixAjdu3MDw4cPx9ddf4/jx4wCASZMm4ebNm9i7dy9u3bqF5cuXo1SpUgCA9PR0+Pn5wczMDCdPnsTp06elLyDvfymSu/zWEfDu/W/+/Pm4ePEiSpQogd69e0vDIiIiMHPmTMyePRuXLl1CuXLlsHz5crWXf/HiRQwZMgTBwcGIiorCvn370LhxY6Vx1qxZAxMTE0RGRmLOnDkIDg7GwYMHP/7J/5cIKvYuXbokAIiHDx+qDAsICBBWVlYiOTlZalu+fLkwNTUVmZmZOc7v+fPnAoC4fv26EEKI6OhoAUD89NNP0jg3btwQAMStW7eEEEKsXr1aWFhYSMPNzMxEeHh4jvNfvXq1ACDu3bsntYWFhQlbW1v1n/S/SJMmTcTQoUPzHGfQoEHC399femxrayvmzp0rPc7IyBDlypUTHTt2zHUeuW3XK1euCCGEmDBhgnBzcxNZWVnSNGFhYdJrJTExUejp6YlNmzZJw+Pj44WxsXG+9ctBkyZNhLu7u9LzHzt2rHB3dxd37twRAMTp06elYS9evBBGRkbit99+E0L83+v66tWrSvMNCAhQ2S5Hjx4VAMSrV6+ktitXrggAIjo6WgghxJdffinatm2rNF2PHj2U9rOc5j106FDRpEkTIYQQqampwtjYWJw5c0ZpnD59+oju3bsLIYRo3769+Pbbb3NcJ+vWrVN5TaSlpQkjIyOxf//+HKeRm/zWUfa2OnTokDRs9+7dAoB48+aNEEKIevXqiUGDBilN7+PjI6pXry49/nBbvb/fb9myRZibm4vExMQca2zSpIlo2LChUludOnXE2LFjC/p0/9N4hEYGqlevjhYtWqBq1aro0qULVq1ahVevXikNNzY2lh57e3sjKSkJjx8/BgDcvXsX3bt3h4uLC8zNzVG+fHkAwKNHj5SWU61aNel/e3t7AMCzZ89yrGnEiBHo27cvfH198cMPP6ic6jA2NkaFChWU5pfbvP6LwsLC4OXlBRsbG5iammLlypXS9khISEBcXBzq1q0rja+rqwsvLy+leai7XbPdunUL3t7eSv0+fHx8kJSUhL/++gsPHjxAenq60nItLCzg5uamradd5OrXr6/0/L29vXH37l3cvHkTJUqUQL169aRh1tbWcHNzw61bt6Q2fX19pf3kY0RFRSmtawAqj/Nz7949pKSkoGXLljA1NZX+1q5dK+2TAwYMwMaNG1GjRg2MGTMGZ86ckaa/du0a7t27BzMzM2laKysrpKam5nv6Ui7UWUdA3u9/H7utWrZsCScnJ7i4uOCbb75BREQEUlJSlMb58HXF98yCY6dgGdDV1cXBgwdx5swZHDhwAEuWLMHEiRMRGRmp1vTt27eHk5MTVq1aBQcHB2RlZcHT01PlkPL7p4yy3/RzO30xdepUfPXVV9i9ezf27t2LKVOmYOPGjejcubPKvLLnJ/grGwCAjRs3YtSoUZg/fz68vb1hZmaGuXPnqr09s6m7XUl7jIyM1OoIrKPz7rvi+6/5909dqUtHR0dlv3l/PklJSQCA3bt3o0yZMkrjZf++UOvWrRETE4M9e/bg4MGDaNGiBQYNGoR58+YhKSkJXl5eiIiIUFm2jY1NgestjvJbR9mhpiDvfwVlZmaGy5cv49ixYzhw4AAmT56MqVOn4sKFC1KfqZzeM7W1/P8KHqGRCYVCAR8fH0ybNg1XrlyBvr4+tm3bBuDdt6w3b95I4547dw6mpqZwdHTEP//8g6ioKHz//fdo0aIF3N3dlY7ufIxKlSph+PDhOHDgAD7//HOljob0f/T19ZGZmSk9Pn36NBo0aICBAweiZs2acHV1VfqmaGFhAVtbW1y4cEFqy8zMVOrLosl2dXd3l/qGvF+LmZkZypYtCxcXF+jp6SktNyEhAXfu3Pmo51+cfBgaz507h4oVK8LDwwMZGRlKw7PXsYeHR57z/HD7Av8XBt7vCP/h/YDc3NyU1jUAlcc2NjYqnenfn0925+RHjx7B1dVV6c/R0VFpPgEBAVi/fj0WLlyIlStXAgBq1aqFu3fvonTp0irTW1hY5Pm85ULddZQXdbZVfkqUKAFfX1/MmTMHf/zxBx4+fIgjR44UaB6UNx6hkYHIyEgcPnwYrVq1QunSpREZGYnnz5/D3d0df/zxB96+fYs+ffrg+++/x8OHDzFlyhQEBQVBR0cHJUuWhLW1NVauXAl7e3s8evQI48aN+6h63rx5g9GjR+OLL76As7Mz/vrrL1y4cAH+/v5aesb/LuXLl0dkZCQePnwIU1NTVKxYEWvXrsX+/fvh7OyMdevW4cKFC3B2dpamGTx4MEJCQuDq6orKlStjyZIlePXqlfTNUZPtOnDgQCxcuBCDBw9GUFAQoqKiMGXKFIwYMQI6OjowMzNDQEAARo8eDSsrK5QuXRpTpkyBjo7Ov+by5EePHmHEiBH47rvvcPnyZSxZsgTz589HxYoV0bFjRwQGBuLHH3+EmZkZxo0bhzJlyqBjx455zrN8+fLYv38/oqKiYG1tDQsLC+nDcurUqZg5cybu3LmD+fPnK003ePBgNG7cGKGhoWjfvj2OHDmCvXv3Kq3r5s2bY+7cuVi7di28vb2xfv16/Pnnn6hZsyaAd9/8R40aheHDhyMrKwsNGzZEQkICTp8+DXNzcwQEBGDy5Mnw8vJClSpVkJaWhl27dsHd3R3Au879c+fORceOHREcHIyyZcsiJiYGW7duxZgxY1C2bFktb4FPL7915OTklO88Bg8ejMDAQNSuXRsNGjTAr7/+ij/++AMuLi5q1bBr1y48ePAAjRs3RsmSJbFnzx5kZWX9q07nFgtF24WH1HHz5k3h5+cnbGxshIGBgahUqZJYsmSJEOL/OqJNnjxZWFtbC1NTUxEYGChSU1Ol6Q8ePCjc3d2FgYGBqFatmjh27JgAILZt2yaEUO08KoQQr169EgDE0aNHhRDKnYLT0tJEt27dhKOjo9DX1xcODg4iKChI6kD3YQdiIYTYtm2b+K++3KKiokT9+vWFkZGRACBu374tevXqJSwsLISlpaUYMGCAGDdunFIHw/T0dBEUFCTMzc1FyZIlxdixY0WXLl1Et27dpHE02a7Hjh0TderUEfr6+sLOzk6MHTtWpKenS8MTExPFV199JYyNjYWdnZ0IDQ0VdevWFePGjSvs1VTomjRpIgYOHCj69+8vrdcJEyZIHWJfvnwpvvnmG2FhYSGMjIyEn5+fuHPnjjR9Tq9rIYR49uyZaNmypTA1NVXaZ06dOiWqVq0qDA0NRaNGjcSmTZuUOgULIcTKlStFmTJlhJGRkejUqZOYMWOGsLOzU5r/5MmTha2trbCwsBDDhw8XQUFBUqdgIYTIysoSCxcuFG5ubkJPT0/Y2NgIPz8/cfz4cSGEENOnTxfu7u7CyMhIWFlZiY4dO4oHDx5I0z99+lT07NlTlCpVShgYGAgXFxcRGBgoEhISPnKNFx95rSN1OnALIURwcLAoVaqUMDU1Fb179xZDhgwR9evXl4bn1Sn45MmTokmTJqJkyZLCyMhIVKtWTfz66685jputY8eOIiAgQItr4d9PIQQ7NsgZ71L635CVlQV3d3d07doV06dP/2TLTU5ORpkyZTB//nz06dPnky23MMjhjs2BgYG4ffs2Tp48WdSlUD5atmwJOzs7rFu3rqhLof+Pp5yIiqGYmBgcOHAATZo0QVpaGpYuXYro6Gh89dVXhbrcK1eu4Pbt26hbty4SEhIQHBwMAPmediHNzJs3Dy1btoSJiQn27t2LNWvWYNmyZUVdFn0gJSUFK1asgJ+fH3R1dfHLL7/g0KFDvE9MMcNAQ1QM6ejoIDw8HKNGjYIQAp6enjh06JDU96EwzZs3D1FRUdDX14eXlxdOnjwp3YiNtOv8+fOYM2cOXr9+DRcXFyxevBh9+/Yt6rLoAwqFAnv27MHMmTORmpoKNzc3bNmyBb6+vkVdGr2Hp5yIiIhI9njZNhEREckeAw0RERHJHgMNERERyR4DDREREckeAw0RERHJHgMNERERyR4DDRHlqVevXujUqVNRl0FElCcGGiIiIpI9Bhoi0lhoaCiqVq0KExMTODo6YuDAgUhKSpKGh4eHw9LSEvv374e7uztMTU3x2Wef4enTp9I4GRkZGDJkCCwtLWFtbY2xY8ciICBA6ahQ+fLlVX6DqUaNGpg6daratQDAqlWr4OjoCGNjY3Tu3BmhoaGwtLRUGuf3339HrVq1YGhoCBcXF0ybNg0ZGRkfva6IqHAx0BCRxnR0dLB48WLcuHEDa9aswZEjRzBmzBilcVJSUjBv3jysW7cOJ06cwKNHjzBq1Chp+OzZsxEREYHVq1fj9OnTSExM1OjHVvOr5fTp0+jfvz+GDh2Kq1evomXLlpg5c6bSPE6ePImePXti6NChuHnzJn788UeEh4erjEdExVCR/tY3ERV7AQEBomPHjmqNu2nTJmFtbS09Xr16tQAg7t27J7WFhYUJW1tb6bGtra2YO3eu9DgjI0OUK1dOaZlOTk5iwYIFSsuqXr26mDJlitq1fPnll6Jt27ZK4/To0UNYWFhIj1u0aCFmzZqlNM66deuEvb19rsshouKBP05JRBo7dOgQQkJCcPv2bSQmJiIjIwOpqalISUmBsbExAMDY2BgVKlSQprG3t8ezZ88AAAkJCYiLi0PdunWl4bq6uvDy8kJWVpZWa4mKikLnzp2Vpqlbty527dolPb527RpOnz6tdEQmMzNT5TkRUfHDU05EpJGHDx+iXbt2qFatGrZs2YJLly4hLCwMAPD27VtpPD09PaXpFAoFRAF/E1dHR0dlmvT09ALXkp+kpCRMmzYNV69elf6uX7+Ou3fvwtDQsEA1E9GnxSM0RKSRS5cuISsrC/Pnz4eOzrvvRr/99luB5mFhYQFbW1tcuHABjRs3BvDuiMjly5dRo0YNaTwbGxuljsSJiYmIjo4uUC1ubm64cOGCUtuHj2vVqoWoqCi4uroW6HkQUdFjoCGifCUkJODq1atKbaVKlUJ6ejqWLFmC9u3b4/Tp01ixYkWB5z148GCEhITA1dUVlStXxpIlS/Dq1SsoFAppnObNmyM8PBzt27eHpaUlJk+eDF1dXWm4q6trvrUMHjwYjRs3RmhoKNq3b48jR45g7969SsuZPHky2rVrh3LlyuGLL76Ajo4Orl27hj///BMzZswo8HMjok+Hp5yIKF/Hjh1DzZo1lf7WrVuH0NBQzJ49G56enoiIiEBISEiB5z127Fh0794dPXv2hLe3N0xNTeHn56d0imf8+PFo0qQJ2rVrh7Zt26JTp05K/XKqV6+eby0+Pj5YsWIFQkNDUb16dezbtw/Dhw9XWo6fnx927dqFAwcOoE6dOqhfvz4WLFgAJycnDdYaEX1KClHQk9lERIUoKysL7u7u6Nq1K6ZPn16oywoMDMTt27dx8uTJQl0OERU+nnIioiIVExODAwcOoEmTJkhLS8PSpUsRHR2Nr776SuvLmjdvHlq2bAkTExPs3bsXa9aswbJly7S+HCL69BhoiKhI6ejoIDw8HKNGjYIQAp6enjh06BDc3d21vqzz589jzpw5eP36NVxcXLB48WL07dtX68shok+Pp5yIiIhI9tgpmIiIiGSPgYaIiIhkj4GGiIiIZI+BhoiIiGSPgYaIiIhkj4GGiIiIZI+BhoiIiGSPgYaIiIhk7/8B7ea8+eiPLBkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 pharmacology 8 7 8 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 8 9 88.888889 77.777778 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 88.888889 88.888889 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAIjCAYAAADRKhuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZAElEQVR4nO3dd3iN9//H8ddJZIksEbGCGCVGS62iNk1trVa1WlGqpbaa1VK7NiWl2n6t0qFKp72K1h7VImitqtWSxIxIPr8/euX8HAmS4+hNPB/XlevKucfnfp97nLxy35/7PjZjjBEAAIBF3KwuAAAAPNgIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjyPQ2b94sT09PHTlyxCXt7dmzR1myZNGvv/7qkvZwfyhYsKDatGnzny935syZstls2rp163++7HtVmzZtlC1bNqvLuKe1adNGBQsWtLqMdLvvwsjvv/+u1157TYUKFZK3t7f8/f1VtWpVTZo0SZcvX7a6vAzbs2eP3nnnHR0+fDjD8/bp00c2m03PPfec6wvLRAYMGKDnn39eBQoUsA9btGiRihcvroCAADVu3Fh//fVXqvmaNGmiV199NdXwEiVKqGHDhho4cGC6lp/yx+T6n5w5c6pWrVpavHix828sDQULFlSjRo1c2iZc6/Dhw6n2h5v9OPO5ANyPslhdQEZ8//33evbZZ+Xl5aXWrVurVKlSunr1qtavX6/evXvrt99+0/Tp060uM0P27NmjwYMHq2bNmhlKscYYffrppypYsKC+/fZbnT9/Xn5+fnev0PvUzp07tWLFCv3000/2YX/88Yeee+45Pffcc6pcubImTpyol19+WUuXLrVPs3TpUv344486cOBAmu126NBBDRo00O+//67ChQunq5YhQ4YoPDxcxhidOnVKM2fOVIMGDfTtt98SIO4DMTExcnO78//fQkJCNGfOHIdh48aN059//qkJEyakmhZ4ENw3YeTQoUNq2bKlChQooFWrVil37tz2cZ06ddLBgwf1/fff3/FyjDG6cuWKfHx8Uo27cuWKPD09XfKBdKfWrFmjP//8U6tWrVJkZKS++uorRUVFWV2WS127dk3Jycny9PR0uo0ZM2Yof/78euyxx+zDli1bpnz58mnWrFmy2WyKiIhQ7dq1deXKFXl7e+vatWvq0aOHBg4ceNM/BnXr1lVQUJBmzZqlIUOGpKuW+vXrq3z58vbX7dq1U2hoqD799FPCyH3Ay8vLJe34+vrqxRdfdBj22Wef6dy5c6mGwzrJycm6evWqvL29rS7lgWD9X9V0Gj16tC5cuKCPP/7YIYikKFKkiLp162Z/fe3aNQ0dOlSFCxeWl5eXChYsqDfffFMJCQkO86Wc1l66dKnKly8vHx8fffDBB1qzZo1sNps+++wzvfXWW8qbN6+yZs2q+Ph4SdKmTZv05JNPKiAgQFmzZlWNGjW0YcOGVHUdP35c7dq1U548eeTl5aXw8HB17NhRV69e1cyZM/Xss89KkmrVqmU/NbtmzZrbro+5c+eqRIkSqlWrlurWrau5c+emmiblPXzxxRcaPny48uXLJ29vb9WpU0cHDx50mPbAgQNq3ry5cuXKJW9vb+XLl08tW7ZUXFycJOnpp5/Wo48+6jBP48aNZbPZ9M0339iHbdq0STabzeHyQ2xsrLp3766wsDB5eXmpSJEiGjVqlJKTk+3TpJy6Hjt2rCZOnGjfbnv27JEkTZ48WSVLllTWrFkVFBSk8uXLa968ebddT4sWLVLt2rVls9nswy5fvqzAwED7sOzZs8sYY7/MN2XKFCUlJalLly43bdfDw0M1a9bU119/fdsabiYwMFA+Pj7KkuXf/wmMMSpYsKCaNm2aatorV64oICBAr732mtPLS7Fu3To9++yzyp8/v7y8vBQWFqYePXqkusyZcl3++PHjatasmbJly6aQkBD16tVLSUlJDtP+888/eumll+Tv76/AwEBFRUVp165dstlsmjlzpn26mjVrqmbNmqlqSuv69tixY1WlShUFBwfLx8dH5cqV05dffplq3suXL6tr167KkSOH/Pz81KRJEx0/flw2m03vvPOOw7THjx9X27ZtFRoaKi8vL5UsWVL/+9//0rXebuwzknL5bcOGDerZs6dCQkLk6+urp556SmfOnElXmxmRkJCQruUsXrxY1apVk6+vr/z8/NSwYUP99ttvDtOkbNujR4+qUaNGypYtm/Lmzavo6GhJ0u7du1W7dm35+vqqQIECaR5r6TmuJenEiRPat2+fEhMTb/n+rv8MmDBhggoUKCAfHx/VqFHjpv2z0rNvpnc/stls6ty5s+bOnauSJUvKy8tLS5YssW/n9evXq2vXrgoJCVFgYKBee+01Xb16VbGxsWrdurWCgoIUFBSkPn36yBjjVA2S9Mknn6hixYr2z7rq1atr2bJlDtO8//779hrz5MmjTp06KTY29pbrV5IuXryoN954w77NihUrprFjx6aqNz3H1OrVq2Wz2bRw4cJUy5k3b55sNpt+/vnn29ZkZ+4TefPmNYUKFUr39FFRUUaSeeaZZ0x0dLRp3bq1kWSaNWvmMF2BAgVMkSJFTFBQkOnXr5+ZNm2aWb16tVm9erWRZEqUKGHKlCljxo8fb0aOHGkuXrxoVq5caTw9PU3lypXNuHHjzIQJE8zDDz9sPD09zaZNm+xtHz9+3OTJk8dkzZrVdO/e3UybNs28/fbbJiIiwpw7d878/vvvpmvXrkaSefPNN82cOXPMnDlzzMmTJ2/53q5cuWICAwPN0KFDjTHGzJ4927i7u5sTJ044TJfyHsqWLWvKlStnJkyYYN555x2TNWtWU7FiRft0CQkJJjw83OTJk8cMGzbMfPTRR2bw4MGmQoUK5vDhw8YYY8aPH2/c3NxMXFycMcaY5ORkExQUZNzc3EyvXr3sbY0ZM8ZhuosXL5qHH37YBAcHmzfffNNMmzbNtG7d2thsNtOtWzf7fIcOHbKv70KFCpl3333XTJgwwRw5csRMnz7dvi0/+OADM2nSJNOuXTvTtWvXW66nP//800gy7733nsPwdevWGZvNZubNm2f++OMP06JFC1OkSBFjjDGnT582gYGB5rvvvrtl28YYM2zYMIf3ejMzZswwksyKFSvMmTNnzOnTp82vv/5qXnvtNePm5maWLVtmn3bAgAHGw8PD/PPPPw5tfPHFF0aS+fHHH2+5rAIFCpiGDRvecpouXbqYBg0amBEjRpgPPvjAtGvXzri7u5tnnnnGYbqoqCjj7e1tSpYsadq2bWumTp1qmjdvbiSZ999/3z5dUlKSqVy5snF3dzedO3c2U6ZMMfXq1TOPPPKIkWRmzJhhn7ZGjRqmRo0aqWqKiooyBQoUcBiWL18+8/rrr5spU6aY8ePHm4oVKxpJqbZNixYtjCTz0ksvmejoaNOiRQv7sgcNGmSf7uTJkyZfvnwmLCzMDBkyxEydOtU0adLESDITJky45Toz5t91GxUVZX+dsl3Lli1rateubSZPnmzeeOMN4+7ublq0aHHb9q7XsGHDVO/fmeXMnj3b2Gw28+STT5rJkyebUaNGmYIFC5rAwEBz6NAh+3Qp27ZEiRKmQ4cOJjo62lSpUsW+vfLkyWN69+5tJk+ebEqWLGnc3d3NH3/8YZ8/vcd1yrIkOSw/LSmfAaVLlzYFCxY0o0aNMoMHDzbZs2c3ISEhDp+L6d03jUn/fiTJREREmJCQEDN48GATHR1tduzYYV//ZcqUMU8++aSJjo42L730kpFk+vTpYx5//HHzwgsvmPfff980atTISDKzZs1yqoZ33nnHSDJVqlQxY8aMMZMmTTIvvPCC6du3r32aQYMGGUmmbt26ZvLkyaZz587G3d3dVKhQwVy9etVhHV2/TyUnJ5vatWsbm81mXnnlFTNlyhTTuHFjI8l0797doY70HFPJyckmLCzMNG/ePNW2bNCggSlcuPAttnZq90UYiYuLM5JM06ZN0zX9zp07jSTzyiuvOAzv1auXkWRWrVplH1agQAEjySxZssRh2pQ/5IUKFTKXLl2yD09OTjZFixY1kZGRJjk52T780qVLJjw83NSrV88+rHXr1sbNzc1s2bIlVY0p886fP99IMqtXr07XezPGmC+//NJIMgcOHDDGGBMfH2+8vb1TfaCmvIeIiAiTkJBgHz5p0iQjyezevdsYY8yOHTuMJDN//vybLnPLli1Gkvnhhx+MMcb88ssvRpJ59tlnTaVKlezTNWnSxJQtW9b+eujQocbX19fs37/fob1+/foZd3d3c/ToUWPM/38Q+fv7m9OnTztM27RpU1OyZMn0rh67FStWGEnm22+/TTUuJQRKMtmzZ7fvE+3btzdPPvlkutqfN2+ekeQQQNOS8mF244+Xl5eZOXOmw7QxMTFGkpk6darD8CZNmpiCBQs67HNpSU8YuX5/TjFy5Ehjs9nMkSNH7MNS/ogMGTLEYdqUcJtiwYIFRpKZOHGifVhSUpKpXbv2HYWRG+u8evWqKVWqlKldu7Z92LZt29L8MG3Tpk2qMNKuXTuTO3du8/fffztM27JlSxMQEJDmernezcJI3bp1HbZLjx49jLu7u4mNjb1le9dLTxi53XLOnz9vAgMDTfv27R3mP3nypAkICHAYnrJtR4wYYR927tw54+PjY2w2m/nss8/sw/ft25dqXab3uL5+WekNIz4+PubPP/+0D9+0aZORZHr06JGqzdvtm8akbz8y5t8w4ubmZn777TeH4Snr/8bP/MqVKxubzWY6dOhgH3bt2jWTL1++VPt4emo4cOCAcXNzM0899ZRJSkpymD5luadPnzaenp7miSeecJhmypQpRpL53//+57COrt+nFi1aZCSZYcOGObT9zDPPGJvNZg4ePGiMydgx1b9/f+Pl5eWwr58+fdpkyZLFYbr0uC8u06RcGklvB80ffvhBktSzZ0+H4W+88YYkpepbEh4ersjIyDTbioqKcug/snPnTh04cEAvvPCC/vnnH/3999/6+++/dfHiRdWpU0c//vijkpOTlZycrEWLFqlx48YO/QRSXH/ZIKPmzp2r8uXLq0iRIpJkPxWb1qUaSXr55Zcd+l1Uq1ZN0r8dOSUpICBA0r+dNi9dupRmG2XLllW2bNn0448/Svr3VH++fPnUunVrbd++XZcuXZIxRuvXr7e3L0nz589XtWrVFBQUZF9Xf//9t+rWraukpCR7eymaN2+eqp9GYGCg/vzzT23ZsiXd60j699KBJAUFBaUaN2nSJB05ckSbNm3SkSNHVKtWLe3cuVOzZ8/WhAkTFBcXpxdffFF58+ZVzZo1tXfv3lRtpLT7999/p6ue6OhoLV++XMuXL9cnn3yiWrVq6ZVXXtFXX31ln+ahhx5SpUqVHLbl2bNntXjxYrVq1eqO9psU1+/PFy9e1N9//60qVarIGKMdO3akmr5Dhw4Or6tVq2bfdyRpyZIl8vDwUPv27e3D3Nzc1KlTJ5fVee7cOcXFxalatWravn27w7Il6fXXX3eY98ZLbMYYLViwQI0bN5YxxmFfjIyMVFxcnEO7GfHqq686bJdq1aopKSnJZbeSp3c5y5cvV2xsrJ5//nmH9+fu7q5KlSpp9erVqdp85ZVX7L8HBgaqWLFi8vX1VYsWLezDixUrpsDAQIdtnpHjeubMmfZLkOnRrFkz5c2b1/66YsWKqlSpkv1z/Xq32zel9O1HKWrUqKESJUqkWVe7du0c1n+lSpVkjFG7du3sw9zd3VW+fHmnali0aJGSk5M1cODAVP0SU5a7YsUKXb16Vd27d3eYpn379vL3979lv8kffvhB7u7u6tq1q8PwN954Q8YY+6X19B5TktS6dWslJCQ4XHL6/PPPde3atQz3f7ovOrD6+/tLks6fP5+u6Y8cOSI3Nzf7H+sUuXLlUmBgYKoPifDw8Ju2deO4lLsrbtVZNC4uTlevXlV8fLxKlSqVrprTKzY2Vj/88IM6d+7s0O+jatWqWrBggfbv36+HHnrIYZ78+fM7vE75I3ru3DlJ/77Hnj17avz48Zo7d66qVaumJk2a6MUXX7QHFXd3d1WuXFnr1q2T9G8YqVatmh5//HElJSVp48aNCg0N1dmzZx3CyIEDB/TLL7/ctCPo6dOnHV6ntS369u2rFStWqGLFiipSpIieeOIJvfDCC6patWq61pm54Xpoivz58zusm65du6pDhw4qXry4XnzxRR07dkxff/21Zs2apcaNG2vfvn32/h3Xt5vegFCxYkWHYPr888+rbNmy6ty5sxo1amQPjK1bt1bnzp115MgRFShQQPPnz1diYqJeeumldC3ndo4ePaqBAwfqm2++se8DKVL6CKXw9vZOte2CgoIc5jty5Ihy586trFmzOkx34/GXUd99952GDRumnTt3OvT1un59pxzrN+43Ny77zJkzio2N1fTp0296x92N+2J63e74cpXbLSfls6l27dppzp/yOZoirW0bEBCgfPnypdqnAwICHN5PRo/rjChatGiqYQ899JC++OILh2Hp2Tel9O1HKW71t+DG9Z/y2RgWFpZquDM1/P7773Jzc7tpGJJk/9tVrFgxh+Genp4qVKjQLQPwkSNHlCdPnlT/1EdERDi0nd5jSpKKFy+uChUqaO7cufZQNnfuXD322GMZPv7vmzCSJ0+eDD9kKr1/JNK6c+Zm41I6Z40ZM0ZlypRJc55s2bLp7Nmz6Ssyg+bPn6+EhASNGzdO48aNSzV+7ty5Gjx4sMMwd3f3NNu6/o/0uHHj1KZNG3399ddatmyZunbtqpEjR2rjxo3Kly+fJOnxxx/X8OHDdeXKFa1bt04DBgxQYGCgSpUqpXXr1ik0NFSSHMJIcnKy6tWrpz59+qRZw43BKa1tERERoZiYGH333XdasmSJFixYoPfff18DBw5M9V6vFxwcLCl9fxQ+//xz7d27V998842SkpL0xRdfaNmyZSpfvrxKliypDz/8UBs3btTjjz9unyel3Rw5cty2/bS4ubmpVq1amjRpkg4cOKCSJUtKklq2bKkePXpo7ty5evPNN/XJJ5+ofPnyqT6AnJGUlKR69erp7Nmz6tu3r4oXLy5fX18dP35cbdq0SdX58Gb7jrNsNlua4fDGTofr1q1TkyZNVL16db3//vvKnTu3PDw8NGPGjHR1XL5Ryvt68cUXb/qPxMMPP5zhdqX0HV+ucLvlpLzHOXPmKFeuXKmmuz5I36q99LyfjB7Xd0N69s2M7ke3+luQkfV1/bpy9b58r2ndurW6deumP//8UwkJCdq4caOmTJmS4XbuizAiSY0aNdL06dP1888/q3LlyrectkCBAkpOTtaBAwfsqU+STp06pdjYWIeHX2VUyjMl/P39Vbdu3ZtOFxISIn9//9sGqIyedp87d65KlSqlQYMGpRr3wQcfaN68ebf8A30rpUuXVunSpfXWW2/pp59+UtWqVTVt2jQNGzZM0r8h4+rVq/r00091/Phxe+ioXr26PYw89NBD9lAi/bu+Lly4cMt1lR6+vr72Z4NcvXpVTz/9tIYPH67+/fvf9Na74sWLS/r3tvBbuXTpknr37q2hQ4cqMDBQp06dUmJiovLkySPp3w+ooKAgHT9+3GG+Q4cOyc3N7Y4+eK9duyZJunDhgn1Y9uzZ7ZfdWrVqpQ0bNmjixIlOL+N6u3fv1v79+zVr1iy1bt3aPnz58uVOt1mgQAGtXr1aly5dcjg7cuMdW9K//7neeApbUqr/6BYsWCBvb28tXbrU4ZbaGTNmpFp2cnKyDh065PAf9Y3LDgkJkZ+fn5KSku54X7xXpXw25cyZ866/R1cd12lJ69k++/fvd+ppoundj+6m9NZQuHBhJScna8+ePTf9Rzflb1dMTIwKFSpkH3716lUdOnToltujQIECWrFiRapnUu3bt8+h7fQeUylatmypnj176tNPP9Xly5fl4eHh1IM474s+I9K/Txv19fXVK6+8olOnTqUa//vvv2vSpEmSpAYNGkhSqg/w8ePHS5IaNmzodB3lypVT4cKFNXbsWIc/IClSbrVzc3NTs2bN9O2336b5GOeU5Ozr6ytJ6bot69ixY/rxxx/VokULPfPMM6l+Xn75ZR08eFCbNm3K0HuKj4+3/1FMUbp0abm5uTmcUqxUqZI8PDw0atQoZc+e3f6ffLVq1bRx40atXbvW4ayIJLVo0UI///yzwwPFUsTGxqZablpS+n6k8PT0VIkSJWSMueXtgnnz5lVYWNhtH6M9atQoBQUF2fs8BAcHK0uWLPaD9O+//9aZM2dS/be5bds2lSxZ0n66NqMSExO1bNkyeXp6OoRmSXrppZe0Z88e9e7dW+7u7mrZsqVTy7hRyn9x1//nZoyxHzvOiIyMVGJioj788EP7sOTkZPttotcrXLiw9u3b53BL6q5du1LdFu/u7i6bzeZwxuTw4cNatGhRqmVL/97qeL3Jkyenaq958+ZasGBBmv8g3I1bcf9rkZGR8vf314gRI9I8Llz5HjNyXKf31t4UixYtcgj+mzdv1qZNm1S/fv0M15ne/ehuSm8NzZo1k5ubm4YMGZLqDGXK8Vq3bl15enrqvffecziGP/74Y8XFxd3yb1uDBg2UlJSU6qzFhAkTZLPZ7Os3vcdUihw5cqh+/fr65JNPNHfuXD355JNOnS2+b86MFC5cWPPmzdNzzz2niIgIhyew/vTTT5o/f779GQCPPPKIoqKiNH36dMXGxqpGjRravHmzZs2apWbNmqlWrVpO1+Hm5qaPPvpI9evXV8mSJfXyyy8rb968On78uFavXi1/f399++23kqQRI0Zo2bJlqlGjhl599VVFREToxIkTmj9/vtavX6/AwECVKVNG7u7uGjVqlOLi4uTl5aXatWsrZ86cqZY9b948GWPUpEmTNGtr0KCBsmTJorlz56pSpUrpfk+rVq1S586d9eyzz+qhhx7StWvXNGfOHPsHeIqsWbOqXLly2rhxo/0ZI9K/Z0YuXryoixcvpgojvXv31jfffKNGjRqpTZs2KleunC5evKjdu3fryy+/1OHDh2+74z7xxBPKlSuXqlatqtDQUO3du1dTpkxRw4YNb9upuWnTplq4cKGMMWmehTp69KjGjBmj77//3v6HOkuWLGratKm6d++uo0ePauHChcqTJ4/DGbnExEStXbs2VSevW1m8eLE94Jw+fVrz5s3TgQMH1K9fv1TX8xs2bKjg4GDNnz9f9evXT3N/uJmDBw/az2Zdr2zZsnriiSdUuHBh9erVS8ePH5e/v78WLFhwR/0bmjVrpooVK+qNN97QwYMHVbx4cX3zzTf2S5XXr/e2bdtq/PjxioyMVLt27XT69GlNmzZNJUuWtHdUT3n/48eP15NPPqkXXnhBp0+fVnR0tIoUKaJffvnFPl25cuXUvHlzTZw4Uf/8848ee+wxrV27Vvv370+17HfffVerV69WpUqV1L59e5UoUUJnz57V9u3btWLFirt2afW/4u/vr6lTp+qll17So48+qpYtWyokJERHjx7V999/r6pVqzp1+jwtGTmu+/fvr1mzZunQoUPpOrtRpEgRPf744+rYsaMSEhI0ceJEBQcH3/SS0K2kdz+6m9JbQ5EiRTRgwAANHTpU1apV09NPPy0vLy9t2bJFefLk0ciRIxUSEqL+/ftr8ODBevLJJ9WkSRPFxMTo/fffV4UKFW7ZabRx48aqVauWBgwYoMOHD+uRRx7RsmXL9PXXX6t79+72M2sZOaZStG7dWs8884wkaejQoc6tqAzde3MP2L9/v2nfvr0pWLCg8fT0NH5+fqZq1apm8uTJ5sqVK/bpEhMTzeDBg014eLjx8PAwYWFhpn///g7TGHPzWyFTbou92e2uO3bsME8//bQJDg42Xl5epkCBAqZFixZm5cqVDtMdOXLEtG7d2oSEhBgvLy9TqFAh06lTJ4dbbT/88ENTqFAh4+7ufsvbfEuXLm3y589/y/VTs2ZNkzNnTpOYmHjT95ByC13KLZd//PGHadu2rSlcuLDx9vY22bNnN7Vq1TIrVqxI1X7v3r2NJDNq1CiH4UWKFDGSzO+//55qnvPnz5v+/fubIkWKGE9PT5MjRw5TpUoVM3bsWPt98Sk1jRkzJtX8H3zwgalevbp9XRcuXNj07t37ts/3MMaY7du3G0lm3bp1aY5/9tlnzdNPP51q+KlTp0zjxo2Nn5+fefTRR83WrVsdxi9evNjh9upbSevWXm9vb1OmTBkzderUm96u+/rrrxtJZt68ebddRoqUW9XT+mnXrp0xxpg9e/aYunXrmmzZspkcOXKY9u3bm127dqW6DTcqKsr4+vqmWkbKcw6ud+bMGfPCCy8YPz8/ExAQYNq0aWM2bNhgJDncJmqMMZ988okpVKiQ8fT0NGXKlDFLly5N89bejz/+2BQtWtR4eXmZ4sWLmxkzZqS57IsXL5pOnTqZ7Nmzm2zZsplmzZrZb5F+9913HaY9deqU6dSpkwkLCzMeHh4mV65cpk6dOmb69OnpWrdp3dp74637KcddRm7XT8+tveldzurVq01kZKQJCAgw3t7epnDhwqZNmzYO+/DNtm2NGjXSvI0+rc/J9BzXKctSBm7tHTNmjBk3bpwJCwszXl5eplq1ambXrl0O02Zk30zvfiTJdOrUKVWbN1v/KW2cOXPmtrWltwZjjPnf//5nypYta7y8vExQUJCpUaOGWb58ucM0U6ZMMcWLFzceHh4mNDTUdOzY0Zw7dy5VHTfuU+fPnzc9evQwefLkMR4eHqZo0aJmzJgxqT6DMnJMGfPvs6qCgoJMQECAuXz5cqrx6XHfhREgo2rXrm1efPFFl7bZtGnTVA/Qc7Xu3bsbPz8/c/Hixbu6nLtl4cKFRpJZv379f77slGfnfPLJJ//5suGcW/1DAuvd6phKTEw0ISEhpm3btk63f9/0GQGcNWLECH3++ecue+7D3r179d133zl/OjIdrly5ok8++UTNmzdPdcvsvejGR8knJSVp8uTJ8vf3T/U1And72dK//cXc3NxUvXr1u7psIDPK6DG1aNEinTlzxqFTfEbdN31GAGdVqlRJV69edVl7ERER6ep464zTp09rxYoV+vLLL/XPP/84fN/SvaxLly66fPmyKleurISEBH311Vf66aefNGLEiFveLukKo0eP1rZt21SrVi1lyZJFixcv1uLFi/Xqq6+megYEgNtL7zG1adMm/fLLLxo6dKjKli2rGjVqOL/QOzltA8C1UvoB5MyZ00yePNnqctJt7ty55tFHHzX+/v7G09PTlChR4j+rf9myZaZq1aomKCjIeHh4mMKFC5t33nnHJCYm/ifLh2twmebekd5jKioqyri7u5ty5crZv17EWTZjXPxkHgAAgAygzwgAALAUYQQAAFgq03dgTU5O1l9//SU/Pz+XfOMpAAAPCmOMzp8/rzx58qT6NmFXyvRh5K+//qJHPQAAd+DYsWP2L029GzJ9GEl5XPixY8dSPXIbAADcXHx8vMLCwm771Rt3KtOHkZRLM/7+/oQRAACccLe7OdCBFQAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJbKYnUB96uC/b63uoRM7/C7Da0uAfcgjr27724de2y7u+9+/dzkzAgAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUpaGkaSkJL399tsKDw+Xj4+PChcurKFDh8oYY5/GGKOBAwcqd+7c8vHxUd26dXXgwAELqwYAAK5kaRgZNWqUpk6dqilTpmjv3r0aNWqURo8ercmTJ9unGT16tN577z1NmzZNmzZtkq+vryIjI3XlyhULKwcAAK6SxcqF//TTT2ratKkaNmwoSSpYsKA+/fRTbd68WdK/Z0UmTpyot956S02bNpUkzZ49W6GhoVq0aJFatmxpWe0AAMA1LD0zUqVKFa1cuVL79++XJO3atUvr169X/fr1JUmHDh3SyZMnVbduXfs8AQEBqlSpkn7++ec020xISFB8fLzDDwAAuHdZemakX79+io+PV/HixeXu7q6kpCQNHz5crVq1kiSdPHlSkhQaGuowX2hoqH3cjUaOHKnBgwff3cIBAIDLWHpm5IsvvtDcuXM1b948bd++XbNmzdLYsWM1a9Ysp9vs37+/4uLi7D/Hjh1zYcUAAMDVLD0z0rt3b/Xr18/e96N06dI6cuSIRo4cqaioKOXKlUuSdOrUKeXOnds+36lTp1SmTJk02/Ty8pKXl9ddrx0AALiGpWdGLl26JDc3xxLc3d2VnJwsSQoPD1euXLm0cuVK+/j4+Hht2rRJlStX/k9rBQAAd4elZ0YaN26s4cOHK3/+/CpZsqR27Nih8ePHq23btpIkm82m7t27a9iwYSpatKjCw8P19ttvK0+ePGrWrJmVpQMAABexNIxMnjxZb7/9tl5//XWdPn1aefLk0WuvvaaBAwfap+nTp48uXryoV199VbGxsXr88ce1ZMkSeXt7W1g5AABwFUvDiJ+fnyZOnKiJEyfedBqbzaYhQ4ZoyJAh/11hAADgP8N30wAAAEsRRgAAgKUIIwAAwFKEEQAAYClLO7ACVijY73urS8j0Dr/b0OoSANxHODMCAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEtZHkaOHz+uF198UcHBwfLx8VHp0qW1detW+3hjjAYOHKjcuXPLx8dHdevW1YEDByysGAAAuFIWZ2Y6dOiQ1q1bpyNHjujSpUsKCQlR2bJlVblyZXl7e6e7nXPnzqlq1aqqVauWFi9erJCQEB04cEBBQUH2aUaPHq333ntPs2bNUnh4uN5++21FRkZqz549GVoWAAC4N2UojMydO1eTJk3S1q1bFRoaqjx58sjHx0dnz57V77//Lm9vb7Vq1Up9+/ZVgQIFbtveqFGjFBYWphkzZtiHhYeH2383xmjixIl666231LRpU0nS7NmzFRoaqkWLFqlly5YZKR8AANyD0n2ZpmzZsnrvvffUpk0bHTlyRCdOnNC2bdu0fv167dmzR/Hx8fr666+VnJys8uXLa/78+bdt85tvvlH58uX17LPPKmfOnCpbtqw+/PBD+/hDhw7p5MmTqlu3rn1YQECAKlWqpJ9//jnNNhMSEhQfH+/wAwAA7l3pDiPvvvuuNm3apNdff11hYWGpxnt5ealmzZqaNm2a9u3bp0KFCt22zT/++ENTp05V0aJFtXTpUnXs2FFdu3bVrFmzJEknT56UJIWGhjrMFxoaah93o5EjRyogIMD+k1atAADg3pHuyzSRkZHpbjQ4OFjBwcG3nS7lLMqIESMk/Xv25ddff9W0adMUFRWV7uVdr3///urZs6f9dXx8PIEEAIB7mFMdWK/3/fffa82aNUpKSlLVqlXVvHnzdM+bO3dulShRwmFYRESEFixYIEnKlSuXJOnUqVPKnTu3fZpTp06pTJkyabbp5eUlLy+vDL4LAABglTu6tfftt99Wnz59ZLPZZIxRjx491KVLl3TPX7VqVcXExDgM279/v73za3h4uHLlyqWVK1fax8fHx2vTpk2qXLnynZQOAADuERk6M7J161aVL1/e/vrzzz/Xrl275OPjI0lq06aNatasqcmTJ6ervR49eqhKlSoaMWKEWrRooc2bN2v69OmaPn26JMlms6l79+4aNmyYihYtar+1N0+ePGrWrFlGSgcAAPeoDJ0Z6dChg7p3765Lly5JkgoVKqRx48YpJiZGu3fv1tSpU/XQQw+lu70KFSpo4cKF+vTTT1WqVCkNHTpUEydOVKtWrezT9OnTR126dNGrr76qChUq6MKFC1qyZAnPGAEAIJPIUBjZtGmTcufOrUcffVTffvut/ve//2nHjh2qUqWKqlWrpj///FPz5s3LUAGNGjXS7t27deXKFe3du1ft27d3GG+z2TRkyBCdPHlSV65c0YoVKzIUeAAAwL0tQ5dp3N3d1bdvXz377LPq2LGjfH19NWXKFOXJk+du1QcAADI5pzqwFipUSEuXLtVTTz2l6tWrKzo62tV1AQCAB0SGwkhsbKz69Omjxo0b66233tJTTz2lTZs2acuWLXrssce0e/fuu1UnAADIpDIURqKiorRp0yY1bNhQMTEx6tixo4KDgzVz5kwNHz5czz33nPr27Xu3agUAAJlQhvqMrFq1Sjt27FCRIkXUvn17FSlSxD6uTp062r59u4YMGeLyIgEAQOaVoTMjRYsW1fTp07V//35NmzYt1Tfzent72x/tDgAAkB4ZCiP/+9//tGrVKpUtW1bz5s3T1KlT71ZdAADgAZGhyzRlypTR1q1b71YtAADgAZTuMyPGmLtZBwAAeEClO4yULFlSn332ma5evXrL6Q4cOKCOHTvq3XffvePiAABA5pfuyzSTJ09W37599frrr6tevXoqX7688uTJI29vb507d0579uzR+vXr9dtvv6lz587q2LHj3awbAABkEukOI3Xq1NHWrVu1fv16ff7555o7d66OHDmiy5cvK0eOHCpbtqxat26tVq1aKSgo6G7WDAAAMpEMdWCVpMcff1yPP/743agFAAA8gJz6bhoAAABXIYwAAABLEUYAAIClCCMAAMBShBEAAGApp8LI9u3btXv3bvvrr7/+Ws2aNdObb75524eiAQAAXM+pMPLaa69p//79kqQ//vhDLVu2VNasWTV//nz16dPHpQUCAIDMzakwsn//fpUpU0aSNH/+fFWvXl3z5s3TzJkztWDBAlfWBwAAMjmnwogxRsnJyZKkFStWqEGDBpKksLAw/f33366rDgAAZHpOhZHy5ctr2LBhmjNnjtauXauGDRtKkg4dOqTQ0FCXFggAADI3p8LIxIkTtX37dnXu3FkDBgxQkSJFJElffvmlqlSp4tICAQBA5pbh76ZJSkpSbGysfvzxx1RfiDdmzBi5u7u7rDgAAJD5ZfjMiLu7u5544gnFxsamGuft7S0PDw9X1AUAAB4QTl2mKVWqlP744w9X1wIAAB5AToWRYcOGqVevXvruu+904sQJxcfHO/wAAACkV4b7jEiy38rbpEkT2Ww2+3BjjGw2m5KSklxTHQAAyPScCiOrV692dR0AAOAB5VQYqVGjhqvrAAAADyinv7V33bp1evHFF1WlShUdP35ckjRnzhytX7/eZcUBAIDMz6kwsmDBAkVGRsrHx0fbt29XQkKCJCkuLk4jRoxwaYEAACBzc/pummnTpunDDz90eK5I1apVtX37dpcVBwAAMj+nwkhMTIyqV6+eanhAQECaD0MDAAC4GafCSK5cuXTw4MFUw9evX69ChQrdcVEAAODB4VQYad++vbp166ZNmzbJZrPpr7/+0ty5c9WrVy917NjR1TUCAIBMzKlbe/v166fk5GTVqVNHly5dUvXq1eXl5aVevXqpS5curq4RAABkYk6FEZvNpgEDBqh37946ePCgLly4oBIlSihbtmyurg8AAGRyToWRVatWqUqVKvL29laJEiVcXRMAAHiAOBVGmjRpomvXrqlChQqqWbOmatSooapVq8rHx8fV9QEAgEzOqQ6s586d08qVK1W/fn1t3rxZTz31lAIDA1W1alW99dZbrq4RAABkYk6FEQ8PD1WtWlVvvvmmli5dqo0bN+r555/X5s2bNXLkSFfXCAAAMjGnLtPs379fa9as0Zo1a7R27VolJCSoWrVqGjt2rGrWrOniEgEAQGbmVBgpXry4QkJC1K1bN/Xr10+lS5eWzWZzdW0AAOAB4NRlmq5duypv3rwaMmSIOnTooAEDBmjZsmW6dOmSq+sDAACZnFNhZOLEidq+fbtOnjyp/v376+rVqxowYIBy5MihqlWrurpGAACQiTkVRlIkJSUpMTFRCQkJunLlihISEhQTE+Oq2gAAwAPA6cs0Dz/8sEJDQ/Xaa6/pr7/+Uvv27bVjxw6dOXPG1TUCAIBMzKkOrCdOnNCrr76qmjVrqlSpUq6uCQAAPECcCiPz5893dR0AAOAB5dRlmlmzZun777+3v+7Tp48CAwNVpUoVHTlyxGXFAQCAzM+pMDJixAj799D8/PPPio6O1ujRo5UjRw716NHDpQUCAIDMzanLNMeOHVORIkUkSYsWLVLz5s316quvqmrVqjyBFQAAZIhTZ0ayZcumf/75R5K0bNky1atXT5Lk7e2ty5cvu646AACQ6Tl1ZqRevXp65ZVXVLZsWe3fv18NGjSQJP32228qWLCgK+sDAACZnFNnRqKjo1W5cmWdOXNGCxYsUHBwsCRp27Ztev75511aIAAAyNycOjMSGBioKVOmpBo+ePDgOy4IAAA8WJwKI5IUGxurzZs36/Tp00pOTrYPt9lseumll1xSHAAAyPycCiPffvutWrVqpQsXLsjf3182m80+jjACAAAywqk+I2+88Ybatm2rCxcuKDY2VufOnbP/nD171tU1AgCATMypMHL8+HF17dpVWbNmdXU9AADgAeNUGImMjNTWrVtdXQsAAHgAOdVnpGHDhurdu7f27Nmj0qVLy8PDw2F8kyZNXFIcAADI/JwKI+3bt5ckDRkyJNU4m82mpKSkO6sKAAA8MJwKI9ffygsAAHAnnOozcjOxsbFpPgwNAADgZlwSRlauXKkXXnhBuXPn1qBBg1zRJAAAeEA4HUaOHTumIUOGKDw8XE888YRsNpsWLlyokydPurI+AACQyWUojCQmJmr+/PmKjIxUsWLFtHPnTo0ZM0Zubm4aMGCAnnzyyVR31gAAANxKhjqw5s2bV8WLF9eLL76ozz77TEFBQZLEN/UCAACnZejMyLVr12Sz2WSz2eTu7n63agIAAA+QDIWRv/76S6+++qo+/fRT5cqVS82bN9fChQsdvigPAAAgIzIURry9vdWqVSutWrVKu3fvVkREhLp27apr165p+PDhWr58OQ88AwAAGeL03TSFCxfWsGHDdOTIEX3//fdKSEhQo0aNFBoa6sr6AABAJufUE1iv5+bmpvr166t+/fo6c+aM5syZ44q6AADAA8KlT2ANCQlRz549XdkkAADI5FwaRgAAADKKMAIAACxFGAEAAJZyKowMGTJEly5dSjX88uXLGjJkyB0XBQAAHhxOhZHBgwfrwoULqYZfunRJgwcPvuOiAADAg8OpMGKMSfOpq7t27VL27NnvuCgAAPDgyNBzRoKCguzfTfPQQw85BJKkpCRduHBBHTp0cHmRAAAg88pQGJk4caKMMWrbtq0GDx6sgIAA+zhPT08VLFhQlStXdnmRAAAg88pQGImKipIkhYeHq2rVqsqS5Y4f4AoAAB5wTvUZuXjxolauXJlq+NKlS7V48eI7LgoAADw4nAoj/fr1S/PbeY0x6tev3x0XBQAAHhxOhZEDBw6oRIkSqYYXL15cBw8edKqQd999VzabTd27d7cPu3Llijp16qTg4GBly5ZNzZs316lTp5xqHwAA3JucCiMBAQH6448/Ug0/ePCgfH19M9zeli1b9MEHH+jhhx92GN6jRw99++23mj9/vtauXau//vpLTz/9tDMlAwCAe5RTYaRp06bq3r27fv/9d/uwgwcP6o033lCTJk0y1NaFCxfUqlUrffjhhwoKCrIPj4uL08cff6zx48erdu3aKleunGbMmKGffvpJGzdudKZsAABwD3IqjIwePVq+vr4qXry4wsPDFR4eroiICAUHB2vs2LEZaqtTp05q2LCh6tat6zB827ZtSkxMdBhevHhx5c+fXz///PNN20tISFB8fLzDDwAAuHc5dW9uQECAfvrpJy1fvly7du2Sj4+PHn74YVWvXj1D7Xz22Wfavn27tmzZkmrcyZMn5enpqcDAQIfhoaGhOnny5E3bHDlyJI+kBwDgPuL0g0JsNpueeOIJVa9eXV5eXmk+Hv5Wjh07pm7dumn58uXy9vZ2toxU+vfvr549e9pfx8fHKywszGXtAwAA13LqMk1ycrKGDh2qvHnzKlu2bDp06JAk6e2339bHH3+crja2bdum06dP69FHH1WWLFmUJUsWrV27Vu+9956yZMmi0NBQXb16VbGxsQ7znTp1Srly5bppu15eXvL393f4AQAA9y6nwsiwYcM0c+ZMjR49Wp6envbhpUqV0kcffZSuNurUqaPdu3dr586d9p/y5curVatW9t89PDwcHq4WExOjo0eP8sh5AAAyEacu08yePVvTp09XnTp1HL4Y75FHHtG+ffvS1Yafn59KlSrlMMzX11fBwcH24e3atVPPnj2VPXt2+fv7q0uXLqpcubIee+wxZ8oGAAD3IKfCyPHjx1WkSJFUw5OTk5WYmHjHRaWYMGGC3Nzc1Lx5cyUkJCgyMlLvv/++y9oHAADWcyqMlChRQuvWrVOBAgUchn/55ZcqW7as08WsWbPG4bW3t7eio6MVHR3tdJsAAODe5lQYGThwoKKionT8+HElJyfrq6++UkxMjGbPnq3vvvvO1TUCAIBMzOknsH777bdasWKFfH19NXDgQO3du1fffvut6tWr5+oaAQBAJpbhMyPXrl3TiBEj1LZtWy1fvvxu1AQAAB4gGT4zkiVLFo0ePVrXrl27G/UAAIAHjFOXaerUqaO1a9e6uhYAAPAAcqoDa/369dWvXz/t3r1b5cqVk6+vr8P4jH5zLwAAeHA5FUZef/11SdL48eNTjbPZbEpKSrqzqgAAwAPDqTCSnJzs6joAAMADKsN9RhITE5UlSxb9+uuvd6MeAADwgMlwGPHw8FD+/Pm5FAMAAFzCqbtpBgwYoDfffFNnz551dT0AAOAB41SfkSlTpujgwYPKkyePChQokOpumu3bt7ukOAAAkPk5FUaaNWvm4jIAAMCDyqkwMmjQIFfXAQAAHlBOhZEU27Zt0969eyVJJUuWVNmyZV1SFAAAeHA4FUZOnz6tli1bas2aNQoMDJQkxcbGqlatWvrss88UEhLiyhoBAEAm5tTdNF26dNH58+f122+/6ezZszp79qx+/fVXxcfHq2vXrq6uEQAAZGJOnRlZsmSJVqxYoYiICPuwEiVKKDo6Wk888YTLigMAAJmfU2dGkpOT5eHhkWq4h4cHj4oHAAAZ4lQYqV27trp166a//vrLPuz48ePq0aOH6tSp47LiAABA5udUGJkyZYri4+NVsGBBFS5cWIULF1Z4eLji4+M1efJkV9cIAAAyMaf6jISFhWn79u1asWKF9u3bJ0mKiIhQ3bp1XVocAADI/Jx+zojNZlO9evVUr149V9YDAAAeMBm6TLNq1SqVKFFC8fHxqcbFxcWpZMmSWrduncuKAwAAmV+GwsjEiRPVvn17+fv7pxoXEBCg1157TePHj3dZcQAAIPPLUBjZtWuXnnzyyZuOf+KJJ7Rt27Y7LgoAADw4MhRGTp06lebzRVJkyZJFZ86cueOiAADAgyNDYSRv3rz69ddfbzr+l19+Ue7cue+4KAAA8ODIUBhp0KCB3n77bV25ciXVuMuXL2vQoEFq1KiRy4oDAACZX4Zu7X3rrbf01Vdf6aGHHlLnzp1VrFgxSdK+ffsUHR2tpKQkDRgw4K4UCgAAMqcMhZHQ0FD99NNP6tixo/r37y9jjKR/nzkSGRmp6OhohYaG3pVCAQBA5pThh54VKFBAP/zwg86dO6eDBw/KGKOiRYsqKCjobtQHAAAyOaefwBoUFKQKFSq4shYAAPAAcuqL8gAAAFyFMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYClLw8jIkSNVoUIF+fn5KWfOnGrWrJliYmIcprly5Yo6deqk4OBgZcuWTc2bN9epU6csqhgAALiapWFk7dq16tSpkzZu3Kjly5crMTFRTzzxhC5evGifpkePHvr22281f/58rV27Vn/99ZeefvppC6sGAACulMXKhS9ZssTh9cyZM5UzZ05t27ZN1atXV1xcnD7++GPNmzdPtWvXliTNmDFDERER2rhxox577DErygYAAC50T/UZiYuLkyRlz55dkrRt2zYlJiaqbt269mmKFy+u/Pnz6+eff06zjYSEBMXHxzv8AACAe9c9E0aSk5PVvXt3Va1aVaVKlZIknTx5Up6engoMDHSYNjQ0VCdPnkyznZEjRyogIMD+ExYWdrdLBwAAd+CeCSOdOnXSr7/+qs8+++yO2unfv7/i4uLsP8eOHXNRhQAA4G6wtM9Iis6dO+u7777Tjz/+qHz58tmH58qVS1evXlVsbKzD2ZFTp04pV65cabbl5eUlLy+vu10yAABwEUvPjBhj1LlzZy1cuFCrVq1SeHi4w/hy5crJw8NDK1eutA+LiYnR0aNHVbly5f+6XAAAcBdYemakU6dOmjdvnr7++mv5+fnZ+4EEBATIx8dHAQEBateunXr27Kns2bPL399fXbp0UeXKlbmTBgCATMLSMDJ16lRJUs2aNR2Gz5gxQ23atJEkTZgwQW5ubmrevLkSEhIUGRmp999//z+uFAAA3C2WhhFjzG2n8fb2VnR0tKKjo/+DigAAwH/tnrmbBgAAPJgIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABLEUYAAIClCCMAAMBShBEAAGApwggAALAUYQQAAFiKMAIAACxFGAEAAJYijAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEAABYijACAAAsRRgBAACWIowAAABL3RdhJDo6WgULFpS3t7cqVaqkzZs3W10SAABwkXs+jHz++efq2bOnBg0apO3bt+uRRx5RZGSkTp8+bXVpAADABe75MDJ+/Hi1b99eL7/8skqUKKFp06Ypa9as+t///md1aQAAwAWyWF3ArVy9elXbtm1T//797cPc3NxUt25d/fzzz2nOk5CQoISEBPvruLg4SVJ8fLxLa0tOuOTS9pCaq7dZCrbd3Xe3tp3E9vsvcOzdv1y97VLaM8a4tN0b3dNh5O+//1ZSUpJCQ0MdhoeGhmrfvn1pzjNy5EgNHjw41fCwsLC7UiPunoCJVlcAZ7Ht7m9sv/vX3dp258+fV0BAwN1pXPd4GHFG//791bNnT/vr5ORknT17VsHBwbLZbBZWZq34+HiFhYXp2LFj8vf3t7ocZADb7v7Ftrt/se3+ZYzR+fPnlSdPnru6nHs6jOTIkUPu7u46deqUw/BTp04pV65cac7j5eUlLy8vh2GBgYF3q8T7jr+//wN9YN3P2Hb3L7bd/Yttp7t6RiTFPd2B1dPTU+XKldPKlSvtw5KTk7Vy5UpVrlzZwsoAAICr3NNnRiSpZ8+eioqKUvny5VWxYkVNnDhRFy9e1Msvv2x1aQAAwAXu+TDy3HPP6cyZMxo4cKBOnjypMmXKaMmSJak6teLWvLy8NGjQoFSXsHDvY9vdv9h29y+23X/LZu72/ToAAAC3cE/3GQEAAJkfYQQAAFiKMAIAACxFGIEkaebMmel+HktGpsXdc/jwYdlsNu3cudPqUoBMrU2bNmrWrJn9dc2aNdW9e/d0zZuRaR9k9/zdNPhvPPfcc2rQoIHVZdyXatasqTJlymjixIlWl4K7oE2bNoqNjdWiRYusLgX3iK+++koeHh5Wl5GpEEYgSfLx8ZGPj4/VZQD3jKSkpAf6KyRwc9mzZ7e6hEyHyzT3iC+//FKlS5eWj4+PgoODVbduXV28eNF+enDw4MEKCQmRv7+/OnTooKtXr9rnXbJkiR5//HEFBgYqODhYjRo10u+//24fn3I6/6uvvlKtWrWUNWtWPfLIIw7ffHzjpZddu3apVq1a8vPzk7+/v8qVK6etW7c61Lx06VJFREQoW7ZsevLJJ3XixIm7t4LuUW3atNHatWs1adIk2Ww22Ww2/f7772rXrp3Cw8Pl4+OjYsWKadKkSQ7zXbt2TV27drVvs759+yoqKsrhVPDttmta1q5dq4oVK8rLy0u5c+dWv379dO3aNfv48+fPq1WrVvL19VXu3Lk1YcKETHMauWbNmurcubM6d+6sgIAA5ciRQ2+//bb920bPnTun1q1bKygoSFmzZlX9+vV14MAB+/wpx8A333yjEiVKyMvLS23bttWsWbP09ddf27fvmjVrtGbNGtlsNsXGxtrn37lzp2w2mw4fPmwf9uGHHyosLExZs2bVU089pfHjxzscZzee/pek7t27q2bNmvbXycnJGjlypH1/euSRR/Tll1/ax587d06tWrVSSEiIfHx8VLRoUc2YMcM+/tixY2rRooUCAwOVPXt2NW3a1KHG+92t1k/Kdlq5cqXKly+vrFmzqkqVKoqJiXFoY9iwYcqZM6f8/Pz0yiuvqF+/fipTpsxNl3njMfP++++raNGi8vb2VmhoqJ555plUNfbp00fZs2dXrly59M4777jq7WcahJF7wIkTJ/T888+rbdu22rt3r9asWaOnn37a/iG6cuVK+/BPP/1UX331lcM3E1+8eFE9e/bU1q1btXLlSrm5uempp55ScnKyw3IGDBigXr16aefOnXrooYf0/PPPO/yhul6rVq2UL18+bdmyRdu2bVO/fv0cTkteunRJY8eO1Zw5c/Tjjz/q6NGj6tWr111YO/e2SZMmqXLlymrfvr1OnDihEydOKF++fMqXL5/mz5+vPXv2aODAgXrzzTf1xRdf2OcbNWqU5s6dqxkzZmjDhg2Kj49PdRkgvds1xfHjx9WgQQNVqFBBu3bt0tSpU/Xxxx9r2LBh9ml69uypDRs26JtvvtHy5cu1bt06bd++/a6sGyvMmjVLWbJk0ebNmzVp0iSNHz9eH330kaR///Bv3bpV33zzjX7++WcZY9SgQQMlJiba57906ZJGjRqljz76SL/99pvee+89tWjRwh62T5w4oSpVqqSrlg0bNqhDhw7q1q2bdu7cqXr16mn48OEZfk8jR47U7NmzNW3aNP3222/q0aOHXnzxRa1du1aS9Pbbb2vPnj1avHix9u7dq6lTpypHjhySpMTEREVGRsrPz0/r1q3Thg0b7P88XP8Pzf3sdutH+vezb9y4cdq6dauyZMmitm3b2sfNnTtXw4cP16hRo7Rt2zblz59fU6dOTffyt27dqq5du2rIkCGKiYnRkiVLVL16dYdpZs2aJV9fX23atEmjR4/WkCFDtHz58jt/85mJgeW2bdtmJJnDhw+nGhcVFWWyZ89uLl68aB82depUky1bNpOUlJRme2fOnDGSzO7du40xxhw6dMhIMh999JF9mt9++81IMnv37jXGGDNjxgwTEBBgH+/n52dmzpyZZvszZswwkszBgwftw6Kjo01oaGj633QmUqNGDdOtW7dbTtOpUyfTvHlz++vQ0FAzZswY++tr166Z/Pnzm6ZNm960jZtt1x07dhhjjHnzzTdNsWLFTHJysn2e6Oho+74SHx9vPDw8zPz58+3jY2NjTdasWW9b//2gRo0aJiIiwuH99+3b10RERJj9+/cbSWbDhg32cX///bfx8fExX3zxhTHm//frnTt3OrQbFRWVarusXr3aSDLnzp2zD9uxY4eRZA4dOmSMMea5554zDRs2dJivVatWDsdZWm1369bN1KhRwxhjzJUrV0zWrFnNTz/95DBNu3btzPPPP2+MMaZx48bm5ZdfTnOdzJkzJ9U+kZCQYHx8fMzSpUvTnOd+crv1k7KdVqxYYR/3/fffG0nm8uXLxhhjKlWqZDp16uQwf9WqVc0jjzxif33jdrr+mF+wYIHx9/c38fHxadZYo0YN8/jjjzsMq1Chgunbt29G326mxpmRe8AjjzyiOnXqqHTp0nr22Wf14Ycf6ty5cw7js2bNan9duXJlXbhwQceOHZMkHThwQM8//7wKFSokf39/FSxYUJJ09OhRh+U8/PDD9t9z584tSTp9+nSaNfXs2VOvvPKK6tatq3fffTfV5YGsWbOqcOHCDu3drK0HUXR0tMqVK6eQkBBly5ZN06dPt2+PuLg4nTp1ShUrVrRP7+7urnLlyjm0kd7tmmLv3r2qXLmyQz+HqlWr6sKFC/rzzz/1xx9/KDEx0WG5AQEBKlasmKvetuUee+wxh/dfuXJlHThwQHv27FGWLFlUqVIl+7jg4GAVK1ZMe/futQ/z9PR0OE7uRExMjMO6lpTq9e0cPHhQly5dUr169ZQtWzb7z+zZs+3HZMeOHfXZZ5+pTJky6tOnj3766Sf7/Lt27dLBgwfl5+dnnzd79uy6cuXKbS/53Q/Ss36kW3/23el2qlevngoUKKBChQrppZde0ty5c3Xp0iWHaW7cp/i8TI0OrPcAd3d3LV++XD/99JOWLVumyZMna8CAAdq0aVO65m/cuLEKFCigDz/8UHny5FFycrJKlSqV6jTs9ZdZUj6wb3bK/5133tELL7yg77//XosXL9agQYP02Wef6amnnkrVVkp7hm8WkCR99tln6tWrl8aNG6fKlSvLz89PY8aMSff2TJHe7QrX8fHxSVenVTe3f/+Pu36fv/5yT3q5ubmlOm6ub+fChQuSpO+//1558+Z1mC7lO1Pq16+vI0eO6IcfftDy5ctVp04dderUSWPHjtWFCxdUrlw5zZ07N9WyQ0JCMlzvveZ26yclkGTksy+j/Pz8tH37dq1Zs0bLli3TwIED9c4772jLli32/kFpfV66avmZBWdG7hE2m01Vq1bV4MGDtWPHDnl6emrhwoWS/v3v5vLly/ZpN27cqGzZsiksLEz//POPYmJi9NZbb6lOnTqKiIhwOKtyJx566CH16NFDy5Yt09NPP+3QKQ7/z9PTU0lJSfbXGzZsUJUqVfT666+rbNmyKlKkiMN/aQEBAQoNDdWWLVvsw5KSkhz6bjizXSMiIux9Ia6vxc/PT/ny5VOhQoXk4eHhsNy4uDjt37//jt7/veTGwLdx40YVLVpUJUqU0LVr1xzGp6zjEiVK3LLNG7ev9P9/yK/vtH3j816KFSvmsK4lpXodEhKSquP39e2kdKQ9evSoihQp4vATFhbm0E5UVJQ++eQTTZw4UdOnT5ckPfroozpw4IBy5syZav6AgIBbvu/7QXrXz62kZzvdTpYsWVS3bl2NHj1av/zyiw4fPqxVq1ZlqI0HHWdG7gGbNm3SypUr9cQTTyhnzpzatGmTzpw5o4iICP3yyy+6evWq2rVrp7feekuHDx/WoEGD1LlzZ7m5uSkoKEjBwcGaPn26cufOraNHj6pfv353VM/ly5fVu3dvPfPMMwoPD9eff/6pLVu2qHnz5i56x5lLwYIFtWnTJh0+fFjZsmVT0aJFNXv2bC1dulTh4eGaM2eOtmzZovDwcPs8Xbp00ciRI1WkSBEVL15ckydP1rlz5+z/tTmzXV9//XVNnDhRXbp0UefOnRUTE6NBgwapZ8+ecnNzk5+fn6KiotS7d29lz55dOXPm1KBBg+Tm5pZpbmE9evSoevbsqddee03bt2/X5MmTNW7cOBUtWlRNmzZV+/bt9cEHH8jPz0/9+vVT3rx51bRp01u2WbBgQS1dulQxMTEKDg5WQECA/Y/dO++8o+HDh2v//v0aN26cw3xdunRR9erVNX78eDVu3FirVq3S4sWLHdZ17dq1NWbMGM2ePVuVK1fWJ598ol9//VVly5aV9O9/3b169VKPHj2UnJysxx9/XHFxcdqwYYP8/f0VFRWlgQMHqly5cipZsqQSEhL03XffKSIiQtK/HdHHjBmjpk2basiQIcqXL5+OHDmir776Sn369FG+fPlcvAX+W7dbPwUKFLhtG126dFH79u1Vvnx5ValSRZ9//rl++eUXFSpUKF01fPfdd/rjjz9UvXp1BQUF6YcfflBycnKmuvz5n7C2ywqMMWbPnj0mMjLShISEGC8vL/PQQw+ZyZMnG2P+v+PUwIEDTXBwsMmWLZtp3769uXLlin3+5cuXm4iICOPl5WUefvhhs2bNGiPJLFy40BiTuqOjMcacO3fOSDKrV682xjh2YE1ISDAtW7Y0YWFhxtPT0+TJk8d07tzZ3uHrxs6uxhizcOFC86DuTjExMeaxxx4zPj4+RpLZt2+fadOmjQkICDCBgYGmY8eOpl+/fg4d4hITE03nzp2Nv7+/CQoKMn379jXPPvusadmypX0aZ7brmjVrTIUKFYynp6fJlSuX6du3r0lMTLSPj4+PNy+88ILJmjWryZUrlxk/frypWLGi6dev391eTXddjRo1zOuvv246dOhgX69vvvmmvfPm2bNnzUsvvWQCAgKMj4+PiYyMNPv377fPn9Z+bYwxp0+fNvXq1TPZsmVzOGbWr19vSpcubby9vU21atXM/PnzHTqwGmPM9OnTTd68eY2Pj49p1qyZGTZsmMmVK5dD+wMHDjShoaEmICDA9OjRw3Tu3NnegdUYY5KTk83EiRNNsWLFjIeHhwkJCTGRkZFm7dq1xhhjhg4daiIiIoyPj4/Jnj27adq0qfnjjz/s8584ccK0bt3a5MiRw3h5eZlChQqZ9u3bm7i4uDtc4/eGW62f9HQ0NsaYIUOGmBw5cphs2bKZtm3bmq5du5rHHnvMPv5WHVjXrVtnatSoYYKCgoyPj495+OGHzeeff57mtCmaNm1qoqKiXLgW7n82Y7jQfy/j6Y8PhuTkZEVERKhFixYaOnTof7bcixcvKm/evBo3bpzatWv3ny33brgfnoTbvn177du3T+vWrbO6FNxCvXr1lCtXLs2ZM8fqUh4YXKYBLHDkyBEtW7ZMNWrUUEJCgqZMmaJDhw7phRdeuKvL3bFjh/bt26eKFSsqLi5OQ4YMkaTbXqqAc8aOHat69erJ19dXixcv1qxZs/T+++9bXRauc+nSJU2bNk2RkZFyd3fXp59+qhUrVvAckP8YYQSwgJubm2bOnKlevXrJGKNSpUppxYoV9mv9d9PYsWMVExMjT09PlStXTuvWrbM/JAuutXnzZo0ePVrnz59XoUKF9N577+mVV16xuixcx2az6YcfftDw4cN15coVFStWTAsWLFDdunWtLu2BwmUaAABgKW7tBQAAliKMAAAASxFGAACApQgjAADAUoQRAABgKcIIAACwFGEEeIC1adNGzZo1s7oMAA84wggAALAUYQRAmsaPH6/SpUvL19dXYWFhev3113XhwgX7+JkzZyowMFBLly5VRESEsmXLpieffFInTpywT3Pt2jV17dpVgYGBCg4OVt++fRUVFeVwNqZgwYKpvk+mTJkyeuedd9JdiyR9+OGHCgsLU9asWfXUU09p/PjxCgwMdJjm66+/1qOPPipvb28VKlRIgwcP1rVr1+54XQG4M4QRAGlyc3PTe++9p99++02zZs3SqlWr1KdPH4dpLl26pLFjx2rOnDn68ccfdfToUfXq1cs+ftSoUZo7d65mzJihDRs2KD4+3qkvfbxdLRs2bFCHDh3UrVs37dy5U/Xq1dPw4cMd2li3bp1at26tbt26ac+ePfrggw80c+bMVNMBsICl3xkMwFI3fjX6rcyfP98EBwfbX8+YMcNIMgcPHrQPi46ONqGhofbXoaGhZsyYMfbX165dM/nz53dYZoECBcyECRMclvXII4+YQYMGpbuW5557zjRs2NBhmlatWpmAgAD76zp16pgRI0Y4TDNnzhyTO3fumy4HwH+DL8oDkKYVK1Zo5MiR2rdvn+Lj43Xt2jVduXJFly5dUtasWSVJWbNmVeHChe3z5M6dW6dPn5YkxcXF6dSpU6pYsaJ9vLu7u8qVK6fk5GSX1hITE6OnnnrKYZ6KFSvqu+++s7/etWuXNmzY4HAmJCkpKdV7AvDf4zINgFQOHz6sRo0a6eGHH9aCBQu0bds2RUdHS5KuXr1qn87Dw8NhPpvNJpPB7950c3NLNU9iYmKGa7mdCxcuaPDgwdq5c6f9Z/fu3Tpw4IC8vb0zVDMA1+LMCIBUtm3bpuTkZI0bN05ubv/+z/LFF19kqI2AgACFhoZqy5Ytql69uqR/z0Rs375dZcqUsU8XEhLi0Ok1Pj5ehw4dylAtxYoV05YtWxyG3fj60UcfVUxMjIoUKZKh9wHg7iOMAA+4uLg47dy502FYjhw5lJiYqMmTJ6tx48basGGDpk2bluG2u3TpopEjR6pIkSIqXry4Jk+erHPnzslms9mnqV27tmbOnKnGjRsrMDBQAwcOlLu7u318kSJFbltLly5dVL16dY0fP16NGzfWqlWrtHjxYoflDBw4UI0aNVL+/Pn1zDPPyM3NTbt27dKvv/6qYcOGZfi9AXAhqzutALBOVFSUkZTqp127dmb8+PEmd+7cxsfHx0RGRprZs2cbSebcuXPGmH87sF7fQdQYYxYuXGiu/1hJTEw0nTt3Nv7+/iYoKMj07dvXPPvss6Zly5b2aeLi4sxzzz1n/P39TVhYmJk5c2aqDqy3q8UYY6ZPn27y5s1rfHx8TLNmzcywYcNMrly5HOpbsmSJqVKlivHx8TH+/v6mYsWKZvr06S5bnwCcYzMmgxd4AcBJycnJioiIUIsWLTR06NC7uqz27dtr3759Wrdu3V1dDoA7x2UaAHfNkSNHtGzZMtWoUUMJCQmaMmWKDh06pBdeeMHlyxo7dqzq1asnX19fLV68WLNmzdL777/v8uUAcD3CCIC7xs3NTTNnzlSvXr1kjFGpUqW0YsUKRUREuHxZmzdv1ujRo3X+/HkVKlRI7733nl555RWXLweA63GZBgAAWIrnjAAAAEsRRgAAgKUIIwAAwFKEEQAAYCnCCAAAsBRhBAAAWIowAgAALEUYAQAAlvo/961eU1EXk1wAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 pharmacology/glaucoma 1 1 1 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 1 100.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAIjCAYAAADbdrXjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf80lEQVR4nO3deZiN9f/H8deZMZthFoNhGPs2lpCtMdlpZC8lpYxImyVkTZE9u2Ii1RcxWqRUyi6RGLuUXbaUpZiZbGPMfH5/uOb8HDOYmXPuNDwf1zXX5Xzu+/7c73Nv5+W+73MfmzHGCAAAAC7ndqcLAAAAuFsRtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC08K/YtGmTPD09dfToUZf0t3v3buXIkUO//PKLS/pD9lCsWDF16tTpX5/v7NmzZbPZtGXLln993v9VnTp1Uq5cue50Gf9pnTp1UrFixe50GS6Rug8cOXLkTpeS7WQpaB06dEgvvPCCSpQoIW9vb/n5+SkiIkJvv/22Ll265OoaLbd79269+eabWdqA+vfvL5vNpieeeML1hd1FBg8erCeffFJFixa1ty1atEjlypWTv7+/WrZsqT/++CPNdK1atdLzzz+fpr18+fJq3ry5hgwZkqH5px4krv/Lnz+/GjRooCVLlmT9jaWjWLFiatGihUv7hGsdOXIkzfZwsz8+WHA3OXfunHLkyKHPPvvsTpdyz8iR2Qm+/fZbPf744/Ly8lLHjh1VsWJFXblyRT/++KP69eunX3/9VTNnzrSiVsvs3r1bw4YNU/369TP1vw9jjD7++GMVK1ZM33zzjf755x/lzp3bukKzqR07dmjlypX66aef7G2//fabnnjiCT3xxBMKDw/XlClT9Oyzz2rZsmX2cZYtW6a1a9fqwIED6fb74osvqlmzZjp06JBKliyZoVqGDx+u4sWLyxijU6dOafbs2WrWrJm++eYbwlE2sG/fPrm5OX8iPl++fJo7d65D28SJE/X7779r8uTJacYF7hbLli2TzWbTQw89dKdLuWdkKmgdPnxY7du3V9GiRbV69WoVLFjQPqxbt246ePCgvv32W6eLMsbo8uXL8vHxSTPs8uXL8vT0dMnB1llr1qzR77//rtWrVysyMlJffPGFoqKi7nRZLnX16lWlpKTI09Mzy33MmjVLRYoU0QMPPGBvW758uQoXLqw5c+bIZrMpLCxMDRs21OXLl+Xt7a2rV6+qd+/eGjJkyE0/6Bo3bqzAwEDNmTNHw4cPz1AtDz/8sKpXr25/3aVLFwUHB+vjjz8maGUDXl5eLunH19dXTz/9tEPbJ598onPnzqVpx52TkpKiK1euyNvb+06Xctf47rvvFBERoYCAgDtdyj0jU2ll3LhxOn/+vD788EOHkJWqVKlSeuWVV+yvr169qhEjRqhkyZLy8vJSsWLF9NprrykxMdFhutRLLcuWLVP16tXl4+Oj9957T2vWrJHNZtMnn3yi119/XYUKFVLOnDmVkJAgSYqNjVXTpk3l7++vnDlzql69elq/fn2auk6cOKEuXbooJCREXl5eKl68uF566SVduXJFs2fP1uOPPy5JatCggf1ywZo1a267PGJiYlS+fHk1aNBAjRs3VkxMTJpxUt/DZ599plGjRqlw4cLy9vZWo0aNdPDgQYdxDxw4oLZt26pAgQLy9vZW4cKF1b59e8XHx0uSHn30Ud1///0O07Rs2VI2m01ff/21vS02NlY2m83hklhcXJx69eql0NBQeXl5qVSpUho7dqxSUlLs46ReTpkwYYKmTJliX2+7d++WJE2dOlUVKlRQzpw5FRgYqOrVq2v+/Pm3XU6LFi1Sw4YNZbPZ7G2XLl1SQECAvS1PnjwyxtgvPU+bNk3Jycnq0aPHTfv18PBQ/fr19dVXX922hpsJCAiQj4+PcuS49n8OY4yKFSum1q1bpxn38uXL8vf31wsvvJDl+aVat26dHn/8cRUpUkReXl4KDQ1V796901x6T70P5sSJE2rTpo1y5cqlfPnyqW/fvkpOTnYY9++//9YzzzwjPz8/BQQEKCoqSjt37pTNZtPs2bPt49WvX1/169dPU1N695NMmDBBtWvXVlBQkHx8fFStWjV9/vnnaaa9dOmSevbsqbx58yp37txq1aqVTpw4IZvNpjfffNNh3BMnTqhz584KDg6Wl5eXKlSooP/9738ZWm433qOVekl4/fr16tOnj/LlyydfX1898sgjOnPmTIb6zIzExMQMzWfJkiWqU6eOfH19lTt3bjVv3ly//vqrwzip6/bYsWNq0aKFcuXKpUKFCik6OlqStGvXLjVs2FC+vr4qWrRouvtaRvZrSfrzzz+1d+9eJSUl3fL9XX8MmDx5sooWLSofHx/Vq1fvpvdDZmTbzOh2ZLPZ1L17d8XExKhChQry8vLS0qVL7ev5xx9/VM+ePZUvXz4FBATohRde0JUrVxQXF6eOHTsqMDBQgYGB6t+/v4wxWapBkubNm6eaNWvaj3V169bV8uXLHcZ599137TWGhISoW7duiouLu+XylaQLFy7o1Vdfta+zsmXLasKECWnqzcg+9f3338tms+nLL79MM5/58+fLZrNpw4YN9raUlBQtXbpUzZs3z9R8buarr75S8+bN7Z+tJUuW1IgRI9Ks/5vdW5nesejy5ct68803VaZMGXl7e6tgwYJ69NFHdejQoUwvw9TtacGCBSpfvrx8fHwUHh6uXbt2SZLee+89lSpVSt7e3qpfv36a2wQyepy+LZMJhQoVMiVKlMjw+FFRUUaSeeyxx0x0dLTp2LGjkWTatGnjMF7RokVNqVKlTGBgoBk4cKCZMWOG+f777833339vJJny5cubKlWqmEmTJpkxY8aYCxcumFWrVhlPT08THh5uJk6caCZPnmzuu+8+4+npaWJjY+19nzhxwoSEhJicOXOaXr16mRkzZpg33njDhIWFmXPnzplDhw6Znj17GknmtddeM3PnzjVz5841J0+evOV7u3z5sgkICDAjRowwxhjz0UcfGXd3d/Pnn386jJf6HqpWrWqqVatmJk+ebN58802TM2dOU7NmTft4iYmJpnjx4iYkJMSMHDnSfPDBB2bYsGGmRo0a5siRI8YYYyZNmmTc3NxMfHy8McaYlJQUExgYaNzc3Ezfvn3tfY0fP95hvAsXLpj77rvPBAUFmddee83MmDHDdOzY0dhsNvPKK6/Ypzt8+LB9eZcoUcK89dZbZvLkyebo0aNm5syZ9nX53nvvmbffftt06dLF9OzZ85bL6ffffzeSzDvvvOPQvm7dOmOz2cz8+fPNb7/9Ztq1a2dKlSpljDHm9OnTJiAgwCxevPiWfRtjzMiRIx3e683MmjXLSDIrV640Z86cMadPnza//PKLeeGFF4ybm5tZvny5fdzBgwcbDw8P8/fffzv08dlnnxlJZu3atbecV9GiRU3z5s1vOU6PHj1Ms2bNzOjRo817771nunTpYtzd3c1jjz3mMF5UVJTx9vY2FSpUMJ07dzbTp083bdu2NZLMu+++ax8vOTnZhIeHG3d3d9O9e3czbdo006RJE1O5cmUjycyaNcs+br169Uy9evXS1BQVFWWKFi3q0Fa4cGHz8ssvm2nTpplJkyaZmjVrGklp1k27du2MJPPMM8+Y6Oho065dO/u8hw4dah/v5MmTpnDhwiY0NNQMHz7cTJ8+3bRq1cpIMpMnT77lMjPm2rKNioqyv05dr1WrVjUNGzY0U6dONa+++qpxd3c37dq1u21/12vevHma95+V+Xz00UfGZrOZpk2bmqlTp5qxY8eaYsWKmYCAAHP48GH7eKnrtnz58ubFF1800dHRpnbt2vb1FRISYvr162emTp1qKlSoYNzd3c1vv/1mnz6j+3XqvCQ5zD89qceASpUqmWLFipmxY8eaYcOGmTx58ph8+fI5HBczum0ak/HtSJIJCwsz+fLlM8OGDTPR0dFm+/bt9uVfpUoV07RpUxMdHW2eeeYZI8n079/fPPjgg+app54y7777rmnRooWRZObMmZOlGt58800jydSuXduMHz/evP322+app54yAwYMsI8zdOhQI8k0btzYTJ061XTv3t24u7ubGjVqmCtXrjgso+u3qZSUFNOwYUNjs9nMc889Z6ZNm2ZatmxpJJlevXo51JGRfSolJcWEhoaatm3bplmXzZo1MyVLlnRo27hxo5Fkfvnll0zNx5j/3weu34batGlj2rVrZ8aPH2+mT59uHn/8cSPJ4fPImLT7baobj0VXr141jRo1MpJM+/btzbRp08yYMWNMw4YNzaJFizK9DCWZ++67z4SGhpq33nrLvPXWW8bf398UKVLETJs2zZQvX95MnDjRvP7668bT09M0aNDAYfqMHqdvJ8NBKz4+3kgyrVu3ztD4O3bsMJLMc88959Det29fI8msXr3a3la0aFEjySxdutRh3NSQUqJECXPx4kV7e0pKiildurSJjIw0KSkp9vaLFy+a4sWLmyZNmtjbOnbsaNzc3MzmzZvT1Jg67YIFC4wk8/3332fovRljzOeff24kmQMHDhhjjElISDDe3t5pPixS30NYWJhJTEy0t7/99ttGktm1a5cxxpjt27cbSWbBggU3nefmzZuNJPPdd98ZY4z5+eefjSTz+OOPm1q1atnHa9Wqlalatar99YgRI4yvr6/Zv3+/Q38DBw407u7u5tixY8aY/z/I+vn5mdOnTzuM27p1a1OhQoWMLh67lStXGknmm2++STMsNeBKMnny5LFvE127djVNmzbNUP/z5883khzCdXpSDxI3/nl5eZnZs2c7jLtv3z4jyUyfPt2hvVWrVqZYsWIO21x6MhK0rt+eU40ZM8bYbDZz9OhRe1vqB+Tw4cMdxk0N7qkWLlxoJJkpU6bY25KTk03Dhg2dClo31nnlyhVTsWJF07BhQ3vb1q1b0z3IderUKc3BukuXLqZgwYLmr7/+chi3ffv2xt/fP93lcr2bBa3GjRs7rJfevXsbd3d3ExcXd8v+rpeRoHW7+fzzzz8mICDAdO3a1WH6kydPGn9/f4f21HU7evRoe9u5c+eMj4+Psdls5pNPPrG37927N82yzOh+ff28Mhq0fHx8zO+//25vj42NNZJM79690/R5u23TmIxtR8Zc+2B0c3Mzv/76q0N76vK/8ZgfHh5ubDabefHFF+1tV69eNYULF06zjWekhgMHDhg3NzfzyCOPmOTkZIfxU+d7+vRp4+npaR566CGHcaZNm2Ykmf/9738Oy+j6bWrRokVGkhk5cqRD34899pix2Wzm4MGDxpjM7VODBg0yXl5eDtv66dOnTY4cORzGM8aYN954w6GezMwnvaCV3v76wgsvmJw5c5rLly/b2zIatP73v/8ZSWbSpElpxk1d/hldhsYY+zH++prfe+89I8kUKFDAJCQk2NsHDRqUofeX3nH6djJ86TD1cl1Gb/b+7rvvJEl9+vRxaH/11VclKc29XMWLF1dkZGS6fUVFRTncr7Vjxw4dOHBATz31lP7++2/99ddf+uuvv3ThwgU1atRIa9euVUpKilJSUrRo0SK1bNnS4b6cVNdfysqsmJgYVa9eXaVKlZIk++WB9C4fStKzzz7rcJ9TnTp1JF27KVyS/P39JV27UfHixYvp9lG1alXlypVLa9eulXTttGbhwoXVsWNHbdu2TRcvXpQxRj/++KO9f0lasGCB6tSpo8DAQPuy+uuvv9S4cWMlJyfb+0vVtm3bNPdFBQQE6Pfff9fmzZszvIyka5ezJCkwMDDNsLfffltHjx5VbGysjh49qgYNGmjHjh366KOPNHnyZMXHx+vpp59WoUKFVL9+fe3ZsydNH6n9/vXXXxmqJzo6WitWrNCKFSs0b948NWjQQM8995y++OIL+zhlypRRrVq1HNbl2bNntWTJEnXo0MGp7SbV9dvzhQsX9Ndff6l27doyxmj79u1pxn/xxRcdXtepU8e+7UjS0qVL5eHhoa5du9rb3Nzc1K1bN5fVee7cOcXHx6tOnTratm2bw7wl6eWXX3aY9sbLvsYYLVy4UC1btpQxxmFbjIyMVHx8vEO/mfH88887rJc6deooOTnZZY8Tyeh8VqxYobi4OD355JMO78/d3V21atXS999/n6bP5557zv7vgIAAlS1bVr6+vmrXrp29vWzZsgoICHBY55nZr2fPnm2/LJ4Rbdq0UaFCheyva9asqVq1atmP69e73bYpZWw7SlWvXj2VL18+3bq6dOnisPxr1aolY4y6dOlib3N3d1f16tWzVMOiRYuUkpKiIUOGpLkPOHW+K1eu1JUrV9SrVy+Hcbp27So/P79b3qf83Xffyd3dXT179nRof/XVV2WMsd/ukdF9SpI6duyoxMREh8ugn376qa5evZrmfsPvvvvO4bJhZuaTnuuX6T///KO//vpLderU0cWLF7V3794M9XG9hQsXKm/evOnOP3X5Z3QZpmrUqJHDdl+rVi1J1z7nrs8zqe3XbzeZPU7fTIZvhvfz85N0bWFmxNGjR+Xm5mYPIqkKFCiggICANAfA4sWL37SvG4elfgvtVjeex8fH68qVK0pISFDFihUzVHNGxcXF6bvvvlP37t0d7rOKiIjQwoULtX//fpUpU8ZhmiJFiji8Tg0I586dk3TtPfbp00eTJk1STEyM6tSpo1atWunpp5+2hzB3d3eFh4dr3bp1kq4FrTp16ujBBx9UcnKyNm7cqODgYJ09e9YhaB04cEA///zzTW8qP336tMPr9NbFgAEDtHLlStWsWVOlSpXSQw89pKeeekoREREZWmbmhmvnqYoUKeKwbHr27KkXX3xR5cqV09NPP63jx4/rq6++0pw5c9SyZUvt3bvXfj/V9f1mNPzUrFnTIXQ/+eSTqlq1qrp3764WLVrYw3DHjh3VvXt3HT16VEWLFtWCBQuUlJSkZ555JkPzuZ1jx45pyJAh+vrrr+3bQKrUe/JSeXt7p1l3gYGBDtMdPXpUBQsWVM6cOR3Gu3H/y6zFixdr5MiR2rFjh8O9ldcv79R9/cbt5sZ5nzlzRnFxcZo5c+ZNv5l847aYUbfbv1zldvNJPTY1bNgw3elTj6Op0lu3/v7+Kly4cJpt2t/f3+H9ZHa/zozSpUunaStTpkyaRwJkZNuUMrYdpbrVZ8GNyz/12BgaGpqmPSs1HDp0SG5ubjcNepLsn11ly5Z1aPf09FSJEiVuGe6PHj2qkJCQNCcswsLCHPrO6D4lSeXKlVONGjUUExNjD5wxMTF64IEHHMY/efKktm3b5vDFoczMJz2//vqrXn/9da1evdp+MibVjcexjDh06JDKli3rcIy/UUaXYarMbDOS4zEjM8fpW8lU0AoJCcn0AyIz+gGY3jcMbzYs9UbP8ePHq0qVKulOkytXLp09ezZjRWbSggULlJiYqIkTJ2rixIlphsfExGjYsGEObe7u7un2dX0AmThxojp16qSvvvpKy5cvV8+ePTVmzBht3LhRhQsXliQ9+OCDGjVqlC5fvqx169Zp8ODBCggIUMWKFbVu3ToFBwdLkkPQSklJUZMmTdS/f/90a7gxFKa3LsLCwrRv3z4tXrxYS5cu1cKFC/Xuu+9qyJAhad7r9YKCgiRl7APv008/1Z49e/T1118rOTlZn332mZYvX67q1aurQoUKev/997Vx40Y9+OCD9mlS+82bN+9t+0+Pm5ubGjRooLffflsHDhxQhQoVJEnt27dX7969FRMTo9dee03z5s1T9erV0xxcsyI5OVlNmjTR2bNnNWDAAJUrV06+vr46ceKEOnXqlOZG5pttO1lls9nSDb433sC6bt06tWrVSnXr1tW7776rggULysPDQ7NmzcrQlyBulPq+nn766Zv+J+m+++7LdL9SxvYvV7jdfFLf49y5c1WgQIE04934AXKz/jLyfjK7X1shI9tmZrejW30WZGZ5Xb+sXL0t/9d07NhRr7zyin7//XclJiZq48aNmjZtmsM4S5Yskbe3txo0aOCSecbFxalevXry8/PT8OHDVbJkSXl7e2vbtm0aMGCAw3HsZjkgOTnZ5ce3G2V1H8vscfpWMvV4hxYtWmjmzJnasGGDwsPDbzlu0aJFlZKSogMHDtiTpiSdOnVKcXFxDg+uzKzUZyb5+fmpcePGNx0vX7588vPzu204zOyloJiYGFWsWFFDhw5NM+y9997T/Pnzbxk+bqVSpUqqVKmSXn/9df3000+KiIjQjBkzNHLkSEnXAtSVK1f08ccf68SJE/ZAVbduXXvQKlOmjD1wSdeW1/nz52+5rDLC19fX/uyrK1eu6NFHH9WoUaM0aNCgm379uly5cpKuPRrkVi5evKh+/fppxIgRCggI0KlTp5SUlKSQkBBJ1w6+gYGBOnHihMN0hw8flpubm1MfKlevXpUknT9/3t6WJ08e+6XgDh06aP369ZoyZUqW53G9Xbt2af/+/ZozZ446duxob1+xYkWW+yxatKi+//57Xbx40eGs1o3fbJWunXG48bKKlPZ/ggsXLpS3t7eWLVvm8FiFWbNmpZl3SkqKDh8+7HAm5MZ558uXT7lz51ZycrLT2+J/VeqxKX/+/Ja/R1ft1+lJ79l1+/fvz9JTzjO6HVkpozWULFlSKSkp2r17903/E5/62bVv3z6VKFHC3n7lyhUdPnz4luujaNGiWrlyZZpnLqZeZkvtO6P7VKr27durT58++vjjj3Xp0iV5eHikeYj2t99+qwYNGjgE2czO53pr1qzR33//rS+++EJ169a1t6d3rA8MDEz3G5lHjx51WIYlS5ZUbGyskpKS5OHhke58M7oMneXK43SmHu/Qv39/+fr66rnnntOpU6fSDD906JDefvttSVKzZs0kKc2H06RJkyTJ4TpxZlWrVk0lS5bUhAkTHD4cU6V+3drNzU1t2rTRN998k+5PZ6QmV19fX0nK0Fdzjx8/rrVr16pdu3Z67LHH0vw9++yzOnjwoGJjYzP1nhISEuwf+KkqVaokNzc3h9PctWrVkoeHh8aOHas8efLYz8DUqVNHGzdu1A8//OBwNkuS2rVrpw0bNjg8DDRVXFxcmvmmJ/Veq1Senp4qX768jDG3/Mp4oUKFFBoaetufLhk7dqwCAwPt9xgFBQUpR44c9p3nr7/+0pkzZ9KcJdi6dasqVKhgP+2bWUlJSVq+fLk8PT0d/kMgSc8884x2796tfv36yd3dXe3bt8/SPG6U+j+p6//HbYyx7ztZERkZqaSkJL3//vv2tpSUFPujAq5XsmRJ7d271+GxBDt37kzzaBR3d3fZbDaHM11HjhzRokWL0sxbuvZ19+tNnTo1TX9t27bVwoUL0/3PjxWPY/i3RUZGys/PT6NHj053v3Dle8zMfp3RxzukWrRokcN/ajZt2qTY2Fg9/PDDma4zo9uRlTJaQ5s2beTm5qbhw4enOWORur82btxYnp6eeueddxz24Q8//FDx8fG3/Gxr1qyZkpOT05xtmjx5smw2m335ZnSfSpU3b149/PDDmjdvnmJiYtS0aVOHs/xJSUlasWJFmtoyO5/rpXccu3LlSpq+pGvHnI0bN+rKlSv2tsWLF+v48eMO47Vt21Z//fVXmuVz/Xwyugyd5crjdKbOaJUsWVLz58/XE088obCwMIcnw//0009asGCB/VkZlStXVlRUlGbOnGk/xbhp0ybNmTNHbdq0cer0pZubmz744AM9/PDDqlChgp599lkVKlRIJ06c0Pfffy8/Pz998803kqTRo0dr+fLlqlevnp5//nmFhYXpzz//1IIFC/Tjjz8qICBAVapUkbu7u8aOHav4+Hh5eXmpYcOGyp8/f5p5z58/X8YYtWrVKt3amjVrphw5cigmJsZ+c11GrF69Wt27d9fjjz+uMmXK6OrVq5o7d679wylVzpw5Va1aNW3cuNH+DC3p2hmtCxcu6MKFC2mCVr9+/fT111+rRYsW6tSpk6pVq6YLFy5o165d+vzzz3XkyJHbXnp76KGHVKBAAUVERCg4OFh79uzRtGnT1Lx589t+QaJ169b68ssvZYxJ9+zhsWPHNH78eH377bf2jTtHjhxq3bq1evXqpWPHjunLL79USEiIw5nUpKQk/fDDD2lu5LyVJUuW2MPb6dOnNX/+fB04cEADBw5Mc/9M8+bNFRQUpAULFujhhx9Od3u4mYMHD9rPQl6vatWqeuihh1SyZEn17dtXJ06ckJ+fnxYuXOjU/URt2rRRzZo19eqrr+rgwYMqV66cvv76a/vl8+uXe+fOnTVp0iRFRkaqS5cuOn36tGbMmKEKFSo43GfRvHlzTZo0SU2bNtVTTz2l06dPKzo6WqVKldLPP/9sH69atWpq27atpkyZor///lsPPPCAfvjhB+3fvz/NvN966y19//33qlWrlrp27ary5cvr7Nmz2rZtm1auXGnZ5f5/i5+fn6ZPn65nnnlG999/v9q3b698+fLp2LFj+vbbbxUREZHuh0hWZGa/HjRokObMmaPDhw9n6KxUqVKl9OCDD+qll15SYmKipkyZoqCgoJtepryVjG5HVspoDaVKldLgwYM1YsQI1alTR48++qi8vLy0efNmhYSEaMyYMcqXL58GDRqkYcOGqWnTpmrVqpX27dund999VzVq1LjlA29btmypBg0aaPDgwTpy5IgqV66s5cuX66uvvlKvXr3sZ0Qzs0+l6tixox577DFJ0ogRIxyG/fjjj0pISEgTtLIyn1S1a9dWYGCgoqKi1LNnT9lsNs2dOzfdy/XPPfecPv/8czVt2lTt2rXToUOHNG/evDS/6NGxY0d99NFH6tOnjzZt2qQ6derowoULWrlypV5++WW1bt06w8vQWeXKlXPdcTrD30+8zv79+03Xrl1NsWLFjKenp8mdO7eJiIgwU6dOdfhKZ1JSkhk2bJgpXry48fDwMKGhoWbQoEEO4xhz86/Dpz4a4WaPPNi+fbt59NFHTVBQkPHy8jJFixY17dq1M6tWrXIY7+jRo6Zjx44mX758xsvLy5QoUcJ069bN4XEL77//vilRooRxd3e/5aMeKlWqZIoUKXLL5VO/fn2TP39+k5SUdNP3kPo16tSv3f/222+mc+fOpmTJksbb29vkyZPHNGjQwKxcuTJN//369TOSzNixYx3aS5UqZSSZQ4cOpZnmn3/+MYMGDTKlSpUynp6eJm/evKZ27dpmwoQJ9ue+pNY0fvz4NNO/9957pm7duvZlXbJkSdOvX7/bPr/KGGO2bdtmJJl169alO/zxxx83jz76aJr2U6dOmZYtW5rcuXOb+++/32zZssVh+JIlSxwesXEr6T3ewdvb21SpUsVMnz79po9sePnll40kM3/+/NvOI1Xq40rS++vSpYsxxpjdu3ebxo0bm1y5cpm8efOarl27mp07d6Z5FENUVJTx9fVNM4/U5/hc78yZM+app54yuXPnNv7+/qZTp05m/fr1RpLDowKMMWbevHmmRIkSxtPT01SpUsUsW7Ys3cc7fPjhh6Z06dLGy8vLlCtXzsyaNSvdeV+4cMF069bN5MmTx+TKlcu0adPG/piMt956y2HcU6dOmW7dupnQ0FDj4eFhChQoYBo1amRmzpyZoWWb3uMdbnx8S+p+l5lHtmTk8Q4Znc/3339vIiMjjb+/v/H29jYlS5Y0nTp1ctiGb7Zu69Wrl+6jVNI7TmZkv06dlzLxeIfx48ebiRMnmtDQUOPl5WXq1Kljdu7c6TBuZrbNjG5Hkky3bt3S9Hmz5Z/ax5kzZ25bW0ZrMObaYwaqVq1qvLy8TGBgoKlXr55ZsWKFwzjTpk0z5cqVMx4eHiY4ONi89NJL5ty5c2nquHGb+ueff0zv3r1NSEiI8fDwMKVLlzbjx49PcwzKzD5lzLVnMQYGBhp/f39z6dIlh2F9+/Y15cuXTzNNZuaT3uMd1q9fbx544AHj4+NjQkJCTP/+/c2yZcvS3ScmTpxoChUqZLy8vExERITZsmVLuo+auXjxohk8eLA9NxQoUMA89thjDp9rGV2G6W1PN/ucS++zOqPH6dvJUtACMqthw4bm6aefdmmfrVu3TvPwW1fr1auXyZ07t7lw4YKl87HKl19+aSSZH3/88V+fd+qz4ebNm/evzxtZc6v/bOHOu9U+lZSUZPLly2c6d+6cZlhYWJjp16+fS+aDzLvzPxiIe8Lo0aP16aefuuy5Rnv27NHixYvTnCJ3pcuXL2vevHlq27Ztmscm/Bfd+LMQycnJmjp1qvz8/NL8dJPV85au3Z/p5ubmcKMsgIzJ7D61aNEinTlzxuHGbenafVNPPPGEnn32WZfMB5mXqXu0gKyqVauWw42QzgoLC8vQTfxZcfr0aa1cuVKff/65/v77b4ff7/wv69Gjhy5duqTw8HAlJibqiy++0E8//aTRo0ff8ivzrjBu3Dht3bpVDRo0UI4cObRkyRItWbJEzz//fJrn1QC4vYzuU7Gxsfr55581YsQIVa1aVfXq1XPox9PTM91vyGd2PnDCnT6lBvzXpF6rz58/v5k6deqdLifDYmJizP3332/8/PyMp6enKV++/L9W//Lly01ERIQJDAw0Hh4epmTJkubNN980SUlJ/8r84RpcOvzvyOg+FRUVZdzd3U21atXsP+lmxXyQdTZjXPxEPwAAAEjK5HO0AAAAkHEELQAAAItwM/wNUlJS9Mcffyh37tyZ/mkeAADuZcYY/fPPPwoJCZGbG+dyJIJWGn/88QfftAAAwAnHjx9X4cKF73QZ/wkErRuk/pzM8ePH0/wkCwAAuLmEhASFhobe9qfZ7iUErRukXi708/MjaAEAkAXcevP/uIAKAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFvnPBK21a9eqZcuWCgkJkc1m06JFixyGG2M0ZMgQFSxYUD4+PmrcuLEOHDjgMM7Zs2fVoUMH+fn5KSAgQF26dNH58+f/xXcBAADw//4zQevChQuqXLmyoqOj0x0+btw4vfPOO5oxY4ZiY2Pl6+uryMhIXb582T5Ohw4d9Ouvv2rFihVavHix1q5dq+eff/7fegsAAAAObMYYc6eLuJHNZtOXX36pNm3aSLp2NiskJESvvvqq+vbtK0mKj49XcHCwZs+erfbt22vPnj0qX768Nm/erOrVq0uSli5dqmbNmun3339XSEhIhuadkJAgf39/xcfHy8/Pz5L3BwDA3YjP0LT+M2e0buXw4cM6efKkGjdubG/z9/dXrVq1tGHDBknShg0bFBAQYA9ZktS4cWO5ubkpNjb2pn0nJiYqISHB4Q8AAMAVctzpAjLi5MmTkqTg4GCH9uDgYPuwkydPKn/+/A7Dc+TIoTx58tjHSc+YMWM0bNgwF1ecVrGB31o+j3vdkbeaW9Iv6856Vq07ifX3b2Dfy76s3PdwTbY4o2WlQYMGKT4+3v53/PjxO10SAAC4S2SLoFWgQAFJ0qlTpxzaT506ZR9WoEABnT592mH41atXdfbsWfs46fHy8pKfn5/DHwAAgCtki6BVvHhxFShQQKtWrbK3JSQkKDY2VuHh4ZKk8PBwxcXFaevWrfZxVq9erZSUFNWqVetfrxkAAOA/c4/W+fPndfDgQfvrw4cPa8eOHcqTJ4+KFCmiXr16aeTIkSpdurSKFy+uN954QyEhIfZvJoaFhalp06bq2rWrZsyYoaSkJHXv3l3t27fP8DcOAQAAXOk/E7S2bNmiBg0a2F/36dNHkhQVFaXZs2erf//+unDhgp5//nnFxcXpwQcf1NKlS+Xt7W2fJiYmRt27d1ejRo3k5uamtm3b6p133vnX3wsAAID0Hwpa9evX160e6WWz2TR8+HANHz78puPkyZNH8+fPt6I8AACATMsW92gBAABkRwQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCIELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELAADAIgQtAAAAixC0AAAALELQAgAAsAhBCwAAwCLZKmglJyfrjTfeUPHixeXj46OSJUtqxIgRMsbYxzHGaMiQISpYsKB8fHzUuHFjHThw4A5WDQAA7lXZKmiNHTtW06dP17Rp07Rnzx6NHTtW48aN09SpU+3jjBs3Tu+8845mzJih2NhY+fr6KjIyUpcvX76DlQMAgHtRjjtdQGb89NNPat26tZo3by5JKlasmD7++GNt2rRJ0rWzWVOmTNHrr7+u1q1bS5I++ugjBQcHa9GiRWrfvv0dqx0AANx7stUZrdq1a2vVqlXav3+/JGnnzp368ccf9fDDD0uSDh8+rJMnT6px48b2afz9/VWrVi1t2LAh3T4TExOVkJDg8AcAAOAK2eqM1sCBA5WQkKBy5crJ3d1dycnJGjVqlDp06CBJOnnypCQpODjYYbrg4GD7sBuNGTNGw4YNs7ZwAABwT8pWZ7Q+++wzxcTEaP78+dq2bZvmzJmjCRMmaM6cOVnuc9CgQYqPj7f/HT9+3IUVAwCAe1m2OqPVr18/DRw40H6vVaVKlXT06FGNGTNGUVFRKlCggCTp1KlTKliwoH26U6dOqUqVKun26eXlJS8vL8trBwAA955sdUbr4sWLcnNzLNnd3V0pKSmSpOLFi6tAgQJatWqVfXhCQoJiY2MVHh7+r9YKAACQrc5otWzZUqNGjVKRIkVUoUIFbd++XZMmTVLnzp0lSTabTb169dLIkSNVunRpFS9eXG+88YZCQkLUpk2bO1s8AAC452SroDV16lS98cYbevnll3X69GmFhITohRde0JAhQ+zj9O/fXxcuXNDzzz+vuLg4Pfjgg1q6dKm8vb3vYOUAAOBelK2CVu7cuTVlyhRNmTLlpuPYbDYNHz5cw4cP//cKAwAASEe2ukcLAAAgOyFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWyeFsB4cPH9a6det09OhRXbx4Ufny5VPVqlUVHh4ub29vV9QIAACQLWU5aMXExOjtt9/Wli1bFBwcrJCQEPn4+Ojs2bM6dOiQvL291aFDBw0YMEBFixZ1Zc0AAADZQpaCVtWqVeXp6alOnTpp4cKFCg0NdRiemJioDRs26JNPPlH16tX17rvv6vHHH3dJwQAAANlFloLWW2+9pcjIyJsO9/LyUv369VW/fn2NGjVKR44cyWp9AAAA2VaWgtatQtaNgoKCFBQUlJXZAAAAZGtO3wx/vW+//VZr1qxRcnKyIiIi1LZtW1d2DwAAkK247PEOb7zxhvr37y+bzSZjjHr37q0ePXq4qnsAAIBsJ8tntLZs2aLq1avbX3/66afauXOnfHx8JEmdOnVS/fr1NXXqVOerBAAAyIayfEbrxRdfVK9evXTx4kVJUokSJTRx4kTt27dPu3bt0vTp01WmTBmXFQoAAJDdZDloxcbGqmDBgrr//vv1zTff6H//+5+2b9+u2rVrq06dOvr99981f/58V9YKAACQrWT50qG7u7sGDBigxx9/XC+99JJ8fX01bdo0hYSEuLI+AACAbMvpm+FLlCihZcuW6ZFHHlHdunUVHR3tiroAAACyvSwHrbi4OPXv318tW7bU66+/rkceeUSxsbHavHmzHnjgAe3atcuVdQIAAGQ7WQ5aUVFRio2NVfPmzbVv3z699NJLCgoK0uzZszVq1Cg98cQTGjBggCtrBQAAyFayfI/W6tWrtX37dpUqVUpdu3ZVqVKl7MMaNWqkbdu2afjw4S4pEgAAIDvK8hmt0qVLa+bMmdq/f79mzJihokWLOgz39vbW6NGjnS4QAAAgu8py0Prf//6n1atXq2rVqpo/f76mT5/uyroAAACyvSxfOqxSpYq2bNniyloAAADuKlk6o2WMcXUdAAAAd50sBa0KFSrok08+0ZUrV2453oEDB/TSSy/prbfeylJxAAAA2VmWLh1OnTpVAwYM0Msvv6wmTZqoevXqCgkJkbe3t86dO6fdu3frxx9/1K+//qru3bvrpZdecnXdAAAA/3lZClqNGjXSli1b9OOPP+rTTz9VTEyMjh49qkuXLilv3ryqWrWqOnbsqA4dOigwMNDVNQMAAGQLWb4ZXpIefPBBPfjgg66qBQAA4K7i9G8dAgAAIH0ELQAAAIsQtAAAACxC0AIAALAIQQsAAMAiTgetbdu2adeuXfbXX331ldq0aaPXXnvttg80BQAAuJs5HbReeOEF7d+/X5L022+/qX379sqZM6cWLFig/v37O10gAABAduV00Nq/f7+qVKkiSVqwYIHq1q2r+fPna/bs2Vq4cKGz3QMAAGRbTgctY4xSUlIkSStXrlSzZs0kSaGhofrrr7+c7R4AACDbcjpoVa9eXSNHjtTcuXP1ww8/qHnz5pKkw4cPKzg42OkCb3TixAk9/fTTCgoKko+PjypVqqQtW7bYhxtjNGTIEBUsWFA+Pj5q3LixDhw44PI6AAAAbsfpoDVlyhRt27ZN3bt31+DBg1WqVClJ0ueff67atWs7XeD1zp07p4iICHl4eGjJkiXavXu3Jk6c6PB7iuPGjdM777yjGTNmKDY2Vr6+voqMjNTly5ddWgsAAMDtOPVbh8nJyYqLi9PatWvT/Hj0+PHj5e7u7lRxNxo7dqxCQ0M1a9Yse1vx4sXt/zbGaMqUKXr99dfVunVrSdJHH32k4OBgLVq0SO3bt3dpPQAAALfi1Bktd3d3PfTQQ4qLi0szzNvbWx4eHs50n8bXX3+t6tWr6/HHH1f+/PlVtWpVvf/++/bhhw8f1smTJ9W4cWN7m7+/v2rVqqUNGzak22diYqISEhIc/gAAAFzB6UuHFStW1G+//eaKWm7rt99+0/Tp01W6dGktW7ZML730knr27Kk5c+ZIkk6ePClJae4NCw4Otg+70ZgxY+Tv72//Cw0NtfZNAACAe4bTQWvkyJHq27evFi9erD///NPSs0MpKSm6//77NXr0aFWtWlXPP/+8unbtqhkzZmS5z0GDBik+Pt7+d/z4cRdWDAAA7mVO3aMlyf44h1atWslms9nbjTGy2WxKTk52dhZ2BQsWVPny5R3awsLC7M/rKlCggCTp1KlTKliwoH2cU6dO2Z/1dSMvLy95eXm5rEYAAIBUTget77//3hV1ZEhERIT27dvn0LZ//34VLVpU0rUb4wsUKKBVq1bZg1VCQoJiY2P10ksv/Wt1AgAASC4IWvXq1XNFHRnSu3dv1a5dW6NHj1a7du20adMmzZw5UzNnzpQk2Ww29erVSyNHjlTp0qVVvHhxvfHGGwoJCVGbNm3+tToBAAAkF9yjJUnr1q3T008/rdq1a+vEiROSpLlz5+rHH390Rfd2NWrU0JdffqmPP/5YFStW1IgRIzRlyhR16NDBPk7//v3Vo0cPPf/886pRo4bOnz+vpUuXytvb26W1AAAA3I7TQWvhwoWKjIyUj4+Ptm3bpsTERElSfHy8Ro8e7XSBN2rRooV27dqly5cva8+ePeratavDcJvNpuHDh+vkyZO6fPmyVq5cqTJlyri8DgAAgNtxybcOZ8yYoffff9/huVkRERHatm2bs90DAABkW04HrX379qlu3bpp2v39/dN9kCkAAMC9wumgVaBAAR08eDBN+48//qgSJUo42z0AAEC25XTQ6tq1q1555RXFxsbKZrPpjz/+UExMjPr27csjFQAAwD3N6cc7DBw4UCkpKWrUqJEuXryounXrysvLS3379lWPHj1cUSMAAEC25HTQstlsGjx4sPr166eDBw/q/PnzKl++vHLlyuWK+gAAALItp4PW6tWrVbt2bXl7e6f5eRwAAIB7mdNBq1WrVrp69apq1Kih+vXrq169eoqIiJCPj48r6gMAAMi2nL4Z/ty5c1q1apUefvhhbdq0SY888ogCAgIUERGh119/3RU1AgAAZEtOBy0PDw9FRETotdde07Jly7Rx40Y9+eST2rRpk8aMGeOKGgEAALIlpy8d7t+/X2vWrNGaNWv0ww8/KDExUXXq1NGECRNUv359F5QIAACQPTkdtMqVK6d8+fLplVde0cCBA1WpUiXZbDZX1AYAAJCtOX3psGfPnipUqJCGDx+uF198UYMHD9by5ct18eJFV9QHAACQbTkdtKZMmaJt27bp5MmTGjRokK5cuaLBgwcrb968ioiIcEWNAAAA2ZLTQStVcnKykpKSlJiYqMuXLysxMVH79u1zVfcAAADZjksuHd53330KDg7WCy+8oD/++ENdu3bV9u3bdebMGVfUCAAAkC05fTP8n3/+qeeff17169dXxYoVXVETAADAXcHpoLVgwQJX1AEAAHDXcfrS4Zw5c/Ttt9/aX/fv318BAQGqXbu2jh496mz3AAAA2ZbTQWv06NH23zXcsGGDoqOjNW7cOOXNm1e9e/d2ukAAAIDsyulLh8ePH1epUqUkSYsWLVLbtm31/PPPKyIigifDAwCAe5rTZ7Ry5cqlv//+W5K0fPlyNWnSRJLk7e2tS5cuOds9AABAtuX0Ga0mTZroueeeU9WqVbV//341a9ZMkvTrr7+qWLFiznYPAACQbTl9Ris6Olrh4eE6c+aMFi5cqKCgIEnS1q1b9eSTTzpdIAAAQHbl9BmtgIAATZs2LU37sGHDnO0aAAAgW3M6aElSXFycNm3apNOnTyslJcXebrPZ9Mwzz7hiFgAAANmO00Hrm2++UYcOHXT+/Hn5+fnJZrPZhxG0AADAvczpe7ReffVVde7cWefPn1dcXJzOnTtn/zt79qwragQAAMiWnA5aJ06cUM+ePZUzZ05X1AMAAHDXcDpoRUZGasuWLa6oBQAA4K7i9D1azZs3V79+/bR7925VqlRJHh4eDsNbtWrl7CwAAACyJaeDVteuXSVJw4cPTzPMZrMpOTnZ2VkAAABkS04Hresf5wAAAID/5/Q9WjcTFxeX7oNMAQAA7hUuD1qrVq3SU089pYIFC2ro0KGu7h4AACDbcEnQOn78uIYPH67ixYvroYceks1m05dffqmTJ0+6onsAAIBsKctBKykpSQsWLFBkZKTKli2rHTt2aPz48XJzc9PgwYPVtGnTNN9ABAAAuJdk+Wb4QoUKqVy5cnr66af1ySefKDAwUJL05JNPuqw4AACA7CzLZ7SuXr0qm80mm80md3d3V9YEAABwV8hy0Prjjz/0/PPP6+OPP1aBAgXUtm1bffnllw4/Kg0AAHAvy3LQ8vb2VocOHbR69Wrt2rVLYWFh6tmzp65evapRo0ZpxYoVPKwUAADc01zyrcOSJUtq5MiROnr0qL799lslJiaqRYsWCg4OdkX3AAAA2ZLTT4a/npubmx5++GE9/PDDOnPmjObOnevK7gEAALIVy54Mny9fPvXp08eq7gEAAP7zLAtaAAAA9zqCFgAAgEUIWgAAABZxOmgNHz5cFy9eTNN+6dIlDR8+3NnuAQAAsi2ng9awYcN0/vz5NO0XL17UsGHDnO0eAAAg23I6aBlj0n0a/M6dO5UnTx5nuwcAAMi2svwcrcDAQPtvHZYpU8YhbCUnJ+v8+fN68cUXXVIkAABAdpTloDVlyhQZY9S5c2cNGzZM/v7+9mGenp4qVqyYwsPDXVIkAABAdpTloBUVFSVJKl68uCIiIpQjh0sfMg8AAJDtOX2P1oULF7Rq1ao07cuWLdOSJUuc7R4AACDbcjpoDRw4UMnJyWnajTEaOHCgs90DAABkW04HrQMHDqh8+fJp2suVK6eDBw862z0AAEC25XTQ8vf312+//Zam/eDBg/L19XW2ewAAgGzL6aDVunVr9erVS4cOHbK3HTx4UK+++qpatWrlbPcAAADZltNBa9y4cfL19VW5cuVUvHhxFS9eXGFhYQoKCtKECRNcUSMAAEC25PQzGfz9/fXTTz9pxYoV2rlzp3x8fHTfffepbt26rqgPAAAg23LJw69sNpseeugh1a1bV15eXun+JA8AAMC9xulLhykpKRoxYoQKFSqkXLly6fDhw5KkN954Qx9++KHTBQIAAGRXTgetkSNHavbs2Ro3bpw8PT3t7RUrVtQHH3zgbPcAAADZltNB66OPPtLMmTPVoUMHubu729srV66svXv3Ots9AABAtuV00Dpx4oRKlSqVpj0lJUVJSUnOdg8AAJBtOR20ypcvr3Xr1qVp//zzz1W1alVnuwcAAMi2nP7W4ZAhQxQVFaUTJ04oJSVFX3zxhfbt26ePPvpIixcvdkWNAAAA2ZJLngz/zTffaOXKlfL19dWQIUO0Z88effPNN2rSpIkragQAAMiWnDqjdfXqVY0ePVqdO3fWihUrXFUTAADAXcGpM1o5cuTQuHHjdPXqVVfVAwAAcNdw+tJho0aN9MMPP7iiFgAAgLuK0zfDP/zwwxo4cKB27dqlatWqydfX12F4q1atnJ0FAABAtuR00Hr55ZclSZMmTUozzGazKTk52dlZAAAAZEtOB62UlBRX1AEAAHDXceoeraSkJOXIkUO//PKLq+oBAAC4azgVtDw8PFSkSBEuDwIAAKTD6W8dDh48WK+99prOnj3rinoAAADuGk4HrWnTpmnt2rUKCQlR2bJldf/99zv8WeWtt96SzWZTr1697G2XL19Wt27dFBQUpFy5cqlt27Y6deqUZTUAAADcitM3w7dp08YFZWTO5s2b9d577+m+++5zaO/du7e+/fZbLViwQP7+/urevbseffRRrV+//l+vEQAAwOmgNXToUFfUkWHnz59Xhw4d9P7772vkyJH29vj4eH344YeaP3++GjZsKEmaNWuWwsLCtHHjRj3wwAP/ap0AAABOXzpMtXXrVs2bN0/z5s3T9u3bXdVtGt26dVPz5s3VuHHjNPNPSkpyaC9XrpyKFCmiDRs23LS/xMREJSQkOPwBAAC4gtNntE6fPq327dtrzZo1CggIkCTFxcWpQYMG+uSTT5QvXz5nZ2H3ySefaNu2bdq8eXOaYSdPnpSnp6e9hlTBwcE6efLkTfscM2aMhg0b5rIaAQAAUjl9RqtHjx76559/9Ouvv+rs2bM6e/asfvnlFyUkJKhnz56uqFGSdPz4cb3yyiuKiYmRt7e3y/odNGiQ4uPj7X/Hjx93Wd8AAODe5vQZraVLl2rlypUKCwuzt5UvX17R0dF66KGHnO3ebuvWrTp9+rTDNxmTk5O1du1aTZs2TcuWLdOVK1cUFxfncFbr1KlTKlCgwE379fLykpeXl8vqBAAASOWSn+Dx8PBI0+7h4eHSn+dp1KiRdu3a5dD27LPPqly5chowYIBCQ0Pl4eGhVatWqW3btpKkffv26dixYwoPD3dZHQAAABnldNBq2LChXnnlFX388ccKCQmRJJ04cUK9e/dWo0aNnC4wVe7cuVWxYkWHNl9fXwUFBdnbu3Tpoj59+ihPnjzy8/NTjx49FB4ezjcOAQDAHeF00Jo2bZpatWqlYsWKKTQ0VNK1+6kqVqyoefPmOV1gZkyePFlubm5q27atEhMTFRkZqXffffdfrQEAACCV00ErNDRU27Zt08qVK7V3715JUlhYWJrHL1hhzZo1Dq+9vb0VHR2t6Ohoy+cNAABwO04HLUmy2Wxq0qSJmjRp4oruAAAA7gpZfrzD6tWrVb58+XQf8BkfH68KFSpo3bp1ThUHAACQnWU5aE2ZMkVdu3aVn59fmmH+/v564YUXNGnSJKeKAwAAyM6yHLR27typpk2b3nT4Qw89pK1bt2a1ewAAgGwvy0Hr1KlT6T4/K1WOHDl05syZrHYPAACQ7WU5aBUqVEi//PLLTYf//PPPKliwYFa7BwAAyPayHLSaNWumN954Q5cvX04z7NKlSxo6dKhatGjhVHEAAADZWZYf7/D666/riy++UJkyZdS9e3eVLVtWkrR3715FR0crOTlZgwcPdlmhAAAA2U2Wg1ZwcLB++uknvfTSSxo0aJCMMZKuPVMrMjJS0dHRCg4OdlmhAAAA2Y1TDywtWrSovvvuO507d04HDx6UMUalS5dWYGCgq+oDAADItlzyZPjAwEDVqFHDFV0BAADcNbJ8MzwAAABujaAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYJFsFbTGjBmjGjVqKHfu3MqfP7/atGmjffv2OYxz+fJldevWTUFBQcqVK5fatm2rU6dO3aGKAQDAvSxbBa0ffvhB3bp108aNG7VixQolJSXpoYce0oULF+zj9O7dW998840WLFigH374QX/88YceffTRO1g1AAC4V+W40wVkxtKlSx1ez549W/nz59fWrVtVt25dxcfH68MPP9T8+fPVsGFDSdKsWbMUFhamjRs36oEHHrgTZQMAgHtUtjqjdaP4+HhJUp48eSRJW7duVVJSkho3bmwfp1y5cipSpIg2bNiQbh+JiYlKSEhw+AMAAHCFbBu0UlJS1KtXL0VERKhixYqSpJMnT8rT01MBAQEO4wYHB+vkyZPp9jNmzBj5+/vb/0JDQ60uHQAA3COybdDq1q2bfvnlF33yySdO9TNo0CDFx8fb/44fP+6iCgEAwL0uW92jlap79+5avHix1q5dq8KFC9vbCxQooCtXriguLs7hrNapU6dUoECBdPvy8vKSl5eX1SUDAIB7ULY6o2WMUffu3fXll19q9erVKl68uMPwatWqycPDQ6tWrbK37du3T8eOHVN4ePi/XS4AALjHZaszWt26ddP8+fP11VdfKXfu3Pb7rvz9/eXj4yN/f3916dJFffr0UZ48eeTn56cePXooPDycbxwCAIB/XbYKWtOnT5ck1a9f36F91qxZ6tSpkyRp8uTJcnNzU9u2bZWYmKjIyEi9++67/3KlAAAA2SxoGWNuO463t7eio6MVHR39L1QEAABwc9nqHi0AAIDshKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWISgBQAAYBGCFgAAgEUIWgAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARQhaAAAAFiFoAQAAWOSuDFrR0dEqVqyYvL29VatWLW3atOlOlwQAAO5Bd13Q+vTTT9WnTx8NHTpU27ZtU+XKlRUZGanTp0/f6dIAAMA95q4LWpMmTVLXrl317LPPqnz58poxY4Zy5syp//3vf3e6NAAAcI/JcacLcKUrV65o69atGjRokL3Nzc1NjRs31oYNG9KdJjExUYmJifbX8fHxkqSEhASX1paSeNGl/SEtV6+zVKw761m17iTW37+BfS/7cvW6S+3PGOPSfrOzuypo/fXXX0pOTlZwcLBDe3BwsPbu3ZvuNGPGjNGwYcPStIeGhlpSI6zjP+VOV4CsYt1lb6y/7MuqdffPP//I39/fms6zmbsqaGXFoEGD1KdPH/vrlJQUnT17VkFBQbLZbHewsjsrISFBoaGhOn78uPz8/O50OcgE1l32xbrLvlh31xhj9M8//ygkJOROl/KfcVcFrbx588rd3V2nTp1yaD916pQKFCiQ7jReXl7y8vJyaAsICLCqxGzHz8/vnj5oZGesu+yLdZd9se7Emawb3FU3w3t6eqpatWpatWqVvS0lJUWrVq1SeHj4HawMAADci+6qM1qS1KdPH0VFRal69eqqWbOmpkyZogsXLujZZ5+906UBAIB7zF0XtJ544gmdOXNGQ4YM0cmTJ1WlShUtXbo0zQ3yuDUvLy8NHTo0zWVV/Pex7rIv1l32xbrDzdgM38EEAACwxF11jxYAAMB/CUELAADAIgQtAAAAixC0kCWzZ8/O8PPGMjMurHPkyBHZbDbt2LHjTpcC3NU6deqkNm3a2F/Xr19fvXr1ytC0mRkX2cNd961D/DueeOIJNWvW7E6XkS3Vr19fVapU0ZQpU+50KbBAp06dFBcXp0WLFt3pUvAf8cUXX8jDw+NOl4E7hKCFLPHx8ZGPj8+dLgP4z0hOTr6nf7YLN5cnT547XQLuIC4dZlOff/65KlWqJB8fHwUFBalx48a6cOGC/ZT1sGHDlC9fPvn5+enFF1/UlStX7NMuXbpUDz74oAICAhQUFKQWLVro0KFD9uGpl5i++OILNWjQQDlz5lTlypW1YcMG+zg3Xg7cuXOnGjRooNy5c8vPz0/VqlXTli1bHGpetmyZwsLClCtXLjVt2lR//vmndQvoP6pTp0764Ycf9Pbbb8tms8lms+nQoUPq0qWLihcvLh8fH5UtW1Zvv/22w3RXr15Vz5497etswIABioqKcrg8cbv1mp4ffvhBNWvWlJeXlwoWLKiBAwfq6tWr9uH//POPOnToIF9fXxUsWFCTJ0++ay5t1K9fX927d1f37t3l7++vvHnz6o033lDqE2/OnTunjh07KjAwUDlz5tTDDz+sAwcO2KdP3Qe+/vprlS9fXl5eXurcubPmzJmjr776yr5+16xZozVr1shmsykuLs4+/Y4dO2Sz2XTkyBF72/vvv6/Q0FDlzJlTjzzyiCZNmuSwn914SUqSevXqpfr169tfp6SkaMyYMfbtqXLlyvr888/tw8+dO6cOHTooX7588vHxUenSpTVr1iz78OPHj6tdu3YKCAhQnjx51Lp1a4cas7tbLZ/U9bRq1SpVr15dOXPmVO3atbVv3z6HPkaOHKn8+fMrd+7ceu655zRw4EBVqVLlpvO8cZ959913Vbp0aXl7eys4OFiPPfZYmhr79++vPHnyqECBAnrzzTdd9fZxBxC0sqE///xTTz75pDp37qw9e/ZozZo1evTRR+0fEKtWrbK3f/zxx/riiy80bNgw+/QXLlxQnz59tGXLFq1atUpubm565JFHlJKS4jCfwYMHq2/fvtqxY4fKlCmjJ5980uFD+HodOnRQ4cKFtXnzZm3dulUDBw50OFV+8eJFTZgwQXPnztXatWt17Ngx9e3b14Kl89/29ttvKzw8XF27dtWff/6pP//8U4ULF1bhwoW1YMEC7d69W0OGDNFrr72mzz77zD7d2LFjFRMTo1mzZmn9+vVKSEhIc2kqo+s11YkTJ9SsWTPVqFFDO3fu1PTp0/Xhhx9q5MiR9nH69Omj9evX6+uvv9aKFSu0bt06bdu2zZJlcyfMmTNHOXLk0KZNm/T2229r0qRJ+uCDDyRdCzVbtmzR119/rQ0bNsgYo2bNmikpKck+/cWLFzV27Fh98MEH+vXXX/XOO++oXbt29v9I/Pnnn6pdu3aGalm/fr1efPFFvfLKK9qxY4eaNGmiUaNGZfo9jRkzRh999JFmzJihX3/9Vb1799bTTz+tH374QZL0xhtvaPfu3VqyZIn27Nmj6dOnK2/evJKkpKQkRUZGKnfu3Fq3bp3Wr19v/4/R9f9Zy85ut3yka8e+iRMnasuWLcqRI4c6d+5sHxYTE6NRo0Zp7Nix2rp1q4oUKaLp06dneP5btmxRz549NXz4cO3bt09Lly5V3bp1HcaZM2eOfH19FRsbq3Hjxmn48OFasWKF828ed4ZBtrN161YjyRw5ciTNsKioKJMnTx5z4cIFe9v06dNNrly5THJycrr9nTlzxkgyu3btMsYYc/jwYSPJfPDBB/Zxfv31VyPJ7NmzxxhjzKxZs4y/v799eO7cuc3s2bPT7X/WrFlGkjl48KC9LTo62gQHB2f8Td9F6tWrZ1555ZVbjtOtWzfTtm1b++vg4GAzfvx4++urV6+aIkWKmNatW9+0j5ut1+3btxtjjHnttddM2bJlTUpKin2a6Oho+7aSkJBgPDw8zIIFC+zD4+LiTM6cOW9bf3ZQr149ExYW5vD+BwwYYMLCwsz+/fuNJLN+/Xr7sL/++sv4+PiYzz77zBjz/9v1jh07HPqNiopKs16+//57I8mcO3fO3rZ9+3YjyRw+fNgYY8wTTzxhmjdv7jBdhw4dHPaz9Pp+5ZVXTL169Ywxxly+fNnkzJnT/PTTTw7jdOnSxTz55JPGGGNatmxpnn322XSXydy5c9NsE4mJicbHx8csW7Ys3Wmyk9stn9T1tHLlSvuwb7/91kgyly5dMsYYU6tWLdOtWzeH6SMiIkzlypXtr29cT9fv8wsXLjR+fn4mISEh3Rrr1atnHnzwQYe2GjVqmAEDBmT27eI/gjNa2VDlypXVqFEjVapUSY8//rjef/99nTt3zmF4zpw57a/Dw8N1/vx5HT9+XJJ04MABPfnkkypRooT8/PxUrFgxSdKxY8cc5nPffffZ/12wYEFJ0unTp9OtqU+fPnruuefUuHFjvfXWW2kuWeXMmVMlS5Z06O9mfd2LoqOjVa1aNeXLl0+5cuXSzJkz7esjPj5ep06dUs2aNe3ju7u7q1q1ag59ZHS9ptqzZ4/Cw8Md7iuKiIjQ+fPn9fvvv+u3335TUlKSw3z9/f1VtmxZV73tO+6BBx5weP/h4eE6cOCAdu/erRw5cqhWrVr2YUFBQSpbtqz27Nljb/P09HTYT5yxb98+h2UtKc3r2zl48KAuXryoJk2aKFeuXPa/jz76yL5PvvTSS/rkk09UpUoV9e/fXz/99JN9+p07d+rgwYPKnTu3fdo8efLo8uXLt70MnR1kZPlItz72ObuemjRpoqJFi6pEiRJ65plnFBMTo4sXLzqMc+M2xfEye+Nm+GzI3d1dK1as0E8//aTly5dr6tSpGjx4sGJjYzM0fcuWLVW0aFG9//77CgkJUUpKiipWrJjm0sD1l/5SP4xudhnqzTff1FNPPaVvv/1WS5Ys0dChQ/XJJ5/okUceSdNXan+GX3+SJH3yySfq27evJk6cqPDwcOXOnVvjx4/P8PpMldH1Ctfx8fHJ0A3wbm7X/k97/TZ//SXIjHJzc0uz31zfz/nz5yVJ3377rQoVKuQwXupv8D388MM6evSovvvuO61YsUKNGjVSt27dNGHCBJ0/f17VqlVTTExMmnnny5cv0/X+19xu+aSGrcwc+zIrd+7c2rZtm9asWaPly5dryJAhevPNN7V582b7/XjpHS9dNX/8+zijlU3ZbDZFRERo2LBh2r59uzw9PfXll19Kuva/0kuXLtnH3bhxo3LlyqXQ0FD9/fff2rdvn15//XU1atRIYWFhDmfDnFGmTBn17t1by5cv16OPPupwgy3+n6enp5KTk+2v169fr9q1a+vll19W1apVVapUKYf/Xfv7+ys4OFibN2+2tyUnJzvcK5WV9RoWFma/9+j6WnLnzq3ChQurRIkS8vDwcJhvfHy89u/f79T7/y+5Mcxu3LhRpUuXVvny5XX16lWH4anLuHz58rfs88b1K/1/SLn+CyA3Ps+sbNmyDstaUprX+fLlS/Mlkuv7Sb0p/9ixYypVqpTDX2hoqEM/UVFRmjdvnqZMmaKZM2dKku6//34dOHBA+fPnTzO9v7//Ld93dpDR5XMrGVlPt5MjRw41btxY48aN088//6wjR45o9erVmeoD2QdntLKh2NhYrVq1Sg899JDy58+v2NhYnTlzRmFhYfr555915coVdenSRa+//rqOHDmioUOHqnv37nJzc1NgYKCCgoI0c+ZMFSxYUMeOHdPAgQOdqufSpUvq16+fHnvsMRUvXly///67Nm/erLZt27roHd9dihUrptjYWB05ckS5cuVS6dKl9dFHH2nZsmUqXry45s6dq82bN6t48eL2aXr06KExY8aoVKlSKleunKZOnapz587Z/7edlfX68ssva8qUKerRo4e6d++uffv2aejQoerTp4/c3NyUO3duRUVFqV+/fsqTJ4/y58+voUOHys3N7a55jMGxY8fUp08fvfDCC9q2bZumTp2qiRMnqnTp0mrdurW6du2q9957T7lz59bAgQNVqFAhtW7d+pZ9FitWTMuWLdO+ffsUFBQkf39/+wf5m2++qVGjRmn//v2aOHGiw3Q9evRQ3bp1NWnSJLVs2VKrV6/WkiVLHJZ1w4YNNX78eH300UcKDw/XvHnz9Msvv6hq1aqSrp0t6du3r3r37q2UlBQ9+OCDio+P1/r16+Xn56eoqCgNGTJE1apVU4UKFZSYmKjFixcrLCxM0rUvtYwfP16tW7fW8OHDVbhwYR09elRffPGF+vfvr8KFC7t4Dfy7brd8ihYtets+evTooa5du6p69eqqXbu2Pv30U/38888qUaJEhmpYvHixfvvtN9WtW1eBgYH67rvvlJKSclddkscN7uwtYsiK3bt3m8jISJMvXz7j5eVlypQpY6ZOnWqM+f+bMIcMGWKCgoJMrly5TNeuXc3ly5ft069YscKEhYUZLy8vc99995k1a9YYSebLL780xqS9adoYY86dO2ckme+//94Y43gzfGJiomnfvr0JDQ01np6eJiQkxHTv3t1+8+iNN84bY8yXX35p7tXNb9++feaBBx4wPj4+RpLZu3ev6dSpk/H39zcBAQHmpZdeMgMHDnS4uTYpKcl0797d+Pn5mcDAQDNgwADz+OOPm/bt29vHycp6XbNmjalRo4bx9PQ0BQoUMAMGDDBJSUn24QkJCeapp54yOXPmNAUKFDCTJk0yNWvWNAMHDrR6MVmuXr165uWXXzYvvviifbm+9tpr9hvBz549a5555hnj7+9vfHx8TGRkpNm/f799+vS2a2OMOX36tGnSpInJlSuXwz7z448/mkqVKhlvb29Tp04ds2DBAoeb4Y0xZubMmaZQoULGx8fHtGnTxowcOdIUKFDAof8hQ4aY4OBg4+/vb3r37m26d+9uvxneGGNSUlLMlClTTNmyZY2Hh4fJly+fiYyMND/88IMxxpgRI0aYsLAw4+PjY/LkyWNat25tfvvtN/v0f/75p+nYsaPJmzev8fLyMiVKlDBdu3Y18fHxTi7x/4ZbLZ+MfGnBGGOGDx9u8ubNa3LlymU6d+5sevbsaR544AH78FvdDL9u3TpTr149ExgYaHx8fMx9991nPv3003THTdW6dWsTFRXlwqWAf5PNGG6UuZvwVOp7Q0pKisLCwtSuXTuNGDHiX5vvhQsXVKhQIU2cOFFdunT51+ZrhezwhP6uXbtq7969Wrdu3Z0uBbfQpEkTFShQQHPnzr3TpeA/iEuHQDZw9OhRLV++XPXq1VNiYqKmTZumw4cP66mnnrJ0vtu3b9fevXtVs2ZNxcfHa/jw4ZJ028tnyJoJEyaoSZMm8vX11ZIlSzRnzhy9++67d7osXOfixYuaMWOGIiMj5e7uro8//lgrV67kOVe4KYIWkA24ublp9uzZ6tu3r4wxqlixolauXGm/t8ZKEyZM0L59++Tp6alq1app3bp19gdcwrU2bdqkcePG6Z9//lGJEiX0zjvv6LnnnrvTZeE6NptN3333nUaNGqXLly+rbNmyWrhwoRo3bnynS8N/FJcOAQAALMLjHQAAACxC0AIAALAIQQsAAMAiBC0AAACLELQAAAAsQtACAACwCEELQIZ16tRJbdq0udNlAEC2QdACAACwCEELgEtMmjRJlSpVkq+vr0JDQ/Xyyy/r/Pnz9uGzZ89WQECAli1bprCwMOXKlUtNmzbVn3/+aR/n6tWr6tmzpwICAhQUFKQBAwYoKirK4SxasWLF0vw+YZUqVfTmm29muBZJev/99xUaGqqcOXPqkUce0aRJkxQQEOAwzldffaX7779f3t7eKlGihIYNG6arV686vawA3DsIWgBcws3NTe+8845+/fVXzZkzR6tXr1b//v0dxrl48aImTJiguXPnau3atTp27Jj69u1rHz527FjFxMRo1qxZWr9+vRISErL0A+m3q2X9+vV68cUX9corr2jHjh1q0qSJRo0a5dDHunXr1LFjR73yyivavXu33nvvPc2ePTvNeABwSwYAMigqKsq0bt06Q+MuWLDABAUF2V/PmjXLSDIHDx60t0VHR5vg4GD76+DgYDN+/Hj766tXr5oiRYo4zLNo0aJm8uTJDvOqXLmyGTp0aIZreeKJJ0zz5s0dxunQoYPx9/e3v27UqJEZPXq0wzhz5841BQsWvOl8AOBG/Kg0AJdYuXKlxowZo7179yohIUFXr17V5cuXdfHiReXMmVOSlDNnTpUsWdI+TcGCBXX69GlJUnx8vE6dOqWaNWvah7u7u6tatWpKSUlxaS379u3TI4884jBNzZo1tXjxYvvrnTt3av369Q5nsJKTk9O8JwC4FS4dAnDakSNH1KJFC913331auHChtm7dqujoaEnSlStX7ON5eHg4TGez2WQy+bv2bm5uaaZJSkrKdC23c/78eQ0bNkw7duyw/+3atUsHDhyQt7d3pmoGcO/ijBYAp23dulUpKSmaOHGi3Nyu/f/ts88+y1Qf/v7+Cg4O1ubNm1W3bl1J184gbdu2TVWqVLGPly9fPocb6BMSEnT48OFM1VK2bFlt3rzZoe3G1/fff7/27dunUqVKZep9AMD1CFoAMiU+Pl47duxwaMubN6+SkpI0depUtWzZUuvXr9eMGTMy3XePHj00ZswYlSpVSuXKldPUqVN17tw52Ww2+zgNGzbU7Nmz1bJlSwUEBGjIkCFyd3e3Dy9VqtRta+nRo4fq1q2rSZMmqWXLllq9erWWLFniMJ8hQ4aoRYsWKlKkiB577DG5ublp586d+uWXXzRy5MhMvzcA9yYuHQLIlDVr1qhq1aoOf3PnztWkSZM0duxYVaxYUTExMRozZkym+x4wYICefPJJdezYUeHh4cqVK5ciIyMdLtUNGjRI9erVU4sWLdS8eXO1adPG4b6vypUr37aWiIgIzZgxQ5MmTVLlypW1dOlS9e7d22E+kZGRWrx4sZYvX64aNWrogQce0OTJk1W0aNEsLDUA9yqbyewNEgDwL0lJSVFYWJjatWunESNGWDqvrl27au/evVq3bp2l8wFwb+HSIYD/jKNHj2r58uWqV6+eEhMTNW3aNB0+fFhPPfWUy+c1YcIENWnSRL6+vlqyZInmzJmjd9991+XzAXBvI2gB+M9wc3PT7Nmz1bdvXxljVLFiRa1cuVJhYWEun9emTZs0btw4/fPPPypRooTeeecdPffccy6fD4B7G5cOAQAALMLN8AAAABYhaAEAAFiEoAUAAGARghYAAIBFCFoAAAAWIWgBAABYhKAFAABgEYIWAACARf4PXKWjFkgfF84AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 refraction 14 11 13 12 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 31 45.16129 35.483871 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 41.935484 38.709677 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWQElEQVR4nO3de3zP9f//8ft77GSzjWFzmLOYQ4ho5HxYzqeElDmkklFESBE5RIgkRX2QSDlVkhwjOZ9TGMopOcY2zGa25++Pfnt/vW3Y3q9pW27Xy+V94f18nR7v1+v9fu3+fr2er9fbZowxAgAAcJJLRhcAAACyNsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBJAG27dvl5ubm06cOJEu8ztw4ICyZ8+uX3/9NV3mh6yhaNGi6tq167++3NmzZ8tms2nnzp3/+rKzoiNHjqhx48by9fWVzWbT119/ndElSZLq1q2runXrZnQZDh7oMPH777/rhRdeUPHixeXh4SEfHx/VrFlTU6ZM0fXr1zO6vDQ7cOCA3nrrLR0/fjzN07722muy2Wzq0KFD+hf2HzJ06FB16tRJRYoUsbd9/fXXKlOmjHx9fdWiRQv99ddfyaZr2bKlnn/++WTtZcuWVbNmzTRs2LBULT/pj8Gtj3z58qlevXpasWKF8y8sBUWLFlXz5s3TdZ5IX8ePH0/2frjTw5n9woMuLCxM+/fv1+jRozV37lxVrVr1X1u2lf15Rsie0QVklOXLl6t9+/Zyd3dXly5dVL58ed24cUM///yzBg4cqN9++00zZszI6DLT5MCBAxoxYoTq1q2rokWLpno6Y4y++OILFS1aVMuWLdOVK1eUM2fO+1doFrV3716tWbNGmzdvtrf98ccf6tChgzp06KCQkBBNnjxZ3bp108qVK+3jrFy5Uj/99JOOHDmS4nxffPFFNW3aVL///rtKlCiRqlpGjhypYsWKyRijc+fOafbs2WratKmWLVtGAMgCIiIi5OJi/btc3rx5NXfuXIe2iRMn6s8//9R7772XbFyk3vXr17VlyxYNHTpU4eHh//ry77Y/X7Vq1b9ez708kGHi2LFj6tixo4oUKaJ169Ypf/789mG9e/fW0aNHtXz5csvLMcYoNjZWnp6eyYbFxsbKzc0tXXYoVq1fv15//vmn1q1bp9DQUC1ZskRhYWEZXVa6unnzphITE+Xm5ub0PGbNmqXChQvrscces7etWrVKhQoV0pw5c2Sz2RQcHKz69esrNjZWHh4eunnzpvr166dhw4bdcWfesGFD5cqVS3PmzNHIkSNTVUuTJk0cviX16NFDAQEB+uKLLwgTWYC7u3u6zMfLy0vPPPOMQ9uCBQt0+fLlZO0PurTuAy5cuCBJ8vPzu+e4165dk5eXl5Xy0sTKfux+yfi/ZBlg/Pjxunr1qj799FOHIJGkZMmSevnll+3Pb968qbffflslSpSQu7u7ihYtqtdff11xcXEO0yUdFl65cqWqVq0qT09Pffzxx1q/fr1sNpsWLFigN954QwULFlSOHDkUHR0tSdq2bZueeOIJ+fr6KkeOHKpTp442bdqUrK7Tp0+rR48eKlCggNzd3VWsWDH16tVLN27c0OzZs9W+fXtJUr169eyHNtevX3/P9TFv3jyVLVtW9erVU8OGDTVv3rxk4yS9hq+++kqjR49WoUKF5OHhoQYNGujo0aMO4x45ckTt2rVTYGCgPDw8VKhQIXXs2FFRUVGSpLZt2+qRRx5xmKZFixay2Wz69ttv7W3btm2TzWZzOHwfGRmpV155RUFBQXJ3d1fJkiU1btw4JSYm2sdJOvQ7YcIETZ482b7dDhw4IEmaOnWqypUrpxw5cihXrlyqWrWq5s+ff8/19PXXX6t+/fqy2Wz2tuvXr8vPz8/eljt3bhlj7KfJPvjgAyUkJKhPnz53nK+rq6vq1q2rb7755p413Imfn588PT2VPfs/3w+MMSpatKhatWqVbNzY2Fj5+vrqhRdecHp5STZu3Kj27durcOHCcnd3V1BQkPr165fsNGHXrl3l7e2t06dPq3Xr1vL29lbevHk1YMAAJSQkOIz7999/69lnn5WPj4/8/PwUFhamffv2yWazafbs2fbx7nTeuGvXrsm+yU2YMEE1atSQv7+/PD09VaVKFS1atCjZtNevX1ffvn2VJ08e5cyZUy1bttTp06dls9n01ltvOYx7+vRpde/eXQEBAXJ3d1e5cuX0v//9L1Xr7fY+E0mnrzZt2qT+/fsrb9688vLyUps2bex/1NJTXFxcqpazYsUK1apVS15eXsqZM6eaNWum3377zWGcpG178uRJNW/eXN7e3ipYsKCmTZsmSdq/f7/q168vLy8vFSlSJMXPWmo+15J05swZHTp0SPHx8Xd9fffaBxw6dEhPPvmkcufOLQ8PD1WtWtVh3/PWW2/ZT2UOHDhQNpvN/p566623ZLPZdODAAT399NPKlSuXHn/8cUnSL7/8oq5du9pPnQcGBqp79+76+++/k9VoZX+e0nv//Pnz9i8VHh4eqlixoubMmXPH9TJjxgz7enn00Ue1Y8eOu67Te3kgj0wsW7ZMxYsXV40aNVI1/nPPPac5c+boySef1Kuvvqpt27Zp7NixOnjwoJYuXeowbkREhDp16qQXXnhBPXv2VOnSpe3D3n77bbm5uWnAgAGKi4uTm5ub1q1bpyZNmqhKlSoaPny4XFxcNGvWLNWvX18bN25UtWrVJEl//fWXqlWrpsjISD3//PMqU6aMTp8+rUWLFikmJka1a9dW37599f777+v1119XcHCwJNn/vZO4uDgtXrxYr776qiSpU6dO6tatm86ePavAwMBk47/zzjtycXHRgAEDFBUVpfHjx6tz587atm2bJOnGjRsKDQ1VXFyc+vTpo8DAQJ0+fVrfffedIiMj5evrq1q1aumbb75RdHS0fHx8ZIzRpk2b5OLioo0bN6ply5aS/vlD5eLiopo1a0qSYmJiVKdOHZ0+fVovvPCCChcurM2bN2vIkCE6c+aMJk+e7FDrrFmzFBsbq+eff17u7u7KnTu3Zs6cqb59++rJJ5/Uyy+/rNjYWP3yyy/atm2bnn766Tuup9OnT+vkyZPJQtCjjz6qV199VV988YUee+wxjR49WiVLllSuXLl04cIFjRgxQp9//rlcXV3vuh2qVKnisE7uJSoqShcvXpQxRufPn9fUqVN19epV+7dRm82mZ555RuPHj9elS5eUO3du+7TLli1TdHR0unxzXbhwoWJiYtSrVy/5+/tr+/btmjp1qv78808tXLjQYdyEhASFhoaqevXqmjBhgtasWaOJEyeqRIkS6tWrlyQpMTFRLVq00Pbt29WrVy+VKVNG33zzjeUjZVOmTFHLli3VuXNn3bhxQwsWLFD79u313XffqVmzZvbxunbtqq+++krPPvusHnvsMW3YsMFheJJz587psccek81mU3h4uPLmzasVK1aoR48eio6O1iuvvOJUnX369FGuXLk0fPhwHT9+XJMnT1Z4eLi+/PJLZ1+608uZO3euwsLCFBoaqnHjxikmJkbTp0/X448/rj179jgEtoSEBDVp0kS1a9fW+PHjNW/ePIWHh8vLy0tDhw5V586d1bZtW3300Ufq0qWLQkJCVKxYMUlp+1wPGTJEc+bM0bFjx1J1KjelfcBvv/2mmjVrqmDBgho8eLC8vLz01VdfqXXr1lq8eLHatGmjtm3bys/PT/369VOnTp3UtGlTeXt7O8y7ffv2KlWqlMaMGSNjjCRp9erV+uOPP9StWzcFBgbaT5f/9ttv2rp1q/1LR3rvz69fv666devq6NGjCg8PV7FixbRw4UJ17dpVkZGRDl+OJWn+/Pm6cuWKXnjhBdlsNo0fP15t27bVH3/8cc991R2ZB0xUVJSRZFq1apWq8ffu3Wskmeeee86hfcCAAUaSWbdunb2tSJEiRpL54YcfHMb98ccfjSRTvHhxExMTY29PTEw0pUqVMqGhoSYxMdHeHhMTY4oVK2YaNWpkb+vSpYtxcXExO3bsSFZj0rQLFy40ksyPP/6YqtdmjDGLFi0yksyRI0eMMcZER0cbDw8P895776X4GoKDg01cXJy9fcqUKUaS2b9/vzHGmD179hhJZuHChXdc5o4dO4wk8/333xtjjPnll1+MJNO+fXtTvXp1+3gtW7Y0lStXtj9/++23jZeXlzl8+LDD/AYPHmyyZctmTp48aYwx5tixY0aS8fHxMefPn3cYt1WrVqZcuXKpXT12a9asMZLMsmXLkg3r27evkWQkmdy5c9vfEz179jRPPPFEquY/f/58I8ls27btruPNmjXLvqxbH+7u7mb27NkO40ZERBhJZvr06Q7tLVu2NEWLFnV4z6WkSJEiplmzZncd59b3c5KxY8cam81mTpw4YW8LCwszkszIkSMdxq1cubKpUqWK/fnixYuNJDN58mR7W0JCgqlfv76RZGbNmmVvr1OnjqlTp06y5YeFhZkiRYrctc4bN26Y8uXLm/r169vbdu3aZSSZV155xWHcrl27Gklm+PDh9rYePXqY/Pnzm4sXLzqM27FjR+Pr65vierlVkSJFTFhYmP150nZt2LChw3bp16+fyZYtm4mMjLzr/G7VrFmzZK8/rcu5cuWK8fPzMz179nSY/uzZs8bX19ehPWnbjhkzxt52+fJl4+npaWw2m1mwYIG9/dChQ8nWZWo/17cu69ixY3ddB3fbBzRo0MBUqFDBxMbG2tsSExNNjRo1TKlSpZLN491333WYfvjw4UaS6dSpU7LlprTdv/jiCyPJ/PTTT/Y2q/vz29/7kydPNpLM559/bm+7ceOGCQkJMd7e3iY6OtrhNfn7+5tLly7Zx/3mm2/uuH9LrQfuNEfSqYXUdjD8/vvvJUn9+/d3aE/6Jn9734pixYopNDQ0xXmFhYU59J/Yu3evjhw5oqefflp///23Ll68qIsXL+ratWtq0KCBfvrpJyUmJioxMVFff/21WrRokWJv4lsPu6fVvHnzVLVqVZUsWVKS7IcyUzrVIUndunVzOF9Xq1YtSf90RJQkX19fSf90OoyJiUlxHpUrV5a3t7d++uknSf8cgShUqJC6dOmi3bt3KyYmRsYY/fzzz/b5S/98C65Vq5Zy5cplX1cXL15Uw4YNlZCQYJ9fknbt2iXrp+Dn56c///wzzYf0kg5T5sqVK9mwKVOm6MSJE9q2bZtOnDihevXqae/evfrss8/03nvvKSoqSs8884wKFiyounXr6uDBg8nmkTTfixcvpqqeadOmafXq1Vq9erU+//xz1atXT88995yWLFliH+ehhx5S9erVHbblpUuXtGLFCnXu3NnS+ybJre/na9eu6eLFi6pRo4aMMdqzZ0+y8V988UWH57Vq1bK/dyTphx9+kKurq3r27Glvc3FxUe/evdOtzsuXLysqKkq1atXS7t27HZYtSS+99JLDtLefojLGaPHixWrRooWMMQ7vxdDQUEVFRTnMNy2ef/55h+1Sq1YtJSQkpNulyKldzurVqxUZGalOnTo5vL5s2bKpevXq+vHHH5PN87nnnrP/38/PT6VLl5aXl5eeeuope3vp0qXl5+fnsM3T8rmePXu2/RReaty+D7h06ZLWrVunp556SleuXLEv6++//1ZoaKiOHDmi06dPp2ret7+XJcf3WWxsrC5evGjvY5X0nrgf+/Pvv/9egYGB6tSpk73N1dVVffv21dWrV7VhwwaH8Tt06OCwL7t9P+6MB+40R9Ih5CtXrqRq/BMnTsjFxcX+xzZJYGCg/Pz8kn3Ikw7dpeT2YUm9++92CDcqKko3btxQdHS0ypcvn6qaUysyMlLff/+9wsPDHfo91KxZU4sXL9bhw4f10EMPOUxTuHBhh+dJb8jLly9L+uc19u/fX5MmTdK8efNUq1YttWzZUs8884w9aGTLlk0hISHauHGjpH/CRK1atfT4448rISFBW7duVUBAgC5duuQQJo4cOaJffvnljh0Zz58/7/A8pW0xaNAgrVmzRtWqVVPJkiXVuHFjPf300/ZTKfdi/v/hzNsVLlzYYd307dtXL774osqUKaNnnnlGp06d0jfffKM5c+aoRYsWOnTokL1/w63zTe2OpFq1ag47ok6dOqly5coKDw9X8+bN7YGvS5cuCg8P14kTJ1SkSBEtXLhQ8fHxevbZZ1O1nHs5efKkhg0bpm+//db+HkiS1EcmiYeHR7JtlytXLofpTpw4ofz58ytHjhwO493++Uur7777TqNGjdLevXsd+jrdur6TPuu3v29uX/aFCxcUGRmpGTNm3PGKr9vfi6l1r89XernXcpL2TfXr109x+ttPxaW0bX19fVWoUKFk72lfX1+H15PWz3Va3L4tjx49KmOM3nzzTb355pt3XF7BggXTPG/pn7AyYsQILViwIFndSZ+HCxcupPv+/MSJEypVqlSyDv1Jp0Vu/zt1P95nD2SYKFCgQJpvEpTanXxKV27caVhS56J3331XlSpVSnEab29vXbp0KXVFptHChQsVFxeniRMnauLEicmGz5s3TyNGjHBoy5YtW4rzuvWP7MSJE9W1a1d98803WrVqlfr27auxY8dq69atKlSokCTp8ccf1+jRoxUbG6uNGzdq6NCh8vPzU/ny5bVx40YFBARIkkOYSExMVKNGjfTaa6+lWMPtwSelbREcHKyIiAh99913+uGHH7R48WJ9+OGHGjZsWLLXeit/f39Jqfuwffnllzp48KC+/fZbJSQk6KuvvtKqVatUtWpVlStXTjNnztTWrVvtnbZunW+ePHnuOf+UuLi4qF69epoyZYqOHDmicuXKSZI6duyofv36ad68eXr99df1+eefq2rVqg59eZyVkJCgRo0a6dKlSxo0aJDKlCkjLy8vnT59Wl27dk3Wee5O7x1n2Wy2FMPd7R06k/rh1K5dWx9++KHy588vV1dXzZo1K1Udb2+X9LqeeeaZO34RePjhh9M8Xyl1n6/0cK/lJL3GuXPnpth36tYgfLf5peb1pPVznRZ32ucOGDDgjkeQUxtcU9q/PPXUU9q8ebMGDhyoSpUqydvbW4mJiXriiSeSfR4y0v14nz1wYUKSmjdvrhkzZmjLli0KCQm567hFihRRYmKijhw54tD55dy5c4qMjHS4eVFaJd1TwMfHRw0bNrzjeHnz5pWPj889A1BaD4/NmzdP5cuX1/Dhw5MN+/jjjzV//vy7/oG9mwoVKqhChQp64403tHnzZtWsWVMfffSRRo0aJemfkHDjxg198cUXOn36tD001K5d2x4mHnroIXuokP5ZX1evXr3rukoNLy8v+70hbty4obZt22r06NEaMmSIPDw8UpymTJkykv65rPhuYmJiNHDgQL399tvy8/PTuXPnFB8frwIFCkj6ZweUK1euZIdSjx07JhcXF0s7zps3b0qSrl69am/LnTu3/bRV586dtWnTpmQdVZ21f/9+HT58WHPmzFGXLl3s7atXr3Z6nkWKFNGPP/6omJgYh6MTt18xJP3zbSqlw7K3fwtbvHixPDw8tHLlSodLMmfNmpVs2YmJiTp27JhKlSp1x2XnzZtXOXPmVEJCguX3YmaVtG/Kly/ffX+N6fW5To3ixYtL+ucUQHov7/Lly1q7dq1GjBjhcBO62+8vcz/250WKFNEvv/yixMREh6MThw4dsg+/3x64PhPSP3d79PLy0nPPPadz584lG/77779rypQpkqSmTZtKUrId8KRJkyQpxZ7eqVWlShWVKFFCEyZMcPgDkCTpUi0XFxe1bt1ay5YtS/E2uElpMuk658jIyHsu+9SpU/rpp5/01FNP6cknn0z26Natm44ePWq/SiO1oqOj7X/UklSoUEEuLi4Oh5erV68uV1dXjRs3Trlz57Z/k65Vq5a2bt2qDRs2OByVkP5J/Vu2bHG4IVSSyMjIZMtNye2XaLm5uals2bIyxtz1crOCBQsqKCjonrchHjdunHLlymU/5+/v76/s2bPbP9QXL17UhQsXkn3b27Vrl8qVK2c/FZRW8fHxWrVqldzc3JL1+H722Wd14MABDRw4UNmyZVPHjh2dWsbtkr7d3Pptxhhj/+w4IzQ0VPHx8Zo5c6a9LTEx0X6Z4a1KlCihQ4cOOVzSuG/fvmSXVWfLlk02m83hiMXx48eT3Ro56Zvqhx9+6NA+derUZPNr166dFi9enOIfhPtxKee/LTQ0VD4+PhozZkyKn4v0fI1p+Vyn9tLQO8mXL5/q1q2rjz/+WGfOnEk23MrrSunzICX/23E/9udNmzbV2bNnHa7GuXnzpqZOnSpvb2/VqVMnLS/FKQ/kkYkSJUpo/vz56tChg4KDgx3ugLl582b7JTWSVLFiRYWFhWnGjBmKjIxUnTp1tH37ds2ZM0etW7dWvXr1nK7DxcVFn3zyiZo0aaJy5cqpW7duKliwoE6fPq0ff/xRPj4+WrZsmSRpzJgxWrVqlerUqaPnn39ewcHBOnPmjBYuXKiff/5Zfn5+qlSpkrJly6Zx48YpKipK7u7uql+/vvLly5ds2fPnz5cxxn4Z5u2aNm2q7Nmza968eapevXqqX9O6desUHh6u9u3b66GHHtLNmzc1d+5c+w44SY4cOVSlShVt3brVfo8J6Z8jE9euXdO1a9eShYmBAwfq22+/VfPmzdW1a1dVqVJF165d0/79+7Vo0SIdP378nqcJGjdurMDAQNWsWVMBAQE6ePCgPvjgAzVr1uyenXJbtWqlpUuXyhiT4reGkydP6t1339Xy5cvtO5bs2bOrVatWeuWVV3Ty5EktXbpUBQoUcDgiFh8frw0bNiTr+Hc3K1assAeU8+fPa/78+Tpy5IgGDx6c7Hx2s2bN5O/vr4ULF6pJkyYpvh/u5OjRo/ajSbeqXLmyGjdurBIlSmjAgAE6ffq0fHx8tHjxYkvnXVu3bq1q1arp1Vdf1dGjR1WmTBl9++239lN9t6737t27a9KkSQoNDVWPHj10/vx5ffTRRypXrpy9o3XS6580aZKeeOIJPf300zp//rymTZumkiVL6pdffrGPV6VKFbVr106TJ0/W33//bb809PDhw8mW/c477+jHH39U9erV1bNnT5UtW1aXLl3S7t27tWbNmvt2avLf4uPjo+nTp+vZZ5/VI488oo4dOypv3rw6efKkli9frpo1a+qDDz5Il2Wl5XOd1ktDUzJt2jQ9/vjjqlChgnr27KnixYvr3Llz2rJli/7880/t27fPqfn6+PjYL42Nj49XwYIFtWrVqhSPZqb3/vz555/Xxx9/rK5du2rXrl0qWrSoFi1aZD8S+a/c0djp60D+Aw4fPmx69uxpihYtatzc3EzOnDlNzZo1zdSpUx0uG4qPjzcjRowwxYoVM66uriYoKMgMGTLEYRxj7nwpXdJllXe6XHLPnj2mbdu2xt/f37i7u5siRYqYp556yqxdu9ZhvBMnTpguXbqYvHnzGnd3d1O8eHHTu3dvh0s1Z86caYoXL26yZct218tEK1SoYAoXLnzX9VO3bl2TL18+Ex8ff8fXkHSpUdIle3/88Yfp3r27KVGihPHw8DC5c+c29erVM2vWrEk2/4EDBxpJZty4cQ7tJUuWNJLM77//nmyaK1eumCFDhpiSJUsaNzc3kydPHlOjRg0zYcIEc+PGDYeabr+kyxhjPv74Y1O7dm37ui5RooQZOHCgiYqKuuu6MMaY3bt3G0lm48aNKQ5v3769adu2bbL2c+fOmRYtWpicOXOaRx55xOzcudNh+IoVKxwuz72blC4N9fDwMJUqVTLTp0+/4+WeL730kpFk5s+ff89lJEm61DmlR48ePYwxxhw4cMA0bNjQeHt7mzx58piePXuaffv2JbuMMywszHh5eSVbRtJldre6cOGCefrpp03OnDmNr6+v6dq1q9m0aZOR5HCZoTHGfP7556Z48eLGzc3NVKpUyaxcuTLFS0M//fRTU6pUKePu7m7KlCljZs2aleKyr127Znr37m1y585tvL29TevWre2X2L7zzjsO4547d8707t3bBAUFGVdXVxMYGGgaNGhgZsyYkap1m9KlobdfKpj0uUvL5d6puTQ0tcv58ccfTWhoqPH19TUeHh6mRIkSpmvXrg7v4Ttt2zp16qR4GXZK+8nUfK6TlqU0XBqa0j7AGGN+//1306VLFxMYGGhcXV1NwYIFTfPmzc2iRYvuOY+k982FCxeSzffPP/80bdq0MX5+fsbX19e0b9/e/PXXX8kuhzXG2v48pcuiz507Z7p162by5Mlj3NzcTIUKFRw+g/daLynVmBa2/z8TAKnQoEEDFShQINnvIVjRunVr2Wy2ZDdAS0/9+vXTp59+qrNnzya7UiIr+Prrr9WmTRv9/PPPqb7yJr3s3btXlStX1ueff67OnTv/q8sGsgrCBJAG27ZtU61atXTkyJF06dR08OBBVahQQXv37k33S3+TxMbGKigoSM2bN0/W6TAzun79ukNP+YSEBDVu3Fg7d+7U2bNn73rFVHovW/rnrphz587V8ePHFRQUdN+WDWRlD2SfCcBZ1atX140bN9JtfsHBwanqOOqM8+fPa82aNVq0aJH+/vvvZLfUzaz69Omj69evKyQkRHFxcVqyZIk2b96sMWPG3NcgIf3zuz27du1SvXr1lD17dq1YsUIrVqzQ888/T5AA7oIwAfxHHThwQJ07d1a+fPn0/vvv3/FeJplN/fr1NXHiRH333XeKjY1VyZIlNXXq1H/lZ6Br1Kih1atX6+2339bVq1dVuHBhvfXWWxo6dOh9XzaQlXGaAwAAWPJA3mcCAACkH8IEAACw5D/fZyIxMVF//fWXcubMmS6/kggAwIPCGKMrV66oQIECyX5I7Fb/+TDx119/0QsbAAALTp06Zf+hxpT858NE0m1ET506lew2wwAA4M6io6MVFBR0z1ty/+fDRNKpDR8fH8IEAABOuFc3ATpgAgAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALAke0YXkFUVHbw8o0v4zzv+TrOMLgEAkAocmQAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJdkzugAASIuig5dndAn/ecffaZbRJSCL4cgEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsyTRh4p133pHNZtMrr7xib4uNjVXv3r3l7+8vb29vtWvXTufOncu4IgEAQDKZIkzs2LFDH3/8sR5++GGH9n79+mnZsmVauHChNmzYoL/++ktt27bNoCoBAEBKMjxMXL16VZ07d9bMmTOVK1cue3tUVJQ+/fRTTZo0SfXr11eVKlU0a9Ysbd68WVu3bs3AigEAwK0yPEz07t1bzZo1U8OGDR3ad+3apfj4eIf2MmXKqHDhwtqyZcsd5xcXF6fo6GiHBwAAuH+yZ+TCFyxYoN27d2vHjh3Jhp09e1Zubm7y8/NzaA8ICNDZs2fvOM+xY8dqxIgR6V0qAAC4gww7MnHq1Cm9/PLLmjdvnjw8PNJtvkOGDFFUVJT9cerUqXSbNwAASC7DwsSuXbt0/vx5PfLII8qePbuyZ8+uDRs26P3331f27NkVEBCgGzduKDIy0mG6c+fOKTAw8I7zdXd3l4+Pj8MDAADcPxl2mqNBgwbav3+/Q1u3bt1UpkwZDRo0SEFBQXJ1ddXatWvVrl07SVJERIROnjypkJCQjCgZAACkIMPCRM6cOVW+fHmHNi8vL/n7+9vbe/Toof79+yt37tzy8fFRnz59FBISosceeywjSgYAACnI0A6Y9/Lee+/JxcVF7dq1U1xcnEJDQ/Xhhx9mdFkAAOAWmSpMrF+/3uG5h4eHpk2bpmnTpmVMQQAA4J4y/D4TAAAgayNMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLMtWloQCA/66ig5dndAn/ecffaZYhy+XIBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsyZ7RBQD/tqKDl2d0Cf95x99pltElAPgXcWQCAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWJLdmYmOHTumjRs36sSJE4qJiVHevHlVuXJlhYSEyMPDI71rBAAAmViawsS8efM0ZcoU7dy5UwEBASpQoIA8PT116dIl/f777/Lw8FDnzp01aNAgFSlS5H7VDAAAMpFUh4nKlSvLzc1NXbt21eLFixUUFOQwPC4uTlu2bNGCBQtUtWpVffjhh2rfvn26FwwAADKXVIeJd955R6GhoXcc7u7urrp166pu3boaPXq0jh8/nh71AQCATC7VHTDvFiRu5+/vrypVqtxzvOnTp+vhhx+Wj4+PfHx8FBISohUrVtiHx8bGqnfv3vL395e3t7fatWunc+fOpboOAABw/znVAfNWy5cv1/r165WQkKCaNWuqXbt2qZ62UKFCeuedd1SqVCkZYzRnzhy1atVKe/bsUbly5dSvXz8tX75cCxculK+vr8LDw9W2bVtt2rTJatkAACCdWAoTb775ppYsWaJmzZrJGKN+/fpp/fr1mjp1aqqmb9GihcPz0aNHa/r06dq6dasKFSqkTz/9VPPnz1f9+vUlSbNmzVJwcLC2bt2qxx57LMV5xsXFKS4uzv48OjrayVcHAABSI033mdi5c6fD8y+//FI7d+7U+PHj9d5772nZsmX6/PPPnSokISFBCxYs0LVr1xQSEqJdu3YpPj5eDRs2tI9TpkwZFS5cWFu2bLnjfMaOHStfX1/74/aOogAAIH2lKUy8+OKLeuWVVxQTEyNJKl68uCZOnKiIiAjt379f06dP10MPPZSmAvbv3y9vb2+5u7vrxRdf1NKlS1W2bFmdPXtWbm5u8vPzcxg/ICBAZ8+eveP8hgwZoqioKPvj1KlTaaoHAACkTZrCxLZt25Q/f3498sgjWrZsmf73v/9pz549qlGjhmrVqqU///xT8+fPT1MBpUuX1t69e7Vt2zb16tVLYWFhOnDgQJrmcSt3d3d7h86kBwAAuH/S1GciW7ZsGjRokNq3b69evXrJy8tLH3zwgQoUKOB0AW5ubipZsqQkqUqVKtqxY4emTJmiDh066MaNG4qMjHQ4OnHu3DkFBgY6vTwAAJC+nPptjuLFi2vlypVq06aNateurWnTpqVbQYmJiYqLi1OVKlXk6uqqtWvX2odFRETo5MmTCgkJSbflAQAAa9J0ZCIyMlJjxozRwYMHVbFiRQ0ePFhNmzbVq6++qscee0wzZ85UhQoVUj2/IUOGqEmTJipcuLCuXLmi+fPna/369Vq5cqV8fX3Vo0cP9e/fX7lz55aPj4/69OmjkJCQO17JAQAA/n1pChNhYWGKjIxUp06dtHbtWvXq1Utz587V7NmztXbtWnXo0EEtWrTQuHHjUjW/8+fPq0uXLjpz5ox8fX318MMPa+XKlWrUqJEk6b333pOLi4vatWunuLg4hYaG6sMPP0z7qwQAAPdNmsLEunXrtGfPHpUsWVI9e/a093WQpAYNGmj37t0aOXJkquf36aef3nW4h4eHpk2blq6nUQAAQPpKU5+JUqVKacaMGTp8+LA++uijZL8M6uHhoTFjxqRrgQAAIHNLU5j43//+p3Xr1qly5cqaP3++pk+ffr/qAgAAWUSaTnNUqlQp2V0wAQDAgy3VRyaMMfezDgAAkEWlOkyUK1dOCxYs0I0bN+463pEjR9SrVy+98847losDAACZX6pPc0ydOlWDBg3SSy+9pEaNGqlq1aoqUKCAPDw8dPnyZR04cEA///yzfvvtN4WHh6tXr173s24AAJBJpDpMNGjQQDt37tTPP/+sL7/8UvPmzdOJEyd0/fp15cmTR5UrV1aXLl3UuXNn5cqV637WDAAAMpE0dcCUpMcff1yPP/74/agFAABkQU79NgcAAEASwgQAALCEMAEAACwhTAAAAEsIEwAAwBKnwsTu3bu1f/9++/NvvvlGrVu31uuvv37Pm1oBAID/FqfCxAsvvKDDhw9Lkv744w917NhROXLk0MKFC/Xaa6+la4EAACBzcypMHD58WJUqVZIkLVy4ULVr19b8+fM1e/ZsLV68OD3rAwAAmZxTYcIYo8TEREnSmjVr1LRpU0lSUFCQLl68mH7VAQCATM+pMFG1alWNGjVKc+fO1YYNG9SsWTNJ0rFjxxQQEJCuBQIAgMzNqTAxefJk7d69W+Hh4Ro6dKhKliwpSVq0aJFq1KiRrgUCAIDMLc2/zZGQkKDIyEj99NNPyX7Q691331W2bNnSrTgAAJD5pfnIRLZs2dS4cWNFRkYmG+bh4SFXV9f0qAsAAGQRTp3mKF++vP7444/0rgUAAGRBToWJUaNGacCAAfruu+905swZRUdHOzwAAMCDI819JiTZLwVt2bKlbDabvd0YI5vNpoSEhPSpDgAAZHpOhYkff/wxvesAAABZlFNhok6dOuldBwAAyKKc/tXQjRs36plnnlGNGjV0+vRpSdLcuXP1888/p1txAAAg83MqTCxevFihoaHy9PTU7t27FRcXJ0mKiorSmDFj0rVAAACQuTl9NcdHH32kmTNnOtxXombNmtq9e3e6FQcAADI/p8JERESEateunazd19c3xZtZAQCA/y6nwkRgYKCOHj2arP3nn39W8eLFLRcFAACyDqfCRM+ePfXyyy9r27Ztstls+uuvvzRv3jwNGDBAvXr1Su8aAQBAJubUpaGDBw9WYmKiGjRooJiYGNWuXVvu7u4aMGCA+vTpk941AgCATMypMGGz2TR06FANHDhQR48e1dWrV1W2bFl5e3und30AACCTcypMrFu3TjVq1JCHh4fKli2b3jUBAIAsxKkw0bJlS928eVOPPvqo6tatqzp16qhmzZry9PRM7/oAAEAm51QHzMuXL2vt2rVq0qSJtm/frjZt2sjPz081a9bUG2+8kd41AgCATMypMOHq6qqaNWvq9ddf18qVK7V161Z16tRJ27dv19ixY9O7RgAAkIk5dZrj8OHDWr9+vdavX68NGzYoLi5OtWrV0oQJE1S3bt10LhEAAGRmToWJMmXKKG/evHr55Zc1ePBgVahQQTabLb1rAwAAWYBTpzn69u2rggULauTIkXrxxRc1dOhQrVq1SjExMeldHwAAyOScChOTJ0/W7t27dfbsWQ0ZMkQ3btzQ0KFDlSdPHtWsWTO9awQAAJmYU2EiSUJCguLj4xUXF6fY2FjFxcUpIiIivWoDAABZgNOnOR5++GEFBATohRde0F9//aWePXtqz549unDhQnrXCAAAMjGnOmCeOXNGzz//vOrWravy5cund00AACALcSpMLFy4ML3rAAAAWZRTpznmzJmj5cuX25+/9tpr8vPzU40aNXTixIl0Kw4AAGR+ToWJMWPG2H+HY8uWLZo2bZrGjx+vPHnyqF+/fulaIAAAyNycOs1x6tQplSxZUpL09ddfq127dnr++edVs2ZN7oAJAMADxqkjE97e3vr7778lSatWrVKjRo0kSR4eHrp+/Xr6VQcAADI9p45MNGrUSM8995wqV66sw4cPq2nTppKk3377TUWLFk3P+gAAQCbn1JGJadOmKSQkRBcuXNDixYvl7+8vSdq1a5c6deqUrgUCAIDMzakjE35+fvrggw+StY8YMcJyQQAAIGtxKkxIUmRkpLZv367z588rMTHR3m6z2fTss8+mS3EAACDzcypMLFu2TJ07d9bVq1fl4+Pj8PPjhAkAAB4sTvWZePXVV9W9e3ddvXpVkZGRunz5sv1x6dKl9K4RAABkYk6FidOnT6tv377KkSNHetcDAACyGKfCRGhoqHbu3JnetQAAgCzIqT4TzZo108CBA3XgwAFVqFBBrq6uDsNbtmyZLsUBAIDMz6kw0bNnT0nSyJEjkw2z2WxKSEiwVhUAAMgynAoTt14KCgAAHmxO9Zm4k8jIyBRvZgUAAP670iVMrF27Vk8//bTy58+v4cOHp8csAQBAFuF0mDh16pRGjhypYsWKqXHjxrLZbFq6dKnOnj2bnvUBAIBMLk1hIj4+XgsXLlRoaKhKly6tvXv36t1335WLi4uGDh2qJ554ItmVHQAA4L8tTR0wCxYsqDJlyuiZZ57RggULlCtXLknil0IBAHiApenIxM2bN2Wz2WSz2ZQtW7b7VRMAAMhC0hQm/vrrLz3//PP64osvFBgYqHbt2mnp0qUOP/QFAAAeLGkKEx4eHurcubPWrVun/fv3Kzg4WH379tXNmzc1evRorV69mhtWAQDwgHH6ao4SJUpo1KhROnHihJYvX664uDg1b95cAQEB6VkfAADI5Jy6A+atXFxc1KRJEzVp0kQXLlzQ3Llz06MuAACQRaTrHTDz5s2r/v37p+csAQBAJpeuYQIAADx4CBMAAMASwgQAALDEqTAxcuRIxcTEJGu/fv26Ro4cabkoAACQdTgVJkaMGKGrV68ma4+JidGIESMsFwUAALIOp8KEMSbFu17u27dPuXPntlwUAADIOtJ0n4lcuXLZf5vjoYcecggUCQkJunr1ql588cV0LxIAAGReaQoTkydPljFG3bt314gRI+Tr62sf5ubmpqJFiyokJCTdiwQAAJlXmsJEWFiYJKlYsWKqWbOmsme3fANNAACQxTnVZ+LatWtau3ZtsvaVK1dqxYoVlosCAABZh1NhYvDgwSn+OqgxRoMHD7ZcFAAAyDqcChNHjhxR2bJlk7WXKVNGR48etVwUAADIOpwKE76+vvrjjz+StR89elReXl6WiwIAAFmHU2GiVatWeuWVV/T777/b244ePapXX31VLVu2TLfiAABA5udUmBg/fry8vLxUpkwZFStWTMWKFVNwcLD8/f01YcKEVM9n7NixevTRR5UzZ07ly5dPrVu3VkREhMM4sbGx6t27t/z9/eXt7a127drp3LlzzpQNAADuA6eu7fT19dXmzZu1evVq7du3T56ennr44YdVu3btNM1nw4YN6t27tx599FHdvHlTr7/+uho3bqwDBw7YT5f069dPy5cv18KFC+Xr66vw8HC1bdtWmzZtcqZ0AACQzpy+UYTNZlPjxo1Vu3Ztubu7p3h77Xv54YcfHJ7Pnj1b+fLl065du1S7dm1FRUXp008/1fz581W/fn1J0qxZsxQcHKytW7fqsccec7Z8AACQTpw6zZGYmKi3335bBQsWlLe3t44dOyZJevPNN/Xpp586XUxUVJQk2X/fY9euXYqPj1fDhg3t45QpU0aFCxfWli1bUpxHXFycoqOjHR4AAOD+cSpMjBo1SrNnz9b48ePl5uZmby9fvrw++eQTpwpJTEzUK6+8opo1a6p8+fKSpLNnz8rNzU1+fn4O4wYEBOjs2bMpzmfs2LHy9fW1P4KCgpyqBwAApI5TYeKzzz7TjBkz1LlzZ2XLls3eXrFiRR06dMipQnr37q1ff/1VCxYscGr6JEOGDFFUVJT9cerUKUvzAwAAd+dUn4nTp0+rZMmSydoTExMVHx+f5vmFh4fru+++008//aRChQrZ2wMDA3Xjxg1FRkY6HJ04d+6cAgMDU5yXu7u73N3d01wDAABwjlNHJsqWLauNGzcma1+0aJEqV66c6vkYYxQeHq6lS5dq3bp1KlasmMPwKlWqyNXV1eF3QCIiInTy5El+nRQAgEzCqSMTw4YNU1hYmE6fPq3ExEQtWbJEERER+uyzz/Tdd9+lej69e/fW/Pnz9c033yhnzpz2fhC+vr7y9PSUr6+vevToof79+yt37tzy8fFRnz59FBISwpUcAABkEk7fAXPZsmVas2aNvLy8NGzYMB08eFDLli1To0aNUj2f6dOnKyoqSnXr1lX+/Pntjy+//NI+znvvvafmzZurXbt2ql27tgIDA7VkyRJnygYAAPdBmo9M3Lx5U2PGjFH37t21evVqSws3xtxzHA8PD02bNk3Tpk2ztCwAAHB/pPnIRPbs2TV+/HjdvHnzftQDAACyGKdOczRo0EAbNmxI71oAAEAW5FQHzCZNmmjw4MHav3+/qlSpkuxnx/nlUAAAHhxOhYmXXnpJkjRp0qRkw2w2mxISEqxVBQAAsgynwkRiYmJ61wEAALKoNPeZiI+PV/bs2fXrr7/ej3oAAEAWk+Yw4erqqsKFC3MqAwAASHLyao6hQ4fq9ddf16VLl9K7HgAAkMU41Wfigw8+0NGjR1WgQAEVKVIk2dUcu3fvTpfiAABA5udUmGjdunU6lwEAALIqp8LE8OHD07sOAACQRTkVJpLs2rVLBw8elCSVK1cuTT8/DgAA/hucChPnz59Xx44dtX79evn5+UmSIiMjVa9ePS1YsEB58+ZNzxoBAEAm5tTVHH369NGVK1f022+/6dKlS7p06ZJ+/fVXRUdHq2/fvuldIwAAyMScOjLxww8/aM2aNQoODra3lS1bVtOmTVPjxo3TrTgAAJD5OXVkIjExUa6ursnaXV1dudU2AAAPGKfCRP369fXyyy/rr7/+sredPn1a/fr1U4MGDdKtOAAAkPk5FSY++OADRUdHq2jRoipRooRKlCihYsWKKTo6WlOnTk3vGgEAQCbmVJ+JoKAg7d69W2vWrNGhQ4ckScHBwWrYsGG6FgcAADI/p+8zYbPZ1KhRIzVq1Cg96wEAAFlMmk5zrFu3TmXLllV0dHSyYVFRUSpXrpw2btyYbsUBAIDML01hYvLkyerZs6d8fHySDfP19dULL7ygSZMmpVtxAAAg80tTmNi3b5+eeOKJOw5v3Lixdu3aZbkoAACQdaQpTJw7dy7F+0skyZ49uy5cuGC5KAAAkHWkKUwULFhQv/766x2H//LLL8qfP7/logAAQNaRpjDRtGlTvfnmm4qNjU027Pr16xo+fLiaN2+ebsUBAIDML02Xhr7xxhtasmSJHnroIYWHh6t06dKSpEOHDmnatGlKSEjQ0KFD70uhAAAgc0pTmAgICNDmzZvVq1cvDRkyRMYYSf/ccyI0NFTTpk1TQEDAfSkUAABkTmm+aVWRIkX0/fff6/Llyzp69KiMMSpVqpRy5cp1P+oDAACZnNN3wMyVK5ceffTR9KwFAABkQU790BcAAEASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASzI0TPz0009q0aKFChQoIJvNpq+//tphuDFGw4YNU/78+eXp6amGDRvqyJEjGVMsAABIUYaGiWvXrqlixYqaNm1aisPHjx+v999/Xx999JG2bdsmLy8vhYaGKjY29l+uFAAA3En2jFx4kyZN1KRJkxSHGWM0efJkvfHGG2rVqpUk6bPPPlNAQIC+/vprdezY8d8sFQAA3EGm7TNx7NgxnT17Vg0bNrS3+fr6qnr16tqyZcsdp4uLi1N0dLTDAwAA3D+ZNkycPXtWkhQQEODQHhAQYB+WkrFjx8rX19f+CAoKuq91AgDwoMu0YcJZQ4YMUVRUlP1x6tSpjC4JAID/tEwbJgIDAyVJ586dc2g/d+6cfVhK3N3d5ePj4/AAAAD3T6YNE8WKFVNgYKDWrl1rb4uOjta2bdsUEhKSgZUBAIBbZejVHFevXtXRo0ftz48dO6a9e/cqd+7cKly4sF555RWNGjVKpUqVUrFixfTmm2+qQIECat26dcYVDQAAHGRomNi5c6fq1atnf96/f39JUlhYmGbPnq3XXntN165d0/PPP6/IyEg9/vjj+uGHH+Th4ZFRJQMAgNtkaJioW7eujDF3HG6z2TRy5EiNHDnyX6wKAACkRabtMwEAALIGwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACzJEmFi2rRpKlq0qDw8PFS9enVt3749o0sCAAD/X6YPE19++aX69++v4cOHa/fu3apYsaJCQ0N1/vz5jC4NAAAoC4SJSZMmqWfPnurWrZvKli2rjz76SDly5ND//ve/jC4NAABIyp7RBdzNjRs3tGvXLg0ZMsTe5uLiooYNG2rLli0pThMXF6e4uDj786ioKElSdHR0utaWGBeTrvNDcum9zZKw7e6/+7XtJLbfv4HPXtaV3tsuaX7GmLuOl6nDxMWLF5WQkKCAgACH9oCAAB06dCjFacaOHasRI0Ykaw8KCrovNeL+8Z2c0RXAWWy7rI3tl3Xdr2135coV+fr63nF4pg4TzhgyZIj69+9vf56YmKhLly7J399fNpstAyvLWNHR0QoKCtKpU6fk4+OT0eUgDdh2WRfbLuti2/3DGKMrV66oQIECdx0vU4eJPHnyKFu2bDp37pxD+7lz5xQYGJjiNO7u7nJ3d3do8/Pzu18lZjk+Pj4P9AcjK2PbZV1su6yLbae7HpFIkqk7YLq5ualKlSpau3atvS0xMVFr165VSEhIBlYGAACSZOojE5LUv39/hYWFqWrVqqpWrZomT56sa9euqVu3bhldGgAAUBYIEx06dNCFCxc0bNgwnT17VpUqVdIPP/yQrFMm7s7d3V3Dhw9PdgoImR/bLuti22VdbLu0sZl7Xe8BAABwF5m6zwQAAMj8CBMAAMASwgQAALCEMAFJ0uzZs1N9P460jIv75/jx47LZbNq7d29GlwL8p3Xt2lWtW7e2P69bt65eeeWVVE2blnGzskx/NQf+HR06dFDTpk0zuowsqW7duqpUqZImT56c0aXgPujatasiIyP19ddfZ3QpyCSWLFkiV1fXjC4jUyFMQJLk6ekpT0/PjC4DyDQSEhIe6Fvw485y586d0SVkOpzmyCQWLVqkChUqyNPTU/7+/mrYsKGuXbtmP7w2YsQI5c2bVz4+PnrxxRd148YN+7Q//PCDHn/8cfn5+cnf31/NmzfX77//bh+edDh8yZIlqlevnnLkyKGKFSs6/PLq7acu9u3bp3r16ilnzpzy8fFRlSpVtHPnToeaV65cqeDgYHl7e+uJJ57QmTNn7t8KyqS6du2qDRs2aMqUKbLZbLLZbPr999/Vo0cPFStWTJ6enipdurSmTJniMN3NmzfVt29f+zYbNGiQwsLCHA6l3mu7pmTDhg2qVq2a3N3dlT9/fg0ePFg3b960D79y5Yo6d+4sLy8v5c+fX++9995/5jBs3bp1FR4ervDwcPn6+ipPnjx688037b92ePnyZXXp0kW5cuVSjhw51KRJEx05csQ+fdJn4Ntvv1XZsmXl7u6u7t27a86cOfrmm2/s23f9+vVav369bDabIiMj7dPv3btXNptNx48ft7fNnDlTQUFBypEjh9q0aaNJkyY5fM5uP3wuSa+88orq1q1rf56YmKixY8fa308VK1bUokWL7MMvX76szp07K2/evPL09FSpUqU0a9Ys+/BTp07pqaeekp+fn3Lnzq1WrVo51JjV3W39JG2ntWvXqmrVqsqRI4dq1KihiIgIh3mMGjVK+fLlU86cOfXcc89p8ODBqlSp0h2Xeftn5sMPP1SpUqXk4eGhgIAAPfnkk8lqfO2115Q7d24FBgbqrbfeSq+Xn2kQJjKBM2fOqFOnTurevbsOHjyo9evXq23btvad4Nq1a+3tX3zxhZYsWeLwy6jXrl1T//79tXPnTq1du1YuLi5q06aNEhMTHZYzdOhQDRgwQHv37tVDDz2kTp06OfyhuVXnzp1VqFAh7dixQ7t27dLgwYMdDuvFxMRowoQJmjt3rn766SedPHlSAwYMuA9rJ3ObMmWKQkJC1LNnT505c0ZnzpxRoUKFVKhQIS1cuFAHDhzQsGHD9Prrr+urr76yTzdu3DjNmzdPs2bN0qZNmxQdHZ3sMHpqt2uS06dPq2nTpnr00Ue1b98+TZ8+XZ9++qlGjRplH6d///7atGmTvv32W61evVobN27U7t2778u6yQhz5sxR9uzZtX37dk2ZMkWTJk3SJ598IumfP9w7d+7Ut99+qy1btsgYo6ZNmyo+Pt4+fUxMjMaNG6dPPvlEv/32m95//3099dRT9rB85swZ1ahRI1W1bNq0SS+++KJefvll7d27V40aNdLo0aPT/JrGjh2rzz77TB999JF+++039evXT88884w2bNggSXrzzTd14MABrVixQgcPHtT06dOVJ08eSVJ8fLxCQ0OVM2dObdy4UZs2bbKH/1u/kGRl91o/0j/7vokTJ2rnzp3Knj27unfvbh82b948jR49WuPGjdOuXbtUuHBhTZ8+PdXL37lzp/r27auRI0cqIiJCP/zwg2rXru0wzpw5c+Tl5aVt27Zp/PjxGjlypFavXm39xWcmBhlu165dRpI5fvx4smFhYWEmd+7c5tq1a/a26dOnG29vb5OQkJDi/C5cuGAkmf379xtjjDl27JiRZD755BP7OL/99puRZA4ePGiMMWbWrFnG19fXPjxnzpxm9uzZKc5/1qxZRpI5evSovW3atGkmICAg9S/6P6ROnTrm5Zdfvus4vXv3Nu3atbM/DwgIMO+++679+c2bN03hwoVNq1at7jiPO23XPXv2GGOMef31103p0qVNYmKifZpp06bZ3yvR0dHG1dXVLFy40D48MjLS5MiR4571ZwV16tQxwcHBDq9/0KBBJjg42Bw+fNhIMps2bbIPu3jxovH09DRfffWVMeb/3td79+51mG9YWFiy7fLjjz8aSeby5cv2tj179hhJ5tixY8YYYzp06GCaNWvmMF3nzp0dPmcpzfvll182derUMcYYExsba3LkyGE2b97sME6PHj1Mp06djDHGtGjRwnTr1i3FdTJ37txk74m4uDjj6elpVq5cmeI0Wcm91k/SdlqzZo192PLly40kc/36dWOMMdWrVze9e/d2mL5mzZqmYsWK9ue3b6dbP/OLFy82Pj4+Jjo6OsUa69SpYx5//HGHtkcffdQMGjQorS83U+PIRCZQsWJFNWjQQBUqVFD79u01c+ZMXb582WF4jhw57M9DQkJ09epVnTp1SpJ05MgRderUScWLF5ePj4+KFi0qSTp58qTDch5++GH7//Pnzy9JOn/+fIo19e/fX88995waNmyod955J9nh9Rw5cqhEiRIO87vTvB5E06ZNU5UqVZQ3b155e3trxowZ9u0RFRWlc+fOqVq1avbxs2XLpipVqjjMI7XbNcnBgwcVEhLicJ6/Zs2aunr1qv7880/98ccfio+Pd1iur6+vSpcunV4vO8M99thjDq8/JCRER44c0YEDB5Q9e3ZVr17dPszf31+lS5fWwYMH7W1ubm4OnxMrIiIiHNa1pGTP7+Xo0aOKiYlRo0aN5O3tbX989tln9s9kr169tGDBAlWqVEmvvfaaNm/ebJ9+3759Onr0qHLmzGmfNnfu3IqNjb3nKbOsIDXrR7r7vs/qdmrUqJGKFCmi4sWL69lnn9W8efMUExPjMM7t76n/4v6SDpiZQLZs2bR69Wpt3rxZq1at0tSpUzV06FBt27YtVdO3aNFCRYoU0cyZM1WgQAElJiaqfPnyyQ5j3nqaImmHe6dD5m+99ZaefvppLV++XCtWrNDw4cO1YMECtWnTJtm8kuZnuDO7JGnBggUaMGCAJk6cqJCQEOXMmVPvvvtuqrdnktRuV6QfT0/PVHW6dHH553vYre/5W0+XpJaLi0uyz82t87l69aokafny5SpYsKDDeEm/GdGkSROdOHFC33//vVavXq0GDRqod+/emjBhgq5evaoqVapo3rx5yZadN2/eNNeb2dxr/SQFirTs+9IqZ86c2r17t9avX69Vq1Zp2LBheuutt7Rjxw57/5iU9pfptfzMgiMTmYTNZlPNmjU1YsQI7dmzR25ublq6dKmkf75dXL9+3T7u1q1b5e3traCgIP3999+KiIjQG2+8oQYNGig4ONjhqIYVDz30kPr166dVq1apbdu2Dp268H/c3NyUkJBgf75p0ybVqFFDL730kipXrqySJUs6fEvy9fVVQECAduzYYW9LSEhw6LvgzHYNDg629wW4tZacOXOqUKFCKl68uFxdXR2WGxUVpcOHD1t6/ZnJ7YFt69atKlWqlMqWLaubN286DE9ax2XLlr3rPG/fvtL//SG+tdPx7ff7KF26tMO6lpTsed68eZN1XL51PkkdQU+ePKmSJUs6PIKCghzmExYWps8//1yTJ0/WjBkzJEmPPPKIjhw5onz58iWb3tfX966vOytI7fq5m9Rsp3vJnj27GjZsqPHjx+uXX37R8ePHtW7dujTNI6vjyEQmsG3bNq1du1aNGzdWvnz5tG3bNl24cEHBwcH65ZdfdOPGDfXo0UNvvPGGjh8/ruHDhys8PFwuLi7KlSuX/P39NWPGDOXPn18nT57U4MGDLdVz/fp1DRw4UE8++aSKFSumP//8Uzt27FC7du3S6RX/txQtWlTbtm3T8ePH5e3trVKlSumzzz7TypUrVaxYMc2dO1c7duxQsWLF7NP06dNHY8eOVcmSJVWmTBlNnTpVly9ftn9rcma7vvTSS5o8ebL69Omj8PBwRUREaPjw4erfv79cXFyUM2dOhYWFaeDAgcqdO7fy5cun4cOHy8XF5T9zCeTJkyfVv39/vfDCC9q9e7emTp2qiRMnqlSpUmrVqpV69uypjz/+WDlz5tTgwYNVsGBBtWrV6q7zLFq0qFauXKmIiAj5+/vL19fX/sfqrbfe0ujRo3X48GFNnDjRYbo+ffqodu3amjRpklq0aKF169ZpxYoVDuu6fv36evfdd/XZZ58pJCREn3/+uX799VdVrlxZ0j/fegcMGKB+/fopMTFRjz/+uKKiorRp0yb5+PgoLCxMw4YNU5UqVVSuXDnFxcXpu+++U3BwsKR/OlK/++67atWqlUaOHKlChQrpxIkTWrJkiV577TUVKlQonbfAv+te66dIkSL3nEefPn3Us2dPVa1aVTVq1NCXX36pX375RcWLF09VDd99953++OMP1a5dW7ly5dL333+vxMTE/9Tpw1TJ2C4bMMaYAwcOmNDQUJM3b17j7u5uHnroITN16lRjzP91/Bk2bJjx9/c33t7epmfPniY2NtY+/erVq01wcLBxd3c3Dz/8sFm/fr2RZJYuXWqMSd5RzxhjLl++bCSZH3/80Rjj2AEzLi7OdOzY0QQFBRk3NzdToEABEx4ebu+wdHtnTWOMWbp0qXlQ304RERHmscceM56enkaSOXTokOnatavx9fU1fn5+plevXmbw4MEOHbri4+NNeHi48fHxMbly5TKDBg0y7du3Nx07drSP48x2Xb9+vXn00UeNm5ubCQwMNIMGDTLx8fH24dHR0ebpp582OXLkMIGBgWbSpEmmWrVqZvDgwfd7Nd13derUMS+99JJ58cUX7ev19ddft3c+vHTpknn22WeNr6+v8fT0NKGhoebw4cP26VN6XxtjzPnz502jRo2Mt7e3w2fm559/NhUqVDAeHh6mVq1aZuHChQ4dMI0xZsaMGaZgwYLG09PTtG7d2owaNcoEBgY6zH/YsGEmICDA+Pr6mn79+pnw8HB7B0xjjElMTDSTJ082pUuXNq6uriZv3rwmNDTUbNiwwRhjzNtvv22Cg4ONp6enyZ07t2nVqpX5448/7NOfOXPGdOnSxeTJk8e4u7ub4sWLm549e5qoqCiLazxzuNv6SU1HWWOMGTlypMmTJ4/x9vY23bt3N3379jWPPfaYffjdOmBu3LjR1KlTx+TKlct4enqahx9+2Hz55ZcpjpukVatWJiwsLB3XQsbjJ8gzOe6+92BITExUcHCwnnrqKb399tv/2nKvXbumggULauLEierRo8e/ttz7ISvcibRnz546dOiQNm7cmNGl4C4aNWqkwMBAzZ07N6NLyTI4zQFkgBMnTmjVqlWqU6eO4uLi9MEHH+jYsWN6+umn7+ty9+zZo0OHDqlatWqKiorSyJEjJemeh/rhnAkTJqhRo0by8vLSihUrNGfOHH344YcZXRZuERMTo48++kihoaHKli2bvvjiC61Zs+a/dx+I+4wwAWQAFxcXzZ49WwMGDJAxRuXLl9eaNWvs57rvpwkTJigiIkJubm6qUqWKNm7caL/JEdLX9u3bNX78eF25ckXFixfX+++/r+eeey6jy8ItbDabvv/+e40ePVqxsbEqXbq0Fi9erIYNG2Z0aVkKpzkAAIAlXBoKAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIE8ADrGvXrmrdunVGlwEgiyNMAAAASwgTAFI0adIkVahQQV5eXgoKCtJLL72kq1ev2ofPnj1bfn5+WrlypYKDg+Xt7a0nnnjC4Se1b968qb59+8rPz0/+/v4aNGiQwsLCHI6GFC1aNNnvaVSqVElvvfVWqmuRpJkzZyooKEg5cuRQmzZtNGnSJPn5+TmM88033+iRRx6Rh4eHihcvrhEjRujmzZuW1xXwoCNMAEiRi4uL3n//ff3222+aM2eO1q1bp9dee81hnJiYGE2YMEFz587VTz/9pJMnT2rAgAH24ePGjdO8efM0a9Ysbdq0SdHR0U79aN29atm0aZNefPFFvfzyy9q7d68aNWqk0aNHO8xj48aN6tKli15++WUdOHBAH3/8sWbPnp1sPABOyNDfLAWQoW7/aeW7WbhwofH397c/nzVrlpFkjh49am+bNm2aCQgIsD8PCAgw7777rv35zZs3TeHChR2WWaRIEfPee+85LKtixYpm+PDhqa6lQ4cOplmzZg7jdO7c2eEnxRs0aGDGjBnjMM7cuXNN/vz577gcAKnDD30BSNGaNWs0duxYHTp0SNHR0bp586ZiY2MVExOjHDlySJJy5MihEiVK2KfJnz+/zp8/L0mKiorSuXPnVK1aNfvwbNmyqUqVKkpMTEzXWiIiItSmTRuHaapVq6bvvvvO/nzfvn3atGmTw5GIhISEZK8JQNpxmgNAMsePH1fz5s318MMPa/Hixdq1a5emTZsmSbpx44Z9PFdXV4fpbDabTBp/O9DFxSXZNPHx8Wmu5V6uXr2qESNGaO/evfbH/v37deTIEXl4eKSpZgCOODIBIJldu3YpMTFREydOlIvLP985vvrqqzTNw9fXVwEBAdqxY4dq164t6Z8jAbt371alSpXs4+XNm9eh02Z0dLSOHTuWplpKly6tHTt2OLTd/vyRRx5RRESESpYsmabXAeDeCBPAAy4qKkp79+51aMuTJ4/i4+M1depUtWjRQps2bdJHH32U5nn36dNHY8eOVcmSJVWmTBlNnTpVly9fls1ms49Tv359zZ49Wy1atJCfn5+GDRumbNmy2YeXLFnynrX06dNHtWvX1qRJk9SiRQutW7dOK1ascFjOsGHD1Lx5cxUuXFhPPvmkXFxctG/fPv36668aNWpUml8bgFtkdKcNABknLCzMSEr26NGjh5k0aZLJnz+/8fT0NKGhoeazzz4zkszly5eNMf90wLy1g6MxxixdutTculuJj4834eHhxsfHx+TKlcsMGjTItG/f3nTs2NE+TlRUlOnQoYPx8fExQUFBZvbs2ck6YN6rFmOMmTFjhilYsKDx9PQ0rVu3NqNGjTKBgYEO9f3www+mRo0axtPT0/j4+Jhq1aqZGTNmpNv6BB5UNmPSeIITAJyUmJio4OBgPfXUU3r77bfv67J69uypQ4cOaePGjfd1OQA4zQHgPjpx4oRWrVqlOnXqKC4uTh988IGOHTump59+Ot2XNWHCBDVq1EheXl5asWKF5syZow8//DDdlwMgOcIEgPvGxcVFs2fP1oABA2SMUfny5bVmzRoFBwen+7K2b9+u8ePH68qVKypevLjef/99Pffcc+m+HADJcZoDAABYwn0mAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJb8P8HgYOGyyvMxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 refraction/low vision 1 1 1 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 2 50.0 50.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 50.0 50.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAIjCAYAAAAHj8HUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeHklEQVR4nO3dd1gU1/s28HvpvSNYEMEGdsWGKGAl9kKsRMGC0Yg1dhMVa+wagzV+0dhFo8beCzYs2GJBsFfUKCAi/bx/+DI/10WFZQkyuT/XtVeyZ9qzMzvjzcyZWYUQQoCIiIhIxrQKugAiIiKi/MbAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDBe7s2bPQ09PD/fv3NTK/69evQ0dHB3///bdG5keFQ6lSpRAQEPCvL3flypVQKBQ4f/78v77swig6OhrNmjWDubk5FAoFtm3bVtAlAQC8vb3h7e1dIMsuqO+uOrK+7/fu3cvVdAqFAhMnTsyXmnJK44Hn9u3b+P777+Hs7AwDAwOYmZnBw8MDCxYswLt37zS9uHx3/fp1TJw4MdcbFwBGjhwJhUKBzp07a74wGRk3bhy6du0KR0dHqW3btm1wcXGBubk5WrdujSdPnqhM16ZNG/Tt21elvUKFCmjZsiXGjx+fo+Vn7cAfvooUKYKGDRtiz5496n+wbJQqVQqtWrXS6DxJs+7du6fyffjUS53jwn+dv78/rl69iqlTp2L16tWoWbPmv7bsvBzPNen169fQ0dHBpk2bCrSO/xodTc5s165d6NixI/T19dGjRw9UqlQJqampOHHiBEaMGIFr165h2bJlmlxkvrt+/TqCg4Ph7e2NUqVK5Xg6IQTWr1+PUqVKYceOHXjz5g1MTU3zr9BC6tKlSzh48CBOnToltd25cwedO3dG586d4e7ujvnz56Nnz57Yt2+fNM6+fftw/PhxREdHZzvffv36oUWLFrh9+zZKly6do1omTZoEJycnCCEQGxuLlStXokWLFtixYwdDSiEQFRUFLa28/w1na2uL1atXK7XNmTMHjx49wrx581TGpZx79+4dTp8+jXHjxiEoKOhfX/7njuf79+//1+rYt28fFAoFmjVr9q8tU1O6d++OLl26QF9fP1fTvXv3Djo6Go0cuaaxpd+9exddunSBo6MjDh8+jKJFi0rDBgwYgJiYGOzatSvPyxFCIDk5GYaGhirDkpOToaenp5GDXl4dPXoUjx49wuHDh+Hj44M///wT/v7+BV2WRqWnpyMzMxN6enpqzyM0NBQlS5ZE3bp1pbb9+/ejRIkSWLVqFRQKBVxdXdGoUSMkJyfDwMAA6enpGDp0KMaPH//Jf3CaNGkCS0tLrFq1CpMmTcpRLc2bN1f6a7N3796ws7PD+vXrGXgKgdwegD/F2NgY3333nVLbhg0b8Pr1a5X2/7rcHgNevHgBALCwsPjiuG/fvoWxsXFeysuVvBzHcmv37t3w8PDI0Xr42mhra0NbWzvX0xkYGORDNbmjsWQwc+ZMJCYmYsWKFUphJ0uZMmUwePBg6X16ejomT56M0qVLQ19fH6VKlcLYsWORkpKiNF3WJYB9+/ahZs2aMDQ0xNKlS3H06FEoFAps2LABP/30E4oXLw4jIyMkJCQAACIiIvDNN9/A3NwcRkZG8PLywsmTJ1Xqevz4MXr37o1ixYpBX18fTk5O6N+/P1JTU7Fy5Up07NgRANCwYUPpNPbRo0e/uD7Wrl2LChUqoGHDhmjSpAnWrl2rMk7WZ9i0aROmTp2KEiVKwMDAAI0bN0ZMTIzSuNHR0fD19YW9vT0MDAxQokQJdOnSBfHx8QCADh06oEaNGkrTtG7dGgqFAn/99ZfUFhERAYVCoXSpJi4uDkOGDIGDgwP09fVRpkwZzJgxA5mZmdI4Waf5Z8+ejfnz50vb7fr16wCAhQsXomLFijAyMoKlpSVq1qyJdevWfXE9bdu2DY0aNYJCoZDa3r17BwsLC6nNysoKQgjpkuhvv/2GjIwMDBw48JPz1dXVhbe3N7Zv3/7FGj7FwsIChoaG0l8lQgiUKlUKbdu2VRk3OTkZ5ubm+P7779VeXpbw8HB07NgRJUuWhL6+PhwcHDB06FCVS8IBAQEwMTHB48eP0a5dO5iYmMDW1hbDhw9HRkaG0rj//PMPunfvDjMzM1hYWMDf3x+XL1+GQqHAypUrpfE+1Y8hICBA5S/i2bNno169erC2toahoSHc3NywefNmlWnfvXuHQYMGwcbGBqampmjTpg0eP36c7TX9x48fo1evXrCzs4O+vj4qVqyI//3vfzlabx/3g8i6VHny5EkMGzYMtra2MDY2Rvv27aV/eDUpJSUlR8vZs2cPGjRoAGNjY5iamqJly5a4du2a0jhZ2/bBgwdo1aoVTExMULx4cYSEhAAArl69ikaNGsHY2BiOjo7Z7ms52a8B4OnTp7h58ybS0tI++/m+dAy4efMmvv32W1hZWcHAwAA1a9ZUOvZMnDhRumw9YsQIKBQK6Ts1ceJEKBQKXL9+Hd26dYOlpSXq168PALhy5QoCAgKkbhL29vbo1asX/vnnH5Ua83I8z+67//z5c+kPHwMDA1StWhWrVq365HpZtmyZtF5q1aqFc+fOqdSYmZmJvXv3omXLlp9d33fu3EHHjh1hZWUFIyMj1K1bV+mkgRACNjY2GDZsmNK8LSwsoK2tjbi4OKl9xowZ0NHRQWJiYrbLOn/+PBQKhcpnA/7vbNTOnTsBZN+H5/z58/Dx8YGNjQ0MDQ3h5OSEXr16Kc0nu/394sWLaN68OczMzGBiYoLGjRvjzJkzSuNocj/W2BmeHTt2wNnZGfXq1cvR+H369MGqVavw7bff4scff0RERASmT5+OGzduYOvWrUrjRkVFoWvXrvj+++8RGBiI8uXLS8MmT54MPT09DB8+HCkpKdDT08Phw4fRvHlzuLm5YcKECdDS0kJoaCgaNWqE8PBw1K5dGwDw5MkT1K5dG3Fxcejbty9cXFzw+PFjbN68GUlJSfD09MSgQYPw66+/YuzYsXB1dQUA6b+fkpKSgi1btuDHH38EAHTt2hU9e/bEs2fPYG9vrzL+L7/8Ai0tLQwfPhzx8fGYOXMm/Pz8EBERAQBITU2Fj48PUlJSMHDgQNjb2+Px48fYuXMn4uLiYG5ujgYNGmD79u1ISEiAmZkZhBA4efIktLS0EB4ejjZt2gB4/4+plpYWPDw8AABJSUnw8vLC48eP8f3336NkyZI4deoUxowZg6dPn2L+/PlKtYaGhiI5ORl9+/aFvr4+rKyssHz5cgwaNAjffvstBg8ejOTkZFy5cgURERHo1q3bJ9fT48eP8eDBA5WgVqtWLfz4449Yv3496tati6lTp6JMmTKwtLTEixcvEBwcjDVr1kBXV/ez28HNzU1pnXxJfHw8Xr58CSEEnj9/joULFyIxMVH6q16hUOC7777DzJkz8erVK1hZWUnT7tixAwkJCRo5AxAWFoakpCT0798f1tbWOHv2LBYuXIhHjx4hLCxMadyMjAz4+PigTp06mD17Ng4ePIg5c+agdOnS6N+/P4D3B8HWrVvj7Nmz6N+/P1xcXLB9+/Y8n3FcsGAB2rRpAz8/P6SmpmLDhg3o2LEjdu7cqXQwDwgIwKZNm9C9e3fUrVsXx44dy/ZgHxsbi7p160KhUCAoKAi2trbYs2cPevfujYSEBAwZMkStOgcOHAhLS0tMmDAB9+7dw/z58xEUFISNGzeq+9HVXs7q1avh7+8PHx8fzJgxA0lJSVi8eDHq16+PixcvKoXKjIwMNG/eHJ6enpg5cybWrl2LoKAgGBsbY9y4cfDz80OHDh2wZMkS9OjRA+7u7nBycgKQu/16zJgxWLVqFe7evZujy/bZHQOuXbsGDw8PFC9eHKNHj4axsTE2bdqEdu3aYcuWLWjfvj06dOgACwsLDB06FF27dkWLFi1gYmKiNO+OHTuibNmymDZtGoQQAIADBw7gzp076NmzJ+zt7aWuEdeuXcOZM2ekP4w0fTx/9+4dvL29ERMTg6CgIDg5OSEsLAwBAQGIi4tT+gMeANatW4c3b97g+++/h0KhwMyZM9GhQwfcuXNH6Vh17tw5vHjxAi1atPjkOo6NjUW9evWQlJSEQYMGwdraGqtWrUKbNm2wefNmtG/fHgqFAh4eHjh+/Lg03ZUrVxAfHw8tLS2cPHlS2s/Cw8NRvXp1lfWdpWbNmnB2dsamTZtUjgsbN26EpaUlfHx8sp32+fPnaNasGWxtbTF69GhYWFjg3r17+PPPPz/5+QDg2rVraNCgAczMzDBy5Ejo6upi6dKl8Pb2xrFjx1CnTh2l8TWyHwsNiI+PFwBE27ZtczT+pUuXBADRp08fpfbhw4cLAOLw4cNSm6OjowAg9u7dqzTukSNHBADh7OwskpKSpPbMzExRtmxZ4ePjIzIzM6X2pKQk4eTkJJo2bSq19ejRQ2hpaYlz586p1Jg1bVhYmAAgjhw5kqPPJoQQmzdvFgBEdHS0EEKIhIQEYWBgIObNm5ftZ3B1dRUpKSlS+4IFCwQAcfXqVSGEEBcvXhQARFhY2CeXee7cOQFA7N69WwghxJUrVwQA0bFjR1GnTh1pvDZt2ojq1atL7ydPniyMjY3FrVu3lOY3evRooa2tLR48eCCEEOLu3bsCgDAzMxPPnz9XGrdt27aiYsWKOV09koMHDwoAYseOHSrDBg0aJAAIAMLKykr6TgQGBopvvvkmR/Nft26dACAiIiI+O15oaKi0rA9f+vr6YuXKlUrjRkVFCQBi8eLFSu1t2rQRpUqVUvrOZcfR0VG0bNnys+N8+H3OMn36dKFQKMT9+/elNn9/fwFATJo0SWnc6tWrCzc3N+n9li1bBAAxf/58qS0jI0M0atRIABChoaFSu5eXl/Dy8lJZvr+/v3B0dPxsnampqaJSpUqiUaNGUtuFCxcEADFkyBClcQMCAgQAMWHCBKmtd+/eomjRouLly5dK43bp0kWYm5tnu14+5OjoKPz9/aX3Wdu1SZMmSttl6NChQltbW8TFxX12fh9q2bKlyufP7XLevHkjLCwsRGBgoNL0z549E+bm5krtWdt22rRpUtvr16+FoaGhUCgUYsOGDVL7zZs3VdZlTvfrD5d19+7dz66Dzx0DGjduLCpXriySk5OltszMTFGvXj1RtmxZlXnMmjVLafoJEyYIAKJr164qy81uu69fv14AEMePH5fa8no8//i7P3/+fAFArFmzRmpLTU0V7u7uwsTERCQkJCh9Jmtra/Hq1Stp3O3bt2d7fPv5559Vvksff3eHDBkiAIjw8HCp7c2bN8LJyUmUKlVKZGRkCCGEmDVrltDW1pZq+fXXX4Wjo6OoXbu2GDVqlBDi/b5uYWEhhg4dqvKZPzRmzBihq6ur9BlSUlKEhYWF6NWrl9SW9X3P+r5s3bpVAMh2vX/o4+9ou3bthJ6enrh9+7bU9uTJE2Fqaio8PT1VlqeJ/Vgjl7SyLiPltFPu7t27AUDpVBwA6YzIx319nJycPpku/f39lfrzXLp0CdHR0ejWrRv++ecfvHz5Ei9fvsTbt2/RuHFjHD9+HJmZmcjMzMS2bdvQunXrbO8S+PASS26tXbsWNWvWRJkyZQBAOm2d3WUtAOjZs6fS9eMGDRoAeH9KEwDMzc0BvD+1mJSUlO08stJ7VtoPDw9HiRIl0KNHD0RGRiIpKQlCCJw4cUKaP/D+bEKDBg1gaWkprauXL1+iSZMmyMjIUPrrAQB8fX1V+s1YWFjg0aNH2Z6+/ZysU9KWlpYqwxYsWID79+8jIiIC9+/fR8OGDXHp0iX88ccfmDdvHuLj4/Hdd9+hePHi8Pb2xo0bN1TmkTXfly9f5qiekJAQHDhwAAcOHMCaNWvQsGFD9OnTR+kvlXLlyqFOnTpK2/LVq1fYs2cP/Pz88vS9yfLh9/nt27d4+fIl6tWrByEELl68qDJ+v379lN43aNBA+u4AwN69e6Grq4vAwECpTUtLCwMGDNBYna9fv0Z8fDwaNGiAyMhIpWUDwA8//KA07ceXI4UQ2LJlC1q3bg0hhNJ30cfHB/Hx8UrzzY2+ffsqbZcGDRogIyNDY49ByOlyDhw4gLi4OHTt2lXp82lra6NOnTo4cuSIyjz79Okj/b+FhQXKly8PY2NjdOrUSWovX748LCwslLZ5bvbrlStXSpdrc+LjY8CrV69w+PBhdOrUCW/evJGW9c8//8DHxwfR0dF4/Phxjub98XcZUP6eJScn4+XLl1Kfv6zvRH4cz3fv3g17e3t07dpVatPV1cWgQYOQmJiIY8eOKY3fuXNnpWPZx8fxD+f7pctZu3fvRu3ataXLegBgYmKCvn374t69e9JlxKzvWNZNH+Hh4WjQoAEaNGiA8PBwAMDff/+NuLg4peN+djp37oy0tDSl493+/fsRFxf32TuNs/oh7dy584uXRbNkZGRg//79aNeuHZydnaX2okWLolu3bjhx4oSUK7JoYj/WSODJulzw5s2bHI1///59aGlpSYEgi729PSwsLFQ+QNZp2ux8PCzrrh1/f3/Y2toqvX7//XekpKQgPj4eL168QEJCAipVqpSjmnMqLi4Ou3fvhpeXF2JiYqSXh4cHzp8/j1u3bqlMU7JkSaX3WTvN69evpc84bNgw/P7777CxsYGPjw9CQkKk/jvA+45k7u7u0pc864tfv359ZGRk4MyZM7h+/TpevXql9MWPjo7G3r17VdZVkyZNALw/Xfmh7LbFqFGjYGJigtq1a6Ns2bIYMGBAtv2lPkX8/1PX2a2X2rVrS6dhBw0ahH79+sHFxQUDBgzAw4cPsX37dlSuXBmtW7dGenp6tvPN6cGudu3aaNKkCZo0aQI/Pz/s2rULFSpUQFBQEFJTU6XxevTogZMnT0rf07CwMKSlpaF79+45/syf8+DBAwQEBMDKykrql+Pl5QUAStsceN8R8OMAamlpKX13gPf7W9GiRWFkZKQ03sf7X27t3LkTdevWhYGBAaysrGBra4vFixcr1Zi1r3/8vfl42S9evEBcXByWLVum8l3s2bMnANXvYk59af/SlC8tJ+vY1KhRI5XPuH//fpXPl922NTc3R4kSJVS+0+bm5kqfJ7f7dW58vC1jYmIghMDPP/+ssrwJEybkannZHV9evXqFwYMHw87ODoaGhrC1tZXGy/qu5cfx/P79+yhbtqzKTTBZl8A+/ncqJ9+zZ8+eITIy8ouB5/79+0pdNz617Bo1asDIyEjluO/p6Ynz588jOTlZGvZheMpO1apV4eLionSJaOPGjbCxsUGjRo0+OZ2Xlxd8fX0RHBwMGxsbtG3bFqGhoSr9cT/04sULJCUlffIzZmZm4uHDh0rtmtiPNdKHx8zMDMWKFcv1g95y+g9RdndkfWpYVoe8WbNmoVq1atlOY2JiglevXuWsyFwKCwtDSkoK5syZgzlz5qgMX7t2LYKDg5XaPtXj/cMgMGfOHAQEBGD79u3Yv38/Bg0ahOnTp+PMmTMoUaIEgPdf6KlTp0pf8nHjxsHCwgKVKlVCeHg47OzsAEAp8GRmZqJp06YYOXJktjWUK1dO6X1228LV1RVRUVHYuXMn9u7diy1btmDRokUYP368ymf9kLW1NYCcfWE3btyIGzdu4K+//kJGRgY2bdqE/fv3o2bNmqhYsSKWL1+OM2fOKO3UWfO1sbH54vyzo6WlhYYNG2LBggWIjo5GxYoVAQBdunTB0KFDsXbtWowdOxZr1qxBzZo1s915cysjIwNNmzbFq1evMGrUKLi4uMDY2BiPHz9GQECASodTde6W+ByFQpFtAP24E3RWvzBPT08sWrQIRYsWha6uLkJDQ3PUWf1jWZ/ru++++2TfoipVquR6vkDO9i9N+NJysj7j6tWrs+3L9/Etu5+aX04+T27369z41DF3+PDhnzwTn9Nwnd3xpVOnTjh16hRGjBiBatWqwcTEBJmZmfjmm29U9oeClJPtsmfPHhgYGKBhw4YaWaauri7q1KmD48ePIyYmBs+ePUODBg1gZ2eHtLQ0REREIDw8HC4uLjl6hELnzp0xdepUvHz5Eqampvjrr7/QtWvXz95OrlAosHnzZpw5cwY7duzAvn370KtXL8yZMwdnzpz5ZL+h3NLEfqyxTsutWrXCsmXLcPr0abi7u392XEdHR2RmZiI6Olqpw1hsbCzi4uKUHkCXW1nPXDEzM5P+msmOra0tzMzMvhjScnsqdO3atahUqZL0l82Hli5dinXr1n02BHxO5cqVUblyZfz00084deoUPDw8sGTJEkyZMgXA+yCTmpqK9evX4/Hjx1Kw8fT0lAJPuXLlpOADvF9fiYmJn11XOWFsbCw9Oyc1NRUdOnTA1KlTMWbMmE/ejuji4gLg/SMNPicpKQkjRozA5MmTYWFhgdjYWKSlpaFYsWIA3h8kLS0tVU6b3717F1paWnk6uGedNfrw7gYrKyvpEqWfnx9Onjyp0rlbXVevXsWtW7ewatUq9OjRQ2o/cOCA2vN0dHTEkSNHkJSUpHSW5+M7AYH3fzV9fAoeUP1rdsuWLTAwMMC+ffuUbgcPDQ1VWXZmZibu3r2LsmXLfnLZtra2MDU1RUZGRp6/i1+rrGNTkSJF8v0zamq/zomsSxK6uroaX97r169x6NAhBAcHKz1I9OPnb+XH8dzR0RFXrlxBZmam0lmemzdvSsNza9euXWjYsOFn/4jPmndUVJRKe3bLbtCgAWbMmIGDBw/CxsYGLi4uUCgUqFixIsLDwxEeHp7jx2p07twZwcHB2LJlC+zs7JCQkIAuXbrkaNq6detKN5msW7cOfn5+2LBhg9Jl2Sy2trYwMjL65GfU0tKCg4NDjpabGxq7LX3kyJEwNjZGnz59EBsbqzL89u3bWLBgAQBIvdM//kdi7ty5APDF032f4+bmhtKlS2P27NnZ3oKXdRublpYW2rVrhx07dmT7SPis1Jj1HIgPb/H7lIcPH+L48ePo1KkTvv32W5VXz549ERMTI919lVMJCQkql2sqV64MLS0tpdOGderUga6uLmbMmAErKyvpjESDBg1w5swZHDt2TOU6bqdOnXD69Gmlh/pliYuLU1ludj6+PVRPTw8VKlSAEOKz13SLFy8OBweHLz6Sf8aMGbC0tJT6oFhbW0NHR0fa+V++fIkXL16o/NV84cIFVKxYUeoDlVtpaWnYv38/9PT0VO7k6N69O65fv44RI0ZAW1s7xweFL8n6K+bDv1qEENK+ow4fHx+kpaVh+fLlUltmZqZ0i/OHSpcujZs3byrd7nn58mWVS5Ta2tpQKBRKZ37u3bun8jMBWX/xL1q0SKl94cKFKvPz9fXFli1bsv1HKz9uI/+3+fj4wMzMDNOmTct2v9DkZ8zNfp3T29I/pUiRIvD29sbSpUvx9OlTleF5+VzZ7Q+A6r8d+XE8b9GiBZ49e6Z0iSc9PR0LFy6EiYmJdJk5p9LS0nDgwIEc/fvWokULnD17FqdPn5ba3r59i2XLlqFUqVKoUKGC1N6gQQOkpKRg/vz5qF+/vhTqGjRogNWrV+PJkydf7L+TxdXVFZUrV8bGjRuxceNGFC1aFJ6enp+d5vXr1yrbJ+vqyqcua2lra6NZs2bYvn270u3tsbGxWLduHerXr5+jO2tzS2NneEqXLo1169ahc+fOcHV1VXrS8qlTp6Tb+YD31wr9/f2xbNkyxMXFwcvLC2fPnsWqVavQrl27PJ3u09LSwu+//47mzZujYsWK6NmzJ4oXL47Hjx/jyJEjMDMzw44dOwAA06ZNw/79++Hl5YW+ffvC1dUVT58+RVhYGE6cOAELCwtUq1YN2tramDFjBuLj46Gvr49GjRqhSJEiKstet24dhBDSLeAfa9GiBXR0dLB27VqVW+4+5/DhwwgKCkLHjh1Rrlw5pKenY/Xq1dI/ElmMjIzg5uaGM2fOSM/gAd6f4Xn79i3evn2r8sUfMWIE/vrrL7Rq1QoBAQFwc3PD27dvcfXqVWzevBn37t374iWhZs2awd7eHh4eHrCzs8ONGzfw22+/oWXLll/syN62bVts3boVQohs//p68OABZs2ahV27dkkHPx0dHbRt2xZDhgzBgwcPsHXrVhQrVkzpzGJaWhqOHTum0ln2c/bs2SOFqOfPn2PdunWIjo7G6NGjVXa+li1bwtraGmFhYWjevHm234dPiYmJkc7Kfah69epo1qwZSpcujeHDh+Px48cwMzPDli1b8tTfpF27dqhduzZ+/PFHxMTEwMXFBX/99Zd0WffD9d6rVy/MnTsXPj4+6N27N54/f44lS5agYsWKSp0IW7Zsiblz5+Kbb75Bt27d8Pz5c4SEhKBMmTK4cuWKNJ6bmxt8fX0xf/58/PPPP9Jt6Vl92T5c9i+//IIjR46gTp06CAwMRIUKFfDq1StERkbi4MGD+XYZ+t9iZmaGxYsXo3v37qhRowa6dOkCW1tbPHjwALt27YKHhwd+++03jSwrN/t1bm9Lz05ISAjq16+PypUrIzAwEM7OzoiNjcXp06fx6NEjXL58Wa35mpmZSbflp6WloXjx4ti/f3+2Z4U1fTzv27cvli5dioCAAFy4cAGlSpXC5s2bpTO6uX1yflZH3JwEntGjR2P9+vVo3rw5Bg0aBCsrK2kbbdmyRemMk7u7O3R0dBAVFaX0Uzuenp5YvHgxAOQ48ADvz/KMHz8eBgYG6N279xcf5Ltq1SosWrQI7du3R+nSpfHmzRssX74cZmZmn731fsqUKThw4ADq16+PH374ATo6Oli6dClSUlIwc+bMHNebKzm+nyuHbt26JQIDA0WpUqWEnp6eMDU1FR4eHmLhwoVKtyympaWJ4OBg4eTkJHR1dYWDg4MYM2aM0jhCfPo23qxbuj91q/bFixdFhw4dhLW1tdDX1xeOjo6iU6dO4tChQ0rj3b9/X/To0UPY2toKfX194ezsLAYMGKB0m/jy5cuFs7Oz0NbW/uwt6pUrVxYlS5b87Prx9vYWRYoUEWlpaZ/8DFm3OWbdLnznzh3Rq1cvUbp0aWFgYCCsrKxEw4YNxcGDB1XmP2LECAFAzJgxQ6m9TJkyAoDSLYBZ3rx5I8aMGSPKlCkj9PT0hI2NjahXr56YPXu2SE1NVarp49tJhRBi6dKlwtPTU1rXpUuXFiNGjBDx8fGfXRdCCBEZGaly++WHOnbsKDp06KDSHhsbK1q3bi1MTU1FjRo1xPnz55WG79mzR+nRAJ+T3W3pBgYGolq1amLx4sWfvNX8hx9+EADEunXrvriMLFmPWcju1bt3byGEENevXxdNmjQRJiYmwsbGRgQGBorLly+r3ELu7+8vjI2NVZaRdYvvh168eCG6desmTE1Nhbm5uQgICBAnT54UAJRucRZCiDVr1ghnZ2ehp6cnqlWrJvbt25ftbekrVqwQZcuWFfr6+sLFxUWEhoZmu+y3b9+KAQMGCCsrK2FiYiLatWsn3d7/yy+/KI0bGxsrBgwYIBwcHISurq6wt7cXjRs3FsuWLcvRus3utvSPb5fN2u9y86iJnNyWntPlHDlyRPj4+Ahzc3NhYGAgSpcuLQICApS+w5/atl5eXtk+AiK742RO9uusZSEXt6VndwwQQojbt2+LHj16CHt7e6GrqyuKFy8uWrVqJTZv3vzFeWR9b168eKEy30ePHon27dsLCwsLYW5uLjp27CiePHmicpuzEHk7nmf3SIbY2FjRs2dPYWNjI/T09ETlypWV9sEvrZcPaxw+fLioUKFCtuvu4++uEO/X57fffissLCyEgYGBqF27tti5c2e209eqVUvlERyPHj0SAISDg0O203xKdHS0dEw6ceKEyvCPb0uPjIwUXbt2FSVLlhT6+vqiSJEiolWrVirH5Oy2V2RkpPDx8REmJibCyMhINGzYUJw6dSrb5WliP1b8/0KICkzjxo1RrFgxld8vyot27dpBoVCoPMRSk4YOHYoVK1bg2bNnKndAFQbbtm1D+/btceLECelBlP+WS5cuoXr16lizZg38/Pz+1WUTFYQKFSqgVatW+Xf2gr6o4H90iv7zpk2bho0bN2rsuSg3btzAzp07MXnyZI3MLzvJyclYs2YNfH19C0XY+fhnKTIyMrBw4UKYmZmpPOk6v5cNvO+DoaWl9cX+AURykJqais6dO0uPWKCCwTM8RLnw/PlzHDx4EJs3b8a2bdsQGRn5yccffE369OmDd+/ewd3dHSkpKfjzzz9x6tQpTJs2DWPGjMnXZQcHB+PChQto2LAhdHR0sGfPHuzZs0fqI0FE9G8o2N9qJypkrl+/Dj8/PxQpUgS//vproQg7wPuH3c2ZMwc7d+5EcnIyypQpg4ULFyIoKCjfl12vXj0cOHAAkydPRmJiIkqWLImJEydi3Lhx+b5sIqIsPMNDREREssc+PERERCR7DDxEREQke7Lvw5OZmYknT57A1NRUI79kTURE9F8hhMCbN29QrFixLz6E8Gsn+8Dz5MmTfPlNDiIiov+Khw8fSj9UXVjJPvBkPf774cOH+fLbHERERHKVkJAABweHXP+UxtdI9oEn6zKWmZkZAw8REZEa5NAlpHBfkCMiIiLKAQYeIiIikj0GHiIiIpI9Bh4iIiKSPQYeIiIikj0GHiIiIpI9Bh4iIiKSPQYeIiIikj0GHiIiIpI9Bh4iIiKSPQYeIiIikj0GHiIiIpI9Bh4iIiKSPQYeIiIikj0GHiIiIpK9Ag08EydOhEKhUHq5uLhIw5OTkzFgwABYW1vDxMQEvr6+iI2NLcCKiYiIqDAq8DM8FStWxNOnT6XXiRMnpGFDhw7Fjh07EBYWhmPHjuHJkyfo0KFDAVZLREREhZFOgRegowN7e3uV9vj4eKxYsQLr1q1Do0aNAAChoaFwdXXFmTNnULdu3X+7VCIiIiqkCvwMT3R0NIoVKwZnZ2f4+fnhwYMHAIALFy4gLS0NTZo0kcZ1cXFByZIlcfr06U/OLyUlBQkJCUovIiIi+m8r0DM8derUwcqVK1G+fHk8ffoUwcHBaNCgAf7++288e/YMenp6sLCwUJrGzs4Oz549++Q8p0+fjuDg4HyuHCg1ele+L+O/7t4vLfNlvtx2+S+/th3A7fdv4L5XeOXnvlfYFWjgad68ufT/VapUQZ06deDo6IhNmzbB0NBQrXmOGTMGw4YNk94nJCTAwcEhz7USERFR4VXgl7Q+ZGFhgXLlyiEmJgb29vZITU1FXFyc0jixsbHZ9vnJoq+vDzMzM6UXERER/bd9VYEnMTERt2/fRtGiReHm5gZdXV0cOnRIGh4VFYUHDx7A3d29AKskIiKiwqZAL2kNHz4crVu3hqOjI548eYIJEyZAW1sbXbt2hbm5OXr37o1hw4bBysoKZmZmGDhwINzd3XmHFhEREeVKgQaeR48eoWvXrvjnn39ga2uL+vXr48yZM7C1tQUAzJs3D1paWvD19UVKSgp8fHywaNGigiyZiIiICqECDTwbNmz47HADAwOEhIQgJCTkX6qIiIiI5Oir6sNDRERElB8YeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2vprA88svv0ChUGDIkCFSW3JyMgYMGABra2uYmJjA19cXsbGxBVckERERFUpfReA5d+4cli5diipVqii1Dx06FDt27EBYWBiOHTuGJ0+eoEOHDgVUJRERERVWBR54EhMT4efnh+XLl8PS0lJqj4+Px4oVKzB37lw0atQIbm5uCA0NxalTp3DmzJkCrJiIiIgKmwIPPAMGDEDLli3RpEkTpfYLFy4gLS1Nqd3FxQUlS5bE6dOnPzm/lJQUJCQkKL2IiIjov02nIBe+YcMGREZG4ty5cyrDnj17Bj09PVhYWCi129nZ4dmzZ5+c5/Tp0xEcHKzpUomIiKgQK7AzPA8fPsTgwYOxdu1aGBgYaGy+Y8aMQXx8vPR6+PChxuZNREREhVOBBZ4LFy7g+fPnqFGjBnR0dKCjo4Njx47h119/hY6ODuzs7JCamoq4uDil6WJjY2Fvb//J+err68PMzEzpRURERP9tBXZJq3Hjxrh69apSW8+ePeHi4oJRo0bBwcEBurq6OHToEHx9fQEAUVFRePDgAdzd3QuiZCIiIiqkCizwmJqaolKlSkptxsbGsLa2ltp79+6NYcOGwcrKCmZmZhg4cCDc3d1Rt27dgiiZiIiICqkC7bT8JfPmzYOWlhZ8fX2RkpICHx8fLFq0qKDLIiIiokLmqwo8R48eVXpvYGCAkJAQhISEFExBREREJAsF/hweIiIiovzGwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREsqejzkR3795FeHg47t+/j6SkJNja2qJ69epwd3eHgYGBpmskIiIiypNcBZ61a9diwYIFOH/+POzs7FCsWDEYGhri1atXuH37NgwMDODn54dRo0bB0dExv2omIiIiypUcB57q1atDT08PAQEB2LJlCxwcHJSGp6Sk4PTp09iwYQNq1qyJRYsWoWPHjhovmIiIiCi3chx4fvnlF/j4+HxyuL6+Pry9veHt7Y2pU6fi3r17mqiPiIiIKM9yHHg+F3Y+Zm1tDWtra7UKIiIiItI0tTotf2jXrl04evQoMjIy4OHhAV9fX03URURERKQxebot/eeff8bIkSOhUCgghMDQoUMxcOBATdVGREREpBG5OsNz/vx51KxZU3q/ceNGXL58GYaGhgCAgIAAeHt7Y+HChZqtkoiIiCgPcnWGp1+/fhgyZAiSkpIAAM7OzpgzZw6ioqJw9epVLF68GOXKlcuXQomIiIjUlavAExERgaJFi6JGjRrYsWMH/ve//+HixYuoV68eGjRogEePHmHdunX5VSsRERGRWnJ1SUtbWxujRo1Cx44d0b9/fxgbG+O3335DsWLF8qs+IiIiojxTq9Oys7Mz9u3bh/bt28PT0xMhISGarouIiIhIY3IVeOLi4jBy5Ei0bt0aP/30E9q3b4+IiAicO3cOdevWxdWrV/OrTiIiIiK15Srw+Pv7IyIiAi1btkRUVBT69+8Pa2trrFy5ElOnTkXnzp0xatSo/KqViIiISC256sNz+PBhXLx4EWXKlEFgYCDKlCkjDWvcuDEiIyMxadIkjRdJRERElBe5OsNTtmxZLFu2DLdu3cKSJUtUfhHdwMAA06ZN02iBRERERHmVq8Dzv//9D4cPH0b16tWxbt06LF68OL/qIiIiItKYXF3SqlatGs6fP59ftRARERHlixyf4RFC5GcdRERERPkmx4GnYsWK2LBhA1JTUz87XnR0NPr3749ffvklz8URERERaUKOL2ktXLgQo0aNwg8//ICmTZuiZs2aKFasGAwMDPD69Wtcv34dJ06cwLVr1xAUFIT+/fvnZ91EREREOZbjwNO4cWOcP38eJ06cwMaNG7F27Vrcv38f7969g42NDapXr44ePXrAz88PlpaW+VkzERERUa7kqtMyANSvXx/169fPj1qIiIiI8oVav6VFREREVJgw8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsqRV4IiMjcfXqVen99u3b0a5dO4wdO/aLDyYkIiIi+repFXi+//573Lp1CwBw584ddOnSBUZGRggLC8PIkSM1WiARERFRXqkVeG7duoVq1aoBAMLCwuDp6Yl169Zh5cqV2LJliybrIyIiIsoztQKPEAKZmZkAgIMHD6JFixYAAAcHB7x8+VJz1RERERFpgFqBp2bNmpgyZQpWr16NY8eOoWXLlgCAu3fvws7OLsfzWbx4MapUqQIzMzOYmZnB3d0de/bskYYnJydjwIABsLa2homJCXx9fREbG6tOyURERPQfplbgmT9/PiIjIxEUFIRx48ahTJkyAIDNmzejXr16OZ5PiRIl8Msvv+DChQs4f/48GjVqhLZt2+LatWsAgKFDh2LHjh0ICwvDsWPH8OTJE3To0EGdkomIiOg/LNe/pZWRkYG4uDgcP35c5UdCZ82aBW1t7RzPq3Xr1krvp06disWLF+PMmTMoUaIEVqxYgXXr1qFRo0YAgNDQULi6uuLMmTOoW7dubksnIiKi/6hcn+HR1tZGs2bNEBcXpzLMwMAAurq6ahWSkZGBDRs24O3bt3B3d8eFCxeQlpaGJk2aSOO4uLigZMmSOH369Cfnk5KSgoSEBKUXERER/bepdUmrUqVKuHPnjkYKuHr1KkxMTKCvr49+/fph69atqFChAp49ewY9PT1YWFgojW9nZ4dnz559cn7Tp0+Hubm59HJwcNBInURERFR4qRV4pkyZguHDh2Pnzp14+vRpns6olC9fHpcuXUJERAT69+8Pf39/XL9+XZ2yAABjxoxBfHy89Hr48KHa8yIiIiJ5yHUfHgDSbeht2rSBQqGQ2oUQUCgUyMjIyPG89PT0pE7Pbm5uOHfuHBYsWIDOnTsjNTUVcXFxSmd5YmNjYW9v/8n56evrQ19fP5efiIiIiORMrcBz5MgRTdchyczMREpKCtzc3KCrq4tDhw7B19cXABAVFYUHDx7A3d0935ZPRERE8qNW4PHy8tLIwseMGYPmzZujZMmSePPmDdatW4ejR49i3759MDc3R+/evTFs2DBYWVnBzMwMAwcOhLu7O+/QIiIiolxRK/AAQHh4OJYuXYo7d+4gLCwMxYsXx+rVq+Hk5IT69evnaB7Pnz9Hjx498PTpU5ibm6NKlSrYt28fmjZtCgCYN28etLS04Ovri5SUFPj4+GDRokXqlkxERET/UWoFni1btqB79+7w8/NDZGQkUlJSAADx8fGYNm0adu/enaP5rFix4rPDDQwMEBISgpCQEHXKJCIiIgKQh7u0lixZguXLlys9d8fDwwORkZEaK46IiIhIE9QKPFFRUfD09FRpNzc3z/aBhEREREQFSa3AY29vj5iYGJX2EydOwNnZOc9FEREREWmSWoEnMDAQgwcPRkREBBQKBZ48eYK1a9di+PDh6N+/v6ZrJCIiIsoTtTotjx49GpmZmWjcuDGSkpLg6ekJfX19DB8+HAMHDtR0jURERER5olbgUSgUGDduHEaMGIGYmBgkJiaiQoUKMDEx0XR9RERERHmmVuA5fPgw6tWrBwMDA1SoUEHTNRERERFplFqBp02bNkhPT0etWrXg7e0NLy8veHh4wNDQUNP1EREREeWZWp2WX79+jUOHDqF58+Y4e/Ys2rdvDwsLC3h4eOCnn37SdI1EREREeaJW4NHV1YWHhwfGjh2Lffv24cyZM+jatSvOnj2L6dOna7pGIiIiojxR65LWrVu3cPToURw9ehTHjh1DSkoKGjRogNmzZ8Pb21vDJRIRERHljVqBx8XFBba2thg8eDBGjx6NypUrQ6FQaLo2IiIiIo1Q65LWoEGDULx4cUyaNAn9+vXDuHHjsH//fiQlJWm6PiIiIqI8UyvwzJ8/H5GRkXj27BnGjBmD1NRUjBs3DjY2NvDw8NB0jURERER5olbgyZKRkYG0tDSkpKQgOTkZKSkpiIqK0lRtRERERBqh9iWtKlWqwM7ODt9//z2ePHmCwMBAXLx4ES9evNB0jURERER5olan5adPn6Jv377w9vZGpUqVNF0TERERkUapFXjCwsI0XQcRERFRvlHrktaqVauwa9cu6f3IkSNhYWGBevXq4f79+xorjoiIiEgT1Ao806ZNk3436/Tp0wgJCcHMmTNhY2ODoUOHarRAIiIiorxS65LWw4cPUaZMGQDAtm3b4Ovri759+8LDw4NPWiYiIqKvjlpneExMTPDPP/8AAPbv34+mTZsCAAwMDPDu3TvNVUdERESkAWqd4WnatCn69OmD6tWr49atW2jRogUA4Nq1ayhVqpQm6yMiIiLKM7XO8ISEhMDd3R0vXrzAli1bYG1tDQC4cOECunbtqtECiYiIiPJKrTM8FhYW+O2331Tag4OD81wQERERkaapFXgAIC4uDmfPnsXz58+RmZkptSsUCnTv3l0jxRERERFpglqBZ8eOHfDz80NiYiLMzMygUCikYQw8RERE9LVRqw/Pjz/+iF69eiExMRFxcXF4/fq19Hr16pWmayQiIiLKE7UCz+PHjzFo0CAYGRlpuh4iIiIijVMr8Pj4+OD8+fOaroWIiIgoX6jVh6dly5YYMWIErl+/jsqVK0NXV1dpeJs2bTRSHBEREZEmqBV4AgMDAQCTJk1SGaZQKJCRkZG3qoiIiIg0SK3A8+Ft6ERERERfO7X68HxKXFxctg8kJCIiIipIGgk8hw4dQrdu3VC0aFFMmDBBE7MkIiIi0hi1A8/Dhw8xadIkODk5oVmzZlAoFNi6dSuePXumyfqIiIiI8ixXgSctLQ1hYWHw8fFB+fLlcenSJcyaNQtaWloYN24cvvnmG5U7toiIiIgKWq46LRcvXhwuLi747rvvsGHDBlhaWgIAfyGdiIiIvmq5OsOTnp4OhUIBhUIBbW3t/KqJiIiISKNyFXiePHmCvn37Yv369bC3t4evry+2bt2q9OOhRERERF+bXAUeAwMD+Pn54fDhw7h69SpcXV0xaNAgpKenY+rUqThw4AAfOkhERERfHbXv0ipdujSmTJmC+/fvY9euXUhJSUGrVq1gZ2enyfqIiIiI8kytJy1/SEtLC82bN0fz5s3x4sULrF69WhN1EREREWmMRp+0bGtri2HDhmlylkRERER5ptHAQ0RERPQ1YuAhIiIi2WPgISIiItlTK/BMmjQJSUlJKu3v3r3DpEmT8lwUERERkSapFXiCg4ORmJio0p6UlITg4OA8F0VERESkSWoFHiFEtk9Xvnz5MqysrPJcFBEREZEm5eo5PJaWltJvaZUrV04p9GRkZCAxMRH9+vXTeJFEREREeZGrwDN//nwIIdCrVy8EBwfD3NxcGqanp4dSpUrB3d1d40USERER5UWuAo+/vz8AwMnJCR4eHtDRyfODmomIiIjynVp9eN6+fYtDhw6ptO/btw979uzJc1FEREREmqRW4Bk9enS2v4ouhMDo0aPzXBQRERGRJqkVeKKjo1GhQgWVdhcXF8TExOS5KCIiIiJNUivwmJub486dOyrtMTExMDY2znNRRERERJqkVuBp27YthgwZgtu3b0ttMTEx+PHHH9GmTRuNFUdERESkCWoFnpkzZ8LY2BguLi5wcnKCk5MTXF1dYW1tjdmzZ2u6RiIiIqI8Ueu+cnNzc5w6dQoHDhzA5cuXYWhoiCpVqsDT01PT9RERERHlmdoP0lEoFGjWrBk8PT2hr6+f7U9NEBEREX0N1LqklZmZicmTJ6N48eIwMTHB3bt3AQA///wzVqxYodECiYiIiPJKrcAzZcoUrFy5EjNnzoSenp7UXqlSJfz+++8aK46IiIhIE9QKPH/88QeWLVsGPz8/aGtrS+1Vq1bFzZs3NVYcERERkSaoFXgeP36MMmXKqLRnZmYiLS0tz0URERERaZJagadChQoIDw9Xad+8eTOqV6+e56KIiIiINEmtu7TGjx8Pf39/PH78GJmZmfjzzz8RFRWFP/74Azt37tR0jURERER5ovaTlnfs2IGDBw/C2NgY48ePx40bN7Bjxw40bdpU0zUSERER5Umuz/Ckp6dj2rRp6NWrFw4cOJAfNRERERFpVK7P8Ojo6GDmzJlIT0/Pj3qIiIiINE6tS1qNGzfGsWPHNF0LERERUb5Qq9Ny8+bNMXr0aFy9ehVubm4wNjZWGs5fTCciIqKviVqB54cffgAAzJ07V2WYQqFARkZG3qoiIiIi0iC1Ak9mZqam6yAiIiLKN7nuw5OWlgYdHR38/fff+VEPERERkcblOvDo6uqiZMmSvGxFREREhYZad2mNGzcOY8eOxatXrzRdDxEREZHGqRV4fvvtNxw/fhzFihVD+fLlUaNGDaVXTk2fPh21atWCqakpihQpgnbt2iEqKkppnOTkZAwYMADW1tYwMTGBr68vYmNj1SmbiIiI/qPU6rTcrl07jSz82LFjGDBgAGrVqoX09HSMHTsWzZo1w/Xr16Vb3YcOHYpdu3YhLCwM5ubmCAoKQocOHXDy5EmN1EBERETyp1bgmTBhgkYWvnfvXqX3K1euRJEiRXDhwgV4enoiPj4eK1aswLp169CoUSMAQGhoKFxdXXHmzBnUrVtXI3UQERGRvKkVeLJcuHABN27cAABUrFgR1atXz1Mx8fHxAAArKytp/mlpaWjSpIk0jouLC0qWLInTp09nG3hSUlKQkpIivU9ISMhTTURERFT4qRV4nj9/ji5duuDo0aOwsLAAAMTFxaFhw4bYsGEDbG1tcz3PzMxMDBkyBB4eHqhUqRIA4NmzZ9DT05OWkcXOzg7Pnj3Ldj7Tp09HcHBwrpdPRERE8qVWp+WBAwfizZs3uHbtGl69eoVXr17h77//RkJCAgYNGqRWIQMGDMDff/+NDRs2qDV9ljFjxiA+Pl56PXz4ME/zIyIiosJPrTM8e/fuxcGDB+Hq6iq1VahQASEhIWjWrFmu5xcUFISdO3fi+PHjKFGihNRub2+P1NRUxMXFKZ3liY2Nhb29fbbz0tfXh76+fq5rICIiIvlS6wxPZmYmdHV1Vdp1dXVz9bMTQggEBQVh69atOHz4MJycnJSGu7m5QVdXF4cOHZLaoqKi8ODBA7i7u6tTOhEREf0HqXWGp1GjRhg8eDDWr1+PYsWKAQAeP36MoUOHonHjxjmez4ABA7Bu3Tps374dpqamUr8cc3NzGBoawtzcHL1798awYcNgZWUFMzMzDBw4EO7u7rxDi4iIiHJMrcDz22+/oU2bNihVqhQcHBwAAA8fPkSlSpWwZs2aHM9n8eLFAABvb2+l9tDQUAQEBAAA5s2bBy0tLfj6+iIlJQU+Pj5YtGiROmUTERHRf5RagcfBwQGRkZE4ePAgbt68CQBwdXVVun08J4QQXxzHwMAAISEhCAkJUadUIiIiIvWfw6NQKNC0aVM0bdpUk/UQERERaVyuOi0fPnwYFSpUyPZhfvHx8ahYsSLCw8M1VhwRERGRJuQq8MyfPx+BgYEwMzNTGWZubo7vv/8ec+fO1VhxRERERJqQq8Bz+fJlfPPNN58c3qxZM1y4cCHPRRERERFpUq4CT2xsbLbP38mio6ODFy9e5LkoIiIiIk3KVeApXrw4/v77708Ov3LlCooWLZrnooiIiIg0KVeBp0WLFvj555+RnJysMuzdu3eYMGECWrVqpbHiiIiIiDQhV7el//TTT/jzzz9Rrlw5BAUFoXz58gCAmzdvIiQkBBkZGRg3bly+FEpERESkrlwFHjs7O5w6dQr9+/fHmDFjpAcHKhQK+Pj4ICQkBHZ2dvlSKBEREZG6cv3gQUdHR+zevRuvX79GTEwMhBAoW7YsLC0t86M+IiIiojxT+0nLlpaWqFWrliZrISIiIsoXueq0TERERFQYMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewx8BAREZHsMfAQERGR7DHwEBERkewVaOA5fvw4WrdujWLFikGhUGDbtm1Kw4UQGD9+PIoWLQpDQ0M0adIE0dHRBVMsERERFVoFGnjevn2LqlWrIiQkJNvhM2fOxK+//oolS5YgIiICxsbG8PHxQXJy8r9cKRERERVmOgW58ObNm6N58+bZDhNCYP78+fjpp5/Qtm1bAMAff/wBOzs7bNu2DV26dPk3SyUiIqJC7Kvtw3P37l08e/YMTZo0kdrMzc1Rp04dnD59+pPTpaSkICEhQelFRERE/21fbeB59uwZAMDOzk6p3c7OThqWnenTp8Pc3Fx6OTg45GudRERE9PX7agOPusaMGYP4+Hjp9fDhw4IuiYiIiArYVxt47O3tAQCxsbFK7bGxsdKw7Ojr68PMzEzpRURERP9tX23gcXJygr29PQ4dOiS1JSQkICIiAu7u7gVYGRERERU2BXqXVmJiImJiYqT3d+/exaVLl2BlZYWSJUtiyJAhmDJlCsqWLQsnJyf8/PPPKFasGNq1a1dwRRMREVGhU6CB5/z582jYsKH0ftiwYQAAf39/rFy5EiNHjsTbt2/Rt29fxMXFoX79+ti7dy8MDAwKqmQiIiIqhAo08Hh7e0MI8cnhCoUCkyZNwqRJk/7FqoiIiEhuvto+PERERESawsBDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREssfAQ0RERLLHwENERESyx8BDREREslcoAk9ISAhKlSoFAwMD1KlTB2fPni3okoiIiKgQ+eoDz8aNGzFs2DBMmDABkZGRqFq1Knx8fPD8+fOCLo2IiIgKia8+8MydOxeBgYHo2bMnKlSogCVLlsDIyAj/+9//Cro0IiIiKiR0CrqAz0lNTcWFCxcwZswYqU1LSwtNmjTB6dOns50mJSUFKSkp0vv4+HgAQEJCgkZry0xJ0uj8SJWmt1kWbrv8l1/bDuD2+zdw3yu8NL3tsuYnhNDofAvCVx14Xr58iYyMDNjZ2Sm129nZ4ebNm9lOM336dAQHB6u0Ozg45EuNlH/M5xd0BaQubrvCjduv8MqvbffmzRuYm5vnz8z/JV914FHHmDFjMGzYMOl9ZmYmXr16BWtraygUigKsrGAlJCTAwcEBDx8+hJmZWUGXQ7nAbVd4cdsVXtx27wkh8ObNGxQrVqygS8mzrzrw2NjYQFtbG7GxsUrtsbGxsLe3z3YafX196OvrK7VZWFjkV4mFjpmZ2X965y3MuO0KL267wovbDoX+zE6Wr7rTsp6eHtzc3HDo0CGpLTMzE4cOHYK7u3sBVkZERESFyVd9hgcAhg0bBn9/f9SsWRO1a9fG/Pnz8fbtW/Ts2bOgSyMiIqJC4qsPPJ07d8aLFy8wfvx4PHv2DNWqVcPevXtVOjLT5+nr62PChAkql/vo68dtV3hx2xVe3HbyoxByuNeMiIiI6DO+6j48RERERJrAwENERESyx8BDREREssfAQwCAlStX5vh5RbkZl/LPvXv3oFAocOnSpYIuhUjWAgIC0K5dO+m9t7c3hgwZkqNpczMu5a+v/i4t+nd07twZLVq0KOgyCiVvb29Uq1YN8+fPL+hSKB8EBAQgLi4O27ZtK+hS6Cvx559/QldXt6DLoFxi4CEAgKGhIQwNDQu6DKKvRkZGxn/652jo06ysrAq6BFIDL2l9JTZv3ozKlSvD0NAQ1tbWaNKkCd6+fSudSg0ODoatrS3MzMzQr18/pKamStPu3bsX9evXh4WFBaytrdGqVSvcvn1bGp516ePPP/9Ew4YNYWRkhKpVqyr94vzHl6kuX76Mhg0bwtTUFGZmZnBzc8P58+eVat63bx9cXV1hYmKCb775Bk+fPs2/FfSVCggIwLFjx7BgwQIoFAooFArcvn0bvXv3hpOTEwwNDVG+fHksWLBAabr09HQMGjRI2majRo2Cv7+/0mnzL23X7Bw7dgy1a9eGvr4+ihYtitGjRyM9PV0a/ubNG/j5+cHY2BhFixbFvHnzZHPK3dvbG0FBQQgKCoK5uTlsbGzw888/S7/y/Pr1a/To0QOWlpYwMjJC8+bNER0dLU2ftQ/89ddfqFChAvT19dGrVy+sWrUK27dvl7bv0aNHcfToUSgUCsTFxUnTX7p0CQqFAvfu3ZPali9fDgcHBxgZGaF9+/aYO3eu0n728aUSABgyZAi8vb2l95mZmZg+fbr0fapatSo2b94sDX/9+jX8/Pxga2sLQ0NDlC1bFqGhodLwhw8folOnTrCwsICVlRXatm2rVGNh97n1k7WdDh06hJo1a8LIyAj16tVDVFSU0jymTJmCIkWKwNTUFH369MHo0aNRrVq1Ty7z431m0aJFKFu2LAwMDGBnZ4dvv/1WpcaRI0fCysoK9vb2mDhxoqY+PuUCA89X4OnTp+jatSt69eqFGzdu4OjRo+jQoYN0oD506JDUvn79evz5559Kvwj/9u1bDBs2DOfPn8ehQ4egpaWF9u3bIzMzU2k548aNw/Dhw3Hp0iWUK1cOXbt2VfrH8EN+fn4oUaIEzp07hwsXLmD06NFKp3CTkpIwe/ZsrF69GsePH8eDBw8wfPjwfFg7X7cFCxbA3d0dgYGBePr0KZ4+fYoSJUqgRIkSCAsLw/Xr1zF+/HiMHTsWmzZtkqabMWMG1q5di9DQUJw8eRIJCQkql0xyul2zPH78GC1atECtWrVw+fJlLF68GCtWrMCUKVOkcYYNG4aTJ0/ir7/+woEDBxAeHo7IyMh8WTcFYdWqVdDR0cHZs2exYMECzJ07F7///juA9+Hi/Pnz+Ouvv3D69GkIIdCiRQukpaVJ0yclJWHGjBn4/fffce3aNfz666/o1KmTFOifPn2KevXq5aiWkydPol+/fhg8eDAuXbqEpk2bYurUqbn+TNOnT8cff/yBJUuW4Nq1axg6dCi+++47HDt2DADw888/4/r169izZw9u3LiBxYsXw8bGBgCQlpYGHx8fmJqaIjw8HCdPnpT+QPnwj6bC7EvrB3h/7JszZw7Onz8PHR0d9OrVSxq2du1aTJ06FTNmzMCFCxdQsmRJLF68OMfLP3/+PAYNGoRJkyYhKioKe/fuhaenp9I4q1atgrGxMSIiIjBz5kxMmjQJBw4cyPuHp9wRVOAuXLggAIh79+6pDPP39xdWVlbi7du3UtvixYuFiYmJyMjIyHZ+L168EADE1atXhRBC3L17VwAQv//+uzTOtWvXBABx48YNIYQQoaGhwtzcXBpuamoqVq5cme38Q0NDBQARExMjtYWEhAg7O7ucf2gZ8fLyEoMHD/7sOAMGDBC+vr7Sezs7OzFr1izpfXp6uihZsqRo27btJ+fxqe168eJFIYQQY8eOFeXLlxeZmZnSNCEhIdJ3JSEhQejq6oqwsDBpeFxcnDAyMvpi/YWBl5eXcHV1Vfr8o0aNEq6uruLWrVsCgDh58qQ07OXLl8LQ0FBs2rRJCPF/3+tLly4pzdff319luxw5ckQAEK9fv5baLl68KACIu3fvCiGE6Ny5s2jZsqXSdH5+fkr7WXbzHjx4sPDy8hJCCJGcnCyMjIzEqVOnlMbp3bu36Nq1qxBCiNatW4uePXtmu05Wr16t8p1ISUkRhoaGYt++fdlOU5h8af1kbaeDBw9Kw3bt2iUAiHfv3gkhhKhTp44YMGCA0vQeHh6iatWq0vuPt9OH+/yWLVuEmZmZSEhIyLZGLy8vUb9+faW2WrVqiVGjRuX241Ie8QzPV6Bq1apo3LgxKleujI4dO2L58uV4/fq10nAjIyPpvbu7OxITE/Hw4UMAQHR0NLp27QpnZ2eYmZmhVKlSAIAHDx4oLadKlSrS/xctWhQA8Pz582xrGjZsGPr06YMmTZrgl19+UbmUYmRkhNKlSyvN71Pz+i8KCQmBm5sbbG1tYWJigmXLlknbIz4+HrGxsahdu7Y0vra2Ntzc3JTmkdPtmuXGjRtwd3dX6nfi4eGBxMREPHr0CHfu3EFaWprScs3NzVG+fHlNfewCV7duXaXP7+7ujujoaFy/fh06OjqoU6eONMza2hrly5fHjRs3pDY9PT2l/SQvoqKilNY1AJX3XxITE4OkpCQ0bdoUJiYm0uuPP/6Q9sn+/ftjw4YNqFatGkaOHIlTp05J01++fBkxMTEwNTWVprWyskJycvIXL48WBjlZP8Dnj3153U5NmzaFo6MjnJ2d0b17d6xduxZJSUlK43z8neLxsmCw0/JXQFtbGwcOHMCpU6ewf/9+LFy4EOPGjUNERESOpm/dujUcHR2xfPlyFCtWDJmZmahUqZLKKesPL0ll/aPwqcsjEydORLdu3bBr1y7s2bMHEyZMwIYNG9C+fXuVeWXNT/BXSgAAGzZswPDhwzFnzhy4u7vD1NQUs2bNyvH2zJLT7UqaY2homKOOylpa7/9W/PA7/+GlsZzS0tJS2W8+nE9iYiIAYNeuXShevLjSeFm/8dS8eXPcv38fu3fvxoEDB9C4cWMMGDAAs2fPRmJiItzc3LB27VqVZdva2ua63q/Nl9ZPVujJzbEvt0xNTREZGYmjR49i//79GD9+PCZOnIhz585J/bWyO15qavmUczzD85VQKBTw8PBAcHAwLl68CD09PWzduhXA+7/S3r17J4175swZmJiYwMHBAf/88w+ioqLw008/oXHjxnB1dVU6O5QX5cqVw9ChQ7F//3506NBBqSMk/R89PT1kZGRI70+ePIl69erhhx9+QPXq1VGmTBmlvzbNzc1hZ2eHc+fOSW0ZGRlKfWnU2a6urq5S35QPazE1NUWJEiXg7OwMXV1dpeXGx8fj1q1befr8X5OPQ+WZM2dQtmxZVKhQAenp6UrDs9ZxhQoVPjvPj7cv8H9h4cOO+h8/D6l8+fJK6xqAyntbW1uVzv4fzier8/SDBw9QpkwZpZeDg4PSfPz9/bFmzRrMnz8fy5YtAwDUqFED0dHRKFKkiMr05ubmn/3chUFO18/n5GQ7fYmOjg6aNGmCmTNn4sqVK7h37x4OHz6cq3lQ/uMZnq9AREQEDh06hGbNmqFIkSKIiIjAixcv4OrqiitXriA1NRW9e/fGTz/9hHv37mHChAkICgqClpYWLC0tYW1tjWXLlqFo0aJ48OABRo8enad63r17hxEjRuDbb7+Fk5MTHj16hHPnzsHX11dDn1heSpUqhYiICNy7dw8mJiYoW7Ys/vjjD+zbtw9OTk5YvXo1zp07BycnJ2magQMHYvr06ShTpgxcXFywcOFCvH79WvrrU53t+sMPP2D+/PkYOHAggoKCEBUVhQkTJmDYsGHQ0tKCqakp/P39MWLECFhZWaFIkSKYMGECtLS0ZHP79YMHDzBs2DB8//33iIyMxMKFCzFnzhyULVsWbdu2RWBgIJYuXQpTU1OMHj0axYsXR9u2bT87z1KlSmHfvn2IioqCtbU1zM3NpX9QJ06ciKlTp+LWrVuYM2eO0nQDBw6Ep6cn5s6di9atW+Pw4cPYs2eP0rpu1KgRZs2ahT/++APu7u5Ys2YN/v77b1SvXh3A+7MHw4cPx9ChQ5GZmYn69esjPj4eJ0+ehJmZGfz9/TF+/Hi4ubmhYsWKSElJwc6dO+Hq6grg/c0Hs2bNQtu2bTFp0iSUKFEC9+/fx59//omRI0eiRIkSGt4C/64vrR9HR8cvzmPgwIEIDAxEzZo1Ua9ePWzcuBFXrlyBs7NzjmrYuXMn7ty5A09PT1haWmL37t3IzMyU1aVi2SjYLkQkhBDXr18XPj4+wtbWVujr64ty5cqJhQsXCiH+r7Pc+PHjhbW1tTAxMRGBgYEiOTlZmv7AgQPC1dVV6OvriypVqoijR48KAGLr1q1CCNXOrUII8fr1awFAHDlyRAih3Gk5JSVFdOnSRTg4OAg9PT1RrFgxERQUJHXy+7iDsxBCbN26VfxXv05RUVGibt26wtDQUAAQN2/eFAEBAcLc3FxYWFiI/v37i9GjRyt1gkxLSxNBQUHCzMxMWFpailGjRomOHTuKLl26SOOos12PHj0qatWqJfT09IS9vb0YNWqUSEtLk4YnJCSIbt26CSMjI2Fvby/mzp0rateuLUaPHp3fqynfeXl5iR9++EH069dPWq9jx46VOuy+evVKdO/eXZibmwtDQ0Ph4+Mjbt26JU2f3fdaCCGeP38umjZtKkxMTJT2mRMnTojKlSsLAwMD0aBBAxEWFqbUaVkIIZYtWyaKFy8uDA0NRbt27cSUKVOEvb290vzHjx8v7OzshLm5uRg6dKgICgqSOi0LIURmZqaYP3++KF++vNDV1RW2trbCx8dHHDt2TAghxOTJk4Wrq6swNDQUVlZWom3btuLOnTvS9E+fPhU9evQQNjY2Ql9fXzg7O4vAwEARHx+fxzX+dfjc+slJ53IhhJg0aZKwsbERJiYmolevXmLQoEGibt260vDPdVoODw8XXl5ewtLSUhgaGooqVaqIjRs3ZjtulrZt2wp/f38NrgXKCYUQ7HjxNeNTXv8bMjMz4erqik6dOmHy5Mn/2nLfvn2L4sWLY86cOejdu/e/ttz8UBieeB0YGIibN28iPDy8oEuhz2jatCns7e2xevXqgi6FNIiXtIgKwP3797F//354eXkhJSUFv/32G+7evYtu3brl63IvXryImzdvonbt2oiPj8ekSZMA4IuXdUg9s2fPRtOmTWFsbIw9e/Zg1apVWLRoUUGXRR9ISkrCkiVL4OPjA21tbaxfvx4HDx7kc3JkiIGHqABoaWlh5cqVGD58OIQQqFSpEg4ePCj1vchPs2fPRlRUFPT09ODm5obw8HDpQXWkWWfPnsXMmTPx5s0bODs749dff0WfPn0Kuiz6gEKhwO7duzF16lQkJyejfPny2LJlC5o0aVLQpZGG8ZIWERERyR5vSyciIiLZY+AhIiIi2WPgISIiItlj4CEiIiLZY+AhIiIi2WPgISIiItlj4CH6DwsICEC7du0KugwionzHwENERESyx8BDRNmaO3cuKleuDGNjYzg4OOCHH35AYmKiNHzlypWwsLDAvn374OrqChMTE3zzzTd4+vSpNE56ejoGDRoECwsLWFtbY9SoUfD391c6q1SqVCmV37+qVq0aJk6cmONaAGD58uVwcHCAkZER2rdvj7lz58LCwkJpnO3bt6NGjRowMDCAs7MzgoODkZ6enud1RURfPwYeIsqWlpYWfv31V1y7dg2rVq3C4cOHMXLkSKVxkpKSMHv2bKxevRrHjx/HgwcPMHz4cGn4jBkzsHbtWoSGhuLkyZNISEhQ64dwv1TLyZMn0a9fPwwePBiXLl1C06ZNMXXqVKV5hIeHo0ePHhg8eDCuX7+OpUuXYuXKlSrjEZFMFehvtRNRgfL39xdt27bN0bhhYWHC2tpaeh8aGioAiJiYGKktJCRE2NnZSe/t7OzErFmzpPfp6emiZMmSSst0dHQU8+bNU1pW1apVxYQJE3JcS+fOnUXLli2VxvHz8xPm5ubS+8aNG4tp06YpjbN69WpRtGjRTy6HiOSDPx5KRNk6ePAgpk+fjps3byIhIQHp6elITk5GUlISjIyMAABGRkYoXbq0NE3RokXx/PlzAEB8fDxiY2NRu3Ztabi2tjbc3NyQmZmp0VqioqLQvn17pWlq166NnTt3Su8vX76MkydPKp3RycjIUPlMRCRPvKRFRCru3buHVq1aoUqVKtiyZQsuXLiAkJAQAEBqaqo0nq6urtJ0CoUCIpe/R6ylpaUyTVpaWq5r+ZLExEQEBwfj0qVL0uvq1auIjo6GgYFBrmomosKHZ3iISMWFCxeQmZmJOXPmQEvr/d9FmzZtytU8zM3NYWdnh3PnzsHT0xPA+zMqkZGRqFatmjSera2tUkfnhIQE3L17N1e1lC9fHufOnVNq+/h9jRo1EBUVhTJlyuTqcxCRPDDwEP3HxcfH49KlS0ptNjY2SEtLw8KFC9G6dWucPHkSS5YsyfW8Bw4ciOnTp6NMmTJwcXHBwoUL8fr1aygUCmmcRo0aYeXKlWjdujUsLCwwfvx4aGtrS8PLlCnzxVoGDhwIT09PzJ07F61bt8bhw4exZ88epeWMHz8erVq1QsmSJfHtt99CS0sLly9fxt9//40pU6bk+rMRUeHCS1pE/3FHjx5F9erVlV6rV6/G3LlzMWPGDFSqVAlr167F9OnTcz3vUaNGoWvXrujRowfc3d1hYmICHx8fpUtIY8aMgZeXF1q1aoWWLVuiXbt2Sv2Cqlat+sVaPDw8sGTJEsydOxdVq1bF3r17MXToUKXl+Pj4YOfOndi/fz9q1aqFunXrYt68eXB0dFRjrRFRYaMQub3gTkSkpszMTLi6uqJTp06YPHlyvi4rMDAQN2/eRHh4eL4uh4gKB17SIqJ8c//+fezfvx9eXl5ISUnBb7/9hrt376Jbt24aX9bs2bPRtGlTGBsbY8+ePVi1ahUWLVqk8eUQUeHEwENE+UZLSwsrV67E8OHDIYRApUqVcPDgQbi6ump8WWfPnsXMmTPx5s0bODs749dff0WfPn00vhwiKpx4SYuIiIhkj52WiYiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2GHiIiIhI9hh4iIiISPYYeIiIiEj2/h+H7tqqN98nBwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 refractive surgery 2 2 2 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 2 2 100.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAIjCAYAAADlU9qtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABclUlEQVR4nO3dd1gU5/428HvpfSkiRRGxgiX2gqigothFjRUjNqxYY8EYC9ZYgwU1enLEKGpEo7HE3it2Y0XsShQ1CqgIUp73D1/m57qgsCwCc+7PdXHpPtO+O7Oze+/MM7MKIYQAERERkUzp5HcBRERERHmJYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh2TjzJkzMDAwwIMHD7Qyv+vXr0NPTw9Xr17VyvyocChZsiR69er11ZcbFhYGhUKBc+fOffVlF0bR0dFo1qwZlEolFAoFtm7dmt8lAQC8vLzg5eWV32XQJwps2Llz5w4GDBiAUqVKwcjICBYWFvDw8MDChQvx7t27/C4vx65fv44pU6bg/v37OZ527NixUCgU6NKli/YLk5EJEyagW7ducHZ2ltq2bt0KV1dXKJVKtGnTBv/884/adG3btkX//v3V2itUqIBWrVph0qRJ2Vp+xofVx39FixZFo0aNsGvXLs2fWCZKliyJ1q1ba3WepF33799Xez1k9afJ+8L/On9/f1y5cgUzZszAmjVrULNmza+27Ny8n1P+0MvvAjKzc+dOdOrUCYaGhujZsycqVaqE9+/f4/jx4xgzZgyuXbuGFStW5HeZOXL9+nUEBwfDy8sLJUuWzPZ0QgisX78eJUuWxPbt2/H69WuYm5vnXaGF1KVLl7B//36cPHlSart79y66dOmCLl26wN3dHSEhIejduzf27NkjjbNnzx4cPXoU0dHRmc534MCBaNmyJe7cuYPSpUtnq5apU6fCxcUFQgjExsYiLCwMLVu2xPbt2xlQCoGoqCjo6OT+e6CtrS3WrFmj0jZ//nw8fvwYP//8s9q4lH3v3r3DqVOnMGHCBAQGBn715X/u/Xzv3r1fvR76sgIXdu7du4euXbvC2dkZBw8ehIODgzRsyJAhuH37Nnbu3Jnr5QghkJSUBGNjY7VhSUlJMDAw0MobXm4dPnwYjx8/xsGDB+Hj44M//vgD/v7++V2WVqWmpiI9PR0GBgYaz2PVqlUoUaIE6tatK7Xt3bsXxYsXx+rVq6FQKODm5obGjRsjKSkJRkZGSE1NxciRIzFp0qQsP2y8vb1hZWWF1atXY+rUqdmqpUWLFirfMvv27Qs7OzusX7+eYacQMDQ01Mp8TE1N0aNHD5W2DRs24NWrV2rt/+ty+h7w/PlzAIClpeUXx3379i1MTU1zU16O5OZ9rCD7musxLz6D8//T/BNz5szBmzdv8Ouvv6oEnQxlypTB8OHDpcepqamYNm0aSpcuDUNDQ5QsWRI//PADkpOTVabLOOy/Z88e1KxZE8bGxvjll19w+PBhKBQKbNiwAT/++COKFSsGExMTJCQkAAAiIyPRvHlzKJVKmJiYwNPTEydOnFCrKyYmBn379oWjoyMMDQ3h4uKCQYMG4f379wgLC0OnTp0AAI0aNZIOXR8+fPiL6yM8PBwVKlRAo0aN4O3tjfDwcLVxMp7Dxo0bMWPGDBQvXhxGRkZo0qQJbt++rTJudHQ0OnbsCHt7exgZGaF48eLo2rUr4uPjAQAdOnRA9erVVaZp06YNFAoFtm3bJrVFRkZCoVConJ6Ji4vDiBEj4OTkBENDQ5QpUwazZ89Genq6NE7Gof158+YhJCRE2m7Xr18HACxevBgVK1aEiYkJrKysULNmTaxbt+6L62nr1q1o3LgxFAqF1Pbu3TtYWlpKbdbW1hBCSKdBlyxZgrS0NAwdOjTL+err68PLywt//vnnF2vIiqWlJYyNjaGn9+G7hRACJUuWRLt27dTGTUpKglKpxIABAzReXoZjx46hU6dOKFGiBAwNDeHk5ISRI0eqnQbu1asXzMzMEBMTA19fX5iZmcHW1hajR49GWlqayrj//vsvvvvuO1hYWMDS0hL+/v64fPkyFAoFwsLCpPGy6rfQq1cvtW/C8+bNQ7169WBjYwNjY2PUqFEDmzZtUpv23bt3GDZsGIoUKQJzc3O0bdsWMTExUCgUmDJlisq4MTEx6NOnD+zs7GBoaIiKFSviv//9b7bW26d9djJOT544cQKjRo2Cra0tTE1N0b59e+lDV5uSk5OztZxdu3ahQYMGMDU1hbm5OVq1aoVr166pjJOxbR8+fIjWrVvDzMwMxYoVQ2hoKADgypUraNy4MUxNTeHs7Jzpvpad/RoAnjx5gps3byIlJeWzz+9L7wE3b97Et99+C2traxgZGaFmzZoq7z1TpkyRTlWPGTMGCoVCek1NmTIFCoUC169fR/fu3WFlZYX69esDAP7++2/06tVL6hphb2+PPn364N9//1WrMTfv5x+/9mNjY6Gnp4fg4GC1ZURFRUGhUGDJkiU5XteZOXfuHHx8fFCkSBEYGxvDxcUFffr0kYZnfE58+rmTsT0+3n8zXjd37txBy5YtYW5uDj8/PwDa3w+z+gy+dOkSFAqF2lFQADh58iQUCgXWr1//xfWSocAd2dm+fTtKlSqFevXqZWv8fv36YfXq1fj222/x/fffIzIyErNmzcKNGzewZcsWlXGjoqLQrVs3DBgwAAEBAShfvrw0bNq0aTAwMMDo0aORnJwMAwMDHDx4EC1atECNGjUwefJk6OjoYNWqVWjcuDGOHTuG2rVrAwD++ecf1K5dG3Fxcejfvz9cXV0RExODTZs2ITExEQ0bNsSwYcOwaNEi/PDDD3BzcwMA6d+sJCcnY/Pmzfj+++8BAN26dUPv3r3x9OlT2Nvbq43/008/QUdHB6NHj0Z8fDzmzJkDPz8/REZGAgDev38PHx8fJCcnY+jQobC3t0dMTAx27NiBuLg4KJVKNGjQAH/++ScSEhJgYWEBIQROnDgBHR0dHDt2DG3btgXw4YNUR0cHHh4eAIDExER4enoiJiYGAwYMQIkSJXDy5EmMHz8eT548QUhIiEqtq1atQlJSEvr37w9DQ0NYW1tj5cqVGDZsGL799lsMHz4cSUlJ+PvvvxEZGYnu3btnuZ5iYmLw8OFDtZBWq1YtfP/991i/fj3q1q2LGTNmoEyZMrCyssLz588RHByMtWvXQl9f/7PboUaNGirr5Evi4+Px4sULCCHw7NkzLF68GG/evJG+zSsUCvTo0QNz5szBy5cvYW1tLU27fft2JCQkaOWbf0REBBITEzFo0CDY2NjgzJkzWLx4MR4/foyIiAiVcdPS0uDj44M6depg3rx52L9/P+bPn4/SpUtj0KBBAID09HS0adMGZ86cwaBBg+Dq6oo///wz10caFy5ciLZt28LPzw/v37/Hhg0b0KlTJ+zYsQOtWrWSxuvVqxc2btyI7777DnXr1sWRI0dUhmeIjY1F3bp1oVAoEBgYCFtbW+zatQt9+/ZFQkICRowYoVGdQ4cOhZWVFSZPnoz79+8jJCQEgYGB+P333zV96hovZ82aNfD394ePjw9mz56NxMRELFu2DPXr18fFixdVAmVaWhpatGiBhg0bYs6cOQgPD0dgYCBMTU0xYcIE+Pn5oUOHDli+fDl69uwJd3d3uLi4AMjZfj1+/HisXr0a9+7dy9ap+szeA65duwYPDw8UK1YMQUFBMDU1xcaNG+Hr64vNmzejffv26NChAywtLTFy5Eh069YNLVu2hJmZmcq8O3XqhLJly2LmzJkQQgAA9u3bh7t376J3796wt7eXukNcu3YNp0+flr4UafP93M7ODp6enti4cSMmT56sMuz333+Hrq6uFJxy+h76sWfPnqFZs2awtbVFUFAQLC0tcf/+ffzxxx9f3A5ZSU1NhY+PD+rXr4958+bBxMQEQN7th59+Bru6usLDwwPh4eEYOXKkyrjh4eEwNzfP9AtjlkQBEh8fLwCIdu3aZWv8S5cuCQCiX79+Ku2jR48WAMTBgwelNmdnZwFA7N69W2XcQ4cOCQCiVKlSIjExUWpPT08XZcuWFT4+PiI9PV1qT0xMFC4uLqJp06ZSW8+ePYWOjo44e/asWo0Z00ZERAgA4tChQ9l6bkIIsWnTJgFAREdHCyGESEhIEEZGRuLnn3/O9Dm4ubmJ5ORkqX3hwoUCgLhy5YoQQoiLFy8KACIiIiLLZZ49e1YAEH/99ZcQQoi///5bABCdOnUSderUkcZr27atqFatmvR42rRpwtTUVNy6dUtlfkFBQUJXV1c8fPhQCCHEvXv3BABhYWEhnj17pjJuu3btRMWKFbO7eiT79+8XAMT27dvVhg0bNkwAEACEtbW19JoICAgQzZs3z9b8161bJwCIyMjIz463atUqaVkf/xkaGoqwsDCVcaOiogQAsWzZMpX2tm3bipIlS6q85jLj7OwsWrVq9dlxPn49Z5g1a5ZQKBTiwYMHUpu/v78AIKZOnaoybrVq1USNGjWkx5s3bxYAREhIiNSWlpYmGjduLACIVatWSe2enp7C09NTbfn+/v7C2dn5s3W+f/9eVKpUSTRu3FhqO3/+vAAgRowYoTJur169BAAxefJkqa1v377CwcFBvHjxQmXcrl27CqVSmel6+Zizs7Pw9/eXHmdsV29vb5XtMnLkSKGrqyvi4uI+O7+PtWrVSu3553Q5r1+/FpaWliIgIEBl+qdPnwqlUqnSnrFtZ86cKbW9evVKGBsbC4VCITZs2CC137x5U21dZne//nhZ9+7d++w6+Nx7QJMmTUTlypVFUlKS1Jaeni7q1asnypYtqzaPuXPnqkw/efJkAUB069ZNbbmZbff169cLAOLo0aNSW27fzz997f/yyy8q78MZKlSooPIaz8m6/tSWLVsEgExrzpDxOfFpzRnr8uP9N2NbBgUFqYybF/thVp/BQvzfurtx44bU9v79e1GkSBGVfTQ7CtRprIxTR9ntgPvXX38BAEaNGqXSnnEk5NO+PS4uLvDx8cl0Xv7+/ir9dy5duoTo6Gh0794d//77L168eIEXL17g7du3aNKkCY4ePYr09HSkp6dj69ataNOmTaZXA3x8WiWnwsPDUbNmTZQpUwYApEPVmZ3KAoDevXurnC9u0KABgA8ddQFAqVQC+NApNzExMdN5VKtWDWZmZjh69CiAD0dwihcvjp49e+LChQtITEyEEALHjx+X5g98OIrQoEEDWFlZSevqxYsX8Pb2RlpamjS/DB07dlTrJ2NpaYnHjx/j7Nmz2V5HAKTD0FZWVmrDFi5ciAcPHiAyMhIPHjxAo0aNcOnSJfz222/4+eefER8fjx49eqBYsWLw8vLCjRs31OaRMd8XL15kq57Q0FDs27cP+/btw9q1a9GoUSP069dP5VtWuXLlUKdOHZVt+fLlS+zatQt+fn65et1k+Pj1/PbtW7x48QL16tWDEAIXL15UG3/gwIEqjxs0aCC9dgBg9+7d0NfXR0BAgNSmo6ODIUOGaK3OV69eIT4+Hg0aNMCFCxdUlg0AgwcPVpn201OQQghs3rwZbdq0gRBC5bXo4+OD+Ph4lfnmRP/+/VW2S4MGDZCWlqa1Wx1kdzn79u1DXFwcunXrpvL8dHV1UadOHRw6dEhtnv369ZP+b2lpifLly8PU1BSdO3eW2suXLw9LS0uVbZ6T/TosLEw6RZsdn74HvHz5EgcPHkTnzp3x+vVraVn//vsvfHx8EB0djZiYmGzN+9PXMqD6OktKSsKLFy+kPn4Zr4m8eD/v0KED9PT0VI7MXb16FdevX1e5wjan76Efy+i7tGPHji+eRsyJjKO6GfJyP/z0MxgAOnfuDCMjI5X3yT179uDFixc5PvpdoE5jZZwieP36dbbGf/DgAXR0dKQwkMHe3h6WlpZqb0IZh2Yz8+mwjKtzPneIPj4+Hu/fv0dCQgIqVaqUrZqzKy4uDn/99RcCAwNV+t14eHhg8+bNuHXrFsqVK6cyTYkSJVQeZ3xIv3r1CsCH5zhq1CgsWLAA4eHhaNCgAdq2bYsePXpIQUhXVxfu7u44duwYgA9hp0GDBqhfvz7S0tJw+vRp2NnZ4eXLlyphJzo6Gn///XeWHX2fPXum8jizbTFu3Djs378ftWvXRpkyZdCsWTN0795dOlX2JeL/H67+VIkSJVTWzbBhwzBw4EC4urqiR48eePToEf7880+sXr0abdq0wc2bN6X+NR/PN7tvdLVr11Z5o+zWrRuqVauGwMBAtG7dWgqkPXv2RGBgIB48eABnZ2dEREQgJSUF3333XbaW8yUPHz7EpEmTsG3bNuk1kCGjj1YGIyMjtW1nZWWlMt2DBw/g4OAgHc7O8On+l1M7duzA9OnTcenSJZW+dh+v74x9/dPXzafLfv78OeLi4rBixYosr9j89LWYXV/av7TlS8vJeG9q3LhxptN/eqo1s22rVCpRvHhxtde0UqlUeT453a9z4tNtefv2bQghMHHiREycODHL5RUrVizH8wY+hKng4GBs2LBBre6M/eH58+dafz8vUqQImjRpgo0bN2LatGkAPpzC0tPTQ4cOHaTxcrOuPT090bFjRwQHB+Pnn3+Gl5cXfH190b17d4073Ovp6aF48eIqbXm5H2a2zSwtLdGmTRusW7dOWnfh4eEoVqxYlq//LJ9PjsbOYxYWFnB0dMzxTdyy+yGU2ZVXWQ3L6BA2d+5cVK1aNdNpzMzM8PLly+wVmUMRERFITk7G/PnzMX/+fLXh4eHhap3edHV1M53XxyFg/vz56NWrF/7880/s3bsXw4YNw6xZs3D69GnphV2/fn3MmDEDSUlJOHbsGCZMmABLS0tUqlQJx44dg52dHQCohJ309HQ0bdoUY8eOzbSGT4NZZtvCzc0NUVFR2LFjB3bv3o3Nmzdj6dKlmDRpUqYd/DLY2NgAyN6Hzu+//44bN25g27ZtSEtLw8aNG7F3717UrFkTFStWxMqVK3H69GmpU+PH8y1SpMgX558ZHR0dNGrUCAsXLkR0dDQqVqwIAOjatStGjhyJ8PBw/PDDD1i7di1q1qyp0pdMU2lpaWjatClevnyJcePGwdXVFaampoiJiUGvXr3UOjxm9drRlEKhyDR8ftrhOaMfWMOGDbF06VI4ODhAX18fq1atylbH9E9lPK8ePXpk+UXlm2++yfF8geztX9rwpeVkPMc1a9Zk2nfv46D+ufll5/nkdL/Oiazec0ePHp3lEfjsBuvM3l86d+6MkydPYsyYMahatSrMzMyQnp6O5s2bZ6sDcG507doVvXv3xqVLl1C1alVs3LgRTZo0UXlPyc26VigU2LRpE06fPo3t27djz5496NOnD+bPn4/Tp0/DzMwsy8/JT/fJDIaGhhpfDaXJfpjV53PPnj0RERGBkydPonLlyti2bRsGDx6c49oKVNgBgNatW2PFihU4deoU3N3dPzuus7Mz0tPTER0drdI5LDY2FnFxcSo3l8upjHuqWFhYwNvbO8vxbG1tYWFh8cWAltPDn+Hh4ahUqZJapzYA+OWXX7Bu3brPBoDPqVy5MipXrowff/wRJ0+ehIeHB5YvX47p06cD+BBi3r9/j/Xr1yMmJkYKNQ0bNpTCTrly5aTQA3xYX2/evPnsusoOU1NT6d4479+/R4cOHTBjxgyMHz8eRkZGmU7j6uoK4MNtCz4nMTERY8aMwbRp02BpaYnY2FikpKTA0dERwIedzcrKSu1Q+b1796Cjo5OrN/bU1FQAwJs3b6Q2a2tr6bSkn58fTpw48dlOiDlx5coV3Lp1C6tXr0bPnj2l9n379mk8T2dnZxw6dAiJiYkqR3c+veIP+HA04uPTIRk+Pdq6efNmGBkZYc+ePSrfQFetWqW27PT0dNy7dw9ly5bNctm2trYwNzdHWlparl+LBVXGe1PRokXz/Dlqa7/OjlKlSgH4cAWktpf36tUrHDhwAMHBwSo3Cf30/lp59X7u6+uLAQMGSKeybt26hfHjx6uMo411XbduXelijHXr1sHPzw8bNmxAv379pCOEcXFxKtPk5DRsfuyHzZs3h62tLcLDw1GnTh0kJiZqdPS7QPXZAT7cLdjU1BT9+vVDbGys2vA7d+5g4cKFAICWLVsCgNoHxIIFCwAg0x7i2VWjRg2ULl0a8+bNU/mAypBxKaiOjg58fX2xffv2TG/znvEtKeP+BJ++0DLz6NEjHD16FJ07d8a3336r9te7d2/cvn1busoquxISEqQP3QyVK1eGjo6OyumDOnXqQF9fH7Nnz4a1tbV0JKJBgwY4ffo0jhw5onJUB/jwrenUqVMqN+zLEBcXp7bczHx6CaiBgQEqVKgAIcRnz0MXK1YMTk5OX7zN/uzZs2FlZSX1ObGxsYGenh5u3rwJ4EOfnOfPn6t9Wz5//jwqVqwonerLqZSUFOzduxcGBgZqV2x89913uH79OsaMGQNdXV107dpVo2V8KuNb+8ff0oUQ0r6jCR8fH6SkpGDlypVSW3p6unQZ88dKly6NmzdvqlwyffnyZbXbNujq6kKhUKh8u7x//77arf8zvukvXbpUpX3x4sVq8+vYsSM2b96c6QdWXlwq/rX5+PjAwsICM2fOzHS/0OZzzMl+nd1Lz7NStGhReHl54ZdffsGTJ0/UhufmeWW2PwDqnx158X4OfDgd4+Pjg40bN2LDhg0wMDCAr6+vyji5eQ999eqV2nPLOCOR8d7u7OwMXV1dtb4/n+5Tn5Mf+6Genh66deuGjRs3IiwsDJUrV9bo6GyBO7JTunRprFu3Dl26dIGbm5vKHZRPnjyJiIgI6R4YVapUgb+/P1asWIG4uDh4enrizJkzWL16NXx9fdGoUSON69DR0cF//vMftGjRAhUrVkTv3r1RrFgxxMTE4NChQ7CwsMD27dsBADNnzsTevXvh6emJ/v37w83NDU+ePEFERASOHz8OS0tLVK1aFbq6upg9ezbi4+NhaGiIxo0bo2jRomrLXrduHYQQ0mXen2rZsiX09PSkpJtdBw8eRGBgIDp16oRy5cohNTUVa9askV6YGUxMTFCjRg2cPn1auscO8OHIztu3b/H27Vu1sDNmzBhs27YNrVu3Rq9evVCjRg28ffsWV65cwaZNm3D//v0vngZq1qwZ7O3t4eHhATs7O9y4cQNLlixBq1atvthpvV27dtiyZQuEEJl+63r48CHmzp2LnTt3Sm98enp6aNeuHUaMGIGHDx9iy5YtcHR0VDmimJKSgiNHjqh1yPucXbt2SQHq2bNnWLduHaKjoxEUFKTWn6JVq1awsbFBREQEWrRokenrISu3b9+WjsZ9rFq1amjWrBlKly6N0aNHIyYmBhYWFti8eXOu+pf4+vqidu3a+P7773H79m24urpi27Zt0qncj9d7nz59sGDBAvj4+KBv37549uwZli9fjooVK0oXImQ8/wULFqB58+bo3r07nj17htDQUJQpUwZ///23NF6NGjXQsWNHhISE4N9//5Uueb1165basn/66SccOnQIderUQUBAACpUqICXL1/iwoUL2L9/f56dev5aLCwssGzZMnz33XeoXr06unbtCltbWzx8+BA7d+6Eh4eHyr1bciMn+3VOLz3PTGhoKOrXr4/KlSsjICAApUqVQmxsLE6dOoXHjx/j8uXLGs3XwsJCuvQ+JSUFxYoVw969ezM9Gqzt9/MMXbp0QY8ePbB06VL4+Pio3RAxN++hq1evxtKlS9G+fXuULl0ar1+/xsqVK2FhYSEdFFAqlejUqRMWL14MhUKB0qVLY8eOHTnqd5Vf+2HPnj2xaNEiHDp0CLNnz872dCpydO3WV3Tr1i0REBAgSpYsKQwMDIS5ubnw8PAQixcvVrksMSUlRQQHBwsXFxehr68vnJycxPjx41XGESLrS3UzLnvL6nLsixcvig4dOggbGxthaGgonJ2dRefOncWBAwdUxnvw4IHo2bOnsLW1FYaGhqJUqVJiyJAhKpeCr1y5UpQqVUro6up+9jL0ypUrixIlSnx2/Xh5eYmiRYuKlJSULJ/Dp5cU3r17V/Tp00eULl1aGBkZCWtra9GoUSOxf/9+tfmPGTNGABCzZ89WaS9TpowAIO7cuaM2zevXr8X48eNFmTJlhIGBgShSpIioV6+emDdvnnj//r1KTZ9eMirEh8sMGzZsKK3r0qVLizFjxoj4+PjPrgshhLhw4YIAII4dO5bp8E6dOokOHTqotcfGxoo2bdoIc3NzUb16dXHu3DmV4bt27VK5/P9zMrv03MjISFStWlUsW7Ysy8vJBw8eLACIdevWfXEZGTJupZDZX9++fYUQQly/fl14e3sLMzMzUaRIEREQECAuX76c6WWmpqamasvIuIz3Y8+fPxfdu3cX5ubmQqlUil69eokTJ04IACqXMQshxNq1a0WpUqWEgYGBqFq1qtizZ0+ml57/+uuvomzZssLQ0FC4urqKVatWZbrst2/fiiFDhghra2thZmYmfH19pUv4f/rpJ5VxY2NjxZAhQ4STk5PQ19cX9vb2okmTJmLFihXZWreZXXr+6WW9WV3K+znZufQ8u8s5dOiQ8PHxEUqlUhgZGYnSpUuLXr16qbyGs9q2np6emd7mIbP3yezs1xnLQg4uPc/sPUAIIe7cuSN69uwp7O3thb6+vihWrJho3bq12LRp0xfnkfG6ef78udp8Hz9+LNq3by8sLS2FUqkUnTp1Ev/884/aJdNC5O79PKvbLiQkJAhjY2MBQKxduzbT557ddf2pCxcuiG7duokSJUoIQ0NDUbRoUdG6dWu197Pnz5+Ljh07ChMTE2FlZSUGDBggrl69mu33BCG0vx9+6TM4Q8WKFYWOjo54/PjxZ8fLikIILfeuI8onTZo0gaOjo9rvEeWGr68vFAqF2g0qtWnkyJH49ddf8fTpU7UrnQqDrVu3on379jh+/Hi2r5zTlkuXLqFatWpYu3atdIdXIvq6vsZ+WK1aNVhbW+PAgQMaTV/g+uwQaWrmzJn4/ffftXbfkxs3bmDHjh3SJY95ISkpCWvXrkXHjh0LRdD59Kcm0tLSsHjxYlhYWKjdwTqvlw186HOho6ODhg0b5umyieiD/NgPz507h0uXLqlcbJFTBa7PDpGm6tSpg/fv32ttfm5ubtnqWK2JZ8+eYf/+/di0aRP+/fdfld97K8iGDh2Kd+/ewd3dHcnJyfjjjz9w8uRJzJw587O3dtCGOXPm4Pz582jUqBH09PSwa9cu7Nq1C/3794eTk1OeLpuIPvia++HVq1dx/vx5zJ8/Hw4ODio3YcwxjU5+EVGuZJynLlq0qFi8eHF+l5Nt4eHhonr16sLCwkIYGBiIChUqfLX69+7dKzw8PISVlZXQ19cXpUuXFlOmTBEpKSlfZflE9HX3w8mTJwuFQiFcXV3F4cOHczUv9tkhIiIiWWOfHSIiIpI1hh0iIiKSNXZQxoe7wP7zzz8wNzfXyq9NExER/a8QQuD169dwdHTU+Pe08hrDDoB//vmHV3MQERHlwqNHj9R+Kb2gYNgBpJ8iePTokdrt/ImIiChrCQkJcHJy+uLP+uQnhh383+95WFhYMOwQERFpoCB3AymYJ9eIiIiItIRhh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkLV/DztGjR9GmTRs4OjpCoVBg69atKsOFEJg0aRIcHBxgbGwMb29vREdHq4zz8uVL+Pn5wcLCApaWlujbty/evHnzFZ8FERERFWT5Gnbevn2LKlWqIDQ0NNPhc+bMwaJFi7B8+XJERkbC1NQUPj4+SEpKksbx8/PDtWvXsG/fPuzYsQNHjx5F//79v9ZTICIiogJOIYQQ+V0EACgUCmzZsgW+vr4APhzVcXR0xPfff4/Ro0cDAOLj42FnZ4ewsDB07doVN27cQIUKFXD27FnUrFkTALB79260bNkSjx8/hqOjY7aWnZCQAKVSifj4eFhYWOTJ8yMiIpKjwvAZWmD77Ny7dw9Pnz6Ft7e31KZUKlGnTh2cOnUKAHDq1ClYWlpKQQcAvL29oaOjg8jIyCznnZycjISEBJU/IiIikie9/C4gK0+fPgUA2NnZqbTb2dlJw54+fYqiRYuqDNfT04O1tbU0TmZmzZqF4OBgLVesrmTQzjxfxv+6+z+1ypP5ctvlPW67wiuvth3A7fc15OX2K6gK7JGdvDR+/HjEx8dLf48ePcrvkoiIiCiPFNiwY29vDwCIjY1VaY+NjZWG2dvb49mzZyrDU1NT8fLlS2mczBgaGsLCwkLlj4iIiOSpwIYdFxcX2Nvb48CBA1JbQkICIiMj4e7uDgBwd3dHXFwczp8/L41z8OBBpKeno06dOl+9ZiIiIip48rXPzps3b3D79m3p8b1793Dp0iVYW1ujRIkSGDFiBKZPn46yZcvCxcUFEydOhKOjo3TFlpubG5o3b46AgAAsX74cKSkpCAwMRNeuXbN9JRYRERHJW76GnXPnzqFRo0bS41GjRgEA/P39ERYWhrFjx+Lt27fo378/4uLiUL9+fezevRtGRkbSNOHh4QgMDESTJk2go6ODjh07YtGiRV/9uRAREVHBlK9hx8vLC5+7zY9CocDUqVMxderULMextrbGunXr8qI8IiIikoEC22eHiIiISBsYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWCnTYSUtLw8SJE+Hi4gJjY2OULl0a06ZNgxBCGkcIgUmTJsHBwQHGxsbw9vZGdHR0PlZNREREBUmBDjuzZ8/GsmXLsGTJEty4cQOzZ8/GnDlzsHjxYmmcOXPmYNGiRVi+fDkiIyNhamoKHx8fJCUl5WPlREREVFDo5XcBn3Py5Em0a9cOrVq1AgCULFkS69evx5kzZwB8OKoTEhKCH3/8Ee3atQMA/Pbbb7Czs8PWrVvRtWvXfKudiIiICoYCfWSnXr16OHDgAG7dugUAuHz5Mo4fP44WLVoAAO7du4enT5/C29tbmkapVKJOnTo4depUlvNNTk5GQkKCyh8RERHJU4E+shMUFISEhAS4urpCV1cXaWlpmDFjBvz8/AAAT58+BQDY2dmpTGdnZycNy8ysWbMQHBycd4UTERFRgVGgj+xs3LgR4eHhWLduHS5cuIDVq1dj3rx5WL16da7mO378eMTHx0t/jx490lLFREREVNAU6CM7Y8aMQVBQkNT3pnLlynjw4AFmzZoFf39/2NvbAwBiY2Ph4OAgTRcbG4uqVatmOV9DQ0MYGhrmae1ERERUMBToIzuJiYnQ0VEtUVdXF+np6QAAFxcX2Nvb48CBA9LwhIQEREZGwt3d/avWSkRERAVTgT6y06ZNG8yYMQMlSpRAxYoVcfHiRSxYsAB9+vQBACgUCowYMQLTp09H2bJl4eLigokTJ8LR0RG+vr75WzwREREVCAU67CxevBgTJ07E4MGD8ezZMzg6OmLAgAGYNGmSNM7YsWPx9u1b9O/fH3Fxcahfvz52794NIyOjfKyciIiICooCHXbMzc0REhKCkJCQLMdRKBSYOnUqpk6d+vUKIyIiokKjQPfZISIiIsothh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjU9TSa6d+8ejh07hgcPHiAxMRG2traoVq0a3N3dYWRkpO0aiYiIiDSWo7ATHh6OhQsX4ty5c7Czs4OjoyOMjY3x8uVL3LlzB0ZGRvDz88O4cePg7OycVzUTERERZVu2w061atVgYGCAXr16YfPmzXByclIZnpycjFOnTmHDhg2oWbMmli5dik6dOmm9YCIiIqKcyHbY+emnn+Dj45PlcENDQ3h5ecHLywszZszA/fv3tVEfERERUa5kO+x8Luh8ysbGBjY2NhoVRERERKRNGnVQ/tjOnTtx+PBhpKWlwcPDAx07dtRGXURERERakatLzydOnIixY8dCoVBACIGRI0di6NCh2qqNiIiIKNdydGTn3LlzqFmzpvT4999/x+XLl2FsbAwA6NWrF7y8vLB48WLtVklERESkoRwd2Rk4cCBGjBiBxMREAECpUqUwf/58REVF4cqVK1i2bBnKlSuXJ4USERERaSJHYScyMhIODg6oXr06tm/fjv/+97+4ePEi6tWrhwYNGuDx48dYt25dXtVKRERElGM5Oo2lq6uLcePGoVOnThg0aBBMTU2xZMkSODo65lV9RERERLmiUQflUqVKYc+ePWjfvj0aNmyI0NBQbddFREREpBU5CjtxcXEYO3Ys2rRpgx9//BHt27dHZGQkzp49i7p16+LKlSt5VScRERGRRnIUdvz9/REZGYlWrVohKioKgwYNgo2NDcLCwjBjxgx06dIF48aNy6taiYiIiHIsR312Dh48iIsXL6JMmTIICAhAmTJlpGFNmjTBhQsXMHXqVK0XSURERKSpHB3ZKVu2LFasWIFbt25h+fLlar9sbmRkhJkzZ2q1QCIiIqLcyFHY+e9//4uDBw+iWrVqWLduHZYtW5ZXdRERERFpRY5OY1WtWhXnzp3Lq1qIiIiItC7bR3aEEHlZBxEREVGeyHbYqVixIjZs2ID3799/drzo6GgMGjQIP/30U66LIyIiIsqtbJ/GWrx4McaNG4fBgwejadOmqFmzJhwdHWFkZIRXr17h+vXrOH78OK5du4bAwEAMGjQoL+smIiIiypZsh50mTZrg3LlzOH78OH7//XeEh4fjwYMHePfuHYoUKYJq1aqhZ8+e8PPzg5WVVV7WTERERJRtOeqgDAD169dH/fr186IWIiIiIq3T6LexiIiIiAoLhh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNY3CzoULF3DlyhXp8Z9//glfX1/88MMPX7zpIBEREdHXpFHYGTBgAG7dugUAuHv3Lrp27QoTExNERERg7NixWi2QiIiIKDc0Cju3bt1C1apVAQARERFo2LAh1q1bh7CwMGzevFmb9RERERHlikZhRwiB9PR0AMD+/fvRsmVLAICTkxNevHihveqIiIiIckmjsFOzZk1Mnz4da9aswZEjR9CqVSsAwL1792BnZ6fVAmNiYtCjRw/Y2NjA2NgYlStXxrlz56ThQghMmjQJDg4OMDY2hre3N6Kjo7VaAxERERVeGoWdkJAQXLhwAYGBgZgwYQLKlCkDANi0aRPq1aunteJevXoFDw8P6OvrY9euXbh+/Trmz5+v8ttbc+bMwaJFi7B8+XJERkbC1NQUPj4+SEpK0lodREREVHjl+Lex0tLSEBcXh6NHj6r94OfcuXOhq6urteJmz54NJycnrFq1SmpzcXGR/i+EQEhICH788Ue0a9cOAPDbb7/Bzs4OW7duRdeuXbVWCxERERVOOT6yo6uri2bNmiEuLk5tmJGREfT19bVRFwBg27ZtqFmzJjp16oSiRYuiWrVqWLlypTT83r17ePr0Kby9vaU2pVKJOnXq4NSpU1nONzk5GQkJCSp/REREJE8ancaqVKkS7t69q+1a1Ny9exfLli1D2bJlsWfPHgwaNAjDhg3D6tWrAQBPnz4FALV+QnZ2dtKwzMyaNQtKpVL6c3JyyrsnQURERPlKo7Azffp0jB49Gjt27MCTJ0/y7ChJeno6qlevjpkzZ6JatWro378/AgICsHz58lzNd/z48YiPj5f+Hj16pKWKiYiIqKDJcZ8dANKl5m3btoVCoZDahRBQKBRIS0vTSnEODg6oUKGCSpubm5t0Lx97e3sAQGxsLBwcHKRxYmNjpfsAZcbQ0BCGhoZaqZGIiIgKNo3CzqFDh7RdR6Y8PDwQFRWl0nbr1i04OzsD+NBZ2d7eHgcOHJDCTUJCAiIjIzFo0KCvUiMREREVbBqFHU9PT23XkamRI0eiXr16mDlzJjp37owzZ85gxYoVWLFiBQBAoVBgxIgRmD59OsqWLQsXFxdMnDgRjo6O8PX1/So1EhERUcGm8a+eHzt2DD169EC9evUQExMDAFizZg2OHz+uteJq1aqFLVu2YP369ahUqRKmTZuGkJAQ+Pn5SeOMHTsWQ4cORf/+/VGrVi28efMGu3fvhpGRkdbqICIiosJLo7CzefNm+Pj4wNjYGBcuXEBycjIAID4+HjNnztRqga1bt8aVK1eQlJSEGzduICAgQGW4QqHA1KlT8fTpUyQlJWH//v0oV66cVmsgIiKiwkvjq7GWL1+OlStXqtxXx8PDAxcuXNBacURERES5pVHYiYqKQsOGDdXalUplpjcbJCIiIsovGoUde3t73L59W639+PHjKFWqVK6LIiIiItIWjcJOQEAAhg8fjsjISCgUCvzzzz8IDw/H6NGjeck3ERERFSgaXXoeFBSE9PR0NGnSBImJiWjYsCEMDQ0xevRoDB06VNs1EhEREWlMo7CjUCgwYcIEjBkzBrdv38abN29QoUIFmJmZabs+IiIiolzRKOwcPHgQ9erVg5GRkdrPORAREREVJBqFnbZt2yI1NRW1atWCl5cXPD094eHhAWNjY23XR0RERJQrGnVQfvXqFQ4cOIAWLVrgzJkzaN++PSwtLeHh4YEff/xR2zUSERERaUyjsKOvrw8PDw/88MMP2LNnD06fPo1u3brhzJkzmDVrlrZrJCIiItKYRqexbt26hcOHD+Pw4cM4cuQIkpOT0aBBA8ybNw9eXl5aLpGIiIhIcxqFHVdXV9ja2mL48OEICgpC5cqVoVAotF0bERERUa5pdBpr2LBhKFasGKZOnYqBAwdiwoQJ2Lt3LxITE7VdHxEREVGuaBR2QkJCcOHCBTx9+hTjx4/H+/fvMWHCBBQpUgQeHh7arpGIiIhIYxqFnQxpaWlISUlBcnIykpKSkJycjKioKG3VRkRERJRrGp/G+uabb2BnZ4cBAwbgn3/+QUBAAC5evIjnz59ru0YiIiIijWnUQfnJkyfo378/vLy8UKlSJW3XRERERKQ1GoWdiIgIbddBRERElCc0Oo21evVq7Ny5U3o8duxYWFpaol69enjw4IHWiiMiIiLKLY3CzsyZM6XfwTp16hRCQ0MxZ84cFClSBCNHjtRqgURERES5odFprEePHqFMmTIAgK1bt6Jjx47o378/PDw8eAdlIiIiKlA0OrJjZmaGf//9FwCwd+9eNG3aFABgZGSEd+/eaa86IiIiolzS6MhO06ZN0a9fP1SrVg23bt1Cy5YtAQDXrl1DyZIltVkfERERUa5odGQnNDQU7u7ueP78OTZv3gwbGxsAwPnz59GtWzetFkhERESUGxod2bG0tMSSJUvU2oODg3NdEBEREZE2aRR2ACAuLg5nzpzBs2fPkJ6eLrUrFAp89913WimOiIiIKLc0Cjvbt2+Hn58f3rx5AwsLCygUCmkYww4REREVJBr12fn+++/Rp08fvHnzBnFxcXj16pX09/LlS23XSERERKQxjcJOTEwMhg0bBhMTE23XQ0RERKRVGoUdHx8fnDt3Ttu1EBEREWmdRn12WrVqhTFjxuD69euoXLky9PX1VYa3bdtWK8URERER5ZZGYScgIAAAMHXqVLVhCoUCaWlpuauKiIiISEs0CjsfX2pOREREVJBp1GcnK3FxcZnebJCIiIgov2gl7Bw4cADdu3eHg4MDJk+erI1ZEhEREWmFxmHn0aNHmDp1KlxcXNCsWTMoFAps2bIFT58+1WZ9RERERLmSo7CTkpKCiIgI+Pj4oHz58rh06RLmzp0LHR0dTJgwAc2bN1e7MouIiIgoP+Wog3KxYsXg6uqKHj16YMOGDbCysgIA/tI5ERERFVg5OrKTmpoKhUIBhUIBXV3dvKqJiIiISGtyFHb++ecf9O/fH+vXr4e9vT06duyILVu2qPwQKBEREVFBkqOwY2RkBD8/Pxw8eBBXrlyBm5sbhg0bhtTUVMyYMQP79u3jDQWJiIioQNH4aqzSpUtj+vTpePDgAXbu3Ink5GS0bt0adnZ22qyPiIiIKFc0uoPyx3R0dNCiRQu0aNECz58/x5o1a7RRFxEREZFWaPUOyra2thg1apQ2Z0lERESUK1oNO0REREQFDcMOERERyRrDDhEREcmaRmFn6tSpSExMVGt/9+4dpk6dmuuiiIiIiLRFo7ATHByMN2/eqLUnJiYiODg410URERERaYtGYUcIkeldky9fvgxra+tcF0VERESkLTm6z46VlZX021jlypVTCTxpaWl48+YNBg4cqPUiiYiIiDSVo7ATEhICIQT69OmD4OBgKJVKaZiBgQFKliwJd3d3rRdJREREpKkchR1/f38AgIuLCzw8PKCnl+sbMBMRERHlKY367Lx9+xYHDhxQa9+zZw927dqV66KIiIiItEWjsBMUFJTpr5sLIRAUFJTrooiIiIi0RaOwEx0djQoVKqi1u7q64vbt27kuioiIiEhbNAo7SqUSd+/eVWu/ffs2TE1Nc10UERERkbZoFHbatWuHESNG4M6dO1Lb7du38f3336Nt27ZaK46IiIgotzQKO3PmzIGpqSlcXV3h4uICFxcXuLm5wcbGBvPmzdN2jUREREQa0+jacaVSiZMnT2Lfvn24fPkyjI2N8c0336Bhw4baro+IiIgoVzS+UY5CoUCzZs3QsGFDGBoaZvrzEURERET5TaPTWOnp6Zg2bRqKFSsGMzMz3Lt3DwAwceJE/Prrr1otkIiIiCg3NAo706dPR1hYGObMmQMDAwOpvVKlSvjPf/6jteKIiIiIckujsPPbb79hxYoV8PPzg66urtRepUoV3Lx5U2vFEREREeWWRmEnJiYGZcqUUWtPT09HSkpKrosiIiIi0haNwk6FChVw7NgxtfZNmzahWrVquS6KiIiISFs0uhpr0qRJ8Pf3R0xMDNLT0/HHH38gKioKv/32G3bs2KHtGomIiIg0pvEdlLdv3479+/fD1NQUkyZNwo0bN7B9+3Y0bdpU2zUSERERaSzHR3ZSU1Mxc+ZM9OnTB/v27cuLmoiIiIi0JsdHdvT09DBnzhykpqbmRT1EREREWqXRaawmTZrgyJEj2q6FiIiISOs06qDcokULBAUF4cqVK6hRowZMTU1VhvOXz4mIiKig0CjsDB48GACwYMECtWEKhQJpaWm5q4qIiIhISzQKO+np6dqug4iIiChP5LjPTkpKCvT09HD16tW8qIeIiIhIq3IcdvT19VGiRAmeqiIiIqJCQaOrsSZMmIAffvgBL1++1HY9RERERFqlUdhZsmQJjh49CkdHR5QvXx7Vq1dX+csrP/30ExQKBUaMGCG1JSUlYciQIbCxsYGZmRk6duyI2NjYPKuBiIiICheNOij7+vpquYwvO3v2LH755Rd88803Ku0jR47Ezp07ERERAaVSicDAQHTo0AEnTpz46jUSERFRwaNR2Jk8ebK26/isN2/ewM/PDytXrsT06dOl9vj4ePz6669Yt24dGjduDABYtWoV3NzccPr0adStW/er1klEREQFj0ansTKcP38ea9euxdq1a3Hx4kVt1aRmyJAhaNWqFby9vdWWn5KSotLu6uqKEiVK4NSpU1nOLzk5GQkJCSp/REREJE8aHdl59uwZunbtisOHD8PS0hIAEBcXh0aNGmHDhg2wtbXVWoEbNmzAhQsXcPbsWbVhT58+hYGBgVRDBjs7Ozx9+jTLec6aNQvBwcFaq5GIiIgKLo2O7AwdOhSvX7/GtWvX8PLlS7x8+RJXr15FQkIChg0bprXiHj16hOHDhyM8PBxGRkZam+/48eMRHx8v/T169Ehr8yYiIqKCRaMjO7t378b+/fvh5uYmtVWoUAGhoaFo1qyZ1oo7f/48nj17pnKFV1paGo4ePYolS5Zgz549eP/+PeLi4lSO7sTGxsLe3j7L+RoaGsLQ0FBrdRIREVHBpfHPRejr66u16+vra/WnJJo0aYIrV66otPXu3Ruurq4YN24cnJycoK+vjwMHDqBjx44AgKioKDx8+BDu7u5aq4OIiIgKL43CTuPGjTF8+HCsX78ejo6OAICYmBiMHDkSTZo00Vpx5ubmqFSpkkqbqakpbGxspPa+ffti1KhRsLa2hoWFBYYOHQp3d3deiUVEREQANAw7S5YsQdu2bVGyZEk4OTkB+NC/plKlSli7dq1WC/ySn3/+GTo6OujYsSOSk5Ph4+ODpUuXftUaiIiIqODSKOw4OTnhwoUL2L9/P27evAkAcHNzU7s0PC8cPnxY5bGRkRFCQ0MRGhqa58smIiKiwkejsAMACoUCTZs2RdOmTbVZDxEREZFW5ejS84MHD6JChQqZ3oQvPj4eFStWxLFjx7RWHBEREVFu5SjshISEICAgABYWFmrDlEolBgwYgAULFmitOCIiIqLcylHYuXz5Mpo3b57l8GbNmuH8+fO5LoqIiIhIW3IUdmJjYzO9v04GPT09PH/+PNdFEREREWlLjsJOsWLFcPXq1SyH//3333BwcMh1UURERETakqOw07JlS0ycOBFJSUlqw969e4fJkyejdevWWiuOiIiIKLdydOn5jz/+iD/++APlypVDYGAgypcvDwC4efMmQkNDkZaWhgkTJuRJoURERESayFHYsbOzw8mTJzFo0CCMHz8eQggAH+654+Pjg9DQUNjZ2eVJoURERESayPFNBZ2dnfHXX3/h1atXuH37NoQQKFu2LKysrPKiPiIiIqJc0fgOylZWVqhVq5Y2ayEiIiLSuhx1UCYiIiIqbBh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWCnTYmTVrFmrVqgVzc3MULVoUvr6+iIqKUhknKSkJQ4YMgY2NDczMzNCxY0fExsbmU8VERERU0BTosHPkyBEMGTIEp0+fxr59+5CSkoJmzZrh7du30jgjR47E9u3bERERgSNHjuCff/5Bhw4d8rFqIiIiKkj08ruAz9m9e7fK47CwMBQtWhTnz59Hw4YNER8fj19//RXr1q1D48aNAQCrVq2Cm5sbTp8+jbp16+ZH2URERFSAFOgjO5+Kj48HAFhbWwMAzp8/j5SUFHh7e0vjuLq6okSJEjh16lSW80lOTkZCQoLKHxEREclToQk76enpGDFiBDw8PFCpUiUAwNOnT2FgYABLS0uVce3s7PD06dMs5zVr1iwolUrpz8nJKS9LJyIionxUaMLOkCFDcPXqVWzYsCHX8xo/fjzi4+Olv0ePHmmhQiIiIiqICnSfnQyBgYHYsWMHjh49iuLFi0vt9vb2eP/+PeLi4lSO7sTGxsLe3j7L+RkaGsLQ0DAvSyYiIqICokAf2RFCIDAwEFu2bMHBgwfh4uKiMrxGjRrQ19fHgQMHpLaoqCg8fPgQ7u7uX7tcIiIiKoAK9JGdIUOGYN26dfjzzz9hbm4u9cNRKpUwNjaGUqlE3759MWrUKFhbW8PCwgJDhw6Fu7s7r8QiIiIiAAU87CxbtgwA4OXlpdK+atUq9OrVCwDw888/Q0dHBx07dkRycjJ8fHywdOnSr1wpERERFVQFOuwIIb44jpGREUJDQxEaGvoVKiIiIqLCpkD32SEiIiLKLYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjXZhJ3Q0FCULFkSRkZGqFOnDs6cOZPfJREREVEBIIuw8/vvv2PUqFGYPHkyLly4gCpVqsDHxwfPnj3L79KIiIgon8ki7CxYsAABAQHo3bs3KlSogOXLl8PExAT//e9/87s0IiIiymd6+V1Abr1//x7nz5/H+PHjpTYdHR14e3vj1KlTmU6TnJyM5ORk6XF8fDwAICEhQau1pScnanV+pE7b2ywDt13e47YrvPJq2wHcfl+DtrdfxvyEEFqdrzYV+rDz4sULpKWlwc7OTqXdzs4ON2/ezHSaWbNmITg4WK3dyckpT2qkvKMMye8KSFPcdoUXt13hllfb7/Xr11AqlXkz81wq9GFHE+PHj8eoUaOkx+np6Xj58iVsbGygUCjysbL8k5CQACcnJzx69AgWFhb5XQ7lELdf4cVtV3hx230ghMDr16/h6OiY36VkqdCHnSJFikBXVxexsbEq7bGxsbC3t890GkNDQxgaGqq0WVpa5lWJhYqFhcX/9E5b2HH7FV7cdoUXtx0K7BGdDIW+g7KBgQFq1KiBAwcOSG3p6ek4cOAA3N3d87EyIiIiKggK/ZEdABg1ahT8/f1Rs2ZN1K5dGyEhIXj79i169+6d36URERFRPpNF2OnSpQueP3+OSZMm4enTp6hatSp2796t1mmZsmZoaIjJkyernd6jwoHbr/Ditiu8uO0KD4UoyNeKEREREeVSoe+zQ0RERPQ5DDtEREQkaww7REREJGsMO5QtYWFh2b4XUU7Gpbxz//59KBQKXLp0Kb9LIZK9Xr16wdfXV3rs5eWFESNGZGvanIxLmpHF1ViU97p06YKWLVvmdxmFkpeXF6pWrYqQkJD8LoXyQK9evRAXF4etW7fmdylUgPzxxx/Q19fP7zLo/2PYoWwxNjaGsbFxfpdBVGCkpaX9z/68DH2ZtbV1fpdAH+FprEJi06ZNqFy5MoyNjWFjYwNvb2+8fftWOnQaHBwMW1tbWFhYYODAgXj//r007e7du1G/fn1YWlrCxsYGrVu3xp07d6ThGac7/vjjDzRq1AgmJiaoUqWKyq/Gf3pq6vLly2jUqBHMzc1hYWGBGjVq4Ny5cyo179mzB25ubjAzM0Pz5s3x5MmTvFtBBVSvXr1w5MgRLFy4EAqFAgqFAnfu3EHfvn3h4uICY2NjlC9fHgsXLlSZLjU1FcOGDZO22bhx4+Dv769ymPxL2zUzR44cQe3atWFoaAgHBwcEBQUhNTVVGv769Wv4+fnB1NQUDg4O+Pnnn2VziN3LywuBgYEIDAyEUqlEkSJFMHHiROmXml+9eoWePXvCysoKJiYmaNGiBaKjo6XpM/aBbdu2oUKFCjA0NESfPn2wevVq/Pnnn9L2PXz4MA4fPgyFQoG4uDhp+kuXLkGhUOD+/ftS28qVK+Hk5AQTExO0b98eCxYsUNnPPj01AgAjRoyAl5eX9Dg9PR2zZs2SXk9VqlTBpk2bpOGvXr2Cn58fbG1tYWxsjLJly2LVqlXS8EePHqFz586wtLSEtbU12rVrp1KjHHxuHWVsqwMHDqBmzZowMTFBvXr1EBUVpTKP6dOno2jRojA3N0e/fv0QFBSEqlWrZrnMT/ebpUuXomzZsjAyMoKdnR2+/fZbtRrHjh0La2tr2NvbY8qUKdp6+gSGnULhyZMn6NatG/r06YMbN27g8OHD6NChg/QmfeDAAal9/fr1+OOPP1R+1f3t27cYNWoUzp07hwMHDkBHRwft27dHenq6ynImTJiA0aNH49KlSyhXrhy6deum8kH4MT8/PxQvXhxnz57F+fPnERQUpHLINjExEfPmzcOaNWtw9OhRPHz4EKNHj86DtVOwLVy4EO7u7ggICMCTJ0/w5MkTFC9eHMWLF0dERASuX7+OSZMm4YcffsDGjRul6WbPno3w8HCsWrUKJ06cQEJCgtppkuxu1wwxMTFo2bIlatWqhcuXL2PZsmX49ddfMX36dGmcUaNG4cSJE9i2bRv27duHY8eO4cKFC3mybvLD6tWroaenhzNnzmDhwoVYsGAB/vOf/wD4ECzOnTuHbdu24dSpUxBCoGXLlkhJSZGmT0xMxOzZs/Gf//wH165dw6JFi9C5c2cpzD958gT16tXLVi0nTpzAwIEDMXz4cFy6dAlNmzbFjBkzcvycZs2ahd9++w3Lly/HtWvXMHLkSPTo0QNHjhwBAEycOBHXr1/Hrl27cOPGDSxbtgxFihQBAKSkpMDHxwfm5uY4duwYTpw4IX05+fgLU2H3pXUEfHj/mz9/Ps6dOwc9PT306dNHGhYeHo4ZM2Zg9uzZOH/+PEqUKIFly5Zle/nnzp3DsGHDMHXqVERFRWH37t1o2LChyjirV6+GqakpIiMjMWfOHEydOhX79u3L/ZOnDwQVeOfPnxcAxP3799WG+fv7C2tra/H27VupbdmyZcLMzEykpaVlOr/nz58LAOLKlStCCCHu3bsnAIj//Oc/0jjXrl0TAMSNGzeEEEKsWrVKKJVKabi5ubkICwvLdP6rVq0SAMTt27elttDQUGFnZ5f9Jy0jnp6eYvjw4Z8dZ8iQIaJjx47SYzs7OzF37lzpcWpqqihRooRo165dlvPIartevHhRCCHEDz/8IMqXLy/S09OlaUJDQ6XXSkJCgtDX1xcRERHS8Li4OGFiYvLF+gsDT09P4ebmpvL8x40bJ9zc3MStW7cEAHHixAlp2IsXL4SxsbHYuHGjEOL/XteXLl1Sma+/v7/adjl06JAAIF69eiW1Xbx4UQAQ9+7dE0II0aVLF9GqVSuV6fz8/FT2s8zmPXz4cOHp6SmEECIpKUmYmJiIkydPqozTt29f0a1bNyGEEG3atBG9e/fOdJ2sWbNG7TWRnJwsjI2NxZ49ezKdprD50jrK2Fb79++Xhu3cuVMAEO/evRNCCFGnTh0xZMgQlek9PDxElSpVpMefbquP9/vNmzcLCwsLkZCQkGmNnp6eon79+ipttWrVEuPGjcvp06Us8MhOIVClShU0adIElStXRqdOnbBy5Uq8evVKZbiJiYn02N3dHW/evMGjR48AANHR0ejWrRtKlSoFCwsLlCxZEgDw8OFDleV888030v8dHBwAAM+ePcu0plGjRqFfv37w9vbGTz/9pHb6xMTEBKVLl1aZX1bz+l8UGhqKGjVqwNbWFmZmZlixYoW0PeLj4xEbG4vatWtL4+vq6qJGjRoq88juds1w48YNuLu7q/Qz8fDwwJs3b/D48WPcvXsXKSkpKstVKpUoX768tp52vqtbt67K83d3d0d0dDSuX78OPT091KlTRxpmY2OD8uXL48aNG1KbgYGByn6SG1FRUSrrGoDa4y+5ffs2EhMT0bRpU5iZmUl/v/32m7RPDho0CBs2bEDVqlUxduxYnDx5Upr+8uXLuH37NszNzaVpra2tkZSU9MVTooVFdtYR8Pn3v9xuq6ZNm8LZ2RmlSpXCd999h/DwcCQmJqqM8+nriu+Z2sUOyoWArq4u9u3bh5MnT2Lv3r1YvHgxJkyYgMjIyGxN36ZNGzg7O2PlypVwdHREeno6KlWqpHaY+uPTUBkfCFmdEpkyZQq6d++OnTt3YteuXZg8eTI2bNiA9u3bq80rY36Cv0wCANiwYQNGjx6N+fPnw93dHebm5pg7d262t2eG7G5X0h5jY+NsdUrW0fnwPfLj1/zHp8OyS0dHR22/+Xg+b968AQDs3LkTxYoVUxkv4/eaWrRogQcPHuCvv/7Cvn370KRJEwwZMgTz5s3DmzdvUKNGDYSHh6st29bWNsf1FkRfWkcZgScn7385ZW5ujgsXLuDw4cPYu3cvJk2ahClTpuDs2bNSH63M3jO1tXxin51CQ6FQwMPDA8HBwbh48SIMDAywZcsWAB++nb17904a9/Tp0zAzM4OTkxP+/fdfREVF4ccff0STJk3g5uamclQoN8qVK4eRI0di79696NChg0qnR/o/BgYGSEtLkx6fOHEC9erVw+DBg1GtWjWUKVNG5RumUqmEnZ0dzp49K7WlpaWp9J3RZLu6ublJfVE+rsXc3BzFixdHqVKloK+vr7Lc+Ph43Lp1K1fPvyD5NFCePn0aZcuWRYUKFZCamqoyPGMdV6hQ4bPz/HT7Av8XFD7ulP/p/Y7Kly+vsq4BqD22tbVV69j/8XwyOko/fPgQZcqUUflzcnJSmY+/vz/Wrl2LkJAQrFixAgBQvXp1REdHo2jRomrTK5XKzz7vwiK76+hzsrOtvkRPTw/e3t6YM2cO/v77b9y/fx8HDx7M0TxIczyyUwhERkbiwIEDaNasGYoWLYrIyEg8f/4cbm5u+Pvvv/H+/Xv07dsXP/74I+7fv4/JkycjMDAQOjo6sLKygo2NDVasWAEHBwc8fPgQQUFBuarn3bt3GDNmDL799lu4uLjg8ePHOHv2LDp27KilZywvJUuWRGRkJO7fvw8zMzOULVsWv/32G/bs2QMXFxesWbMGZ8+ehYuLizTN0KFDMWvWLJQpUwaurq5YvHgxXr16JX3j1GS7Dh48GCEhIRg6dCgCAwMRFRWFyZMnY9SoUdDR0YG5uTn8/f0xZswYWFtbo2jRopg8eTJ0dHRkc4n1w4cPMWrUKAwYMAAXLlzA4sWLMX/+fJQtWxbt2rVDQEAAfvnlF5ibmyMoKAjFihVDu3btPjvPkiVLYs+ePYiKioKNjQ2USqX0QTplyhTMmDEDt27dwvz581WmGzp0KBo2bIgFCxagTZs2OHjwIHbt2qWyrhs3boy5c+fit99+g7u7O9auXYurV6+iWrVqAD4cMRg9ejRGjhyJ9PR01K9fH/Hx8Thx4gQsLCzg7++PSZMmoUaNGqhYsSKSk5OxY8cOuLm5AfhwocHcuXPRrl07TJ06FcWLF8eDBw/wxx9/YOzYsShevLiWt8DX96V15Ozs/MV5DB06FAEBAahZsybq1auH33//HX///TdKlSqVrRp27NiBu3fvomHDhrCyssJff/2F9PR0WZ0iLvDyt8sQZcf169eFj4+PsLW1FYaGhqJcuXJi8eLFQoj/6xQ3adIkYWNjI8zMzERAQIBISkqSpt+3b59wc3MThoaG4ptvvhGHDx8WAMSWLVuEEOodWYUQ4tWrVwKAOHTokBBCtYNycnKy6Nq1q3BychIGBgbC0dFRBAYGSp35Pu3MLIQQW7ZsEf+rL7eoqChRt25dYWxsLACImzdvil69egmlUiksLS3FoEGDRFBQkEpnx5SUFBEYGCgsLCyElZWVGDdunOjUqZPo2rWrNI4m2/Xw4cOiVq1awsDAQNjb24tx48aJlJQUaXhCQoLo3r27MDExEfb29mLBggWidu3aIigoKK9XU57z9PQUgwcPFgMHDpTW6w8//CB1zn358qX47rvvhFKpFMbGxsLHx0fcunVLmj6z17UQQjx79kw0bdpUmJmZqewzx48fF5UrVxZGRkaiQYMGIiIiQqWDshBCrFixQhQrVkwYGxsLX19fMX36dGFvb68y/0mTJgk7OzuhVCrFyJEjRWBgoNRBWQgh0tPTRUhIiChfvrzQ19cXtra2wsfHRxw5ckQIIcS0adOEm5ubMDY2FtbW1qJdu3bi7t270vRPnjwRPXv2FEWKFBGGhoaiVKlSIiAgQMTHx+dyjRccn1tH2elMLoQQU6dOFUWKFBFmZmaiT58+YtiwYaJu3brS8M91UD527Jjw9PQUVlZWwtjYWHzzzTfi999/z3TcDO3atRP+/v5aXAv/2xRCsCNFYca7t/5vSE9Ph5ubGzp37oxp06Z9teW+ffsWxYoVw/z589G3b9+vtty8UBjuZB0QEICbN2/i2LFj+V0KfUHTpk1hb2+PNWvW5HcplA08jUVUAD148AB79+6Fp6cnkpOTsWTJEty7dw/du3fP0+VevHgRN2/eRO3atREfH4+pU6cCwBdP5ZBm5s2bh6ZNm8LU1BS7du3C6tWrsXTp0vwuiz6RmJiI5cuXw8fHB7q6uli/fj3279/P++AUIgw7RAWQjo4OwsLCMHr0aAghUKlSJezfv1/qa5GX5s2bh6ioKBgYGKBGjRo4duyYdBM60q4zZ85gzpw5eP36NUqVKoVFixahX79++V0WfUKhUOCvv/7CjBkzkJSUhPLly2Pz5s3w9vbO79Iom3gai4iIiGSNl54TERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQ0Wf16tULvr6++V0GEZHGGHaIiIhI1hh2iEhjCxYsQOXKlWFqagonJycMHjwYb968kYaHhYXB0tISe/bsgZubG8zMzNC8eXM8efJEGic1NRXDhg2DpaUlbGxsMG7cOPj7+6scTSpZsqTab1pVrVoVU6ZMyXYtALBy5Uo4OTnBxMQE7du3x4IFC2Bpaakyzp9//onq1avDyMgIpUqVQnBwMFJTU3O9rogo/zDsEJHGdHR0sGjRIly7dg2rV6/GwYMHMXbsWJVxEhMTMW/ePKxZswZHjx7Fw4cPMXr0aGn47NmzER4ejlWrVuHEiRNISEjQ6Idtv1TLiRMnMHDgQAwfPhyXLl1C06ZNMWPGDJV5HDt2DD179sTw4cNx/fp1/PLLLwgLC1Mbj4gKmXz9zXUiKvD8/f1Fu3btsjVuRESEsLGxkR6vWrVKABC3b9+W2kJDQ4WdnZ302M7OTsydO1d6nJqaKkqUKKGyTGdnZ/Hzzz+rLKtKlSpi8uTJ2a6lS5cuolWrVirj+Pn5CaVSKT1u0qSJmDlzpso4a9asEQ4ODlkuh4gKPv4QKBFpbP/+/Zg1axZu3ryJhIQEpKamIikpCYmJiTAxMQEAmJiYoHTp0tI0Dg4OePbsGQAgPj4esbGxqF27tjRcV1cXNWrUQHp6ulZriYqKQvv27VWmqV27Nnbs2CE9vnz5Mk6cOKFyJCctLU3tORFR4cLTWESkkfv376N169b45ptvsHnzZpw/fx6hoaEAgPfv30vj6evrq0ynUCggcvj7wzo6OmrTpKSk5LiWL3nz5g2Cg4Nx6dIl6e/KlSuIjo6GkZFRjmomooKDR3aISCPnz59Heno65s+fDx2dD9+bNm7cmKN5KJVK2NnZ4ezZs2jYsCGAD0dSLly4gKpVq0rj2draqnRqTkhIwL1793JUS/ny5XH27FmVtk8fV69eHVFRUShTpkyOngcRFWwMO0T0RfHx8bh06ZJKW5EiRZCSkoLFixejTZs2OHHiBJYvX57jeQ8dOhSzZs1CmTJl4OrqisWLF+PVq1dQKBTSOI0bN0ZYWBjatGkDS0tLTJo0Cbq6utLwMmXKfLGWoUOHomHDhliwYAHatGmDgwcPYteuXSrLmTRpElq3bo0SJUrg22+/hY6ODi5fvoyrV69i+vTpOX5uRFQw8DQWEX3R4cOHUa1aNZW/NWvWYMGCBZg9ezYqVaqE8PBwzJo1K8fzHjduHLp164aePXvC3d0dZmZm8PHxUTltNH78eHh6eqJ169Zo1aoVfH19VfoBValS5Yu1eHh4YPny5ViwYAGqVKmC3bt3Y+TIkSrL8fHxwY4dO7B3717UqlULdevWxc8//wxnZ2cN1hoRFRQKkdOT50REeSg9PR1ubm7o3Lkzpk2blqfLCggIwM2bN3Hs2LE8XQ4R5S+exiKifPXgwQPs3bsXnp6eSE5OxpIlS3Dv3j10795d68uaN28emjZtClNTU+zatQurV6/G0qVLtb4cIipYGHaIKF/p6OggLCwMo0ePhhAClSpVwv79++Hm5qb1ZZ05cwZz5szB69evUapUKSxatAj9+vXT+nKIqGDhaSwiIiKSNXZQJiIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZ+39bDM2b8A7kLwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 retina 9 9 9 8 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 12 75.0 75.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 75.0 66.666667 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZjElEQVR4nO3deXxM1/8/8Ncksi+TRSSWJEKQ2IkiYglCal9Sa1RSRKlYa62WShH7UoJSnwSl2liL2mKNLYilaolQRIOgJEFkkTm/P/xyv8YkJHMnkrSv5+Mxj3bOvffc98yduV6599w7CiGEABEREZGW9Iq6ACIiIirZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIPqDTp0/D0NAQd+7c0Ul/V65cQalSpfDnn3/qpD8qGSpWrIjAwMAPvt6IiAgoFAqcPXv2g6/738Tb2xve3t5FXYZOMUzIcPPmTXz++eeoVKkSjI2NYWlpCS8vLyxevBgvX74s6vIK7MqVK/j2229x+/btAi87fvx4KBQK9OrVS/eF/YtMnjwZffr0gbOzs9S2bds2uLm5QalUolOnTrh3757Gcp07d8bgwYM12qtXr44OHTpgypQp+Vp/zj8Gbz7KlCmDli1bYvfu3dq/sFxUrFgRHTt21GmfpFu3b9/W+Dzk9dBmv/BfJmd/WhKVKuoCSqpdu3ahR48eMDIyQv/+/VGzZk1kZmbi2LFjGDduHC5fvoyVK1cWdZkFcuXKFUybNg3e3t6oWLFivpcTQuDnn39GxYoVsWPHDjx79gwWFhaFV2gJdeHCBURFReHEiRNS219//YVevXqhV69e8PT0xKJFi/DZZ59h79690jx79+7F0aNHER8fn2u/Q4YMQfv27XHz5k1Urlw5X7WEhITAxcUFQggkJSUhIiIC7du3x44dOxgASoC4uDjo6cn/W9DOzg7r1q1Ta5s/fz7+/vtvLFy4UGNeyr937U/37dtXNEUVIoYJLdy6dQu9e/eGs7MzDh48iLJly0rThg0bhhs3bmDXrl2y1yOEQHp6OkxMTDSmpaenw9DQUCc7FLkOHz6Mv//+GwcPHoSvry+2bNmCgICAoi5Lp169egWVSgVDQ0Ot+wgPD4eTkxMaN24ste3btw8VKlTAmjVroFAo4O7ujlatWiE9PR3GxsZ49eoVRo8ejSlTpuS5M/fx8YG1tTXWrFmDkJCQfNXSrl07NGjQQHo+cOBA2Nvb4+eff2aYKAGMjIx00o+ZmRn69eun1rZx40Y8ffpUo/2/Thf7gBy66KO4Kfp/iUqgOXPm4Pnz51i9erVakMjh6uqKkSNHSs9fvXqF7777DpUrV4aRkREqVqyIr776ChkZGWrL5RwW3rt3Lxo0aAATExP88MMPOHz4MBQKBTZu3Iivv/4a5cuXh6mpKVJTUwEAMTEx+Pjjj6FUKmFqaooWLVrg+PHjGnUlJiZi4MCBKFeuHIyMjODi4oKhQ4ciMzMTERER6NGjBwCgZcuW0qHNw4cPv/f9WL9+PapXr46WLVvCx8cH69ev15gn5zX8+uuvmDFjBipUqABjY2O0bt0aN27cUJs3Pj4efn5+cHBwgLGxMSpUqIDevXsjJSUFANC9e3fUr19fbZlOnTpBoVDgt99+k9piYmKgUCjUDt8nJydj1KhRcHR0hJGREVxdXTF79myoVCppnpxDv/PmzcOiRYuk7XblyhUAwJIlS1CjRg2YmprC2toaDRo0wIYNG977Pm3btg2tWrWCQqGQ2l6+fAkrKyupzcbGBkII6TTZ0qVLkZ2djeHDh+fZr4GBAby9vbF9+/b31pAXKysrmJiYoFSp139fCCFQsWJFdOnSRWPe9PR0KJVKfP7551qvL0d0dDR69OgBJycnGBkZwdHREaNHj9Y4TRgYGAhzc3MkJiaia9euMDc3h52dHcaOHYvs7Gy1ef/55x98+umnsLS0hJWVFQICAnDx4kUoFApERERI8+V13jowMFDjL8l58+ahSZMmsLW1hYmJCTw8PLBp0yaNZV++fIkRI0agdOnSsLCwQOfOnZGYmAiFQoFvv/1Wbd7ExEQMGDAA9vb2MDIyQo0aNfC///0vX+/b22Mmck5fHT9+HGPGjIGdnR3MzMzQrVs3PHr0KF99FkRGRka+1rN79240a9YMZmZmsLCwQIcOHXD58mW1eXK2bUJCAjp27Ahzc3OUL18eYWFhAIBLly6hVatWMDMzg7Ozc67ftfx8rwHg/v37uHbtGrKyst75+t63D7h27Ro++eQT2NjYwNjYGA0aNFDb97xvf/r2Z68g+8f8fmc+NB6Z0MKOHTtQqVIlNGnSJF/zDxo0CGvWrMEnn3yCL7/8EjExMQgNDcXVq1exdetWtXnj4uLQp08ffP755wgKCkK1atWkad999x0MDQ0xduxYZGRkwNDQEAcPHkS7du3g4eGBqVOnQk9PD+Hh4WjVqhWio6PRsGFDAMC9e/fQsGFDJCcnY/DgwXBzc0NiYiI2bdqEtLQ0NG/eHCNGjMD333+Pr776Cu7u7gAg/TcvGRkZ2Lx5M7788ksAQJ8+ffDZZ5/hwYMHcHBw0Jh/1qxZ0NPTw9ixY5GSkoI5c+bA398fMTExAIDMzEz4+voiIyMDw4cPh4ODAxITE7Fz504kJydDqVSiWbNm2L59O1JTU2FpaQkhBI4fPw49PT1ER0ejc+fOAF5/6fT09ODl5QUASEtLQ4sWLZCYmIjPP/8cTk5OOHHiBCZNmoT79+9j0aJFarWGh4cjPT0dgwcPhpGREWxsbLBq1SqMGDECn3zyCUaOHIn09HT88ccfiImJQd++ffN8nxITE5GQkKARgj766CN8+eWX+Pnnn9G4cWPMmDEDrq6usLa2xqNHjzBt2jT89NNPMDAweOd28PDwUHtP3iclJQWPHz+GEAIPHz7EkiVL8Pz5c+mvUYVCgX79+mHOnDl48uQJbGxspGV37NiB1NRUnfzlGhkZibS0NAwdOhS2trY4ffo0lixZgr///huRkZFq82ZnZ8PX1xeNGjXCvHnzEBUVhfnz56Ny5coYOnQoAEClUqFTp044ffo0hg4dCjc3N2zfvl32kbLFixejc+fO8Pf3R2ZmJjZu3IgePXpg586d6NChgzRfYGAgfv31V3z66ado3Lgxjhw5ojY9R1JSEho3bgyFQoHg4GDY2dlh9+7dGDhwIFJTUzFq1Cit6hw+fDisra0xdepU3L59G4sWLUJwcDB++eUXbV+61utZt24dAgIC4Ovri9mzZyMtLQ3Lly9H06ZNcf78ebXAlp2djXbt2qF58+aYM2cO1q9fj+DgYJiZmWHy5Mnw9/dH9+7dsWLFCvTv3x+enp5wcXEBULDv9aRJk7BmzRrcunUrX6dyc9sHXL58GV5eXihfvjwmTpwIMzMz/Prrr+jatSs2b96Mbt26ab0/fd/+ESjYd+aDElQgKSkpAoDo0qVLvua/cOGCACAGDRqk1j527FgBQBw8eFBqc3Z2FgDEnj171OY9dOiQACAqVaok0tLSpHaVSiWqVKkifH19hUqlktrT0tKEi4uLaNOmjdTWv39/oaenJ86cOaNRY86ykZGRAoA4dOhQvl6bEEJs2rRJABDx8fFCCCFSU1OFsbGxWLhwYa6vwd3dXWRkZEjtixcvFgDEpUuXhBBCnD9/XgAQkZGRea7zzJkzAoD4/fffhRBC/PHHHwKA6NGjh2jUqJE0X+fOnUW9evWk5999950wMzMT169fV+tv4sSJQl9fXyQkJAghhLh165YAICwtLcXDhw/V5u3SpYuoUaNGft8eSVRUlAAgduzYoTFtxIgRAoAAIGxsbKTPRFBQkPj444/z1f+GDRsEABETE/PO+cLDw6V1vfkwMjISERERavPGxcUJAGL58uVq7Z07dxYVK1ZU+8zlxtnZWXTo0OGd87z5ec4RGhoqFAqFuHPnjtQWEBAgAIiQkBC1eevVqyc8PDyk55s3bxYAxKJFi6S27Oxs0apVKwFAhIeHS+0tWrQQLVq00Fh/QECAcHZ2fmedmZmZombNmqJVq1ZSW2xsrAAgRo0apTZvYGCgACCmTp0qtQ0cOFCULVtWPH78WG3e3r17C6VSmev78iZnZ2cREBAgPc/Zrj4+PmrbZfTo0UJfX18kJye/s783dejQQeP1F3Q9z549E1ZWViIoKEht+QcPHgilUqnWnrNtZ86cKbU9ffpUmJiYCIVCITZu3Ci1X7t2TeO9zO/3+s113bp1653vwbv2Aa1btxa1atUS6enpUptKpRJNmjQRVapUkdretT99+7OX3/2jEPn/znxoPM1RQDmnFvI7wPD3338HAIwZM0atPecv+bfHVri4uMDX1zfXvgICAtTGT1y4cAHx8fHo27cv/vnnHzx+/BiPHz/Gixcv0Lp1axw9ehQqlQoqlQrbtm1Dp06d1M6T53jzsHtBrV+/Hg0aNICrqysASIcyczvVAQCfffaZ2vnCZs2aAXg9EBEAlEolgNeDDtPS0nLto169ejA3N8fRo0cBvD4CUaFCBfTv3x/nzp1DWloahBA4duyY1D/wOtE3a9YM1tbW0nv1+PFj+Pj4IDs7W+ovh5+fn8Y4BSsrK/z99984c+ZMvt8j4PWhdwCwtrbWmLZ48WLcuXMHMTExuHPnDlq2bIkLFy5g7dq1WLhwIVJSUtCvXz+UL18e3t7euHr1qkYfOf0+fvw4X/WEhYVh//792L9/P3766Se0bNkSgwYNwpYtW6R5qlatikaNGqltyydPnmD37t3w9/eX9bnJ8ebn+cWLF3j8+DGaNGkCIQTOnz+vMf+QIUPUnjdr1kz67ADAnj17YGBggKCgIKlNT08Pw4YN01mdT58+RUpKCpo1a4Zz586prRsAvvjiC7Vl3z5FJYTA5s2b0alTJwgh1D6Lvr6+SElJUeu3IAYPHqy2XZo1a4bs7GydXYqc3/Xs378fycnJ6NOnj9rr09fXR6NGjXDo0CGNPgcNGiT9v5WVFapVqwYzMzP07NlTaq9WrRqsrKzUtnlBvtcRERHSKbz8eHsf8OTJExw8eBA9e/bEs2fPpHX9888/8PX1RXx8PBITE/PVd27et38ECv6d+VB4mqOAcg4hP3v2LF/z37lzB3p6etI/tjkcHBxgZWWl8SXPOXSXm7en5Yzuf9ch3JSUFGRmZiI1NRU1a9bMV835lZycjN9//x3BwcFq5/W8vLywefNmXL9+HVWrVlVbxsnJSe15zj+CT58+BfD6NY4ZMwYLFizA+vXr0axZM3Tu3Bn9+vWTgoa+vj48PT0RHR0N4HWYaNasGZo2bYrs7GycOnUK9vb2ePLkiVqYiI+Pxx9//JHnQMaHDx+qPc9tW0yYMAFRUVFo2LAhXF1d0bZtW/Tt21c6lfI+Qohc252cnNTemxEjRmDIkCFwc3NDv379cPfuXWzfvh1r1qxBp06dcO3aNWl8w5v95vcf+IYNG6oFyz59+qBevXoIDg5Gx44dpR1a//79ERwcjDt37sDZ2RmRkZHIysrCp59+mq/1vE9CQgKmTJmC3377TfoM5MgZI5PD2NhYY9tZW1urLXfnzh2ULVsWpqamavO9/f0rqJ07d2L69Om4cOGC2linN9/vnO/625+bt9f96NEjJCcnY+XKlXle8fX2ZzG/3vf90pX3rSdn39SqVatcl3/7VFxu21apVKJChQoan2mlUqn2egr6vS6It7fljRs3IITAN998g2+++SbP9ZUvX16r9eVn+xXkO/MhMUwUkKWlJcqVK1fgmwTldyef25UbeU3LGVw0d+5c1K1bN9dlzM3N8eTJk/wVWUCRkZHIyMjA/PnzMX/+fI3p69evx7Rp09Ta9PX1c+3rzX9k58+fj8DAQGzfvh379u3DiBEjEBoailOnTqFChQoAgKZNm2LGjBlIT09HdHQ0Jk+eDCsrK9SsWRPR0dGwt7cHALUwoVKp0KZNG4wfPz7XGt4OPrltC3d3d8TFxWHnzp3Ys2cPNm/ejGXLlmHKlCkar/VNtra2APK3U//ll19w9epV/Pbbb8jOzsavv/6Kffv2oUGDBqhRowZWrVqFU6dOoWnTptIyOf2WLl36vf3nRk9PDy1btsTixYsRHx+PGjVqAAB69+6N0aNHY/369fjqq6/w008/oUGDBmpjebSVnZ2NNm3a4MmTJ5gwYQLc3NxgZmaGxMREBAYGagyey+uzoy2FQpFruHt7QGfOOJzmzZtj2bJlKFu2LAwMDBAeHp6vgbdvy3ld/fr1y/MPgdq1axe4XyB/3y9deN96cl7junXrch079WYQfld/+Xk9Bf1eF0Re+9yxY8fmeQRZTnB93+st6HfmQ2KY0ELHjh2xcuVKnDx5Ep6enu+c19nZGSqVCvHx8WqDb5KSkpCcnKx286KCyrmngKWlJXx8fPKcz87ODpaWlu8NQAU9bL1+/XrUrFkTU6dO1Zj2ww8/YMOGDe/8B/ZdatWqhVq1auHrr7/GiRMn4OXlhRUrVmD69OkAXoeEzMxM/Pzzz0hMTJRCQ/PmzaUwUbVqVSlUAK/fr+fPn7/zvcoPMzMz6d4QmZmZ6N69O2bMmIFJkybB2Ng412Xc3NwAvL6s+F3S0tIwbtw4fPfdd7CyskJSUhKysrJQrlw5AK93btbW1hqHUm/dugU9PT1ZO85Xr14BAJ4/fy612djYSKet/P39cfz4cY2Bqtq6dOkSrl+/jjVr1qB///5S+/79+7Xu09nZGYcOHUJaWpra0Ym3R8QDr//qe/PwcY63jxZu3rwZxsbG2Lt3r9olmeHh4RrrVqlUuHXrFqpUqZLnuu3s7GBhYYHs7GzZn8XiKmffVKZMmUJ/jbr6XudHpUqVALy+gup969PFacC3FcZ3Rlc4ZkIL48ePh5mZGQYNGoSkpCSN6Tdv3sTixYsBAO3btwcAjR3wggULACDXkd755eHhgcqVK2PevHlq/wDkyLlUS09PD127dsWOHTtyvQ1uTuo1MzMD8Pr0xfvcvXsXR48eRc+ePfHJJ59oPD777DPcuHFDbRRyfqSmpkr/qOWoVasW9PT01A4vN2rUCAYGBpg9ezZsbGykv6SbNWuGU6dO4ciRI2pHJQCgZ8+eOHnypNoNoXIkJydrrDc3OWMfchgaGqJ69eoQQrzzcrPy5cvD0dHxvbchnj17NqytraVz/ra2tihVqhSuXbsG4PWYiEePHmn8tRcbG4saNWpIp4IKKisrC/v27YOhoaHGiPNPP/0UV65cwbhx46Cvr4/evXtrtY635fwV9uZfmUII6bujDV9fX2RlZWHVqlVSm0qlki4zfFPlypVx7do1tUsaL168qHFZtb6+PhQKhdoRi9u3b2Pbtm0a6waAZcuWqbUvWbJEoz8/Pz9s3rw514BfGJdyfmi+vr6wtLTEzJkzc/1e6PI1FuR7nd9LQ/NSpkwZeHt744cffsD9+/c1pr/5ugqyP82vwvjO6AqPTGihcuXK2LBhA3r16gV3d3e1O2CeOHECkZGR0jXgderUQUBAAFauXInk5GS0aNECp0+fxpo1a9C1a1e0bNlS6zr09PTw448/ol27dqhRowY+++wzlC9fHomJiTh06BAsLS2xY8cOAMDMmTOxb98+tGjRAoMHD4a7uzvu37+PyMhIHDt2DFZWVqhbty709fUxe/ZspKSkwMjICK1atUKZMmU01r1hwwYIIaTLMN/Wvn17lCpVCuvXr0ejRo3y/ZoOHjyI4OBg9OjRA1WrVsWrV6+wbt06aQecw9TUFB4eHjh16pR0jwng9ZGJFy9e4MWLFxphYty4cfjtt9/QsWNHBAYGwsPDAy9evMClS5ewadMm3L59+72nCdq2bQsHBwd4eXnB3t4eV69exdKlS9GhQ4f3Dsrt0qULtm7dCiFErn+1JCQkYO7cudi1a5e00yhVqhS6dOmCUaNGISEhAVu3bkW5cuXUjohlZWXhyJEjGgP/3mX37t1SQHn48CE2bNiA+Ph4TJw4UeN8docOHWBra4vIyEi0a9cu189DXm7cuCEdTXpTvXr10LZtW1SuXBljx45FYmIiLC0tsXnzZlnn97t27YqGDRviyy+/xI0bN+Dm5obffvtNOtX35vs+YMAALFiwAL6+vhg4cCAePnyIFStWoEaNGtJA65zXv2DBAnz88cfo27cvHj58iLCwMLi6uuKPP/6Q5vPw8ICfnx8WLVqEf/75R7o09Pr16xrrnjVrFg4dOoRGjRohKCgI1atXx5MnT3Du3DlERUUV2qnJD8XS0hLLly/Hp59+ivr166N3796ws7NDQkICdu3aBS8vLyxdulQn6yrI97qgl4bmJiwsDE2bNkWtWrUQFBSESpUqISkpCSdPnsTff/+NixcvAkCB9qf55ebmpvPvjM58wCtH/nWuX78ugoKCRMWKFYWhoaGwsLAQXl5eYsmSJWqXDWVlZYlp06YJFxcXYWBgIBwdHcWkSZPU5hEi70vpci4byutyyfPnz4vu3bsLW1tbYWRkJJydnUXPnj3FgQMH1Oa7c+eO6N+/v7CzsxNGRkaiUqVKYtiwYWqXIq1atUpUqlRJ6Ovrv/My0Vq1agknJ6d3vj/e3t6iTJkyIisrK8/XkHMJVs4le3/99ZcYMGCAqFy5sjA2NhY2NjaiZcuWIioqSqP/cePGCQBi9uzZau2urq4CgLh586bGMs+ePROTJk0Srq6uwtDQUJQuXVo0adJEzJs3T2RmZqrVNHfuXI3lf/jhB9G8eXPpva5cubIYN26cSElJeed7IYQQ586dEwBEdHR0rtN79OghunfvrtGelJQkOnXqJCwsLET9+vXF2bNn1abv3r1b7fLcd8nt0lBjY2NRt25dsXz58jwv9/ziiy8EALFhw4b3riNHzqXOuT0GDhwohBDiypUrwsfHR5ibm4vSpUuLoKAgcfHiRY3LOAMCAoSZmZnGOqZOnSre3o09evRI9O3bV1hYWAilUikCAwPF8ePHBQC1ywyFEOKnn34SlSpVEoaGhqJu3bpi7969uV4aunr1alGlShVhZGQk3NzcRHh4eK7rfvHihRg2bJiwsbER5ubmomvXrtIltrNmzVKbNykpSQwbNkw4OjoKAwMD4eDgIFq3bi1WrlyZr/c2t0tD3770O+d7V5DLvfNzaWh+13Po0CHh6+srlEqlMDY2FpUrVxaBgYFqn+G8tm2LFi1yvQw7t/1kfr7XOetCAS4NzW0fIIQQN2/eFP379xcODg7CwMBAlC9fXnTs2FFs2rRJbb689qd5XRr6vv2jEPn/znxoCiF0PDKHiPLUunVrlCtXTuP3EOTo2rUrFAqFxg3QdGn06NFYvXo1Hjx4oHGlREmwbds2dOvWDceOHcv3lTe6cuHCBdSrVw8//fQT/P39P+i6iT4UhgmiDygmJgbNmjVDfHy8rMG3Oa5evYpatWrhwoULOr/0N0d6ejocHR3RsWNHjUGHxdHLly/VRuFnZ2ejbdu2OHv2LB48ePDOK6Z0vW7g9V0x161bh9u3b8PR0bHQ1k1UlDhmgugDatSoETIzM3XWn7u7e74Gjmrj4cOHiIqKwqZNm/DPP/+o/d5McTZ8+HC8fPkSnp6eyMjIwJYtW3DixAnMnDmzUIME8Pp3e2JjY9GyZUuUKlUKu3fvxu7duzF48GAGCfpXY5ggolxduXIF/v7+KFOmDL7//vs872VS3LRq1Qrz58/Hzp07kZ6eDldXVyxZsgTBwcGFvu4mTZpg//79+O677/D8+XM4OTnh22+/xeTJkwt93URFiac5iIiISBbeZ4KIiIhkYZggIiIiWf71YyZUKhXu3bsHCwuLQrm9KRER0b+VEALPnj1DuXLloKeX9/GHf32YuHfvHkdRExERyXD37l3phxZz868PEzm3OL57967GbYKJiIgob6mpqXB0dHzvzwX868NEzqkNS0tLhgkiIiItvG+YAAdgEhERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJwjBBREREsjBMEBERkSwME0RERCQLwwQRERHJUqqoCyipKk7cVdQl/OvdntWhUPrltit8hbXtAG6/D6Ewtx/9O/HIBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJEuRhomKFStCoVBoPIYNGwYASE9Px7Bhw2Brawtzc3P4+fkhKSmpKEsmIiKitxRpmDhz5gzu378vPfbv3w8A6NGjBwBg9OjR2LFjByIjI3HkyBHcu3cP3bt3L8qSiYiI6C2linLldnZ2as9nzZqFypUro0WLFkhJScHq1auxYcMGtGrVCgAQHh4Od3d3nDp1Co0bNy6KkomIiOgtxWbMRGZmJn766ScMGDAACoUCsbGxyMrKgo+PjzSPm5sbnJyccPLkyTz7ycjIQGpqqtqDiIiICk+xCRPbtm1DcnIyAgMDAQAPHjyAoaEhrKys1Oazt7fHgwcP8uwnNDQUSqVSejg6OhZi1URERFRswsTq1avRrl07lCtXTlY/kyZNQkpKivS4e/eujiokIiKi3BTpmIkcd+7cQVRUFLZs2SK1OTg4IDMzE8nJyWpHJ5KSkuDg4JBnX0ZGRjAyMirMcomIiOgNxeLIRHh4OMqUKYMOHTpIbR4eHjAwMMCBAwektri4OCQkJMDT07MoyiQiIqJcFPmRCZVKhfDwcAQEBKBUqf8rR6lUYuDAgRgzZgxsbGxgaWmJ4cOHw9PTk1dyEBERFSNFHiaioqKQkJCAAQMGaExbuHAh9PT04Ofnh4yMDPj6+mLZsmVFUCURERHlpcjDRNu2bSGEyHWasbExwsLCEBYW9oGrIiIiovwqFmMmiIiIqORimCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikoVhgoiIiGQp8l8NJSKi/4aKE3cVdQn/erdndSiS9fLIBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEFERESyFHmYSExMRL9+/WBrawsTExPUqlULZ8+elaYLITBlyhSULVsWJiYm8PHxQXx8fBFWTERERG8q0jDx9OlTeHl5wcDAALt378aVK1cwf/58WFtbS/PMmTMH33//PVasWIGYmBiYmZnB19cX6enpRVg5ERER5ShVlCufPXs2HB0dER4eLrW5uLhI/y+EwKJFi/D111+jS5cuAIC1a9fC3t4e27ZtQ+/evT94zURERKSuSI9M/Pbbb2jQoAF69OiBMmXKoF69eli1apU0/datW3jw4AF8fHykNqVSiUaNGuHkyZO59pmRkYHU1FS1BxERERWeIg0Tf/31F5YvX44qVapg7969GDp0KEaMGIE1a9YAAB48eAAAsLe3V1vO3t5emva20NBQKJVK6eHo6Fi4L4KIiOg/rkjDhEqlQv369TFz5kzUq1cPgwcPRlBQEFasWKF1n5MmTUJKSor0uHv3rg4rJiIiorcVaZgoW7Ysqlevrtbm7u6OhIQEAICDgwMAICkpSW2epKQkadrbjIyMYGlpqfYgIiKiwlOkYcLLywtxcXFqbdevX4ezszOA14MxHRwccODAAWl6amoqYmJi4Onp+UFrJSIiotwV6dUco0ePRpMmTTBz5kz07NkTp0+fxsqVK7Fy5UoAgEKhwKhRozB9+nRUqVIFLi4u+Oabb1CuXDl07dq1KEsnIiKi/69Iw8RHH32ErVu3YtKkSQgJCYGLiwsWLVoEf39/aZ7x48fjxYsXGDx4MJKTk9G0aVPs2bMHxsbGRVg5ERER5SjSMAEAHTt2RMeOHfOcrlAoEBISgpCQkA9YFREREeVXkd9Om4iIiEo2hgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEiWUtosdOvWLURHR+POnTtIS0uDnZ0d6tWrB09PTxgbG+u6RiIiIirGChQm1q9fj8WLF+Ps2bOwt7dHuXLlYGJigidPnuDmzZswNjaGv78/JkyYAGdn58KqmYiIiIqRfJ/mqFevHr7//nsEBgbizp07uH//PmJjY3Hs2DFcuXIFqamp2L59O1QqFRo0aIDIyMj39vntt99CoVCoPdzc3KTp6enpGDZsGGxtbWFubg4/Pz8kJSVp90qJiIioUOT7yMSsWbPg6+ub53QjIyN4e3vD29sbM2bMwO3bt/PVb40aNRAVFfV/BZX6v5JGjx6NXbt2ITIyEkqlEsHBwejevTuOHz+e37KJiIiokOU7TLwrSLzN1tYWtra2+SugVCk4ODhotKekpGD16tXYsGEDWrVqBQAIDw+Hu7s7Tp06hcaNG+e7HiIiIio8Wg3AfNOuXbtw+PBhZGdnw8vLC35+fgVaPj4+HuXKlYOxsTE8PT0RGhoKJycnxMbGIisrCz4+PtK8bm5ucHJywsmTJ/MMExkZGcjIyJCep6amavfCiIiIKF9kXRr6zTffYPz48VAoFBBCYPTo0Rg+fHi+l2/UqBEiIiKwZ88eLF++HLdu3UKzZs3w7NkzPHjwAIaGhrCyslJbxt7eHg8ePMizz9DQUCiVSunh6Oio7csjIiKifCjQkYmzZ8+iQYMG0vNffvkFFy9ehImJCQAgMDAQ3t7eWLJkSb76a9eunfT/tWvXRqNGjeDs7Ixff/1V6rOgJk2ahDFjxkjPU1NTGSiIiIgKUYGOTAwZMgSjRo1CWloaAKBSpUqYP38+4uLicOnSJSxfvhxVq1bVuhgrKytUrVoVN27cgIODAzIzM5GcnKw2T1JSUq5jLHIYGRnB0tJS7UFERESFp0BhIiYmBmXLlkX9+vWxY8cO/O9//8P58+fRpEkTNGvWDH///Tc2bNigdTHPnz/HzZs3UbZsWXh4eMDAwAAHDhyQpsfFxSEhIQGenp5ar4OIiIh0q0CnOfT19TFhwgT06NEDQ4cOhZmZGZYuXYpy5cpptfKxY8eiU6dOcHZ2xr179zB16lTo6+ujT58+UCqVGDhwIMaMGQMbGxtYWlpi+PDh8PT05JUcRERExYhWAzArVaqEvXv3olu3bmjevDnCwsK0Wvnff/+NPn36oFq1aujZsydsbW1x6tQp2NnZAQAWLlyIjh07ws/PD82bN4eDgwO2bNmi1bqIiIiocBToyERycjJmzpyJq1evok6dOpg4cSLat2+PL7/8Eo0bN8aqVatQq1atfPe3cePGd043NjZGWFiY1mGFiIiICl+BjkwEBAQgJiYGHTp0QFxcHIYOHQpbW1tERERgxowZ6NWrFyZMmFBYtRIREVExVKAjEwcPHsT58+fh6uqKoKAguLq6StNat26Nc+fOISQkROdFEhERUfFVoCMTVapUwcqVK3H9+nWsWLFC45dBjY2NMXPmTJ0WSERERMVbgcLE//73Pxw8eBD16tXDhg0bsHz58sKqi4iIiEqIAp3mqFu3Ls6ePVtYtRAREVEJlO8jE0KIwqyDiIiISqh8h4kaNWpg48aNyMzMfOd88fHxGDp0KGbNmiW7OCIiIir+8n2aY8mSJZgwYQK++OILtGnTBg0aNJB+Ovzp06e4cuUKjh07hsuXLyM4OBhDhw4tzLqJiIiomMh3mGjdujXOnj2LY8eO4ZdffsH69etx584dvHz5EqVLl0a9evXQv39/+Pv7w9raujBrJiIiomKkQAMwAaBp06Zo2rRpYdRCREREJZBWv81BRERElINhgoiIiGRhmCAiIiJZGCaIiIhIFoYJIiIikkWrMHHu3DlcunRJer59+3Z07doVX3311XtvakVERET/LlqFic8//xzXr18HAPz111/o3bs3TE1NERkZifHjx+u0QCIiIiretAoT169fR926dQEAkZGRaN68OTZs2ICIiAhs3rxZl/URERFRMadVmBBCQKVSAQCioqLQvn17AICjoyMeP36su+qIiIio2NMqTDRo0ADTp0/HunXrcOTIEXTo0AEAcOvWLdjb2+u0QCIiIiretAoTixYtwrlz5xAcHIzJkyfD1dUVALBp0yY0adJEpwUSERFR8Vbg3+bIzs5GcnIyjh49qvGDXnPnzoW+vr7OiiMiIqLir8BHJvT19dG2bVskJydrTDM2NoaBgYEu6iIiIqISQqvTHDVr1sRff/2l61qIiIioBNIqTEyfPh1jx47Fzp07cf/+faSmpqo9iIiI6L+jwGMmAEiXgnbu3BkKhUJqF0JAoVAgOztbN9URERFRsadVmDh06JCu6yAiIqISSqsw0aJFC13XQURERCWU1r8aGh0djX79+qFJkyZITEwEAKxbtw7Hjh3TWXFERERU/GkVJjZv3gxfX1+YmJjg3LlzyMjIAACkpKRg5syZOi2QiIiIijetr+ZYsWIFVq1apXZfCS8vL5w7d05nxREREVHxp1WYiIuLQ/PmzTXalUplrjezIiIion8vrcKEg4MDbty4odF+7NgxVKpUSXZRREREVHJoFSaCgoIwcuRIxMTEQKFQ4N69e1i/fj3Gjh2LoUOH6rpGIiIiKsa0ujR04sSJUKlUaN26NdLS0tC8eXMYGRlh7NixGD58uK5rJCIiomJMqzChUCgwefJkjBs3Djdu3MDz589RvXp1mJub67o+IiIiKua0ChMHDx5EkyZNYGxsjOrVq+u6JiIiIipBtAoTnTt3xqtXr/DRRx/B29sbLVq0gJeXF0xMTHRdHxERERVzWg3AfPr0KQ4cOIB27drh9OnT6NatG6ysrODl5YWvv/5a1zUSERFRMaZVmDAwMICXlxe++uor7N27F6dOnUKfPn1w+vRphIaG6rpGIiIiKsa0Os1x/fp1HD58GIcPH8aRI0eQkZGBZs2aYd68efD29tZxiURERFScaRUm3NzcYGdnh5EjR2LixImoVasWFAqFrmsjIiKiEkCr0xwjRoxA+fLlERISgiFDhmDy5MnYt28f0tLSdF0fERERFXNahYlFixbh3LlzePDgASZNmoTMzExMnjwZpUuXhpeXl65rJCIiomJMqzCRIzs7G1lZWcjIyEB6ejoyMjIQFxenq9qIiIioBND6NEft2rVhb2+Pzz//HPfu3UNQUBDOnz+PR48e6bpGIiIiKsa0GoB5//59DB48GN7e3qhZs6auayIiIqISRKswERkZqes6iIiIqITS6jTHmjVrsGvXLun5+PHjYWVlhSZNmuDOnTtaFTJr1iwoFAqMGjVKaktPT8ewYcNga2sLc3Nz+Pn5ISkpSav+iYiIqHBoFSZmzpwp/Q7HyZMnERYWhjlz5qB06dIYPXp0gfs7c+YMfvjhB9SuXVutffTo0dixYwciIyNx5MgR3Lt3D927d9emZCIiIiokWoWJu3fvwtXVFQCwbds2+Pn5YfDgwQgNDUV0dHSB+nr+/Dn8/f2xatUqWFtbS+0pKSlYvXo1FixYgFatWsHDwwPh4eE4ceIETp06pU3ZREREVAi0ChPm5ub4559/AAD79u1DmzZtAADGxsZ4+fJlgfoaNmwYOnToAB8fH7X22NhYZGVlqbW7ubnByckJJ0+ezLO/jIwMpKamqj2IiIio8Gg1ALNNmzYYNGgQ6tWrh+vXr6N9+/YAgMuXL6NixYr57mfjxo04d+4czpw5ozHtwYMHMDQ0hJWVlVq7vb09Hjx4kGefoaGhmDZtWr5rICIiInm0OjIRFhYGT09PPHr0CJs3b4atrS2A10cT+vTpk68+7t69i5EjR2L9+vUwNjbWpoxcTZo0CSkpKdLj7t27OuubiIiINGl1ZMLKygpLly7VaC/IEYHY2Fg8fPgQ9evXl9qys7Nx9OhRLF26FHv37kVmZiaSk5PVjk4kJSXBwcEhz36NjIxgZGSU7zqIiIhIHq3CBAAkJyfj9OnTePjwIVQqldSuUCjw6aefvnf51q1b49KlS2ptn332Gdzc3DBhwgQ4OjrCwMAABw4cgJ+fHwAgLi4OCQkJ8PT01LZsIiIi0jGtwsSOHTvg7++P58+fw9LSUu3nx/MbJiwsLDTunmlmZgZbW1upfeDAgRgzZgxsbGxgaWmJ4cOHw9PTE40bN9ambCIiIioEWoWJL7/8EgMGDMDMmTNhamqq65okCxcuhJ6eHvz8/JCRkQFfX18sW7as0NZHREREBadVmEhMTMSIESN0HiQOHz6s9tzY2BhhYWEICwvT6XqIiIhId7S6msPX1xdnz57VdS1ERERUAml1ZKJDhw4YN24crly5glq1asHAwEBteufOnXVSHBERERV/WoWJoKAgAEBISIjGNIVCgezsbHlVERERUYmhVZh481JQIiIi+m/TasxEXpKTk3O9mRURERH9e+kkTBw4cAB9+/ZF2bJlMXXqVF10SURERCWE1mHi7t27CAkJgYuLC9q2bQuFQoGtW7e+80e4iIiI6N+nQGEiKysLkZGR8PX1RbVq1XDhwgXMnTsXenp6mDx5Mj7++GONKzuIiIjo361AAzDLly8PNzc39OvXDxs3boS1tTUA5PuXQomIiOjfp0BHJl69egWFQgGFQgF9ff3CqomIiIhKkAKFiXv37mHw4MH4+eef4eDgAD8/P2zdulXth76IiIjov6VAYcLY2Bj+/v44ePAgLl26BHd3d4wYMQKvXr3CjBkzsH//ft6wioiI6D9G66s5KleujOnTp+POnTvYtWsXMjIy0LFjR9jb2+uyPiIiIirmtLoD5pv09PTQrl07tGvXDo8ePcK6det0URcRERGVEDq9A6adnR3GjBmjyy6JiIiomNNpmCAiIqL/HoYJIiIikoVhgoiIiGTRKkyEhIQgLS1No/3ly5cICQmRXRQRERGVHFqFiWnTpuH58+ca7WlpaZg2bZrsooiIiKjk0CpMCCFyvevlxYsXYWNjI7soIiIiKjkKdJ8Ja2tr6bc5qlatqhYosrOz8fz5cwwZMkTnRRIREVHxVaAwsWjRIgghMGDAAEybNg1KpVKaZmhoiIoVK8LT01PnRRIREVHxVaAwERAQAABwcXGBl5cXSpWSfQNNIiIiKuG0GjPx4sULHDhwQKN979692L17t+yiiIiIqOTQKkxMnDgx118HFUJg4sSJsosiIiKikkOrMBEfH4/q1atrtLu5ueHGjRuyiyIiIqKSQ6swoVQq8ddff2m037hxA2ZmZrKLIiIiopJDqzDRpUsXjBo1Cjdv3pTabty4gS+//BKdO3fWWXFERERU/GkVJubMmQMzMzO4ubnBxcUFLi4ucHd3h62tLebNm6frGomIiKgY0+raTqVSiRMnTmD//v24ePEiTExMULt2bTRv3lzX9REREVExp/WNIhQKBdq2bYvmzZvDyMgo19trExER0b+fVqc5VCoVvvvuO5QvXx7m5ua4desWAOCbb77B6tWrdVogERERFW9ahYnp06cjIiICc+bMgaGhodRes2ZN/PjjjzorjoiIiIo/rcLE2rVrsXLlSvj7+0NfX19qr1OnDq5du6az4oiIiKj40ypMJCYmwtXVVaNdpVIhKytLdlFERERUcmgVJqpXr47o6GiN9k2bNqFevXqyiyIiIqKSQ6urOaZMmYKAgAAkJiZCpVJhy5YtiIuLw9q1a7Fz505d10hERETFmNZ3wNyxYweioqJgZmaGKVOm4OrVq9ixYwfatGmj6xqJiIioGCvwkYlXr15h5syZGDBgAPbv318YNREREVEJUuAjE6VKlcKcOXPw6tWrwqiHiIiIShitTnO0bt0aR44c0XUtREREVAJpNQCzXbt2mDhxIi5dugQPDw+Nnx3nL4cSERH9d2gVJr744gsAwIIFCzSmKRQKZGdny6uKiIiISgytwoRKpdJ1HURERFRCFXjMRFZWFkqVKoU///yzMOohIiKiEqbAYcLAwABOTk48lUFEREQAtLyaY/Lkyfjqq6/w5MkTXddDREREJYxWYWLp0qU4evQoypUrh2rVqqF+/fpqj/xavnw5ateuDUtLS1haWsLT0xO7d++Wpqenp2PYsGGwtbWFubk5/Pz8kJSUpE3JREREVEi0GoDZtWtXnay8QoUKmDVrFqpUqQIhBNasWYMuXbrg/PnzqFGjBkaPHo1du3YhMjISSqUSwcHB6N69O44fP66T9RMREZF8WoWJqVOn6mTlnTp1Uns+Y8YMLF++HKdOnUKFChWwevVqbNiwAa1atQIAhIeHw93dHadOnULjxo11UgMRERHJo1WYyBEbG4urV68CAGrUqCHr58ezs7MRGRmJFy9ewNPTE7GxscjKyoKPj480j5ubG5ycnHDy5Mk8w0RGRgYyMjKk56mpqVrXRERERO+nVZh4+PAhevfujcOHD8PKygoAkJycjJYtW2Ljxo2ws7PLd1+XLl2Cp6cn0tPTYW5ujq1bt6J69eq4cOECDA0Npf5z2Nvb48GDB3n2FxoaimnTpmnzsoiIiEgLWg3AHD58OJ49e4bLly/jyZMnePLkCf7880+kpqZixIgRBeqrWrVquHDhAmJiYjB06FAEBATgypUr2pQFAJg0aRJSUlKkx927d7Xui4iIiN5PqyMTe/bsQVRUFNzd3aW26tWrIywsDG3bti1QX4aGhnB1dQUAeHh44MyZM1i8eDF69eqFzMxMJCcnqx2dSEpKgoODQ579GRkZwcjIqGAviIiIiLSm1ZEJlUoFAwMDjXYDAwPZt9pWqVTIyMiAh4cHDAwMcODAAWlaXFwcEhIS4OnpKWsdREREpDtaHZlo1aoVRo4ciZ9//hnlypUDACQmJmL06NFo3bp1vvuZNGkS2rVrBycnJzx79gwbNmzA4cOHsXfvXiiVSgwcOBBjxoyBjY0NLC0tMXz4cHh6evJKDiIiomJEqzCxdOlSdO7cGRUrVoSjoyMA4O7du6hZsyZ++umnfPfz8OFD9O/fH/fv34dSqUTt2rWxd+9etGnTBgCwcOFC6Onpwc/PDxkZGfD19cWyZcu0KZmIiIgKiVZhwtHREefOnUNUVBSuXbsGAHB3d1e7jDM/Vq9e/c7pxsbGCAsLQ1hYmDZlEhER0Qeg9X0mFAoF2rRpIx1FICIiov+mAg3APHjwIKpXr57rjaBSUlJQo0YNREdH66w4IiIiKv4KFCYWLVqEoKAgWFpaakxTKpX4/PPPsWDBAp0VR0RERMVfgcLExYsX8fHHH+c5vW3btoiNjZVdFBEREZUcBQoTSUlJud5fIkepUqXw6NEj2UURERFRyVGgMFG+fHn8+eefeU7/448/ULZsWdlFERERUclRoDDRvn17fPPNN0hPT9eY9vLlS0ydOhUdO3bUWXFERERU/BXo0tCvv/4aW7ZsQdWqVREcHIxq1aoBAK5du4awsDBkZ2dj8uTJhVIoERERFU8FChP29vY4ceIEhg4dikmTJkEIAeD1PSd8fX0RFhYGe3v7QimUiIiIiqcC37TK2dkZv//+O54+fYobN25ACIEqVarA2tq6MOojIiKiYk7rO2BaW1vjo48+0mUtREREVAJp9RPkRERERDkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZCnSMBEaGoqPPvoIFhYWKFOmDLp27Yq4uDi1edLT0zFs2DDY2trC3Nwcfn5+SEpKKqKKiYiI6G1FGiaOHDmCYcOG4dSpU9i/fz+ysrLQtm1bvHjxQppn9OjR2LFjByIjI3HkyBHcu3cP3bt3L8KqiYiI6E2linLle/bsUXseERGBMmXKIDY2Fs2bN0dKSgpWr16NDRs2oFWrVgCA8PBwuLu749SpU2jcuHFRlE1ERERvKFZjJlJSUgAANjY2AIDY2FhkZWXBx8dHmsfNzQ1OTk44efJkrn1kZGQgNTVV7UFERESFp9iECZVKhVGjRsHLyws1a9YEADx48ACGhoawsrJSm9fe3h4PHjzItZ/Q0FAolUrp4ejoWNilExER/acVmzAxbNgw/Pnnn9i4caOsfiZNmoSUlBTpcffuXR1VSERERLkp0jETOYKDg7Fz504cPXoUFSpUkNodHByQmZmJ5ORktaMTSUlJcHBwyLUvIyMjGBkZFXbJRERE9P8V6ZEJIQSCg4OxdetWHDx4EC4uLmrTPTw8YGBggAMHDkhtcXFxSEhIgKen54cul4iIiHJRpEcmhg0bhg0bNmD79u2wsLCQxkEolUqYmJhAqVRi4MCBGDNmDGxsbGBpaYnhw4fD09OTV3IQEREVE0UaJpYvXw4A8Pb2VmsPDw9HYGAgAGDhwoXQ09ODn58fMjIy4Ovri2XLln3gSomIiCgvRRomhBDvncfY2BhhYWEICwv7ABURERFRQRWbqzmIiIioZGKYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKShWGCiIiIZGGYICIiIlkYJoiIiEgWhgkiIiKSpUjDxNGjR9GpUyeUK1cOCoUC27ZtU5suhMCUKVNQtmxZmJiYwMfHB/Hx8UVTLBEREeWqSMPEixcvUKdOHYSFheU6fc6cOfj++++xYsUKxMTEwMzMDL6+vkhPT//AlRIREVFeShXlytu1a4d27drlOk0IgUWLFuHrr79Gly5dAABr166Fvb09tm3bht69e3/IUomIiCgPxXbMxK1bt/DgwQP4+PhIbUqlEo0aNcLJkyfzXC4jIwOpqalqDyIiIio8xTZMPHjwAABgb2+v1m5vby9Ny01oaCiUSqX0cHR0LNQ6iYiI/uuKbZjQ1qRJk5CSkiI97t69W9QlERER/asV2zDh4OAAAEhKSlJrT0pKkqblxsjICJaWlmoPIiIiKjzFNky4uLjAwcEBBw4ckNpSU1MRExMDT0/PIqyMiIiI3lSkV3M8f/4cN27ckJ7funULFy5cgI2NDZycnDBq1ChMnz4dVapUgYuLC7755huUK1cOXbt2LbqiiYiISE2RhomzZ8+iZcuW0vMxY8YAAAICAhAREYHx48fjxYsXGDx4MJKTk9G0aVPs2bMHxsbGRVUyERERvaVIw4S3tzeEEHlOVygUCAkJQUhIyAesioiIiAqi2I6ZICIiopKBYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISJYSESbCwsJQsWJFGBsbo1GjRjh9+nRRl0RERET/X7EPE7/88gvGjBmDqVOn4ty5c6hTpw58fX3x8OHDoi6NiIiIUALCxIIFCxAUFITPPvsM1atXx4oVK2Bqaor//e9/RV0aERERAShV1AW8S2ZmJmJjYzFp0iSpTU9PDz4+Pjh58mSuy2RkZCAjI0N6npKSAgBITU3VaW2qjDSd9keadL3NcnDbFb7C2nYAt9+HwO9eyaXrbZfTnxDinfMV6zDx+PFjZGdnw97eXq3d3t4e165dy3WZ0NBQTJs2TaPd0dGxUGqkwqNcVNQVkLa47Uo2br+Sq7C23bNnz6BUKvOcXqzDhDYmTZqEMWPGSM9VKhWePHkCW1tbKBSKIqysaKWmpsLR0RF3796FpaVlUZdDBcBtV3Jx25Vc3HavCSHw7NkzlCtX7p3zFeswUbp0aejr6yMpKUmtPSkpCQ4ODrkuY2RkBCMjI7U2KyurwiqxxLG0tPxPfzFKMm67kovbruTitsM7j0jkKNYDMA0NDeHh4YEDBw5IbSqVCgcOHICnp2cRVkZEREQ5ivWRCQAYM2YMAgIC0KBBAzRs2BCLFi3Cixcv8NlnnxV1aURERIQSECZ69eqFR48eYcqUKXjw4AHq1q2LPXv2aAzKpHczMjLC1KlTNU4BUfHHbVdycduVXNx2BaMQ77veg4iIiOgdivWYCSIiIir+GCaIiIhIFoYJIiIikoVhggAAERER+b4fR0HmpcJz+/ZtKBQKXLhwoahLIfpXCwwMRNeuXaXn3t7eGDVqVL6WLci8JVmxv5qDPoxevXqhffv2RV1GieTt7Y26deti0aJFRV0KFYLAwEAkJydj27ZtRV0KFRNbtmyBgYFBUZdRrDBMEADAxMQEJiYmRV0GUbGRnZ39n74FP+XNxsamqEsodniao5jYtGkTatWqBRMTE9ja2sLHxwcvXryQDq9NmzYNdnZ2sLS0xJAhQ5CZmSktu2fPHjRt2hRWVlawtbVFx44dcfPmTWl6zuHwLVu2oGXLljA1NUWdOnXUfnn17VMXFy9eRMuWLWFhYQFLS0t4eHjg7NmzajXv3bsX7u7uMDc3x8cff4z79+8X3htUTAUGBuLIkSNYvHgxFAoFFAoFbt68iYEDB8LFxQUmJiaoVq0aFi9erLbcq1evMGLECGmbTZgwAQEBAWqHUt+3XXNz5MgRNGzYEEZGRihbtiwmTpyIV69eSdOfPXsGf39/mJmZoWzZsli4cOG/5jCst7c3goODERwcDKVSidKlS+Obb76Rfu3w6dOn6N+/P6ytrWFqaop27dohPj5eWj7nO/Dbb7+hevXqMDIywoABA7BmzRps375d2r6HDx/G4cOHoVAokJycLC1/4cIFKBQK3L59W2pbtWoVHB0dYWpqim7dumHBggVq37O3D58DwKhRo+Dt7S09V6lUCA0NlT5PderUwaZNm6TpT58+hb+/P+zs7GBiYoIqVaogPDxcmn737l307NkTVlZWsLGxQZcuXdRqLOne9f7kbKcDBw6gQYMGMDU1RZMmTRAXF6fWx/Tp01GmTBlYWFhg0KBBmDhxIurWrZvnOt/+zixbtgxVqlSBsbEx7O3t8cknn2jUOH78eNjY2MDBwQHffvutrl5+scEwUQzcv38fffr0wYABA3D16lUcPnwY3bt3l3aCBw4ckNp//vlnbNmyRe2XUV+8eIExY8bg7NmzOHDgAPT09NCtWzeoVCq19UyePBljx47FhQsXULVqVfTp00ftH5o3+fv7o0KFCjhz5gxiY2MxceJEtcN6aWlpmDdvHtatW4ejR48iISEBY8eOLYR3p3hbvHgxPD09ERQUhPv37+P+/fuoUKECKlSogMjISFy5cgVTpkzBV199hV9//VVabvbs2Vi/fj3Cw8Nx/PhxpKamahxGz+92zZGYmIj27dvjo48+wsWLF7F8+XKsXr0a06dPl+YZM2YMjh8/jt9++w379+9HdHQ0zp07VyjvTVFYs2YNSpUqhdOnT2Px4sVYsGABfvzxRwCv/+E+e/YsfvvtN5w8eRJCCLRv3x5ZWVnS8mlpaZg9ezZ+/PFHXL58Gd9//z169uwpheX79++jSZMm+arl+PHjGDJkCEaOHIkLFy6gTZs2mDFjRoFfU2hoKNauXYsVK1bg8uXLGD16NPr164cjR44AAL755htcuXIFu3fvxtWrV7F8+XKULl0aAJCVlQVfX19YWFggOjoax48fl8L/m3+QlGTve3+A1/u++fPn4+zZsyhVqhQGDBggTVu/fj1mzJiB2bNnIzY2Fk5OTli+fHm+13/27FmMGDECISEhiIuLw549e9C8eXO1edasWQMzMzPExMRgzpw5CAkJwf79++W/+OJEUJGLjY0VAMTt27c1pgUEBAgbGxvx4sULqW358uXC3NxcZGdn59rfo0ePBABx6dIlIYQQt27dEgDEjz/+KM1z+fJlAUBcvXpVCCFEeHi4UCqV0nQLCwsRERGRa//h4eECgLhx44bUFhYWJuzt7fP/ov9FWrRoIUaOHPnOeYYNGyb8/Pyk5/b29mLu3LnS81evXgknJyfRpUuXPPvIa7ueP39eCCHEV199JapVqyZUKpW0TFhYmPRZSU1NFQYGBiIyMlKanpycLExNTd9bf0nQokUL4e7urvb6J0yYINzd3cX169cFAHH8+HFp2uPHj4WJiYn49ddfhRD/97m+cOGCWr8BAQEa2+XQoUMCgHj69KnUdv78eQFA3Lp1SwghRK9evUSHDh3UlvP391f7nuXW98iRI0WLFi2EEEKkp6cLU1NTceLECbV5Bg4cKPr06SOEEKJTp07is88+y/U9WbduncZnIiMjQ5iYmIi9e/fmukxJ8r73J2c7RUVFSdN27dolAIiXL18KIYRo1KiRGDZsmNryXl5eok6dOtLzt7fTm9/5zZs3C0tLS5GampprjS1atBBNmzZVa/voo4/EhAkTCvpyizUemSgG6tSpg9atW6NWrVro0aMHVq1ahadPn6pNNzU1lZ57enri+fPnuHv3LgAgPj4effr0QaVKlWBpaYmKFSsCABISEtTWU7t2ben/y5YtCwB4+PBhrjWNGTMGgwYNgo+PD2bNmqVxeN3U1BSVK1dW6y+vvv6LwsLC4OHhATs7O5ibm2PlypXS9khJSUFSUhIaNmwoza+vrw8PDw+1PvK7XXNcvXoVnp6eauf5vby88Pz5c/z999/466+/kJWVpbZepVKJatWq6eplF7nGjRurvX5PT0/Ex8fjypUrKFWqFBo1aiRNs7W1RbVq1XD16lWpzdDQUO17IkdcXJzaew1A4/n73LhxA2lpaWjTpg3Mzc2lx9q1a6Xv5NChQ7Fx40bUrVsX48ePx4kTJ6TlL168iBs3bsDCwkJa1sbGBunp6e89ZVYS5Of9Ad6975O7ndq0aQNnZ2dUqlQJn376KdavX4+0tDS1ed7+TP0b95ccgFkM6OvrY//+/Thx4gT27duHJUuWYPLkyYiJicnX8p06dYKzszNWrVqFcuXKQaVSoWbNmhqHMd88TZGzw83rkPm3336Lvn37YteuXdi9ezemTp2KjRs3olu3bhp95fQneGd2AMDGjRsxduxYzJ8/H56enrCwsMDcuXPzvT1z5He7ku6YmJjka9Clnt7rv8Pe/My/ebokv/T09DS+N2/28/z5cwDArl27UL58ebX5cn4zol27drhz5w5+//137N+/H61bt8awYcMwb948PH/+HB4eHli/fr3Guu3s7Apcb3HzvvcnJ1AUZN9XUBYWFjh37hwOHz6Mffv2YcqUKfj2229x5swZaXxMbvtLXa2/uOCRiWJCoVDAy8sL06ZNw/nz52FoaIitW7cCeP3XxcuXL6V5T506BXNzczg6OuKff/5BXFwcvv76a7Ru3Rru7u5qRzXkqFq1KkaPHo19+/ahe/fuaoO66P8YGhoiOztben78+HE0adIEX3zxBerVqwdXV1e1v5KUSiXs7e1x5swZqS07O1tt7II229Xd3V0aC/BmLRYWFqhQoQIqVaoEAwMDtfWmpKTg+vXrsl5/cfJ2YDt16hSqVKmC6tWr49WrV2rTc97j6tWrv7PPt7cv8H//EL856Pjt+31Uq1ZN7b0GoPHczs5OY+Dym/3kDARNSEiAq6ur2sPR0VGtn4CAAPz0009YtGgRVq5cCQCoX78+4uPjUaZMGY3llUrlO193SZDf9+dd8rOd3qdUqVLw8fHBnDlz8Mcff+D27ds4ePBggfoo6XhkohiIiYnBgQMH0LZtW5QpUwYxMTF49OgR3N3d8ccffyAzMxMDBw7E119/jdu3b2Pq1KkIDg6Gnp4erK2tYWtri5UrV6Js2bJISEjAxIkTZdXz8uVLjBs3Dp988glcXFzw999/48yZM/Dz89PRK/53qVixImJiYnD79m2Ym5ujSpUqWLt2Lfbu3QsXFxesW7cOZ86cgYuLi7TM8OHDERoaCldXV7i5uWHJkiV4+vSp9FeTNtv1iy++wKJFizB8+HAEBwcjLi4OU6dOxZgxY6CnpwcLCwsEBARg3LhxsLGxQZkyZTB16lTo6en9ay6BTEhIwJgxY/D555/j3LlzWLJkCebPn48qVaqgS5cuCAoKwg8//AALCwtMnDgR5cuXR5cuXd7ZZ8WKFbF3717ExcXB1tYWSqVS+sfq22+/xYwZM3D9+nXMnz9fbbnhw4ejefPmWLBgATp16oSDBw9i9+7dau91q1atMHfuXKxduxaenp746aef8Oeff6JevXoAXv/VO3bsWIwePRoqlQpNmzZFSkoKjh8/DktLSwQEBGDKlCnw8PBAjRo1kJGRgZ07d8Ld3R3A64HUc+fORZcuXRASEoIKFSrgzp072LJlC8aPH48KFSroeAt8WO97f5ydnd/bx/DhwxEUFIQGDRqgSZMm+OWXX/DHH3+gUqVK+aph586d+Ouvv9C8eXNYW1vj999/h0ql+ledPsyXoh2yQUIIceXKFeHr6yvs7OyEkZGRqFq1qliyZIkQ4v8G/kyZMkXY2toKc3NzERQUJNLT06Xl9+/fL9zd3YWRkZGoXbu2OHz4sAAgtm7dKoTQHKgnhBBPnz4VAMShQ4eEEOoDMDMyMkTv3r2Fo6OjMDQ0FOXKlRPBwcHSgKW3B2sKIcTWrVvFf/XjFBcXJxo3bixMTEwEAHHt2jURGBgolEqlsLKyEkOHDhUTJ05UG9CVlZUlgoODhaWlpbC2thYTJkwQPXr0EL1795bm0Wa7Hj58WHz00UfC0NBQODg4iAkTJoisrCxpempqqujbt68wNTUVDg4OYsGCBaJhw4Zi4sSJhf02FboWLVqIL774QgwZMkR6X7/66itp8OGTJ0/Ep59+KpRKpTAxMRG+vr7i+vXr0vK5fa6FEOLhw4eiTZs2wtzcXO07c+zYMVGrVi1hbGwsmjVrJiIjI9UGYAohxMqVK0X58uWFiYmJ6Nq1q5g+fbpwcHBQ63/KlCnC3t5eKJVKMXr0aBEcHCwNwBRCCJVKJRYtWiSqVasmDAwMhJ2dnfD19RVHjhwRQgjx3XffCXd3d2FiYiJsbGxEly5dxF9//SUtf//+fdG/f39RunRpYWRkJCpVqiSCgoJESkqKzHe8eHjX+5OfgbJCCBESEiJKly4tzM3NxYABA8SIESNE48aNpenvGoAZHR0tWrRoIaytrYWJiYmoXbu2+OWXX3KdN0eXLl1EQECADt+FosefIC/mePe9/waVSgV3d3f07NkT33333Qdb74sXL1C+fHnMnz8fAwcO/GDrLQwl4U6kQUFBuHbtGqKjo4u6FHqHNm3awMHBAevWrSvqUkoMnuYgKgJ37tzBvn370KJFC2RkZGDp0qW4desW+vbtW6jrPX/+PK5du4aGDRsiJSUFISEhAPDeQ/2knXnz5qFNmzYwMzPD7t27sWbNGixbtqyoy6I3pKWlYcWKFfD19YW+vj5+/vlnREVF/fvuA1HIGCaIioCenh4iIiIwduxYCCFQs2ZNREVFSee6C9O8efMQFxcHQ0NDeHh4IDo6WrrJEenW6dOnMWfOHDx79gyVKlXC999/j0GDBhV1WfQGhUKB33//HTNmzEB6ejqqVauGzZs3w8fHp6hLK1F4moOIiIhk4aWhREREJAvDBBEREcnCMEFERESyMEwQERGRLAwTREREJAvDBBEREcnCMEH0HxYYGIiuXbsWdRlEVMIxTBAREZEsDBNElKsFCxagVq1aMDMzg6OjI7744gs8f/5cmh4REQErKyvs3bsX7u7uMDc3x8cff6z2k9qvXr3CiBEjYGVlBVtbW0yYMAEBAQFqR0MqVqyo8XsadevWxbfffpvvWgBg1apVcHR0hKmpKbp164YFCxbAyspKbZ7t27ejfv36MDY2RqVKlTBt2jS8evVK9ntF9F/HMEFEudLT08P333+Py5cvY82aNTh48CDGjx+vNk9aWhrmzZuHdevW4ejRo0hISMDYsWOl6bNnz8b69esRHh6O48ePIzU1VasfrXtfLcePH8eQIUMwcuRIXLhwAW3atMGMGTPU+oiOjkb//v0xcuRIXLlyBT/88AMiIiI05iMiLRTpb5YSUZF6+6eV3yUyMlLY2tpKz8PDwwUAcePGDaktLCxM2NvbS8/t7e3F3LlzpeevXr0STk5Oaut0dnYWCxcuVFtXnTp1xNSpU/NdS69evUSHDh3U5vH391f7SfHWrVuLmTNnqs2zbt06UbZs2TzXQ0T5wx/6IqJcRUVFITQ0FNeuXUNqaipevXqF9PR0pKWlwdTUFABgamqKypUrS8uULVsWDx8+BACkpKQgKSkJDRs2lKbr6+vDw8MDKpVKp7XExcWhW7duass0bNgQO3fulJ5fvHgRx48fVzsSkZ2drfGaiKjgeJqDiDTcvn0bHTt2RO3atbF582bExsYiLCwMAJCZmSnNZ2BgoLacQqGAKOBvB+rp6Wksk5WVVeBa3uf58+eYNm0aLly4ID0uXbqE+Ph4GBsbF6hmIlLHIxNEpCE2NhYqlQrz58+Hnt7rvzl+/fXXAvWhVCphb2+PM2fOoHnz5gBeHwk4d+4c6tatK81nZ2enNmgzNTUVt27dKlAt1apVw5kzZ9Ta3n5ev359xMXFwdXVtUCvg4jej2GC6D8uJSUFFy5cUGsrXbo0srKysGTJEnTq1AnHjx/HihUrCtz38OHDERoaCldXV7i5uWHJkiV4+vQpFAqFNE+rVq0QERGBTp06wcrKClOmTIG+vr403dXV9b21DB8+HM2bN8eCBQvQqVMnHDx4ELt371Zbz5QpU9CxY0c4OTnhk08+gZ6eHi5evIg///wT06dPL/BrI6I3FPWgDSIqOgEBAQKAxmPgwIFiwYIFomzZssLExET4+vqKtWvXCgDi6dOnQojXAzDfHOAohBBbt24Vb+5WsrKyRHBwsLC0tBTW1tZiwoQJokePHqJ3797SPCkpKaJXr17C0tJSODo6ioiICI0BmO+rRQghVq5cKcqXLy9MTExE165dxfTp04WDg4NafXv27BFNmjQRJiYmwtLSUjRs2FCsXLlSZ+8n0X+VQogCnuAkItKSSqWCu7s7evbsie+++65Q1xUUFIRr164hOjq6UNdDRDzNQUSF6M6dO9i3bx9atGiBjIwMLF26FLdu3ULfvn11vq558+ahTZs2MDMzw+7du7FmzRosW7ZM5+shIk0ME0RUaPT09BAREYGxY8dCCIGaNWsiKioK7u7uOl/X6dOnMWfOHDx79gyVKlXC999/j0GDBul8PUSkiac5iIiISBbeZ4KIiIhkYZggIiIiWRgmiIiISBaGCSIiIpKFYYKIiIhkYZggIiIiWRgmiIiISBaGCSIiIpLl/wE7H+8Ofpc+zwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese \\\n", "0 retina/oncology 1 1 1 \n", "\n", " match_english Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 1 1 100.0 100.0 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 100.0 100.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAIjCAYAAADycUpkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdGElEQVR4nO3dd1QU5/s28GtBegeRokgRC9h7EBVUFHsJsRuxBGPBGrtRI7bYEAvW5CsWjIk19t4b9q7YsUSwAiqCwD7vH77Mz3VBYF3ASa7POXsO+0y7Z2d39mLmmVmFEEKAiIiISGZ0CroAIiIiIk0wxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHE0H/OqVOnoK+vj5iYGK3M79q1ayhUqBCuXLmilfmRPLi4uKBbt275vtyIiAgoFAqcOXMm35f9b+Lr6wtfX9+CLuOrpFAo8MsvvxR0GTki+xBz584d/Pjjj3Bzc4OhoSHMzc3h7e2NOXPm4N27dwVdXq5du3YNv/zyC+7fv5/raYcPHw6FQoH27dtrv7B/kTFjxqBjx45wdnaW2jZt2oQyZcrAwsICLVq0wD///KM2XcuWLdGrVy+1dk9PTzRr1gzjxo3L0fIzvoQ+fhQpUgT16tXDjh07NF+xTLi4uKB58+ZanSdp1/3799XeD1k9NNkv/Jd9yf5Um169eoVChQrhr7/+KtA6/o0KFXQBX2Lbtm1o27YtDAwM0LVrV5QrVw7v37/H0aNHMWzYMFy9ehVLliwp6DJz5dq1a5gwYQJ8fX3h4uKS4+mEEPjjjz/g4uKCLVu24PXr1zAzM8u7QmXqwoUL2Lt3L44fPy613b17F+3bt0f79u3h5eWFsLAwdO/eHbt27ZLG2bVrFw4fPoxbt25lOt/evXujadOmuHPnDkqUKJGjWkJCQuDq6gohBOLi4hAREYGmTZtiy5YtDB4yEB0dDR2dL/8/0NbWFitXrlRpmzVrFh49eoTZs2erjUs597n96e7du/Otjl27dkGhUKBRo0b5tsz/CtmGmHv37qFDhw5wdnbG/v374eDgIA3r168fbt++jW3btn3xcoQQSE5OhpGRkdqw5ORk6Ovra2VH9qUOHjyIR48eYf/+/fD398eGDRsQGBhY0GVpVVpaGpRKJfT19TWex7Jly1C8eHF88803Utvu3btRrFgxLF++HAqFAh4eHqhfvz6Sk5NhaGiItLQ0DB48GOPGjcvyS8TPzw9WVlZYvnw5QkJCclRLkyZNUK1aNel5z549YWdnhz/++IMhRgYMDAy0Mh8TExN06dJFpW3NmjV49eqVWvt/nTb2ARm0MY+c2r59O7y9vWFpaZlvy/yvKPhvXw1Nnz4db968we+//64SYDK4u7tj4MCB0vO0tDRMnDgRJUqUgIGBAVxcXDB69GikpKSoTJdx+H3Xrl2oVq0ajIyMsHjxYhw8eBAKhQJr1qzBzz//jKJFi8LY2BiJiYkAgKioKDRu3BgWFhYwNjaGj48Pjh07plbX48eP0bNnTzg6OsLAwACurq7o06cP3r9/j4iICLRt2xYAUK9ePekQ8sGDB7N9PSIjI+Hp6Yl69erBz88PkZGRauNkrMNff/2FyZMno1ixYjA0NESDBg1w+/ZtlXFv3bqFgIAA2Nvbw9DQEMWKFUOHDh2QkJAAAPj2229RpUoVlWlatGgBhUKBzZs3S21RUVFQKBQqp0ni4+MxaNAgODk5wcDAAO7u7pg2bRqUSqU0TsYh9pkzZyIsLEzabteuXQMAzJs3D2XLloWxsTGsrKxQrVo1rF69OtvXadOmTahfvz4UCoXU9u7dO1haWkpt1tbWEEJIpyPnz5+P9PR09O/fP8v56unpwdfXF3///Xe2NWTF0tISRkZGKFTow/8WQgi4uLigVatWauMmJyfDwsICP/74o8bLy3DkyBG0bdsWxYsXh4GBAZycnDB48GC107HdunWDqakpHj9+jNatW8PU1BS2trYYOnQo0tPTVcZ98eIFvv/+e5ibm8PS0hKBgYG4ePEiFAoFIiIipPGy6pfQrVs3tf+cZ86ciVq1asHGxgZGRkaoWrUq1q1bpzbtu3fvMGDAABQuXBhmZmZo2bIlHj9+nOl5/sePH6NHjx6ws7ODgYEBypYti//97385et0+7ROTcZrw2LFjGDJkCGxtbWFiYoI2bdrg2bNnOZpnbqSkpORoOTt27ECdOnVgYmICMzMzNGvWDFevXlUZJ2PbPnjwAM2bN4epqSmKFi2K8PBwAMDly5dRv359mJiYwNnZOdPPWk4+1wDw5MkT3LhxA6mpqZ9dv+z2ATdu3MB3330Ha2trGBoaolq1air7nuz2p5++93Kzf8zpZwYAlEoldu7ciWbNmkltuf0+Onr0KGrUqAFDQ0O4ublhxYoVmb7+gwcPhouLCwwMDFCsWDF07doVz58/l8Z5+vSp9M+SoaEhKlasiOXLl392O2Q4f/48mjRpAnNzc5iamqJBgwY4efKk2niXLl2Cj48PjIyMUKxYMUyaNAnLli1TOR0aGBiIwoULZ/oeaNSoEUqXLp2jmgAAQqaKFi0q3Nzccjx+YGCgACC+++47ER4eLrp27SoAiNatW6uM5+zsLNzd3YWVlZUYOXKkWLRokThw4IA4cOCAACA8PT1FpUqVRGhoqJg6dap4+/at2Ldvn9DX1xdeXl5i1qxZYvbs2aJChQpCX19fREVFSfN+/PixcHR0FMbGxmLQoEFi0aJFYuzYscLDw0O8evVK3LlzRwwYMEAAEKNHjxYrV64UK1euFLGxsZ9dt+TkZGFpaSkmTpwohBBixYoVQldXVzx58kRlvIx1qFy5sqhataqYPXu2+OWXX4SxsbGoUaOGNF5KSopwdXUVjo6OYtKkSeK3334TEyZMENWrVxf3798XQggRGhoqdHR0REJCghBCCKVSKaysrISOjo4YOnSoNK8ZM2aojPf27VtRoUIFYWNjI0aPHi0WLVokunbtKhQKhRg4cKA03b1796TX283NTfz6669i9uzZIiYmRixZskTalosXLxZz5swRPXv2FAMGDPjs6/To0SMBQMydO1el/ciRI0KhUIjVq1eLu3fvinbt2gl3d3chhBBPnz4VlpaWYuvWrZ+dtxBCTJo0SWVds7Js2TIBQOzdu1c8e/ZMPH36VFy5ckX8+OOPQkdHR+zevVsad8yYMUJPT0+8ePFCZR5//fWXACAOHz782WU5OzuLZs2afXac/v37i6ZNm4opU6aIxYsXi549ewpdXV3x3XffqYwXGBgoDA0NRdmyZUWPHj3EwoULRUBAgAAgFixYII2Xnp4uvLy8hK6urggODhbz588XDRs2FBUrVhQAxLJly6RxfXx8hI+Pj1pNgYGBwtnZWaWtWLFiom/fvmL+/PkiNDRU1KhRQwBQ2zbt2rUTAMT3338vwsPDRbt27aRljx8/XhovNjZWFCtWTDg5OYmQkBCxcOFC0bJlSwFAzJ49+7OvmRAfXtvAwEDpecZ2rVy5sqhfv76YN2+e+Omnn4Surq5o165dtvP7WLNmzdTWX5PlrFixQigUCtG4cWMxb948MW3aNOHi4iIsLS3FvXv3pPEytq2np6fo3bu3CA8PF7Vq1ZK2l6Ojoxg2bJiYN2+eKFu2rNDV1RV3796Vps/p5zpjWQBUlp+Zz+0Drly5IiwsLISnp6eYNm2amD9/vqhbt65QKBRiw4YNQgiR7f700/deTvePQuT8MyOEECdPnhQAxJUrV9Reg5x8H5UuXVrY2dmJ0aNHi/nz54sqVaoIhUKhMr/Xr1+LcuXKCV1dXREUFCQWLlwoJk6cKKpXry7Onz8vhBAiKSlJeHh4CD09PTF48GAxd+5cUadOHQFAhIWFqSz308/KlStXhImJiXBwcBATJ04Uv/76q3B1dRUGBgbi5MmT0niPHj0S1tbWwsbGRkyYMEHMnDlTlClTRvr8ZWzzPXv2CABiy5YtKst98uSJ0NXVFSEhIZm9JTIlyxCTkJAgAIhWrVrlaPwLFy4IAOKHH35QaR86dKgAIPbv3y+1OTs7CwBi586dKuNmvMHd3NxEUlKS1K5UKkXJkiWFv7+/UCqVUntSUpJwdXUVDRs2lNq6du0qdHR0xOnTp9VqzJh27dq1AoA4cOBAjtZNCCHWrVsnAIhbt24JIYRITEwUhoaGajvijHXw8PAQKSkpUvucOXMEAHH58mUhhBDnz58XAMTatWuzXObp06cFALF9+3YhhBCXLl0SAETbtm1FzZo1pfFatmwpKleuLD2fOHGiMDExETdv3lSZ38iRI4Wurq548OCBEOL/dmDm5ubi6dOnKuO2atVKlC1bNqcvj2Tv3r2ZfnCEENLODoCwtraW3hNBQUGicePGOZr/6tWrBQCV4JqZjC+hTx8GBgYiIiJCZdzo6GgBQCxcuFClvWXLlsLFxUXlPZeZnISYj9/PGaZOnSoUCoWIiYmR2jJ2vJ/uYDJ2+hnWr1+vtmNMT08X9evX/6IQ82md79+/F+XKlRP169eX2s6ePSsAiEGDBqmM261bN7Udc8+ePYWDg4N4/vy5yrgdOnQQFhYWmb4uH8sqxPj5+alsl8GDBwtdXV0RHx//2fl9LCchJrvlvH79WlhaWoqgoCCV6WNjY4WFhYVKe8a2nTJlitT26tUrYWRkJBQKhVizZo3UfuPGDbXXMqef64+XldMQk9k+oEGDBqJ8+fIiOTlZalMqlaJWrVqiZMmSUtvn9qdZhZjs9o9C5PwzI4QQY8eOVdmWmnwfffzPytOnT4WBgYH46aefpLZx48YJAFKA+1jGeyQsLEwAEKtWrZKGvX//Xnh5eQlTU1ORmJgotX+6fVu3bi309fXFnTt3pLZ//vlHmJmZibp160pt/fv3FwqFQgpOQgjx4sULYW1trbLN09PTRbFixUT79u1Vag0NDRUKhUIlIGdHlqeTMk7h5LTj6vbt2wEAQ4YMUWn/6aefAECt74yrqyv8/f0znVdgYKBK/5gLFy7g1q1b6NSpE168eIHnz5/j+fPnePv2LRo0aIDDhw9DqVRCqVRi06ZNaNGihUo/iAwfn97IrcjISFSrVg3u7u4AIB0yzuyUEgB0795d5XxwnTp1AHzo4AoAFhYWAD50RktKSsp0HpUrV4apqSkOHz4M4MPh1YzDl+fOnUNSUhKEEDh69Kg0fwBYu3Yt6tSpAysrK+m1ev78Ofz8/JCeni7NL0NAQIBaPxRLS0s8evQIp0+fzvFrBHw4xQEAVlZWasPmzJmDmJgYREVFISYmBvXq1cOFCxewYsUKzJ49GwkJCejSpQuKFi0KX19fXL9+XW0eGfP9+PDt54SHh2PPnj3Ys2cPVq1ahXr16uGHH37Ahg0bpHFKlSqFmjVrqmzLly9fYseOHejcufMXvW8yfPx+fvv2LZ4/f45atWpBCIHz58+rjd+7d2+V53Xq1JHeOwCwc+dO6OnpISgoSGrT0dFBv379tFbnq1evkJCQgDp16uDcuXMqywaAvn37qkz76alAIQTWr1+PFi1aQAih8l709/dHQkKCynxzo1evXirbpU6dOkhPT9faJf05Xc6ePXsQHx+Pjh07qqyfrq4uatasiQMHDqjN84cffpD+trS0ROnSpWFiYoJ27dpJ7aVLl4alpaXKNs/N5zoiIkI6VZoTn+4DXr58if3796Ndu3Z4/fq1tKwXL17A398ft27dwuPHj3M078xkt38EcveZ2b59u8qppNx+H3l6eqrsQ21tbVG6dGmVetavX4+KFSuiTZs2auuT8R7Zvn077O3t0bFjR2mYnp4eBgwYgDdv3uDQoUOZvh7p6enYvXs3WrduDTc3N6ndwcEBnTp1wtGjR6Xv5J07d8LLywuVKlWSxrO2tkbnzp1V5qmjo4POnTtj8+bNeP36tdQeGRmJWrVqwdXVNdNaMiPLjr3m5uYAoLLynxMTEwMdHR3pSz6Dvb09LC0t1XYun3sBPx2WcbXK5zrRJiQk4P3790hMTES5cuVyVHNOxcfHY/v27QgODlY5b+vt7Y3169fj5s2bKFWqlMo0xYsXV3me8eX76tUrAB/WcciQIQgNDUVkZCTq1KmDli1bokuXLlLA0dXVhZeXF44cOQLgQ4ipU6cOateujfT0dJw8eRJ2dnZ4+fKlygfw1q1buHTpUpYdZJ8+faryPLNtMWLECOzduxc1atSAu7s7GjVqhE6dOsHb2ztHr9mHfzTUFS9eXOW1GTBgAHr37o0yZcqgS5cuePjwIf7++28sX74cLVq0wI0bN6T+Kx/PN6fBokaNGiqBtmPHjqhcuTKCg4PRvHlzaUfatWtXBAcHIyYmBs7Ozli7di1SU1Px/fff52g52Xnw4AHGjRuHzZs3S++BDBl9oDIYGhqqbTsrKyuV6WJiYuDg4ABjY2OV8T79/OXW1q1bMWnSJFy4cEGl78DHr3fGZ/3T982ny3727Bni4+OxZMmSLK9g/PS9mFPZfb60JbvlZOyb6tevn+n0GfvRDJltWwsLCxQrVkztPW1hYaGyPrn9XOfGp9vy9u3bEEJg7NixGDt2bJbLK1q0qEbLy8n2y+lnJjY2FufOnVPp7J/b76NP68mo6ePl3rlzBwEBAZ9dr5iYGJQsWVLtQhQPDw9peGaePXuGpKSkTPupeHh4QKlU4uHDhyhbtixiYmLg5eWlNl5mn/2uXbti2rRp2LhxI7p27Yro6GicPXsWixYt+ux6fEq2IcbR0THXNxfL6ZdLZlciZTUso9PajBkzVNLnx0xNTfHy5cucFZlLa9euRUpKCmbNmoVZs2apDY+MjMSECRNU2nR1dTOd18df7rNmzUK3bt3w999/Y/fu3RgwYACmTp2KkydPolixYgCA2rVrY/LkyUhOTsaRI0cwZswYWFpaoly5cjhy5Ajs7OwAQCXEKJVKNGzYEMOHD8+0hk8DV2bbwsPDA9HR0di6dSt27tyJ9evXY8GCBRg3bpzaun7MxsYGQM6+TP78809cv34dmzdvRnp6Ov766y/s3r0b1apVQ9myZbF06VKcPHkStWvXlqbJmG/hwoWznX9mdHR0UK9ePcyZMwe3bt1C2bJlAQAdOnTA4MGDERkZidGjR2PVqlWoVq1a7jq/ZSE9PR0NGzbEy5cvMWLECJQpUwYmJiZ4/PgxunXrptYpM6v3jqYUCkWmofLTjsJHjhxBy5YtUbduXSxYsAAODg7Q09PDsmXLctSh+1MZ69WlS5cs/wGpUKFCrucL5OzzpQ3ZLSdjHVeuXAl7e3u18T4O4J+bX07WJ7ef69zIap87dOjQLI+Yf0lgzm59c/OZ2bFjBwwNDVGvXj21+eX0+yi/3k/5zdPTE1WrVsWqVavQtWtXrFq1Cvr6+ipH/XJCliEGAJo3b44lS5bgxIkTmSa/jzk7O0OpVOLWrVtS6gSAuLg4xMfHq9z0LLcy7glibm4OPz+/LMeztbWFubl5tsErt6cHIiMjUa5cOYwfP15t2OLFi7F69erPfrF/Tvny5VG+fHn8/PPPOH78OLy9vbFo0SJMmjQJwIdw8v79e/zxxx94/PixFFbq1q0rhZhSpUpJYQb48Hq9efPms69VTpiYmEj3dnn//j2+/fZbTJ48GaNGjYKhoWGm05QpUwbAh8vzPycpKQnDhg3DxIkTYWlpibi4OKSmpsLR0RHAh52qlZWV2iHre/fuQUdH54t22GlpaQCAN2/eSG3W1tbS6cHOnTvj2LFjCAsL03gZH7t8+TJu3ryJ5cuXo2vXrlL7nj17NJ6ns7MzDhw4gKSkJJWjMZ9e4QF8+I/y48PiGT79r3D9+vUwNDTErl27VC5tXrZsmdqylUol7t27h5IlS2a5bFtbW5iZmSE9Pf2L34tfq4x9U5EiRfJ8HbX1uc6JjFMaenp62S5PG6dbP5Wbz8y2bdtQr149lSCWF99HJUqUyPa7xdnZGZcuXYJSqVQ5GnPjxg1peGZsbW1hbGyM6OhotWE3btyAjo4OnJycpHlk9jnPrA34cDRmyJAhePLkCVavXo1mzZplerr/c2TZJwb4cHdaExMT/PDDD4iLi1MbfufOHcyZMwcA0LRpUwBQ2/GHhoYCgMr5ytyqWrUqSpQogZkzZ6p88WTIuORRR0cHrVu3xpYtWzK9XXhGqjYxMQHw4TRRdh4+fIjDhw+jXbt2+O6779Qe3bt3x+3btxEVFZWrdUpMTJS+TDOUL18eOjo6Kofxa9asCT09PUybNg3W1tbSkYM6derg5MmTOHTokMpRGABo164dTpw4oXIjuQzx8fFqy81MRt+WDPr6+vD09IQQ4rOXbRYtWhROTk7Z3q592rRpsLKykvp02NjYoFChQtKH/fnz53j27Jnaf7dnz55F2bJlpVNuuZWamordu3dDX19fZecGAN9//z2uXbuGYcOGQVdXFx06dNBoGZ/K+C/v4//qhBDSZ0cT/v7+SE1NxdKlS6U2pVIpXa77sRIlSuDGjRsqlwZfvHhR7fYEurq6UCgUKkdo7t+/j02bNqktGwAWLFig0j5v3jy1+QUEBGD9+vWZ7vzz4pLo/Obv7w9zc3NMmTIl08+FNtcxN5/rnF5inZUiRYrA19cXixcvxpMnT9SGf7xeudmf5lROPzOpqanYs2eP2vdLXnwfBQQE4OLFi9i4caPasIw6mzZtitjYWPz555/SsLS0NMybNw+mpqbw8fHJdN66urpo1KgR/v77b5U7H8fFxWH16tWoXbu2dGrS398fJ06cwIULF6TxXr58mWX/zI4dO0KhUGDgwIG4e/euRvdFku2RmBIlSmD16tVo3749PDw8VO7Ye/z4caxdu1a6h0PFihURGBiIJUuWID4+Hj4+Pjh16hSWL1+O1q1bZ3qoL6d0dHTw22+/oUmTJihbtiy6d++OokWL4vHjxzhw4ADMzc2xZcsWAMCUKVOwe/du+Pj4oFevXvDw8MCTJ0+wdu1aHD16FJaWlqhUqRJ0dXUxbdo0JCQkwMDAAPXr10eRIkXUlr169WoIIdCyZctMa2vatCkKFSqEyMhI1KxZM8frtH//fgQHB6Nt27YoVaoU0tLSsHLlSmnHn8HY2BhVq1bFyZMnpXvEAB+OxLx9+xZv375VCzHDhg3D5s2b0bx5c3Tr1g1Vq1bF27dvcfnyZaxbtw7379/P9nRMo0aNYG9vD29vb9jZ2eH69euYP38+mjVrlm1n71atWmHjxo0QQmT6X9qDBw8wY8YMbNu2TdpZFSpUCK1atcKgQYPw4MEDbNy4EY6OjipHAFNTU3Ho0CG1DqWfs2PHDikYPX36FKtXr8atW7cwcuRItf4KzZo1g42NDdauXYsmTZpk+n7Iyu3bt6WjZx+rXLkyGjVqhBIlSmDo0KF4/PgxzM3NsX79+i/qv9G6dWvUqFEDP/30E27fvo0yZcpg8+bN0inVj1/3Hj16IDQ0FP7+/ujZsyeePn2KRYsWoWzZslJnwYz1Dw0NRePGjdGpUyc8ffoU4eHhcHd3x6VLl6TxqlatioCAAISFheHFixf45ptvcOjQIdy8eVNt2b/++isOHDiAmjVrIigoCJ6ennj58iXOnTuHvXv35tkp4Pxibm6OhQsX4vvvv0eVKlXQoUMH2Nra4sGDB9i2bRu8vb0xf/58rSwrN5/rUaNGYfny5bh3716u7kr+sfDwcNSuXRvly5dHUFAQ3NzcEBcXhxMnTuDRo0e4ePEiAORqf5pTZcqUydFnJqPD66ehJC++j4YNG4Z169ahbdu26NGjB6pWrYqXL19i8+bNWLRoESpWrIhevXph8eLF6NatG86ePQsXFxesW7dOOrL7uX3npEmTsGfPHtSuXRt9+/ZFoUKFsHjxYqSkpGD69OnSeMOHD8eqVavQsGFD9O/fHyYmJvjtt99QvHhxvHz5Um2fa2tri8aNG2Pt2rWwtLTU7IBCjq9j+krdvHlTBAUFCRcXF6Gvry/MzMyEt7e3mDdvnsrld6mpqWLChAnC1dVV6OnpCScnJzFq1CiVcYTI+pLUjMvvsrrs+Pz58+Lbb78VNjY2wsDAQDg7O4t27dqJffv2qYwXExMjunbtKmxtbYWBgYFwc3MT/fr1U7mkb+nSpcLNzU3o6up+9nLr8uXLi+LFi3/29fH19RVFihQRqampWa5DxqWMGZe+3r17V/To0UOUKFFCGBoaCmtra1GvXj2xd+9etfkPGzZMABDTpk1TaXd3dxcAVC7Jy/D69WsxatQo4e7uLvT19UXhwoVFrVq1xMyZM8X79+9VapoxY4ba9IsXLxZ169aVXusSJUqIYcOGZXt/FiGEOHfunAAgjhw5kunwtm3bim+//VatPS4uTrRo0UKYmZmJKlWqiDNnzqgM37Fjh8pl7p+T2SXWhoaGolKlSmLhwoVZXjbdt29fAUCsXr0622VkyLhEM7NHz549hRBCXLt2Tfj5+QlTU1NRuHBhERQUJC5evKh2OXRgYKAwMTFRW8b48ePFp7uSZ8+eiU6dOgkzMzNhYWEhunXrJo4dOyYAqFyuK4QQq1atEm5ubkJfX19UqlRJ7Nq1K9NLrH///XdRsmRJYWBgIMqUKSOWLVuW6bLfvn0r+vXrJ6ytrYWpqalo3bq1dKn6r7/+qjJuXFyc6Nevn3BychJ6enrC3t5eNGjQQCxZsiRHr21ml1h/eguFjM9dbm6bkJNLrHO6nAMHDgh/f39hYWEhDA0NRYkSJUS3bt1U3sNZbVsfH59Mb2eQ2X4yJ5/rjGUhF5dYZ7YPEOLDfWC6du0q7O3thZ6enihatKho3ry5WLduncp4We1Ps7rEOrv9oxA5+8wMHTpUeHp6Zlr7l34fZXZrghcvXojg4GBRtGhRoa+vL4oVKyYCAwNVbiEQFxcnunfvLgoXLiz09fVF+fLlVdYrAz65xFqID/tOf39/YWpqKoyNjUW9evXE8ePH1aY9f/68qFOnjjAwMBDFihUTU6dOFXPnzhUAMr3nWcY9r3r16pXpa5Ud2YcYotyqX7++6NKli1bn2apVK7UbVWnboEGDhJmZmXj79m2eLievbNy4UQAQR48ezfdlZ9z76ON7ZBDlJQ8PDzFs2LCCLuOrMHDgQGFoaCjS0tLUhm3atEntXji5Ids+MUSamjJlCv7880+t3bfj+vXr2Lp1KyZOnKiV+WUmOTkZq1atQkBAgNqly1+jT2+/np6ejnnz5sHc3Fzt5yryetnAh/4HOjo6qFu3bp4umwgA3r9/j/bt26N79+4FXUq++/Tz9+LFC6xcuRK1a9fO9EqrpUuXws3NTeVKz9yQbZ8YIk3VrFkT79+/19r8PDw8ctQhWRNPnz7F3r17sW7dOrx48ULl98C+Zv3798e7d+/g5eWFlJQUbNiwAcePH8eUKVM+ewsDbZg+fTrOnj2LevXqoVChQtixYwd27NiBXr16SVdREOUlfX39TK8Y/S/w8vKCr68vPDw8EBcXh99//x2JiYlq9/RZs2YNLl26hG3btmHOnDmaX0n2pYeJiCjvZJynL1KkiJg3b15Bl5NjkZGRokqVKsLc3Fzo6+sLT0/PfKt/9+7dwtvbW1hZWQk9PT1RokQJ8csvv4jU1NR8WT7Rf9moUaNEyZIlhZGRkTA2Nha1a9cWe/bsURsPgDA1NRU9e/b8os+m4v/PjIiIiEhW2CeGiIiIZIkhhoiIiGSJHXvx4W6i//zzD8zMzPLkNtVERET/VkIIvH79Go6Ojmo/MJnXGGIA/PPPP7xqgYiI6As8fPhQ+oHg/MIQA0i3W3748KHa7d6JiIgoa4mJiXBycsr2Z1/yAkMM/u/3VMzNzRliiIiINFAQ3THYsZeIiIhkiSGGiIiIZIkhhoiIiGSJIYaIiIhkiSGGiIiIZIkhhoiIiGSJIYaIiIhkiSGGiIiIZIkhhoiIiGSJIYaIiIhkiSGGiIiIZIkhhoiIiGSJIYaIiIhkiSGGiIiIZIkhhoiIiGSpQEPM4cOH0aJFCzg6OkKhUGDTpk0qw4UQGDduHBwcHGBkZAQ/Pz/cunVLZZyXL1+ic+fOMDc3h6WlJXr27Ik3b97k41oQERFRQSjQEPP27VtUrFgR4eHhmQ6fPn065s6di0WLFiEqKgomJibw9/dHcnKyNE7nzp1x9epV7NmzB1u3bsXhw4fRq1ev/FoFIiIiKiAKIYQo6CIAQKFQYOPGjWjdujWAD0dhHB0d8dNPP2Ho0KEAgISEBNjZ2SEiIgIdOnTA9evX4enpidOnT6NatWoAgJ07d6Jp06Z49OgRHB0dc7TsxMREWFhYICEhAebm5nmyfkRERP9GBfkd+tX2ibl37x5iY2Ph5+cntVlYWKBmzZo4ceIEAODEiROwtLSUAgwA+Pn5QUdHB1FRUVnOOyUlBYmJiSoPIiIikpdCBV1AVmJjYwEAdnZ2Ku12dnbSsNjYWBQpUkRleKFChWBtbS2Nk5mpU6diwoQJWq5YncvIbXm+jP+6+782y5P5ctvlPW47+cqrbQdw++WHvNx++e2rPRKTl0aNGoWEhATp8fDhw4IuiYiIiHLpqw0x9vb2AIC4uDiV9ri4OGmYvb09nj59qjI8LS0NL1++lMbJjIGBAczNzVUeREREJC9fbYhxdXWFvb099u3bJ7UlJiYiKioKXl5eAAAvLy/Ex8fj7Nmz0jj79++HUqlEzZo1871mIiIiyj8F2ifmzZs3uH37tvT83r17uHDhAqytrVG8eHEMGjQIkyZNQsmSJeHq6oqxY8fC0dFRuoLJw8MDjRs3RlBQEBYtWoTU1FQEBwejQ4cOOb4yiYiIiOSpQEPMmTNnUK9ePen5kCFDAACBgYGIiIjA8OHD8fbtW/Tq1Qvx8fGoXbs2du7cCUNDQ2mayMhIBAcHo0GDBtDR0UFAQADmzp2b7+tCRERE+atAQ4yvry8+d5sahUKBkJAQhISEZDmOtbU1Vq9enRflERER0Vfsq+0TQ0RERPQ5DDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkSwwxREREJEsMMURERCRLDDFEREQkS191iElPT8fYsWPh6uoKIyMjlChRAhMnToQQQhpHCIFx48bBwcEBRkZG8PPzw61btwqwaiIiIsoPX3WImTZtGhYuXIj58+fj+vXrmDZtGqZPn4558+ZJ40yfPh1z587FokWLEBUVBRMTE/j7+yM5ObkAKyciIqK8VqigC/ic48ePo1WrVmjWrBkAwMXFBX/88QdOnToF4MNRmLCwMPz8889o1aoVAGDFihWws7PDpk2b0KFDhwKrnYiIiPLWV30kplatWti3bx9u3rwJALh48SKOHj2KJk2aAADu3buH2NhY+Pn5SdNYWFigZs2aOHHiRJbzTUlJQWJiosqDiIiI5OWrPhIzcuRIJCYmokyZMtDV1UV6ejomT56Mzp07AwBiY2MBAHZ2dirT2dnZScMyM3XqVEyYMCHvCiciIqI891Ufifnrr78QGRmJ1atX49y5c1i+fDlmzpyJ5cuXf9F8R40ahYSEBOnx8OFDLVVMRERE+eWrPhIzbNgwjBw5UurbUr58ecTExGDq1KkIDAyEvb09ACAuLg4ODg7SdHFxcahUqVKW8zUwMICBgUGe1k5ERER566s+EpOUlAQdHdUSdXV1oVQqAQCurq6wt7fHvn37pOGJiYmIioqCl5dXvtZKRERE+eurPhLTokULTJ48GcWLF0fZsmVx/vx5hIaGokePHgAAhUKBQYMGYdKkSShZsiRcXV0xduxYODo6onXr1gVbPBEREeWprzrEzJs3D2PHjkXfvn3x9OlTODo64scff8S4ceOkcYYPH463b9+iV69eiI+PR+3atbFz504YGhoWYOVERESU177qEGNmZoawsDCEhYVlOY5CoUBISAhCQkLyrzAiIiIqcF91nxgiIiKirDDEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBAREZEsFdJkonv37uHIkSOIiYlBUlISbG1tUblyZXh5ecHQ0FDbNRIRERGpyVWIiYyMxJw5c3DmzBnY2dnB0dERRkZGePnyJe7cuQNDQ0N07twZI0aMgLOzc17VTERERJTzEFO5cmXo6+ujW7duWL9+PZycnFSGp6Sk4MSJE1izZg2qVauGBQsWoG3btlovmIiIiAjIRYj59ddf4e/vn+VwAwMD+Pr6wtfXF5MnT8b9+/e1UR8RERFRpnIcYj4XYD5lY2MDGxsbjQoiIiIiygmNOvZ+bNu2bTh48CDS09Ph7e2NgIAAbdRFRERE9FlfdIn12LFjMXz4cCgUCgghMHjwYPTv319btRERERFlKVdHYs6cOYNq1apJz//8809cvHgRRkZGAIBu3brB19cX8+bN026VRERERJ/I1ZGY3r17Y9CgQUhKSgIAuLm5YdasWYiOjsbly5excOFClCpVKk8KJSIiIvpYrkJMVFQUHBwcUKVKFWzZsgX/+9//cP78edSqVQt16tTBo0ePsHr16ryqlYiIiEiSq9NJurq6GDFiBNq2bYs+ffrAxMQE8+fPh6OjY17VR0RERJQpjTr2urm5YdeuXWjTpg3q1q2L8PBwbddFRERE9Fm5CjHx8fEYPnw4WrRogZ9//hlt2rRBVFQUTp8+jW+++QaXL1/OqzqJiIiIVOQqxAQGBiIqKgrNmjVDdHQ0+vTpAxsbG0RERGDy5Mlo3749RowYkVe1EhEREUly1Sdm//79OH/+PNzd3REUFAR3d3dpWIMGDXDu3DmEhIRovUgiIiKiT+XqSEzJkiWxZMkS3Lx5E4sWLVL7pWpDQ0NMmTJFqwUSERERZSZXIeZ///sf9u/fj8qVK2P16tVYuHBhXtVFRERE9Fm5Op1UqVIlnDlzJq9qISIiIsqxHB+JEULkZR1EREREuZLjEFO2bFmsWbMG79+//+x4t27dQp8+ffDrr79+cXFEREREWcnx6aR58+ZhxIgR6Nu3Lxo2bIhq1arB0dERhoaGePXqFa5du4ajR4/i6tWrCA4ORp8+ffKybiIiIvqPy3GIadCgAc6cOYOjR4/izz//RGRkJGJiYvDu3TsULlwYlStXRteuXdG5c2dYWVnlZc1EREREuevYCwC1a9dG7dq186IWIiIiohzT6LeTiIiIiAoaQwwRERHJEkMMERERyRJDDBEREckSQwwRERHJkkYh5ty5c7h8+bL0/O+//0br1q0xevTobG+GR0RERKQNGoWYH3/8ETdv3gQA3L17Fx06dICxsTHWrl2L4cOHa7VAIiIiosxoFGJu3ryJSpUqAQDWrl2LunXrYvXq1YiIiMD69eu1WR8RERFRpjQKMUIIKJVKAMDevXvRtGlTAICTkxOeP3+uveqIiIiIsqBRiKlWrRomTZqElStX4tChQ2jWrBkA4N69e7Czs9NqgY8fP0aXLl1gY2MDIyMjlC9fHmfOnJGGCyEwbtw4ODg4wMjICH5+frh165ZWayAiIqKvj0YhJiwsDOfOnUNwcDDGjBkDd3d3AMC6detQq1YtrRX36tUreHt7Q09PDzt27MC1a9cwa9Ysld9mmj59OubOnYtFixYhKioKJiYm8Pf3R3JystbqICIioq9Prn87KT09HfHx8Th8+LDaDz3OmDEDurq6Witu2rRpcHJywrJly6Q2V1dX6W8hBMLCwvDzzz+jVatWAIAVK1bAzs4OmzZtQocOHbRWCxEREX1dcn0kRldXF40aNUJ8fLzaMENDQ+jp6WmjLgDA5s2bUa1aNbRt2xZFihRB5cqVsXTpUmn4vXv3EBsbCz8/P6nNwsICNWvWxIkTJ7Kcb0pKChITE1UeREREJC8anU4qV64c7t69q+1a1Ny9excLFy5EyZIlsWvXLvTp0wcDBgzA8uXLAQCxsbEAoNYPx87OThqWmalTp8LCwkJ6ODk55d1KEBERUZ7QKMRMmjQJQ4cOxdatW/HkyZM8O6qhVCpRpUoVTJkyBZUrV0avXr0QFBSERYsWfdF8R40ahYSEBOnx8OFDLVVMRERE+SXXfWIASJdUt2zZEgqFQmoXQkChUCA9PV0rxTk4OMDT01OlzcPDQ7oXjb29PQAgLi4ODg4O0jhxcXHSfWwyY2BgAAMDA63USERERAVDoxBz4MABbdeRKW9vb0RHR6u03bx5E87OzgA+dPK1t7fHvn37pNCSmJiIqKgo9OnTJ19qJCIiooKhUYjx8fHRdh2ZGjx4MGrVqoUpU6agXbt2OHXqFJYsWYIlS5YAABQKBQYNGoRJkyahZMmScHV1xdixY+Ho6IjWrVvnS41ERERUMDT+FesjR46gS5cuqFWrFh4/fgwAWLlyJY4ePaq14qpXr46NGzfijz/+QLly5TBx4kSEhYWhc+fO0jjDhw9H//790atXL1SvXh1v3rzBzp07YWhoqLU6iIiI6OujUYhZv349/P39YWRkhHPnziElJQUAkJCQgClTpmi1wObNm+Py5ctITk7G9evXERQUpDJcoVAgJCQEsbGxSE5Oxt69e1GqVCmt1kBERERfH42vTlq0aBGWLl2qcl8Yb29vnDt3TmvFEREREWVFoxATHR2NunXrqrVbWFhkehM8IiIiIm3TKMTY29vj9u3bau1Hjx6Fm5vbFxdFRERElB2NQkxQUBAGDhyIqKgoKBQK/PPPP4iMjMTQoUN5aTMRERHlC40usR45ciSUSiUaNGiApKQk1K1bFwYGBhg6dCj69++v7RqJiIiI1GgUYhQKBcaMGYNhw4bh9u3bePPmDTw9PWFqaqrt+oiIiIgypVGI2b9/P2rVqgVDQ0O1nwUgIiIiyg8ahZiWLVsiLS0N1atXh6+vL3x8fODt7Q0jIyNt10dERESUKY069r569Qr79u1DkyZNcOrUKbRp0waWlpbw9vbGzz//rO0aiYiIiNRoFGL09PTg7e2N0aNHY9euXTh58iQ6duyIU6dOYerUqdqukYiIiEiNRqeTbt68iYMHD+LgwYM4dOgQUlJSUKdOHcycORO+vr5aLpGIiIhInUYhpkyZMrC1tcXAgQMxcuRIlC9fHgqFQtu1EREREWVJo9NJAwYMQNGiRRESEoLevXtjzJgx2L17N5KSkrRdHxEREVGmNAoxYWFhOHfuHGJjYzFq1Ci8f/8eY8aMQeHCheHt7a3tGomIiIjUaBRiMqSnpyM1NRUpKSlITk5GSkoKoqOjtVUbERERUZY0Pp1UoUIF2NnZ4ccff8Q///yDoKAgnD9/Hs+ePdN2jURERERqNOrY++TJE/Tq1Qu+vr4oV66ctmsiIiIiypZGIWbt2rXaroOIiIgoVzQ6nbR8+XJs27ZNej58+HBYWlqiVq1aiImJ0VpxRERERFnRKMRMmTJF+p2kEydOIDw8HNOnT0fhwoUxePBgrRZIRERElBmNTic9fPgQ7u7uAIBNmzYhICAAvXr1gre3N+/YS0RERPlCoyMxpqamePHiBQBg9+7daNiwIQDA0NAQ79690151RERERFnQ6EhMw4YN8cMPP6By5cq4efMmmjZtCgC4evUqXFxctFkfERERUaY0OhITHh4OLy8vPHv2DOvXr4eNjQ0A4OzZs+jYsaNWCyQiIiLKjEZHYiwtLTF//ny19gkTJnxxQUREREQ5oVGIAYD4+HicOnUKT58+hVKplNoVCgW+//57rRRHRERElBWNQsyWLVvQuXNnvHnzBubm5lAoFNIwhhgiIiLKDxr1ifnpp5/Qo0cPvHnzBvHx8Xj16pX0ePnypbZrJCIiIlKjUYh5/PgxBgwYAGNjY23XQ0RERJQjGoUYf39/nDlzRtu1EBEREeWYRn1imjVrhmHDhuHatWsoX7489PT0VIa3bNlSK8URERERZUWjEBMUFAQACAkJURumUCiQnp7+ZVURERERZUOjEPPxJdVEREREBUGjPjFZiY+Pz/QmeERERETappUQs2/fPnTq1AkODg4YP368NmZJRERE9Fkah5iHDx8iJCQErq6uaNSoERQKBTZu3IjY2Fht1kdERESUqVyFmNTUVKxduxb+/v4oXbo0Lly4gBkzZkBHRwdjxoxB48aN1a5UIiIiIsoLuerYW7RoUZQpUwZdunTBmjVrYGVlBQD85WoiIiLKd7k6EpOWlgaFQgGFQgFdXd28qomIiIgoW7kKMf/88w969eqFP/74A/b29ggICMDGjRtVfgCSiIiIKD/kKsQYGhqic+fO2L9/Py5fvgwPDw8MGDAAaWlpmDx5Mvbs2cMb3REREVG+0PjqpBIlSmDSpEmIiYnBtm3bkJKSgubNm8POzk6b9RERERFlSqM79n5MR0cHTZo0QZMmTfDs2TOsXLlSG3URERERfZZW79hra2uLIUOGaHOWRERERJnSaoghIiIiyi8MMURERCRLDDFEREQkSxqFmJCQECQlJam1v3v3DiEhIV9cFBEREVF2NAoxEyZMwJs3b9Tak5KSMGHChC8uioiIiCg7GoUYIUSmd+m9ePEirK2tv7goIiIiouzk6j4xVlZW0m8nlSpVSiXIpKen482bN+jdu7fWiyQiIiL6VK5CTFhYGIQQ6NGjByZMmAALCwtpmL6+PlxcXODl5aX1IomIiIg+lasQExgYCABwdXWFt7c3ChX64hv+EhEREWlEoz4xb9++xb59+9Tad+3ahR07dnxxUURERETZ0SjEjBw5MtNfqxZCYOTIkV9cFBEREVF2NAoxt27dgqenp1p7mTJlcPv27S8uioiIiCg7GoUYCwsL3L17V6399u3bMDEx+eKiiIiIiLKjUYhp1aoVBg0ahDt37khtt2/fxk8//YSWLVtqrTgiIiKirGgUYqZPnw4TExOUKVMGrq6ucHV1hYeHB2xsbDBz5kxt10hERESkRqNrpC0sLHD8+HHs2bMHFy9ehJGRESpUqIC6detquz4iIiKiTGl8oxeFQoFGjRqhbt26MDAwyPRnCIiIiIjyikank5RKJSZOnIiiRYvC1NQU9+7dAwCMHTsWv//+u1YLJCIiIsqMRiFm0qRJiIiIwPTp06Gvry+1lytXDr/99pvWiiMiIiLKikYhZsWKFViyZAk6d+4MXV1dqb1ixYq4ceOG1oojIiIiyopGIebx48dwd3dXa1cqlUhNTf3iooiIiIiyo1GI8fT0xJEjR9Ta161bh8qVK39xUURERETZ0ejqpHHjxiEwMBCPHz+GUqnEhg0bEB0djRUrVmDr1q3arpGIiIhIjcZ37N2yZQv27t0LExMTjBs3DtevX8eWLVvQsGFDbddIREREpCbXR2LS0tIwZcoU9OjRA3v27MmLmoiIiIiylesjMYUKFcL06dORlpaWF/UQERER5YhGp5MaNGiAQ4cOabsWIiIiohzTqGNvkyZNMHLkSFy+fBlVq1aFiYmJynD+kjURERHlNY1CTN++fQEAoaGhasMUCgXS09O/rCoiIiKibGgUYpRKpbbrICIiIsqVXPeJSU1NRaFChXDlypW8qIeIiIgoR3IdYvT09FC8eHGeMiIiIqICpdHVSWPGjMHo0aPx8uVLbddDRERElCMahZj58+fj8OHDcHR0ROnSpVGlShWVR1759ddfoVAoMGjQIKktOTkZ/fr1g42NDUxNTREQEIC4uLg8q4GIiIi+Dhp17G3durWWy8je6dOnsXjxYlSoUEGlffDgwdi2bRvWrl0LCwsLBAcH49tvv8WxY8fyvUYiIiLKPxqFmPHjx2u7js968+YNOnfujKVLl2LSpElSe0JCAn7//XesXr0a9evXBwAsW7YMHh4eOHnyJL755pt8rZOIiIjyj0ankzKcPXsWq1atwqpVq3D+/Hlt1aSmX79+aNasGfz8/NSWn5qaqtJepkwZFC9eHCdOnMhyfikpKUhMTFR5EBERkbxodCTm6dOn6NChAw4ePAhLS0sAQHx8POrVq4c1a9bA1tZWawWuWbMG586dw+nTp9WGxcbGQl9fX6ohg52dHWJjY7Oc59SpUzFhwgSt1UhERET5T6MjMf3798fr169x9epVvHz5Ei9fvsSVK1eQmJiIAQMGaK24hw8fYuDAgYiMjIShoaHW5jtq1CgkJCRIj4cPH2pt3kRERJQ/NDoSs3PnTuzduxceHh5Sm6enJ8LDw9GoUSOtFXf27Fk8ffpU5Yqn9PR0HD58GPPnz8euXbvw/v17xMfHqxyNiYuLg729fZbzNTAwgIGBgdbqJCIiovyn8c8O6OnpqbXr6elp9ScJGjRogMuXL6u0de/eHWXKlMGIESPg5OQEPT097Nu3DwEBAQCA6OhoPHjwAF5eXlqrg4iIiL4+GoWY+vXrY+DAgfjjjz/g6OgIAHj8+DEGDx6MBg0aaK04MzMzlCtXTqXNxMQENjY2UnvPnj0xZMgQWFtbw9zcHP3794eXlxevTCIiIvqX0yjEzJ8/Hy1btoSLiwucnJwAfOi/Uq5cOaxatUqrBWZn9uzZ0NHRQUBAAFJSUuDv748FCxbkaw1ERESU/zQKMU5OTjh37hz27t2LGzduAAA8PDzULoHOCwcPHlR5bmhoiPDwcISHh+f5somIiOjroVGIAQCFQoGGDRuiYcOG2qyHiIiIKEdydYn1/v374enpmenN4RISElC2bFkcOXJEa8URERERZSVXISYsLAxBQUEwNzdXG2ZhYYEff/wRoaGhWiuOiIiIKCu5CjEXL15E48aNsxzeqFEjnD179ouLIiIiIspOrkJMXFxcpveHyVCoUCE8e/bsi4siIiIiyk6uQkzRokVx5cqVLIdfunQJDg4OX1wUERERUXZyFWKaNm2KsWPHIjk5WW3Yu3fvMH78eDRv3lxrxRERERFlJVeXWP/888/YsGEDSpUqheDgYJQuXRoAcOPGDYSHhyM9PR1jxozJk0KJiIiIPparEGNnZ4fjx4+jT58+GDVqFIQQAD7cM8bf3x/h4eGws7PLk0KJiIiIPpbrm905Oztj+/btePXqFW7fvg0hBEqWLAkrK6u8qI+IiIgoUxrfsdfKygrVq1fXZi1EREREOZarjr1EREREXwuGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSpa86xEydOhXVq1eHmZkZihQpgtatWyM6OlplnOTkZPTr1w82NjYwNTVFQEAA4uLiCqhiIiIiyi9fdYg5dOgQ+vXrh5MnT2LPnj1ITU1Fo0aN8PbtW2mcwYMHY8uWLVi7di0OHTqEf/75B99++20BVk1ERET5oVBBF/A5O3fuVHkeERGBIkWK4OzZs6hbty4SEhLw+++/Y/Xq1ahfvz4AYNmyZfDw8MDJkyfxzTffFETZRERElA++6iMxn0pISAAAWFtbAwDOnj2L1NRU+Pn5SeOUKVMGxYsXx4kTJ7KcT0pKChITE1UeREREJC+yCTFKpRKDBg2Ct7c3ypUrBwCIjY2Fvr4+LC0tVca1s7NDbGxslvOaOnUqLCwspIeTk1Nelk5ERER5QDYhpl+/frhy5QrWrFnzxfMaNWoUEhISpMfDhw+1UCERERHlp6+6T0yG4OBgbN26FYcPH0axYsWkdnt7e7x//x7x8fEqR2Pi4uJgb2+f5fwMDAxgYGCQlyUTERFRHvuqj8QIIRAcHIyNGzdi//79cHV1VRletWpV6OnpYd++fVJbdHQ0Hjx4AC8vr/wul4iIiPLRV30kpl+/fli9ejX+/vtvmJmZSf1cLCwsYGRkBAsLC/Ts2RNDhgyBtbU1zM3N0b9/f3h5efHKJCIion+5rzrELFy4EADg6+ur0r5s2TJ069YNADB79mzo6OggICAAKSkp8Pf3x4IFC/K5UiIiIspvX3WIEUJkO46hoSHCw8MRHh6eDxURERHR1+Kr7hNDRERElBWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpIlhhgiIiKSJYYYIiIikiWGGCIiIpKlf02ICQ8Ph4uLCwwNDVGzZk2cOnWqoEsiIiKiPPSvCDF//vknhgwZgvHjx+PcuXOoWLEi/P398fTp04IujYiIiPLIvyLEhIaGIigoCN27d4enpycWLVoEY2Nj/O9//yvo0oiIiCiPFCroAr7U+/fvcfbsWYwaNUpq09HRgZ+fH06cOJHpNCkpKUhJSZGeJyQkAAASExO1WpsyJUmr8yN12t5mGbjt8h63nXzl1bYDuP3yg7a3X8b8hBBanW9OyD7EPH/+HOnp6bCzs1Npt7Ozw40bNzKdZurUqZgwYYJau5OTU57USHnHIqygKyBNcdvJF7edvOXV9nv9+jUsLCzyZuZZkH2I0cSoUaMwZMgQ6blSqcTLly9hY2MDhUJRgJUVnMTERDg5OeHhw4cwNzcv6HIol7j95IvbTr647T4QQuD169dwdHTM92XLPsQULlwYurq6iIuLU2mPi4uDvb19ptMYGBjAwMBApc3S0jKvSpQVc3Pz//SHUe64/eSL206+uO2Q70dgMsi+Y6++vj6qVq2Kffv2SW1KpRL79u2Dl5dXAVZGREREeUn2R2IAYMiQIQgMDES1atVQo0YNhIWF4e3bt+jevXtBl0ZERER55F8RYtq3b49nz55h3LhxiI2NRaVKlbBz5061zr6UNQMDA4wfP17tNBvJA7effHHbyRe3XcFTiIK4JoqIiIjoC8m+TwwRERH9NzHEEBERkSwxxBAREZEsMcRQjkREROT4Xjq5GZfyzv3796FQKHDhwoWCLoXoX69bt25o3bq19NzX1xeDBg3K0bS5GZdU/SuuTqK81759ezRt2rSgy5AlX19fVKpUCWFhYQVdCuWBbt26IT4+Hps2bSroUugrsmHDBujp6RV0Gf96DDGUI0ZGRjAyMiroMoi+Gunp6f/Znymh7FlbWxd0Cf8JPJ0kE+vWrUP58uVhZGQEGxsb+Pn54e3bt9IhzAkTJsDW1hbm5ubo3bs33r9/L027c+dO1K5dG5aWlrCxsUHz5s1x584daXjGaYcNGzagXr16MDY2RsWKFVV+BfzTU0QXL15EvXr1YGZmBnNzc1StWhVnzpxRqXnXrl3w8PCAqakpGjdujCdPnuTdC/SV6tatGw4dOoQ5c+ZAoVBAoVDgzp076NmzJ1xdXWFkZITSpUtjzpw5KtOlpaVhwIAB0jYbMWIEAgMDVQ5XZ7ddM3Po0CHUqFEDBgYGcHBwwMiRI5GWliYNf/36NTp37gwTExM4ODhg9uzZ/5pD3b6+vggODkZwcDAsLCxQuHBhjB07Vvrl3VevXqFr166wsrKCsbExmjRpglu3bknTZ3wGNm/eDE9PTxgYGKBHjx5Yvnw5/v77b2n7Hjx4EAcPHoRCoUB8fLw0/YULF6BQKHD//n2pbenSpXBycoKxsTHatGmD0NBQlc/Zp6coAGDQoEHw9fWVniuVSkydOlV6P1WsWBHr1q2Thr969QqdO3eGra0tjIyMULJkSSxbtkwa/vDhQ7Rr1w6WlpawtrZGq1atVGr8N/jca5Sxrfbt24dq1arB2NgYtWrVQnR0tMo8Jk2ahCJFisDMzAw//PADRo4ciUqVKmW5zE8/NwsWLEDJkiVhaGgIOzs7fPfdd2o1Dh8+HNbW1rC3t8cvv/yirdX/V2OIkYEnT56gY8eO6NGjB65fv46DBw/i22+/lXa++/btk9r/+OMPbNiwQeVXut++fYshQ4bgzJkz2LdvH3R0dNCmTRsolUqV5YwZMwZDhw7FhQsXUKpUKXTs2FHlC+5jnTt3RrFixXD69GmcPXsWI0eOVDl0mpSUhJkzZ2LlypU4fPgwHjx4gKFDh+bBq/N1mzNnDry8vBAUFIQnT57gyZMnKFasGIoVK4a1a9fi2rVrGDduHEaPHo2//vpLmm7atGmIjIzEsmXLcOzYMSQmJqqdrsjpds3w+PFjNG3aFNWrV8fFixexcOFC/P7775g0aZI0zpAhQ3Ds2DFs3rwZe/bswZEjR3Du3Lk8eW0KwvLly1GoUCGcOnUKc+bMQWhoKH777TcAHwLDmTNnsHnzZpw4cQJCCDRt2hSpqanS9ElJSZg2bRp+++03XL16FXPnzkW7du2kkP7kyRPUqlUrR7UcO3YMvXv3xsCBA3HhwgU0bNgQkydPzvU6TZ06FStWrMCiRYtw9epVDB48GF26dMGhQ4cAAGPHjsW1a9ewY8cOXL9+HQsXLkThwoUBAKmpqfD394eZmRmOHDmCY8eOSf90fPyPkNxl9xoBH/Z/s2bNwpkzZ1CoUCH06NFDGhYZGYnJkydj2rRpOHv2LIoXL46FCxfmePlnzpzBgAEDEBISgujoaOzcuRN169ZVGWf58uUwMTFBVFQUpk+fjpCQEOzZs+fLV/7fTtBX7+zZswKAuH//vtqwwMBAYW1tLd6+fSu1LVy4UJiamor09PRM5/fs2TMBQFy+fFkIIcS9e/cEAPHbb79J41y9elUAENevXxdCCLFs2TJhYWEhDTczMxMRERGZzn/ZsmUCgLh9+7bUFh4eLuzs7HK+0v8iPj4+YuDAgZ8dp1+/fiIgIEB6bmdnJ2bMmCE9T0tLE8WLFxetWrXKch5Zbdfz588LIYQYPXq0KF26tFAqldI04eHh0nslMTFR6OnpibVr10rD4+PjhbGxcbb1y4GPj4/w8PBQWf8RI0YIDw8PcfPmTQFAHDt2TBr2/PlzYWRkJP766y8hxP+9ry9cuKAy38DAQLXtcuDAAQFAvHr1Smo7f/68ACDu3bsnhBCiffv2olmzZirTde7cWeVzltm8Bw4cKHx8fIQQQiQnJwtjY2Nx/PhxlXF69uwpOnbsKIQQokWLFqJ79+6ZviYrV65Ue0+kpKQIIyMjsWvXrkynkZvsXqOMbbV3715p2LZt2wQA8e7dOyGEEDVr1hT9+vVTmd7b21tUrFhRev7ptvr4c79+/Xphbm4uEhMTM63Rx8dH1K5dW6WtevXqYsSIEbld3f8cHomRgYoVK6JBgwYoX7482rZti6VLl+LVq1cqw42NjaXnXl5eePPmDR4+fAgAuHXrFjp27Ag3NzeYm5vDxcUFAPDgwQOV5VSoUEH628HBAQDw9OnTTGsaMmQIfvjhB/j5+eHXX39VO41hbGyMEiVKqMwvq3n9F4WHh6Nq1aqwtbWFqakplixZIm2PhIQExMXFoUaNGtL4urq6qFq1qso8crpdM1y/fh1eXl4q/Ti8vb3x5s0bPHr0CHfv3kVqaqrKci0sLFC6dGltrXaB++abb1TW38vLC7du3cK1a9dQqFAh1KxZUxpmY2OD0qVL4/r161Kbvr6+yufkS0RHR6u81gDUnmfn9u3bSEpKQsOGDWFqaio9VqxYIX0m+/TpgzVr1qBSpUoYPnw4jh8/Lk1/8eJF3L59G2ZmZtK01tbWSE5OzvbUpFzk5DUCPr//+9Jt1bBhQzg7O8PNzQ3ff/89IiMjkZSUpDLOp+8r7jNzhh17ZUBXVxd79uzB8ePHsXv3bsybNw9jxoxBVFRUjqZv0aIFnJ2dsXTpUjg6OkKpVKJcuXJqh4s/Ph2UsaPP6tTEL7/8gk6dOmHbtm3YsWMHxo8fjzVr1qBNmzZq88qYn+AvXAAA1qxZg6FDh2LWrFnw8vKCmZkZZsyYkePtmSGn25W0x8jIKEedeXV0Pvx/+PF7/uPTUjmlo6Oj9rn5eD5v3rwBAGzbtg1FixZVGS/j93yaNGmCmJgYbN++HXv27EGDBg3Qr18/zJw5E2/evEHVqlURGRmptmxbW9tc1/s1yu41yggyudn/5ZaZmRnOnTuHgwcPYvfu3Rg3bhx++eUXnD59WuoDldk+U1vL/zfjkRiZUCgU8Pb2xoQJE3D+/Hno6+tj48aNAD78N/Xu3Ttp3JMnT8LU1BROTk548eIFoqOj8fPPP6NBgwbw8PBQOYrzJUqVKoXBgwdj9+7d+Pbbb1U6C9L/0dfXR3p6uvT82LFjqFWrFvr27YvKlSvD3d1d5T9CCwsL2NnZ4fTp01Jbenq6St8UTbarh4eH1Nfj41rMzMxQrFgxuLm5QU9PT2W5CQkJuHnz5het/9fk06B48uRJlCxZEp6enkhLS1MZnvEae3p6fnaen25f4P8CwMed2T+9X0/p0qVVXmsAas9tbW3VOsR/PJ+MDsYPHjyAu7u7ysPJyUllPoGBgVi1ahXCwsKwZMkSAECVKlVw69YtFClSRG16CwuLz663XOT0NfqcnGyr7BQqVAh+fn6YPn06Ll26hPv372P//v25mgep45EYGYiKisK+ffvQqFEjFClSBFFRUXj27Bk8PDxw6dIlvH//Hj179sTPP/+M+/fvY/z48QgODoaOjg6srKxgY2ODJUuWwMHBAQ8ePMDIkSO/qJ53795h2LBh+O677+Dq6opHjx7h9OnTCAgI0NIa/7u4uLggKioK9+/fh6mpKUqWLIkVK1Zg165dcHV1xcqVK3H69Gm4urpK0/Tv3x9Tp06Fu7s7ypQpg3nz5uHVq1fSf4iabNe+ffsiLCwM/fv3R3BwMKKjozF+/HgMGTIEOjo6MDMzQ2BgIIYNGwZra2sUKVIE48ePh46Ozr/mUuIHDx5gyJAh+PHHH3Hu3DnMmzcPs2bNQsmSJdGqVSsEBQVh8eLFMDMzw8iRI1G0aFG0atXqs/N0cXHBrl27EB0dDRsbG1hYWEhfkL/88gsmT56MmzdvYtasWSrT9e/fH3Xr1kVoaChatGiB/fv3Y8eOHSqvdf369TFjxgysWLECXl5eWLVqFa5cuYLKlSsD+PAf/tChQzF48GAolUrUrl0bCQkJOHbsGMzNzREYGIhx48ahatWqKFu2LFJSUrB161Z4eHgA+NBBf8aMGWjVqhVCQkJQrFgxxMTEYMOGDRg+fDiKFSum5S2Q/7J7jZydnbOdR//+/REUFIRq1aqhVq1a+PPPP3Hp0iW4ubnlqIatW7fi7t27qFu3LqysrLB9+3Yolcp/1anaAlOwXXIoJ65duyb8/f2Fra2tMDAwEKVKlRLz5s0TQvxfZ7Jx48YJGxsbYWpqKoKCgkRycrI0/Z49e4SHh4cwMDAQFSpUEAcPHhQAxMaNG4UQ6h1AhRDi1atXAoA4cOCAEEK1Y29KSoro0KGDcHJyEvr6+sLR0VEEBwdLneA+7QQshBAbN24U/9W3W3R0tPjmm2+EkZGRACBu3LghunXrJiwsLISlpaXo06ePGDlypEonwdTUVBEcHCzMzc2FlZWVGDFihGjbtq3o0KGDNI4m2/XgwYOievXqQl9fX9jb24sRI0aI1NRUaXhiYqLo1KmTMDY2Fvb29iI0NFTUqFFDjBw5Mq9fpjzn4+Mj+vbtK3r37i29rqNHj5Y6tb58+VJ8//33wsLCQhgZGQl/f39x8+ZNafrM3tdCCPH06VPRsGFDYWpqqvKZOXr0qChfvrwwNDQUderUEWvXrlXp2CuEEEuWLBFFixYVRkZGonXr1mLSpEnC3t5eZf7jxo0TdnZ2wsLCQgwePFgEBwdLHXuFEEKpVIqwsDBRunRpoaenJ2xtbYW/v784dOiQEEKIiRMnCg8PD2FkZCSsra1Fq1atxN27d6Xpnzx5Irp27SoKFy4sDAwMhJubmwgKChIJCQlf+Ip/PT73GuWkE7YQQoSEhIjChQsLU1NT0aNHDzFgwADxzTffSMM/17H3yJEjwsfHR1hZWQkjIyNRoUIF8eeff2Y6boZWrVqJwMBALb4K/04KIdhRQc54t9D/BqVSCQ8PD7Rr1w4TJ07Mt+W+ffsWRYsWxaxZs9CzZ898W25ekMOdk4OCgnDjxg0cOXKkoEuhbDRs2BD29vZYuXJlQZfyn8bTSURfoZiYGOzevRs+Pj5ISUnB/Pnzce/ePXTq1ClPl3v+/HncuHEDNWrUQEJCAkJCQgAg21MqpJmZM2eiYcOGMDExwY4dO7B8+XIsWLCgoMuiTyQlJWHRokXw9/eHrq4u/vjjD+zdu5f3cfkKMMQQfYV0dHQQERGBoUOHQgiBcuXKYe/evVJfhrw0c+ZMREdHQ19fH1WrVsWRI0ekm6ORdp06dQrTp0/H69ev4ebmhrlz5+KHH34o6LLoEwqFAtu3b8fkyZORnJyM0qVLY/369fDz8yvo0v7zeDqJiIiIZImXWBMREZEsMcQQERGRLDHEEBERkSwxxBAREZEsMcQQERGRLDHEEBERkSwxxBDRZ3Xr1g2tW7cu6DKIiNQwxBAREZEsMcQQkcZCQ0NRvnx5mJiYwMnJCX379sWbN2+k4REREbC0tMSuXbvg4eEBU1NTNG7cGE+ePJHGSUtLw4ABA2BpaQkbGxuMGDECgYGBKkd/XFxc1H7zqFKlSvjll19yXAsALF26FE5OTjA2NkabNm0QGhoKS0tLlXH+/vtvVKlSBYaGhnBzc8OECROQlpb2xa8VEWkfQwwRaUxHRwdz587F1atXsXz5cuzfvx/Dhw9XGScpKQkzZ87EypUrcfjwYTx48ABDhw6Vhk+bNg2RkZFYtmwZjh07hsTERI1+0DS7Wo4dO4bevXtj4MCBuHDhAho2bIjJkyerzOPIkSPo2rUrBg4ciGvXrmHx4sWIiIhQG4+IvhIF+hvaRPTVCwwMFK1atcrRuGvXrhU2NjbS82XLlgkA4vbt21JbeHi4sLOzk57b2dmJGTNmSM/T0tJE8eLFVZbp7OwsZs+erbKsihUrivHjx+e4lvbt24tmzZqpjNO5c2dhYWEhPW/QoIGYMmWKyjgrV64UDg4OWS6HiAoOfwCSiDS2d+9eTJ06FTdu3EBiYiLS0tKQnJyMpKQkGBsbAwCMjY1RokQJaRoHBwc8ffoUAJCQkIC4uDjUqFFDGq6rq4uqVatCqVRqtZbo6Gi0adNGZZoaNWpg69at0vOLFy/i2LFjKkde0tPT1daJiL4OPJ1ERBq5f/8+mjdvjgoVKmD9+vU4e/YswsPDAQDv37+XxtPT01OZTqFQQOTyd2d1dHTUpklNTc11Ldl58+YNJkyYgAsXLkiPy5cv49atWzA0NMxVzUSU93gkhog0cvbsWSiVSsyaNQs6Oh/+H/rrr79yNQ8LCwvY2dnh9OnTqFu3LoAPRz7OnTuHSpUqSePZ2tqqdAZOTEzEvXv3clVL6dKlcfr0aZW2T59XqVIF0dHRcHd3z9V6EFHBYIghomwlJCTgwoULKm2FCxdGamoq5s2bhxYtWuDYsWNYtGhRrufdv39/TJ06Fe7u7ihTpgzmzZuHV69eQaFQSOPUr18fERERaNGiBSwtLTFu3Djo6upKw93d3bOtpX///qhbty5CQ0PRokUL7N+/Hzt27FBZzrhx49C8eXMUL14c3333HXR0dHDx4kVcuXIFkyZNyvW6EVHe4ukkIsrWwYMHUblyZZXHypUrERoaimnTpqFcuXKIjIzE1KlTcz3vESNGoGPHjujatSu8vLxgamoKf39/ldM3o0aNgo+PD5o3b45mzZqhdevWKv1sKlasmG0t3t7eWLRoEUJDQ1GxYkXs3LkTgwcPVlmOv78/tm7dit27d6N69er45ptvMHv2bDg7O2vwqhFRXlOI3J6cJiLKQ0qlEh4eHmjXrh0mTpyYp8sKCgrCjRs3cOTIkTxdDhHlDZ5OIqICFRMTg927d8PHxwcpKSmYP38+7t27h06dOml9WTNnzkTDhg1hYmKCHTt2YPny5ViwYIHWl0NE+YMhhogKlI6ODiIiIjB06FAIIVCuXDns3bsXHh4eWl/WqVOnMH36dLx+/Rpubm6YO3cufvjhB60vh4jyB08nERERkSyxYy8RERHJEkMMERERyRJDDBEREckSQwwRERHJEkMMERERyRJDDBEREckSQwwRERHJEkMMERERydL/A6gShW8kOJa8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 strabismus 5 5 5 9 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 11 45.454545 45.454545 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 45.454545 81.818182 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAIjCAYAAAC0x+nOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe2ElEQVR4nO3dd1QU1/8+8GfpfSkiiFJFBezBqIgFFcXeiC0mYuwF68cae+9YEGsMqNGYYIsl9l6xG2PBDkYFTRRQFET2/v7wx3xdFxTWIQvmeZ2z57B3Zu68d2d3eHbmzq5CCCFARERE9In0dF0AERERfR4YKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIcnD69GkYGRkhLi5Olv6uXr0KAwMD/Pnnn7L0R4WDm5sbunTp8q+vNyoqCgqFAmfPnv3X1/1f4+bmhmbNmn10vkOHDkGhUODQoUP5X5SO/GdCxe3bt9GrVy94eHjAxMQEVlZW8Pf3x4IFC/Dq1Stdl5dnV69exYQJE3Dv3r08Lzt8+HAoFAq0b99e/sI+I6NHj0bHjh3h6uoqtW3ZsgVeXl5QKpVo3rw5Hj58qLFcixYt0LNnT412Hx8fNG3aFOPGjcvV+rP+Kbx7K1q0KOrWrYudO3dq/8CykdudIunOvXv3NF4POd202S98zj5lf0l5Y6DrAv4NO3bsQNu2bWFsbIzOnTujXLlyeP36NY4dO4Zhw4bhypUrWL58ua7LzJOrV69i4sSJCAgIgJubW66XE0Lg559/hpubG7Zt24bnz5/D0tIy/wotpC5evIh9+/bhxIkTUtudO3fQvn17tG/fHn5+fpg/fz6+++477N69W5pn9+7dOHLkCG7evJltv71790aTJk1w+/ZtlCxZMle1TJo0Ce7u7hBCIDExEVFRUWjSpAm2bdvGIFAIxMbGQk/v0z+/2dvbY82aNWptc+fOxV9//YV58+ZpzEv/R9v9pdxq166NV69ewcjISGc15LfPPlTcvXsXHTp0gKurKw4cOIBixYpJ0/r164dbt25hx44dn7weIQTS0tJgamqqMS0tLQ1GRkay7Fg+1aFDh/DXX3/hwIEDCAoKwqZNmxASEqLrsmT15s0bqFSqT3rjRkZGwsXFBdWrV5fa9uzZgxIlSmDVqlVQKBTw9vZGvXr1kJaWBhMTE7x58waDBw/GuHHjctypBwYGwsbGBqtWrcKkSZNyVUvjxo1RpUoV6X63bt3g4OCAn3/+maGiEDA2NpalH3Nzc3zzzTdqbevXr8ezZ8802kl7H9qXfyo9PT2YmJjI3m9Bovv/cvls1qxZePHiBVauXKkWKLJ4enpi4MCB0v03b95g8uTJKFmyJIyNjeHm5obvv/8e6enpastlHS7evXs3qlSpAlNTUyxbtkw6Z7Z+/XqMGTMGxYsXh5mZGVJSUgAAMTExaNSoEZRKJczMzFCnTh0cP35co64HDx6gW7ducHJygrGxMdzd3dGnTx+8fv0aUVFRaNu2LQCgbt260iHP3JynW7t2LXx8fFC3bl0EBgZi7dq1GvNkPYZff/0VU6dORYkSJWBiYoL69evj1q1bavPevHkTwcHBcHR0hImJCUqUKIEOHTogOTkZANCmTRt88cUXass0b94cCoUCW7duldpiYmKgUCjUDusnJSVh0KBBcHZ2hrGxMTw9PTFz5kyoVCppnqxDwnPmzMH8+fOl7Xb16lUAQHh4OMqWLQszMzPY2NigSpUqWLdu3Uefpy1btqBevXpQKBRS26tXr2BtbS212draQgghnT5btGgRMjMz0b9//xz7NTQ0REBAAH777beP1pATa2trmJqawsDg7WcCIQTc3NzQsmVLjXnT0tKgVCrRq1cvrdeX5ejRo2jbti1cXFxgbGwMZ2dnDB48WOP0YZcuXWBhYYEHDx6gVatWsLCwgL29PYYOHYrMzEy1ef/55x98++23sLKygrW1NUJCQnDp0iUoFApERUVJ8wUEBCAgIECjpi5dumh88pwzZw5q1KgBOzs7mJqawtfXFxs2bNBY9tWrVxgwYACKFCkCS0tLtGjRAg8ePIBCocCECRPU5n3w4AG6du0KBwcHGBsbo2zZsvjxxx9z9by9P6Yi67TW8ePHMWTIENjb28Pc3BytW7fGkydPctVnXqSnp+dqPTt37kStWrVgbm4OS0tLNG3aFFeuXFGbJ2vbxsfHo1mzZrCwsEDx4sUREREBALh8+TLq1asHc3NzuLq6Zvtey837GgAePXqE69evIyMj46OPcf369fD19YWlpSWsrKxQvnx5LFiwAAA+ur/MaV8OvP1wUa9ePRQtWhTGxsbw8fHBkiVLcqxjz549qFSpEkxMTODj44NNmzapTc9uTMXH9qEAoFAoEBoaiujoaPj4+MDU1BR+fn64fPkyAGDZsmXw9PSEiYkJAgICNE7z5DSuJ7v3lbb7TIn4zBUvXlx4eHjkev6QkBABQHz11VciIiJCdO7cWQAQrVq1UpvP1dVVeHp6ChsbGzFy5EixdOlScfDgQXHw4EEBQPj4+IhKlSqJsLAwMX36dJGamir2798vjIyMhJ+fn5g7d66YN2+eqFChgjAyMhIxMTFS3w8ePBBOTk7CzMxMDBo0SCxdulSMHTtWeHt7i2fPnonbt2+LAQMGCADi+++/F2vWrBFr1qwRCQkJH3xsaWlpwtraWkyePFkIIcTq1auFvr6+ePTokdp8WY+hcuXKwtfXV8ybN09MmDBBmJmZiapVq0rzpaenC3d3d+Hk5CSmTJkifvjhBzFx4kTx5Zdfinv37gkhhAgLCxN6enoiOTlZCCGESqUSNjY2Qk9PTwwdOlTqa/bs2WrzpaamigoVKgg7Ozvx/fffi6VLl4rOnTsLhUIhBg4cKC139+5d6fn28PAQM2bMEPPmzRNxcXFi+fLl0rZctmyZWLBggejWrZsYMGDAB5+nv/76SwAQCxcuVGs/evSoUCgUYt26deLOnTuiXbt2wtPTUwghxOPHj4W1tbXYvn37B/sWQogpU6aoPdacREZGCgBi37594smTJ+Lx48fizz//FL169RJ6enpiz5490ryjR48WhoaG4p9//lHr49dffxUAxJEjRz64LldXV9G0adMPztO/f3/RpEkTMW3aNLFs2TLRrVs3oa+vL7766iu1+UJCQoSJiYkoW7as6Nq1q1iyZIkIDg4WAMTixYul+TIzM4Wfn5/Q19cXoaGhYtGiRaJBgwaiYsWKAoCIjIyU5q1Tp46oU6eORk0hISHC1dVVra1EiRKib9++YtGiRSIsLExUrVpVANDYNu3atRMAxLfffisiIiJEu3btpHWPHz9emi8hIUGUKFFCODs7i0mTJoklS5aIFi1aCABi3rx5H3zOhHj73IaEhEj3s7Zr5cqVRb169UR4eLj43//+J/T19UW7du0+2t+7mjZtqvH4tVnP6tWrhUKhEI0aNRLh4eFi5syZws3NTVhbW4u7d+9K82VtWx8fH9G7d28REREhatSoIW0vJycnMWzYMBEeHi7Kli0r9PX1xZ07d6Tlc/u+zloXALX1Z2fPnj0CgKhfv76IiIgQERERIjQ0VLRt21YIIT66v8xpXy6EEF9++aXo0qWLmDdvnggPDxcNGzYUAMSiRYvUanB1dRWlS5cW1tbWYuTIkSIsLEyUL19e432atW/N6j83+1AhhAAgKlSoIJydncWMGTPEjBkzhFKpFC4uLmLRokXCx8dHzJ07V4wZM0YYGRmJunXratT37mswy/vvK233me/6rENFcnKyACBatmyZq/kvXrwoAIju3burtQ8dOlQAEAcOHJDaXF1dBQCxa9cutXmzXjQeHh7i5cuXUrtKpRKlSpUSQUFBQqVSSe0vX74U7u7uokGDBlJb586dhZ6enjhz5oxGjVnLRkdHq704c2PDhg0CgLh586YQQoiUlBRhYmKisWPMegze3t4iPT1dal+wYIEAIC5fviyEEOLChQsCgIiOjs5xnWfOnBEAxO+//y6EEOKPP/4QAETbtm1FtWrVpPlatGghKleuLN2fPHmyMDc3Fzdu3FDrb+TIkUJfX1/Ex8cLIf4vVFhZWYnHjx+rzduyZUtRtmzZ3D49kn379gkAYtu2bRrTsnZOAIStra30mujRo4do1KhRrvpft26dAKAWJLOT9U/h/ZuxsbGIiopSmzc2NlYAEEuWLFFrb9GihXBzc1N7zWUnN6Hi3ddzlunTpwuFQiHi4uKktqx/BpMmTVKbNyukZtm4caMAIObPny+1ZWZminr16n1SqHi/ztevX4ty5cqJevXqSW3nzp0TAMSgQYPU5u3SpYtGqOjWrZsoVqyY+Pvvv9Xm7dChg1Aqldk+L+/KKVQEBgaqbZfBgwcLfX19kZSU9MH+3pWbUPGx9Tx//lxYW1uLHj16qC2fkJAglEqlWnvWtp02bZrU9uzZM2FqaioUCoVYv3691H79+nWN5zK37+t31/WxUDFw4EBhZWUl3rx5k+M8H9pf5rQvFyL713xQUJDGB9WsPjZu3Ci1JScni2LFiqnt194PFbnZhwohpPf9u8/FsmXLBADh6OgoUlJSpPZRo0ZpPG+5DRXa7jPf9Vmf/sg65ZDbgYi///47AGDIkCFq7f/73/8AQGPshbu7O4KCgrLtKyQkRO2c3MWLF3Hz5k18/fXX+Oeff/D333/j77//RmpqKurXr48jR45ApVJBpVJhy5YtaN68udp59CzvHo7Pq7Vr16JKlSrw9PQEAOkQZ3anQADgu+++UxuXUKtWLQBvBywCgFKpBPB2cOLLly+z7aNy5cqwsLDAkSNHALw9hF6iRAl07twZ58+fx8uXLyGEwLFjx6T+ASA6Ohq1atWCjY2N9Fz9/fffCAwMRGZmptRfluDgYI1xDNbW1vjrr79w5syZXD9HwNtD8gBgY2OjMW3BggWIi4tDTEwM4uLiULduXVy8eBGrV6/GvHnzkJycjG+++QbFixdHQEAArl27ptFHVr9///13ruqJiIjA3r17sXfvXvz000+oW7cuunfvrnZotXTp0qhWrZratnz69Cl27tyJTp06fdLrJsu7r+fU1FT8/fffqFGjBoQQuHDhgsb8vXv3Vrtfq1Yt6bUDALt27YKhoSF69Oghtenp6aFfv36y1fns2TMkJyejVq1aOH/+vNq6AaBv375qy75/6koIgY0bN6J58+YQQqi9FoOCgpCcnKzWb1707NlTbbvUqlULmZmZsl3CnNv17N27F0lJSejYsaPa49PX10e1atVw8OBBjT67d+8u/W1tbY0yZcrA3Nwc7dq1k9rLlCkDa2trtW2el/d1VFSUdGrvQ6ytrZGamoq9e/fm+bnJktO+/N3XUnJyMv7++2/UqVMHd+7cUTs9AQBOTk5o3bq1dN/KygqdO3fGhQsXkJCQkO16c7MPzVK/fn2156JatWoA3u773v0fl9X+7vOeW9ruM9/1WQ/UtLKyAgA8f/48V/PHxcVBT09P+qebxdHREdbW1hpvdnd39xz7en9a1tUAHxoUmZycjNevXyMlJQXlypXLVc25lZSUhN9//x2hoaFq4yL8/f2xceNG3LhxA6VLl1ZbxsXFRe1+1j/DZ8+eAXj7GIcMGYKwsDCsXbsWtWrVQosWLfDNN99IbxZ9fX34+fnh6NGjAN6Gilq1aqFmzZrIzMzEqVOn4ODggKdPn6qFips3b+KPP/7IccDj48eP1e5nty1GjBiBffv2oWrVqvD09ETDhg3x9ddfw9/fP1fP2dsPCJpcXFzUnpsBAwagd+/e8PLywjfffIP79+/jt99+w6pVq9C8eXNcv35dGv/wbr+5/UdftWpVtYDZsWNHVK5cGaGhoWjWrJkU/Dp37ozQ0FDExcXB1dUV0dHRyMjIwLfffpur9XxMfHw8xo0bh61bt0qvgSzv72BNTEw0tp2NjY3acnFxcShWrBjMzMzU5nv//ZdX27dvx5QpU3Dx4kW1sVDvPt9Z7/X3Xzfvr/vJkydISkrC8uXLc7xC7P3XYm597P0ll4+tJ2vfVK9evWyXz9qPZslu2yqVSpQoUULjNa1UKtUeT17f17nRt29f/Prrr2jcuDGKFy+Ohg0bol27dmjUqFGu+8hpX378+HGMHz8eJ0+e1Pinn5ycLO3ngLevnfcff9Y+9d69e3B0dMx2vR/bh2Z5fztmTXd2ds62XZvX0afuM4H/QKhwcnLK85cN5XZn/6HRwe9PyxqENHv2bFSqVCnbZSwsLPD06dPcFZlH0dHRSE9Px9y5czF37lyN6WvXrsXEiRPV2vT19bPt691/tnPnzkWXLl3w22+/Yc+ePRgwYACmT5+OU6dOoUSJEgCAmjVrYurUqUhLS8PRo0cxevRoWFtbo1y5cjh69CgcHBwAQC1UqFQqNGjQAMOHD8+2hvcDUHbbwtvbG7Gxsdi+fTt27dqFjRs3YvHixRg3bpzGY32XnZ0dgNy9KX/55Rdcu3YNW7duRWZmJn799Vfs2bMHVapUQdmyZbFixQqcOnUKNWvWlJbJ6rdIkSIf7T87enp6qFu3LhYsWICbN2+ibNmyAIAOHTpg8ODBWLt2Lb7//nv89NNPqFKlCsqUKaPVet6VmZmJBg0a4OnTpxgxYgS8vLxgbm6OBw8eoEuXLhqD7HJ67WhLoVBkG/LeH/h59OhRtGjRArVr18bixYtRrFgxGBoaIjIyMm+Dzf6/rMf1zTff5PiBoEKFCnnuF8jd+0sOH1tP1mNcs2ZNtv/43g3EH+ovN48nr+/r3ChatCguXryI3bt3Y+fOndi5cyciIyPRuXNnrFq1Kld9ZLf/uH37NurXrw8vLy+EhYXB2dkZRkZG+P333zFv3jyN17y2crMPBT7tec/pf1pmZqba8truM9/1WYcKAGjWrBmWL1+OkydPws/P74Pzurq6QqVS4ebNm/D29pbaExMTkZSUpPYlSHmV9Z0EVlZWCAwMzHE+e3t7WFlZfTQI5fVw9tq1a1GuXDmMHz9eY9qyZcuwbt26XL9o3le+fHmUL18eY8aMwYkTJ+Dv74+lS5diypQpAN6GhdevX+Pnn3/GgwcPpPBQu3ZtKVSULl1aChfA2+frxYsXH3yucsPc3Fz6bonXr1+jTZs2mDp1KkaNGpXjpV1eXl4A3l6O/CEvX77EsGHDMHnyZFhbWyMxMREZGRlwcnIC8HZHZWNjgwcPHqgtd/fuXejp6Wm1A83y5s0bAMCLFy+kNltbW+l0VqdOnXD8+HHMnz9f63W86/Lly7hx4wZWrVqFzp07S+2fcsjZ1dUVBw8exMuXL9WOVrx/hRHw9tN1dodz3z96uHHjRpiYmGD37t1ql3JGRkZqrFulUuHu3bsoVapUjuu2t7eHpaUlMjMzP/m1WFBl7ZuKFi2a749Rrvf1+4yMjNC8eXM0b94cKpUKffv2xbJlyzB27NhsjyDkxrZt25Ceno6tW7eqHSXI7nQQ8Pa1I4RQW9eNGzcA4KOncD62D/1UNjY2SEpK0miPi4uDh4eHWps2+8x3fdZjKoC33x5pbm6O7t27IzExUWP67du3pUuPmjRpAgAaO+KwsDAAQNOmTbWuw9fXFyVLlsScOXPU/hFkybrES09PD61atcK2bduy/XrdrPRpbm4OANm+UN53//59HDlyBO3atcNXX32lcfvuu+9w69YtxMTE5OkxpaSkSP/cspQvXx56enpqh52rVasGQ0NDzJw5E7a2ttIn61q1auHUqVM4fPiw2lEKAGjXrh1Onjyp9sVSWZKSkjTWm52ssRFZjIyM4OPjAyHEBy9TK168OJydnT/69cYzZ86EjY2NNCbAzs4OBgYGuH79OoC3YyaePHmi8env3LlzKFu2rMbhzdzKyMjAnj17YGRkpBZ+AeDbb7/F1atXMWzYMOjr66NDhw5areN9WZ9m3v30I4SQ3jvaCAoKQkZGBlasWCG1qVQq6fLEd5UsWRLXr19XuxTy0qVLGpdj6+vrQ6FQqB3BuHfvHrZs2aKxbgBYvHixWnt4eLhGf8HBwdi4cWO2QT8/LgH9twUFBcHKygrTpk3L9n0h52PMy/s6t5eUvv8+19PTk44eZe2H8rK/zJLdaz45OVkjoGZ5+PAhNm/eLN1PSUnB6tWrUalSpWyPAGXNk5t96KcqWbIkTp06hdevX0tt27dvx/3799Xm03af+a7P/khFyZIlsW7dOrRv3x7e3t5q36h54sQJREdHS9fvVqxYESEhIVi+fDmSkpJQp04dnD59GqtWrUKrVq1Qt25drevQ09PDDz/8gMaNG6Ns2bL47rvvULx4cTx48AAHDx6ElZUVtm3bBgCYNm0a9uzZgzp16qBnz57w9vbGo0ePEB0djWPHjsHa2hqVKlWCvr4+Zs6cieTkZBgbG0vXU79v3bp1EEKgRYsW2dbWpEkTGBgYYO3atdIgn9w4cOAAQkND0bZtW5QuXRpv3rzBmjVrpB1xFjMzM/j6+uLUqVPSd1QAb49UpKamIjU1VSNUDBs2DFu3bkWzZs3QpUsX+Pr6IjU1FZcvX8aGDRtw7969j54+aNiwIRwdHeHv7w8HBwdcu3YNixYtQtOmTT86eLdly5bYvHmzxiePLPHx8Zg9ezZ27Ngh7XwMDAzQsmVLDBo0CPHx8di8eTOcnJzUjpBlZGTg8OHDGgMEP2Tnzp1SUHn8+DHWrVuHmzdvYuTIkRrnu5s2bQo7OztER0ejcePG2b4ecnLr1q1sPxlVrlwZDRs2RMmSJTF06FA8ePAAVlZW2Lhx4yed/2/VqhWqVq2K//3vf7h16xa8vLywdetW6RTgu897165dERYWhqCgIHTr1g2PHz/G0qVLUbZsWWlAdtbjDwsLQ6NGjfD111/j8ePHiIiIgKenJ/744w9pPl9fXwQHB2P+/Pn4559/UL16dRw+fFj6ZPnuumfMmIGDBw+iWrVq6NGjB3x8fPD06VOcP38e+/bty7dTlv8WKysrLFmyBN9++y2++OILdOjQAfb29oiPj8eOHTvg7++PRYsWybKuvLyvR40ahVWrVuHu3bsf/KTfvXt3PH36FPXq1UOJEiUQFxeH8PBwVKpUSQrdedlfZmnYsKF0BKRXr1548eIFVqxYgaJFi+LRo0ca85cuXRrdunXDmTNn4ODggB9//BGJiYk5hhAg9/vQT9W9e3ds2LABjRo1Qrt27XD79m389NNPGt/q+yn7TMknXTtSiNy4cUP06NFDuLm5CSMjI2FpaSn8/f1FeHi4SEtLk+bLyMgQEydOFO7u7sLQ0FA4OzuLUaNGqc0jRM6X4GVdMpTTJUIXLlwQbdq0EXZ2dsLY2Fi4urqKdu3aif3796vNFxcXJzp37izs7e2FsbGx8PDwEP369VO7xHPFihXCw8ND6Ovrf/Dy0vLlywsXF5cPPj8BAQGiaNGiIiMjI8fHkHX5Ztalfnfu3BFdu3YVJUuWFCYmJsLW1lbUrVtX7Nu3T6P/YcOGCQBi5syZau2enp4CgLh9+7bGMs+fPxejRo0Snp6ewsjISBQpUkTUqFFDzJkzR7x+/VqtptmzZ2ssv2zZMlG7dm3puS5ZsqQYNmzYR78fQgghzp8/LwCIo0ePZju9bdu2ok2bNhrtiYmJonnz5sLS0lJ88cUX4uzZs2rTd+7cqXZZ74dkd0mpiYmJqFSpkliyZEmOl4n27dtXABDr1q376DqyZF0Sl92tW7duQgghrl69KgIDA4WFhYUoUqSI6NGjh7h06ZLG5Z8hISHC3NxcYx3jx48X7+9ynjx5Ir7++mthaWkplEql6NKlizh+/LgAoHZ5ohBC/PTTT8LDw0MYGRmJSpUqid27d2d7SenKlStFqVKlhLGxsfDy8hKRkZHZrjs1NVX069dP2NraCgsLC9GqVSvp0twZM2aozZuYmCj69esnnJ2dhaGhoXB0dBT169cXy5cvz9Vzm90lpe9fMv7+5Ya5kZtLSnO7noMHD4qgoCChVCqFiYmJKFmypOjSpYvaazinbVunTp1sL0XMbj+Zm/d11rqQi0tKN2zYIBo2bCiKFi0qjIyMhIuLi+jVq5fG9+/ktL/80OXUW7duFRUqVBAmJibCzc1NzJw5U/z444/ZXrLZtGlTsXv3blGhQgXptff+PvT95z63+1AAol+/fmptOe37ctp/z507VxQvXlwYGxsLf39/cfbsWY1LSj9ln5lF8f8LJqL31K9fH05OThq/t/ApWrVqBYVCoXaYVG6DBw/GypUrkZCQoHFlRWGwZcsWtG7dGseOHcvTqHM5XLx4EZUrV8ZPP/2ETp06/avrJvocMFQQ5SAmJga1atXCzZs3P2mQbpZr166hfPnyuHjxouyXDGdJS0uDs7MzmjVr9sHDrgXFq1ev1EbeZ2ZmomHDhjh79iwSEhLy5fcXclo38PZrqNesWYN79+5pXKpHRB/32Y+pINJWtWrV1AY2fSpvb+9cDTDVxuPHj7Fv3z5s2LAB//zzj9rv2RRk/fv3x6tXr+Dn54f09HRs2rQJJ06cwLRp0/I1UABvfxfo3LlzqFu3LgwMDKTLEXv27MlAQaQlhgqiz8DVq1fRqVMnFC1aFAsXLszxu1AKmnr16mHu3LnYvn070tLS4OnpifDwcISGhub7umvUqIG9e/di8uTJePHiBVxcXDBhwgSMHj0639dN9Lni6Q8iIiKSxWf/PRVERET072CoICIiIll89mMqVCoVHj58CEtLS1l+qZGIiOi/QgiB58+fw8nJCXp6Hz8O8dmHiocPH3IkNxER0Se4f/++2g+c5eSzDxVZXy16//59ja80JiIiopylpKTA2dk511/T/dmHiqxTHlZWVgwVREREWsjt8AEO1CQiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFga6LoCIiP4b3Ebu0HUJn717M5rqdP08UkFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC52GiszMTIwdOxbu7u4wNTVFyZIlMXnyZAghpHmEEBg3bhyKFSsGU1NTBAYG4ubNmzqsmoiIiLKj01Axc+ZMLFmyBIsWLcK1a9cwc+ZMzJo1C+Hh4dI8s2bNwsKFC7F06VLExMTA3NwcQUFBSEtL02HlRERE9D6dfk/FiRMn0LJlSzRt+va6Wjc3N/z88884ffo0gLdHKebPn48xY8agZcuWAIDVq1fDwcEBW7ZsQYcOHXRWOxEREanT6ZGKGjVqYP/+/bhx4wYA4NKlSzh27BgaN24MALh79y4SEhIQGBgoLaNUKlGtWjWcPHky2z7T09ORkpKidiMiIqL8p9MjFSNHjkRKSgq8vLygr6+PzMxMTJ06FZ06dQIAJCQkAAAcHBzUlnNwcJCmvW/69OmYOHFi/hZOREREGnR6pOLXX3/F2rVrsW7dOpw/fx6rVq3CnDlzsGrVKq37HDVqFJKTk6Xb/fv3ZayYiIiIcqLTIxXDhg3DyJEjpbER5cuXR1xcHKZPn46QkBA4OjoCABITE1GsWDFpucTERFSqVCnbPo2NjWFsbJzvtRMREZE6nR6pePnyJfT01EvQ19eHSqUCALi7u8PR0RH79++XpqekpCAmJgZ+fn7/aq1ERET0YTo9UtG8eXNMnToVLi4uKFu2LC5cuICwsDB07doVAKBQKDBo0CBMmTIFpUqVgru7O8aOHQsnJye0atVKl6UTERHRe3QaKsLDwzF27Fj07dsXjx8/hpOTE3r16oVx48ZJ8wwfPhypqano2bMnkpKSULNmTezatQsmJiY6rJyIiIjepxDvfn3lZyglJQVKpRLJycmwsrLSdTlERP9ZbiN36LqEz969GU1l7S+v/0P52x9EREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKShU5DhZubGxQKhcatX79+AIC0tDT069cPdnZ2sLCwQHBwMBITE3VZMhEREeVAp6HizJkzePTokXTbu3cvAKBt27YAgMGDB2Pbtm2Ijo7G4cOH8fDhQ7Rp00aXJRMREVEODHS5cnt7e7X7M2bMQMmSJVGnTh0kJydj5cqVWLduHerVqwcAiIyMhLe3N06dOoXq1avromQiIiLKQYEZU/H69Wv89NNP6Nq1KxQKBc6dO4eMjAwEBgZK83h5ecHFxQUnT57MsZ/09HSkpKSo3YiIiCj/FZhQsWXLFiQlJaFLly4AgISEBBgZGcHa2lptPgcHByQkJOTYz/Tp06FUKqWbs7NzPlZNREREWQpMqFi5ciUaN24MJyenT+pn1KhRSE5Olm7379+XqUIiIiL6EJ2OqcgSFxeHffv2YdOmTVKbo6MjXr9+jaSkJLWjFYmJiXB0dMyxL2NjYxgbG+dnuURERJSNAnGkIjIyEkWLFkXTpk2lNl9fXxgaGmL//v1SW2xsLOLj4+Hn56eLMomIiOgDdH6kQqVSITIyEiEhITAw+L9ylEolunXrhiFDhsDW1hZWVlbo378//Pz8eOUHERFRAaTzULFv3z7Ex8eja9euGtPmzZsHPT09BAcHIz09HUFBQVi8eLEOqiQiIqKPUQghhK6LyE8pKSlQKpVITk6GlZWVrsshIvrPchu5Q9clfPbuzWj68ZnyIK//QwvEmAoiIiIq/BgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAudh4oHDx7gm2++gZ2dHUxNTVG+fHmcPXtWmi6EwLhx41CsWDGYmpoiMDAQN2/e1GHFRERElB2dhopnz57B398fhoaG2LlzJ65evYq5c+fCxsZGmmfWrFlYuHAhli5dipiYGJibmyMoKAhpaWk6rJyIiIjeZ6DLlc+cORPOzs6IjIyU2tzd3aW/hRCYP38+xowZg5YtWwIAVq9eDQcHB2zZsgUdOnT412smIiKi7On0SMXWrVtRpUoVtG3bFkWLFkXlypWxYsUKafrdu3eRkJCAwMBAqU2pVKJatWo4efJktn2mp6cjJSVF7UZERET5T6eh4s6dO1iyZAlKlSqF3bt3o0+fPhgwYABWrVoFAEhISAAAODg4qC3n4OAgTXvf9OnToVQqpZuzs3P+PggiIiICoONQoVKp8MUXX2DatGmoXLkyevbsiR49emDp0qVa9zlq1CgkJydLt/v378tYMREREeVEp6GiWLFi8PHxUWvz9vZGfHw8AMDR0REAkJiYqDZPYmKiNO19xsbGsLKyUrsRERFR/tNpqPD390dsbKxa240bN+Dq6grg7aBNR0dH7N+/X5qekpKCmJgY+Pn5/au1EhER0Yfp9OqPwYMHo0aNGpg2bRratWuH06dPY/ny5Vi+fDkAQKFQYNCgQZgyZQpKlSoFd3d3jB07Fk5OTmjVqpUuSyciIqL36DRUfPnll9i8eTNGjRqFSZMmwd3dHfPnz0enTp2keYYPH47U1FT07NkTSUlJqFmzJnbt2gUTExMdVk5ERETvUwghhK6LyE8pKSlQKpVITk7m+AoiIh1yG7lD1yV89u7NaCprf3n9H6rzr+kmIiKizwNDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLA20Wunv3Lo4ePYq4uDi8fPkS9vb2qFy5Mvz8/GBiYiJ3jURERFQI5ClUrF27FgsWLMDZs2fh4OAAJycnmJqa4unTp7h9+zZMTEzQqVMnjBgxAq6urvlVMxERERVAuQ4VlStXhpGREbp06YKNGzfC2dlZbXp6ejpOnjyJ9evXo0qVKli8eDHatm0re8FERERUMOU6VMyYMQNBQUE5Tjc2NkZAQAACAgIwdepU3Lt3T476iIiIqJDIdaj4UKB4n52dHezs7LQqiIiIiAonrQZqvmvHjh04dOgQMjMz4e/vj+DgYDnqIiIiokLmky4pHTt2LIYPHw6FQgEhBAYPHoz+/fvLVRsREREVInk6UnH27FlUqVJFuv/LL7/g0qVLMDU1BQB06dIFAQEBCA8Pl7dKIiIiKvDydKSid+/eGDRoEF6+fAkA8PDwwNy5cxEbG4vLly9jyZIlKF26dL4USkRERAVbnkJFTEwMihUrhi+++ALbtm3Djz/+iAsXLqBGjRqoVasW/vrrL6xbty6/aiUiIqICLE+nP/T19TFixAi0bdsWffr0gbm5ORYtWgQnJ6f8qo+IiIgKCa0Ganp4eGD37t1o3bo1ateujYiICLnrIiIiokImT6EiKSkJw4cPR/PmzTFmzBi0bt0aMTExOHPmDKpXr47Lly/nV51ERERUwOUpVISEhCAmJgZNmzZFbGws+vTpAzs7O0RFRWHq1Klo3749RowYkV+1EhERUQGWpzEVBw4cwIULF+Dp6YkePXrA09NTmla/fn2cP38ekyZNkr1IIiIiKvjydKSiVKlSWL58OW7cuIGlS5dq/BKpiYkJpk2bJmuBREREVDjkKVT8+OOPOHDgACpXrox169ZhyZIl+VUXERERFTJ5Ov1RqVIlnD17Nr9qISIiokIs10cqhBD5WQcREREVcrkOFWXLlsX69evx+vXrD8538+ZN9OnTBzNmzPjk4oiIiKjwyPXpj/DwcIwYMQJ9+/ZFgwYNUKVKFTg5OcHExATPnj3D1atXcezYMVy5cgWhoaHo06dPftZNREREBUyuQ0X9+vVx9uxZHDt2DL/88gvWrl2LuLg4vHr1CkWKFEHlypXRuXNndOrUCTY2NvlZMxERERVAeRqoCQA1a9ZEzZo186MWIiIiKsS0+u0PIiIiovcxVBAREZEsGCqIiIhIFgwVREREJAudhooJEyZAoVCo3by8vKTpaWlp6NevH+zs7GBhYYHg4GAkJibqsGIiIiLKiVah4vz587h8+bJ0/7fffkOrVq3w/ffff/TLsd5XtmxZPHr0SLodO3ZMmjZ48GBs27YN0dHROHz4MB4+fIg2bdpoUzIRERHlM61CRa9evXDjxg0AwJ07d9ChQweYmZkhOjoaw4cPz1NfBgYGcHR0lG5FihQBACQnJ2PlypUICwtDvXr14Ovri8jISJw4cQKnTp3SpmwiIiLKR1qFihs3bqBSpUoAgOjoaNSuXRvr1q1DVFQUNm7cmKe+bt68CScnJ3h4eKBTp06Ij48HAJw7dw4ZGRkIDAyU5vXy8oKLiwtOnjyZY3/p6elISUlRuxEREVH+0ypUCCGgUqkAAPv27UOTJk0AAM7Ozvj7779z3U+1atUQFRWFXbt2YcmSJbh79y5q1aqF58+fIyEhAUZGRrC2tlZbxsHBAQkJCTn2OX36dCiVSunm7Oyc9wdIREREeZbnb9QEgCpVqmDKlCkIDAzE4cOHsWTJEgDA3bt34eDgkOt+GjduLP1doUIFVKtWDa6urvj1119hamqqTWkYNWoUhgwZIt1PSUlhsCAiIvoXaHWkYv78+Th//jxCQ0MxevRoeHp6AgA2bNiAGjVqaF2MtbU1SpcujVu3bsHR0RGvX79GUlKS2jyJiYlwdHTMsQ9jY2NYWVmp3YiIiCj/5flIRWZmJpKSknDkyBGNHw6bPXs29PX1tS7mxYsXuH37Nr799lv4+vrC0NAQ+/fvR3BwMAAgNjYW8fHx8PPz03odRERElD/yHCr09fXRsGFDXLt2TSNUmJiY5KmvoUOHonnz5nB1dcXDhw8xfvx46Ovro2PHjlAqlejWrRuGDBkCW1tbWFlZoX///vDz80P16tXzWjYRERHlM63GVJQrVw537tyBu7v7J638r7/+QseOHfHPP//A3t4eNWvWxKlTp2Bvbw8AmDdvHvT09BAcHIz09HQEBQVh8eLFn7ROIiIiyh8KIYTI60K7du3CqFGjMHnyZPj6+sLc3FxtekEax5CSkgKlUonk5OQCVRcR0X+N28gdui7hs3dvRlNZ+8vr/1CtjlRkXULaokULKBQKqV0IAYVCgczMTG26JSIiokJMq1Bx8OBBuesgIiKiQk6rUFGnTh256yAiIqJCTutfKT169Ci++eYb1KhRAw8ePAAArFmzRu0HwYiIiOi/Q6tQsXHjRgQFBcHU1BTnz59Heno6gLc/AjZt2jRZCyQiIqLCQatQMWXKFCxduhQrVqyAoaGh1O7v74/z58/LVhwREREVHlqFitjYWNSuXVujXalUanytNhEREf03aBUqHB0dcevWLY32Y8eOwcPD45OLIiIiosJHq1DRo0cPDBw4EDExMVAoFHj48CHWrl2LoUOHok+fPnLXSERERIWAVpeUjhw5EiqVCvXr18fLly9Ru3ZtGBsbY+jQoejfv7/cNRIREVEhoFWoUCgUGD16NIYNG4Zbt27hxYsX8PHxgYWFhdz1ERERUSGhVag4cOAAatSoARMTE/j4+MhdExERERVCWoWKFi1a4M2bN/jyyy8REBCAOnXqwN/fH6ampnLXR0RERIWEVgM1nz17hv3796Nx48Y4ffo0WrduDWtra/j7+2PMmDFy10hERESFgFY/ff6+K1euYPbs2Vi7di1UKlWB+pVS/vQ5EVHBwJ8+z3+F8qfPb9y4gUOHDuHQoUM4fPgw0tPTUatWLcyZMwcBAQHadElERESFnFahwsvLC/b29hg4cCBGjhyJ8uXLQ6FQyF0bERERFSJahYoBAwbgyJEjmDRpErZv346AgAAEBASgZs2aMDMzk7vGAomH8fKf3IfxsnDb5b/82nYAt9+/IT+3H33etBqoOX/+fJw/fx4JCQkYNWoUXr9+jdGjR6NIkSLw9/eXu0YiIiIqBLQKFVkyMzORkZGB9PR0pKWlIT09HbGxsXLVRkRERIWIVqFiwIABqFChAhwcHNCrVy88fPgQPXr0wIULF/DkyRO5ayQiIqJCQKsxFY8ePULPnj0REBCAcuXKyV0TERERFUJahYro6Gi56yAiIqJCTqvTH6tWrcKOHf83Anv48OGwtrZGjRo1EBcXJ1txREREVHhoFSqmTZsm/c7HyZMnERERgVmzZqFIkSIYPHiwrAUSERFR4aDV6Y/79+/D09MTALBlyxYEBwejZ8+e8Pf35zdqEhER/UdpdaTCwsIC//zzDwBgz549aNCgAQDAxMQEr169kq86IiIiKjS0OlLRoEEDdO/eHZUrV8aNGzfQpEkTAG9/WMzNzU3O+oiIiKiQ0OpIRUREBPz8/PDkyRNs3LgRdnZ2AIBz586hY8eOshZIREREhYNWRyqsra2xaNEijfaJEyd+ckFERERUOGkVKgAgKSkJp0+fxuPHj6FSqaR2hUKBb7/9VpbiiIiIqPDQKlRs27YNnTp1wosXL2BlZaX2s+cMFURERP9NWo2p+N///oeuXbvixYsXSEpKwrNnz6Tb06dP5a6RiIiICgGtQsWDBw8wYMAAmJmZyV0PERERFVJahYqgoCCcPXtW7lqIiIioENNqTEXTpk0xbNgwXL16FeXLl4ehoaHa9BYtWshSHBERERUeWoWKHj16AAAmTZqkMU2hUCAzM/PTqiIiIqJCR6tQ8e4lpERERESAlmMqcpKUlJTtl2IRERHR50+WULF//358/fXXKFasGMaPHy9Hl0RERFTIaB0q7t+/j0mTJsHd3R0NGzaEQqHA5s2bkZCQIGd9REREVEjkKVRkZGQgOjoaQUFBKFOmDC5evIjZs2dDT08Po0ePRqNGjTSuBCEiIqL/hjwN1CxevDi8vLzwzTffYP369bCxsQEA/jIpERER5e1IxZs3b6BQKKBQKKCvry9rITNmzIBCocCgQYOktrS0NPTr1w92dnawsLBAcHAwEhMTZV0vERERySNPoeLhw4fo2bMnfv75Zzg6OiI4OBibN29W+0ExbZw5cwbLli1DhQoV1NoHDx6Mbdu2ITo6GocPH8bDhw/Rpk2bT1oXERER5Y88hQoTExN06tQJBw4cwOXLl+Ht7Y0BAwbgzZs3mDp1Kvbu3ZvnL7568eIFOnXqhBUrVkinUwAgOTkZK1euRFhYGOrVqwdfX19ERkbixIkTOHXqVJ7WQURERPlP66s/SpYsiSlTpiAuLg47duxAeno6mjVrBgcHhzz1069fPzRt2hSBgYFq7efOnUNGRoZau5eXF1xcXHDy5Mkc+0tPT0dKSorajYiIiPKfVt+o+S49PT00btwYjRs3xpMnT7BmzZpcL7t+/XqcP38eZ86c0ZiWkJAAIyMjWFtbq7U7ODh88LLV6dOnY+LEibmugYiIiOQh6zdq2tvbY8iQIbma9/79+xg4cCDWrl0LExMT2WoYNWoUkpOTpdv9+/dl65uIiIhyJmuoyItz587h8ePH+OKLL2BgYAADAwMcPnwYCxcuhIGBARwcHPD69WskJSWpLZeYmAhHR8cc+zU2NoaVlZXajYiIiPLfJ5/+0Fb9+vVx+fJltbbvvvsOXl5eGDFiBJydnWFoaIj9+/cjODgYABAbG4v4+Hj4+fnpomQiIiL6AJ2FCktLS5QrV06tzdzcHHZ2dlJ7t27dMGTIENja2sLKygr9+/eHn58fqlevrouSiYiI6AO0Ov0xadIkvHz5UqP91atXmDRp0icXlWXevHlo1qwZgoODUbt2bTg6OmLTpk2y9U9ERETy0SpUTJw4ES9evNBof/ny5SddeXHo0CHMnz9fum9iYoKIiAg8ffoUqamp2LRp0wfHUxAREZHuaBUqhBDZfovmpUuXYGtr+8lFERERUeGTpzEVNjY20m9/lC5dWi1YZGZm4sWLF+jdu7fsRRIREVHBl6dQMX/+fAgh0LVrV0ycOBFKpVKaZmRkBDc3N16ZQURE9B+Vp1AREhICAHB3d4e/vz8MDHR28QgREREVMFqNqUhNTcX+/fs12nfv3o2dO3d+clFERERU+GgVKkaOHJntr5EKITBy5MhPLoqIiIgKH61Cxc2bN+Hj46PR7uXlhVu3bn1yUURERFT4aBUqlEol7ty5o9F+69YtmJubf3JRREREVPhoFSpatmyJQYMG4fbt21LbrVu38L///Q8tWrSQrTgiIiIqPLQKFbNmzYK5uTm8vLzg7u4Od3d3eHt7w87ODnPmzJG7RiIiIioEtLomVKlU4sSJE9i7dy8uXboEU1NTVKhQAbVr15a7PiIiIioktP6iCYVCgYYNG6J27dowNjbO9mu7iYiI6L9Dq9MfKpUKkydPRvHixWFhYYG7d+8CAMaOHYuVK1fKWiAREREVDlqFiilTpiAqKgqzZs2CkZGR1F6uXDn88MMPshVHREREhYdWoWL16tVYvnw5OnXqBH19fam9YsWKuH79umzFERERUeGhVah48OABPD09NdpVKhUyMjI+uSgiIiIqfLQKFT4+Pjh69KhG+4YNG1C5cuVPLoqIiIgKH62u/hg3bhxCQkLw4MEDqFQqbNq0CbGxsVi9ejW2b98ud41ERERUCGj9jZrbtm3Dvn37YG5ujnHjxuHatWvYtm0bGjRoIHeNREREVAjk+UjFmzdvMG3aNHTt2hV79+7Nj5qIiIioEMrzkQoDAwPMmjULb968yY96iIiIqJDS6vRH/fr1cfjwYblrISIiokJMq4GajRs3xsiRI3H58mX4+vpq/Nw5f6mUiIjov0erUNG3b18AQFhYmMY0hUKBzMzMT6uKiIiICh2tQoVKpZK7DiIiIirk8jymIiMjAwYGBvjzzz/zox4iIiIqpPIcKgwNDeHi4sJTHERERKRGq6s/Ro8eje+//x5Pnz6Vux4iIiIqpLQaU7Fo0SLcunULTk5OcHV11bj64/z587IUR0RERIWHVqGiVatWMpdBREREhZ1WoWL8+PFy10FERESFnFahIsu5c+dw7do1AEDZsmX5s+dERET/YVqFisePH6NDhw44dOgQrK2tAQBJSUmoW7cu1q9fD3t7ezlrJCIiokJAq6s/+vfvj+fPn+PKlSt4+vQpnj59ij///BMpKSkYMGCA3DUSERFRIaDVkYpdu3Zh37598Pb2ltp8fHwQERGBhg0bylYcERERFR5aHalQqVQwNDTUaDc0NORXeBMREf1HaRUq6tWrh4EDB+Lhw4dS24MHDzB48GDUr19ftuKIiIio8NAqVCxatAgpKSlwc3NDyZIlUbJkSbi7uyMlJQXh4eFy10hERESFgFZjKpydnXH+/Hns27cP169fBwB4e3sjMDBQ1uKIiIio8ND6eyoUCgUaNGiABg0ayFkPERERFVJ5Ov1x4MAB+Pj4ICUlRWNacnIyypYti6NHj8pWHBERERUeeQoV8+fPR48ePWBlZaUxTalUolevXggLC5OtOCIiIio88hQqLl26hEaNGuU4vWHDhjh37lyu+1uyZAkqVKgAKysrWFlZwc/PDzt37pSmp6WloV+/frCzs4OFhQWCg4ORmJiYl5KJiIjoX5KnUJGYmJjt91NkMTAwwJMnT3LdX4kSJTBjxgycO3cOZ8+eRb169dCyZUtcuXIFADB48GBs27YN0dHROHz4MB4+fIg2bdrkpWQiIiL6l+RpoGbx4sXx559/wtPTM9vpf/zxB4oVK5br/po3b652f+rUqViyZAlOnTqFEiVKYOXKlVi3bh3q1asHAIiMjIS3tzdOnTqF6tWr56V0IiIiymd5OlLRpEkTjB07FmlpaRrTXr16hfHjx6NZs2ZaFZKZmYn169cjNTUVfn5+OHfuHDIyMtQuU/Xy8oKLiwtOnjyZYz/p6elISUlRuxEREVH+y9ORijFjxmDTpk0oXbo0QkNDUaZMGQDA9evXERERgczMTIwePTpPBVy+fBl+fn5IS0uDhYUFNm/eDB8fH1y8eBFGRkbSr6BmcXBwQEJCQo79TZ8+HRMnTsxTDURERPTp8hQqHBwccOLECfTp0wejRo2CEALA2++sCAoKQkREBBwcHPJUQJkyZXDx4kUkJydjw4YNCAkJweHDh/PUx7tGjRqFIUOGSPdTUlLg7OysdX9ERESUO3n+8itXV1f8/vvvePbsGW7dugUhBEqVKgUbGxutCjAyMpLGaPj6+uLMmTNYsGAB2rdvj9evXyMpKUntaEViYiIcHR1z7M/Y2BjGxsZa1UJERETa0+q3PwDAxsYGX375JapWrap1oMiOSqVCeno6fH19YWhoiP3790vTYmNjER8fDz8/P9nWR0RERPLQ+mu65TBq1Cg0btwYLi4ueP78OdatW4dDhw5h9+7dUCqV6NatG4YMGQJbW1tYWVmhf//+8PPz45UfREREBZBOQ8Xjx4/RuXNnPHr0CEqlEhUqVMDu3bul3xOZN28e9PT0EBwcjPT0dAQFBWHx4sW6LJmIiIhyoNNQsXLlyg9ONzExQUREBCIiIv6lioiIiEhbWo+pICIiInoXQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkodNQMX36dHz55ZewtLRE0aJF0apVK8TGxqrNk5aWhn79+sHOzg4WFhYIDg5GYmKijiomIiKinOg0VBw+fBj9+vXDqVOnsHfvXmRkZKBhw4ZITU2V5hk8eDC2bduG6OhoHD58GA8fPkSbNm10WDURERFlx0CXK9+1a5fa/aioKBQtWhTnzp1D7dq1kZycjJUrV2LdunWoV68eACAyMhLe3t44deoUqlevrouyiYiIKBsFakxFcnIyAMDW1hYAcO7cOWRkZCAwMFCax8vLCy4uLjh58mS2faSnpyMlJUXtRkRERPmvwIQKlUqFQYMGwd/fH+XKlQMAJCQkwMjICNbW1mrzOjg4ICEhIdt+pk+fDqVSKd2cnZ3zu3QiIiJCAQoV/fr1w59//on169d/Uj+jRo1CcnKydLt//75MFRIREdGH6HRMRZbQ0FBs374dR44cQYkSJaR2R0dHvH79GklJSWpHKxITE+Ho6JhtX8bGxjA2Ns7vkomIiOg9Oj1SIYRAaGgoNm/ejAMHDsDd3V1tuq+vLwwNDbF//36pLTY2FvHx8fDz8/u3yyUiIqIP0OmRin79+mHdunX47bffYGlpKY2TUCqVMDU1hVKpRLdu3TBkyBDY2trCysoK/fv3h5+fH6/8ICIiKmB0GiqWLFkCAAgICFBrj4yMRJcuXQAA8+bNg56eHoKDg5Geno6goCAsXrz4X66UiIiIPkanoUII8dF5TExMEBERgYiIiH+hIiIiItJWgbn6g4iIiAo3hgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJQqeh4siRI2jevDmcnJygUCiwZcsWtelCCIwbNw7FihWDqakpAgMDcfPmTd0US0RERB+k01CRmpqKihUrIiIiItvps2bNwsKFC7F06VLExMTA3NwcQUFBSEtL+5crJSIioo8x0OXKGzdujMaNG2c7TQiB+fPnY8yYMWjZsiUAYPXq1XBwcMCWLVvQoUOHf7NUIiIi+ogCO6bi7t27SEhIQGBgoNSmVCpRrVo1nDx5Msfl0tPTkZKSonYjIiKi/FdgQ0VCQgIAwMHBQa3dwcFBmpad6dOnQ6lUSjdnZ+d8rZOIiIjeKrChQlujRo1CcnKydLt//76uSyIiIvpPKLChwtHREQCQmJio1p6YmChNy46xsTGsrKzUbkRERJT/CmyocHd3h6OjI/bv3y+1paSkICYmBn5+fjqsjIiIiLKj06s/Xrx4gVu3bkn37969i4sXL8LW1hYuLi4YNGgQpkyZglKlSsHd3R1jx46Fk5MTWrVqpbuiiYiIKFs6DRVnz55F3bp1pftDhgwBAISEhCAqKgrDhw9HamoqevbsiaSkJNSsWRO7du2CiYmJrkomIiKiHOg0VAQEBEAIkeN0hUKBSZMmYdKkSf9iVURERKSNAjumgoiIiAoXhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJgqGCiIiIZMFQQURERLJgqCAiIiJZMFQQERGRLBgqiIiISBYMFURERCQLhgoiIiKSBUMFERERyYKhgoiIiGTBUEFERESyYKggIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEsGCqIiIhIFgwVREREJAuGCiIiIpIFQwURERHJolCEioiICLi5ucHExATVqlXD6dOndV0SERERvafAh4pffvkFQ4YMwfjx43H+/HlUrFgRQUFBePz4sa5LIyIioncU+FARFhaGHj164LvvvoOPjw+WLl0KMzMz/Pjjj7oujYiIiN5hoOsCPuT169c4d+4cRo0aJbXp6ekhMDAQJ0+ezHaZ9PR0pKenS/eTk5MBACkpKbLWpkp/KWt/pEnubZaF2y7/5de2A7j9/g187xVecm+7rP6EELmav0CHir///huZmZlwcHBQa3dwcMD169ezXWb69OmYOHGiRruzs3O+1Ej5Rzlf1xWQtrjtCjduv8Irv7bd8+fPoVQqPzpfgQ4V2hg1ahSGDBki3VepVHj69Cns7OygUCh0WJlupaSkwNnZGffv34eVlZWuy6E84LYrvLjtCi9uu7eEEHj+/DmcnJxyNX+BDhVFihSBvr4+EhMT1doTExPh6OiY7TLGxsYwNjZWa7O2ts6vEgsdKyur//QbpDDjtiu8uO0KL2475OoIRZYCPVDTyMgIvr6+2L9/v9SmUqmwf/9++Pn56bAyIiIiel+BPlIBAEOGDEFISAiqVKmCqlWrYv78+UhNTcV3332n69KIiIjoHQU+VLRv3x5PnjzBuHHjkJCQgEqVKmHXrl0agzfpw4yNjTF+/HiNU0NU8HHbFV7cdoUXt512FCK314kQERERfUCBHlNBREREhQdDBREREcmCoYKIiIhkwVBBAICoqKhcf59HXual/HPv3j0oFApcvHhR16UQfda6dOmCVq1aSfcDAgIwaNCgXC2bl3k/BwX+6g/6d7Rv3x5NmjTRdRmFUkBAACpVqoT58+fruhTKB126dEFSUhK2bNmi61KogNi0aRMMDQ11XUaBxFBBAABTU1OYmprqugyiAiMzM/M//dX+lDNbW1tdl1Bg8fRHAbFhwwaUL18epqamsLOzQ2BgIFJTU6XDbhMnToS9vT2srKzQu3dvvH79Wlp2165dqFmzJqytrWFnZ4dmzZrh9u3b0vSsw+SbNm1C3bp1YWZmhooVK6r90uv7pzQuXbqEunXrwtLSElZWVvD19cXZs2fVat69eze8vb1hYWGBRo0a4dGjR/n3BBVQXbp0weHDh7FgwQIoFAooFArcvn0b3bp1g7u7O0xNTVGmTBksWLBAbbk3b95gwIAB0jYbMWIEQkJC1A6xfmy7Zufw4cOoWrUqjI2NUaxYMYwcORJv3ryRpj9//hydOnWCubk5ihUrhnnz5n02h2cDAgIQGhqK0NBQKJVKFClSBGPHjpV+XfHZs2fo3LkzbGxsYGZmhsaNG+PmzZvS8lnvga1bt8LHxwfGxsbo2rUrVq1ahd9++03avocOHcKhQ4egUCiQlJQkLX/x4kUoFArcu3dPaluxYgWcnZ1hZmaG1q1bIywsTO199v5hdQAYNGgQAgICpPsqlQrTp0+XXk8VK1bEhg0bpOnPnj1Dp06dYG9vD1NTU5QqVQqRkZHS9Pv376Ndu3awtraGra0tWrZsqVZjYfeh5ydrO+3fvx9VqlSBmZkZatSogdjYWLU+pkyZgqJFi8LS0hLdu3fHyJEjUalSpRzX+f57ZvHixShVqhRMTEzg4OCAr776SqPG4cOHw9bWFo6OjpgwYYJcD7/AYagoAB49eoSOHTuia9euuHbtGg4dOoQ2bdpIO8P9+/dL7T///DM2bdqk9kusqampGDJkCM6ePYv9+/dDT08PrVu3hkqlUlvP6NGjMXToUFy8eBGlS5dGx44d1f7hvKtTp04oUaIEzpw5g3PnzmHkyJFqh/tevnyJOXPmYM2aNThy5Aji4+MxdOjQfHh2CrYFCxbAz88PPXr0wKNHj/Do0SOUKFECJUqUQHR0NK5evYpx48bh+++/x6+//iotN3PmTKxduxaRkZE4fvw4UlJSNA6v53a7Znnw4AGaNGmCL7/8EpcuXcKSJUuwcuVKTJkyRZpnyJAhOH78OLZu3Yq9e/fi6NGjOH/+fL48N7qwatUqGBgY4PTp01iwYAHCwsLwww8/AHj7D/zs2bPYunUrTp48CSEEmjRpgoyMDGn5ly9fYubMmfjhhx9w5coVLFy4EO3atZNC86NHj1CjRo1c1XL8+HH07t0bAwcOxMWLF9GgQQNMnTo1z49p+vTpWL16NZYuXYorV65g8ODB+Oabb3D48GEAwNixY3H16lXs3LkT165dw5IlS1CkSBEAQEZGBoKCgmBpaYmjR4/i+PHj0oeAdz+YFGYfe36At/u+uXPn4uzZszAwMEDXrl2laWvXrsXUqVMxc+ZMnDt3Di4uLliyZEmu13/27FkMGDAAkyZNQmxsLHbt2oXatWurzbNq1SqYm5sjJiYGs2bNwqRJk7B3795Pf/AFkSCdO3funAAg7t27pzEtJCRE2NraitTUVKltyZIlwsLCQmRmZmbb35MnTwQAcfnyZSGEEHfv3hUAxA8//CDNc+XKFQFAXLt2TQghRGRkpFAqldJ0S0tLERUVlW3/kZGRAoC4deuW1BYRESEcHBxy/6A/I3Xq1BEDBw784Dz9+vUTwcHB0n0HBwcxe/Zs6f6bN2+Ei4uLaNmyZY595LRdL1y4IIQQ4vvvvxdlypQRKpVKWiYiIkJ6raSkpAhDQ0MRHR0tTU9KShJmZmYfrb8wqFOnjvD29lZ7/CNGjBDe3t7ixo0bAoA4fvy4NO3vv/8Wpqam4tdffxVC/N/r+uLFi2r9hoSEaGyXgwcPCgDi2bNnUtuFCxcEAHH37l0hhBDt27cXTZs2VVuuU6dOau+z7PoeOHCgqFOnjhBCiLS0NGFmZiZOnDihNk+3bt1Ex44dhRBCNG/eXHz33XfZPidr1qzReE2kp6cLU1NTsXv37myXKUw+9vxkbad9+/ZJ03bs2CEAiFevXgkhhKhWrZro16+f2vL+/v6iYsWK0v33t9O77/mNGzcKKysrkZKSkm2NderUETVr1lRr+/LLL8WIESPy+nALBR6pKAAqVqyI+vXro3z58mjbti1WrFiBZ8+eqU03MzOT7vv5+eHFixe4f/8+AODmzZvo2LEjPDw8YGVlBTc3NwBAfHy82noqVKgg/V2sWDEAwOPHj7OtaciQIejevTsCAwMxY8YMjcPuZmZmKFmypFp/OfX1XxQREQFfX1/Y29vDwsICy5cvl7ZHcnIyEhMTUbVqVWl+fX19+Pr6qvWR2+2a5dq1a/Dz81MbB+Dv748XL17gr7/+wp07d5CRkaG2XqVSiTJlysj1sHWuevXqao/fz88PN2/exNWrV2FgYIBq1apJ0+zs7FCmTBlcu3ZNajMyMlJ7n3yK2NhYtecagMb9j7l16xZevnyJBg0awMLCQrqtXr1aek/26dMH69evR6VKlTB8+HCcOHFCWv7SpUu4desWLC0tpWVtbW2Rlpb20VNphUFunh/gw/u+T91ODRo0gKurKzw8PPDtt99i7dq1ePnypdo877+mPuf9JQdqFgD6+vrYu3cvTpw4gT179iA8PByjR49GTExMrpZv3rw5XF1dsWLFCjg5OUGlUqFcuXIahzffPX2RtePN6VD6hAkT8PXXX2PHjh3YuXMnxo8fj/Xr16N169YafWX1J/iN7wCA9evXY+jQoZg7dy78/PxgaWmJ2bNn53p7ZsntdiX5mJqa5mpwpp7e289j777m3z2Nklt6enoa75t3+3nx4gUAYMeOHShevLjafFm/SdG4cWPExcXh999/x969e1G/fn3069cPc+bMwYsXL+Dr64u1a9dqrNve3j7P9RY0H3t+soJFXvZ9eWVpaYnz58/j0KFD2LNnD8aNG4cJEybgzJkz0viZ7PaXcq2/oOGRigJCoVDA398fEydOxIULF2BkZITNmzcDePtp49WrV9K8p06dgoWFBZydnfHPP/8gNjYWY8aMQf369eHt7a12lONTlC5dGoMHD8aePXvQpk0btcFf9H+MjIyQmZkp3T9+/Dhq1KiBvn37onLlyvD09FT71KRUKuHg4IAzZ85IbZmZmWpjG7TZrt7e3tJYgXdrsbS0RIkSJeDh4QFDQ0O19SYnJ+PGjRuf9PgLkveD26lTp1CqVCn4+PjgzZs3atOznmMfH58P9vn+9gX+7x/yu4OT3/++kDJlyqg91wA07tvb22sMcH63n6wBo/Hx8fD09FS7OTs7q/UTEhKCn376CfPnz8fy5csBAF988QVu3ryJokWLaiyvVCo/+LgLg9w+Px+Sm+30MQYGBggMDMSsWbPwxx9/4N69ezhw4ECe+vhc8EhFARATE4P9+/ejYcOGKFq0KGJiYvDkyRN4e3vjjz/+wOvXr9GtWzeMGTMG9+7dw/jx4xEaGgo9PT3Y2NjAzs4Oy5cvR7FixRAfH4+RI0d+Uj2vXr3CsGHD8NVXX8Hd3R1//fUXzpw5g+DgYJke8efFzc0NMTExuHfvHiwsLFCqVCmsXr0au3fvhru7O9asWYMzZ87A3d1dWqZ///6YPn06PD094eXlhfDwcDx79kz6FKXNdu3bty/mz5+P/v37IzQ0FLGxsRg/fjyGDBkCPT09WFpaIiQkBMOGDYOtrS2KFi2K8ePHQ09P77O5dDI+Ph5DhgxBr169cP78eYSHh2Pu3LkoVaoUWrZsiR49emDZsmWwtLTEyJEjUbx4cbRs2fKDfbq5uWH37t2IjY2FnZ0dlEql9E9rwoQJmDp1Km7cuIG5c+eqLde/f3/Url0bYWFhaN68OQ4cOICdO3eqPdf16tXD7NmzsXr1avj5+eGnn37Cn3/+icqVKwN4+yl46NChGDx4MFQqFWrWrInk5GQcP34cVlZWCAkJwbhx4+Dr64uyZcsiPT0d27dvh7e3N4C3A65nz56Nli1bYtKkSShRogTi4uKwadMmDB8+HCVKlJB5C/y7Pvb8uLq6frSP/v37o0ePHqhSpQpq1KiBX375BX/88Qc8PDxyVcP27dtx584d1K5dGzY2Nvj999+hUqk+q9OKeaLbIR0khBBXr14VQUFBwt7eXhgbG4vSpUuL8PBwIcT/DRAaN26csLOzExYWFqJHjx4iLS1NWn7v3r3C29tbGBsbiwoVKohDhw4JAGLz5s1CCM0BfUII8ezZMwFAHDx4UAihPlAzPT1ddOjQQTg7OwsjIyPh5OQkQkNDpYFN7w/qFEKIzZs3i//qyyk2NlZUr15dmJqaCgDi+vXrokuXLkKpVApra2vRp08fMXLkSLWBXxkZGSI0NFRYWVkJGxsbMWLECNG2bVvRoUMHaR5ttuuhQ4fEl19+KYyMjISjo6MYMWKEyMjIkKanpKSIr7/+WpiZmQlHR0cRFhYmqlatKkaOHJnfT1O+q1Onjujbt6/o3bu39Lx+//330iDFp0+fim+//VYolUphamoqgoKCxI0bN6Tls3tdCyHE48ePRYMGDYSFhYXae+bYsWOifPnywsTERNSqVUtER0erDdQUQojly5eL4sWLC1NTU9GqVSsxZcoU4ejoqNb/uHHjhIODg1AqlWLw4MEiNDRUGqgphBAqlUrMnz9flClTRhgaGgp7e3sRFBQkDh8+LIQQYvLkycLb21uYmpoKW1tb0bJlS3Hnzh1p+UePHonOnTuLIkWKCGNjY+Hh4SF69OghkpOTP/EZLxg+9PzkZkCtEEJMmjRJFClSRFhYWIiuXbuKAQMGiOrVq0vTPzRQ8+jRo6JOnTrCxsZGmJqaigoVKohffvkl23mztGzZUoSEhMj4LBQc/OnzAo7f5vffoFKp4O3tjXbt2mHy5Mn/2npTU1NRvHhxzJ07F926dfvX1psfCsM3m/bo0QPXr1/H0aNHdV0KfUCDBg3g6OiINWvW6LqUQoenP4h0IC4uDnv27EGdOnWQnp6ORYsW4e7du/j666/zdb0XLlzA9evXUbVqVSQnJ2PSpEkA8NFTAKSdOXPmoEGDBjA3N8fOnTuxatUqLF68WNdl0TtevnyJpUuXIigoCPr6+vj555+xb9++z/d7JPIZQwWRDujp6SEqKgpDhw6FEALlypXDvn37pHPh+WnOnDmIjY2FkZERfH19cfToUenLkkhep0+fxqxZs/D8+XN4eHhg4cKF6N69u67LoncoFAr8/vvvmDp1KtLS0lCmTBls3LgRgYGBui6tUOLpDyIiIpIFLyklIiIiWTBUEBERkSwYKoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYLoP6xLly5o1aqVrssgos8EQwURERHJgqGCiLIVFhaG8uXLw9zcHM7Ozujbty9evHghTY+KioK1tTV2794Nb29vWFhYoFGjRmo/5f3mzRsMGDAA1tbWsLOzw4gRIxASEqJ2dMTNzU3j9zoqVaqECRMm5LoWAFixYgWcnZ1hZmaG1q1bIywsDNbW1mrz/Pbbb/jiiy9gYmICDw8PTJw4EW/evPnk54qI3mKoIKJs6enpYeHChbhy5QpWrVqFAwcOYPjw4WrzvHz5EnPmzMGaNWtw5MgRxMfHY+jQodL0mTNnYu3atYiMjMTx48eRkpKi1Y/jfayW48ePo3fv3hg4cCAuXryIBg0aYOrUqWp9HD16FJ07d8bAgQNx9epVLFu2DFFRURrzEdEn0OlvpBKRTr3/k84fEh0dLezs7KT7kZGRAoC4deuW1BYRESEcHByk+w4ODmL27NnS/Tdv3ggXFxe1dbq6uop58+apratixYpi/Pjxua6lffv2omnTpmrzdOrUSe2nzOvXry+mTZumNs+aNWtEsWLFclwPEeUNf1CMiLK1b98+TJ8+HdevX0dKSgrevHmDtLQ0vHz5EmZmZgAAMzMzlCxZUlqmWLFiePz4MQAgOTkZiYmJqFq1qjRdX18fvr6+UKlUstYSGxuL1q1bqy1TtWpVbN++Xbp/6dIlHD9+XO3IRGZmpsZjIiLt8fQHEWm4d+8emjVrhgoVKmDjxo04d+4cIiIiAACvX7+W5jM0NFRbTqFQQOTxNwr19PQ0lsnIyMhzLR/z4sULTJw4ERcvXpRuly9fxs2bN2FiYpKnmokoezxSQUQazp07B5VKhblz50JP7+1nj19//TVPfSiVSjg4OODMmTOoXbs2gLdHBs6fP49KlSpJ89nb26sN7kxJScHdu3fzVEuZMmVw5swZtbb373/xxReIjY2Fp6dnnh4HEeUeQwXRf1xycjIuXryo1lakSBFkZGQgPDwczZs3x/Hjx7F06dI8992/f39Mnz4dnp6e8PLyQnh4OJ49ewaFQiHNU69ePURFRaF58+awtrbGuHHjoK+vL0339PT8aC39+/dH7dq1ERYWhubNm+PAgQPYuXOn2nrGjRuHZs2awcXFBV999RX09PRw6dIl/Pnnn5gyZUqeHxsRZUPXgzqISHdCQkIEAI1bt27dRFhYmChWrJgwNTUVQUFBYvXq1QKAePbsmRDi7UDNdwdCCiHE5s2bxbu7lYyMDBEaGiqsrKyEjY2NGDFihGjbtq3o0KGDNE9ycrJo3769sLKyEs7OziIqKkpjoObHahFCiOXLl4vixYsLU1NT0apVKzFlyhTh6OioVt+uXbtEjRo1hKmpqbCyshJVq1YVy5cvl+35JPqvUwiRxxOgRERaUqlU8Pb2Rrt27TB58uR8XVePHj1w/fp1HD16NF/XQ0T/h6c/iCjfxMXFYc+ePahTpw7S09OxaNEi3L17F19//bXs65ozZw4aNGgAc3Nz7Ny5E6tWrcLixYtlXw8R5YyhgojyjZ6eHqKiojB06FAIIVCuXDns27cP3t7esq/r9OnTmDVrFp4/fw4PDw8sXLgQ3bt3l309RJQznv4gIiIiWfB7KoiIiEgWDBVEREQkC4YKIiIikgVDBREREcmCoYKIiIhkwVBBREREsmCoICIiIlkwVBAREZEs/h+fnERqvpNEzQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " theme match_spanish match_tagalog match_portuguese match_english \\\n", "0 uveitis 5 5 5 4 \n", "\n", " Total spanish_ratio_percentage tagalog_ratio_percentage \\\n", "0 8 62.5 62.5 \n", "\n", " portuguese_ratio_percentage english_ratio_percentage \n", "0 62.5 50.0 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAIjCAYAAAC52ZmJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYi0lEQVR4nO3de3zP9f//8ft7s5MdGTaHOYs5FE2Y83kJURJSpkTkEJJjETlEiDREfZBISSpKjpHkLDpgKKccpmIbZjPb8/dHv72/3jZse21tq9v1cnlfeD9fp8f79Xq/X7u/X6/n6/W2GWOMAAAAMskppwsAAAB5G2ECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAshmu3btkqurq06ePJkl8zt48KDy5cunn3/+OUvmh7yhdOnS6t69+z++3IULF8pms2nPnj3/+LL/K1LW8YkTJ+467ubNm2Wz2bR58+ZsrysjCBMZ9Ouvv+q5555T2bJl5e7uLh8fH9WrV08zZ87UtWvXcrq8DDt48KBeffXVdL2JbzV06FDZbDZ16tQp6wv7Fxk1apS6dOmiUqVK2ds+++wzVapUSb6+vmrbtq3Onj2barqHH35YvXr1StVeuXJltW7dWqNHj07X8lN2VDc/ihQpoiZNmmjNmjWZf2FpKF26tNq0aZOl80TWOnHiRKr3w+0emdkvIGvMnj1bCxcuzOky0i1fTheQl3z55Zfq2LGj3Nzc1K1bN1WtWlXXr1/Xd999p5deekm//PKL5s2bl9NlZsjBgwc1duxYNW7cWKVLl073dMYYffjhhypdurRWrVqly5cvy9vbO/sKzaP279+vDRs26Pvvv7e3/fbbb+rUqZM6deqk0NBQzZgxQ08//bTWrl1rH2ft2rX69ttvdfTo0TTn27t3bz300EP69ddfVa5cuXTVMm7cOJUpU0bGGEVFRWnhwoV66KGHtGrVKgJAHhAZGSknJ+vf/woXLqzFixc7tE2bNk2///673nzzzVTjIvs99dRT6ty5s9zc3Oxts2fPVqFChVIdjWrYsKGuXbsmV1fXf7jKOyNMpNPx48fVuXNnlSpVSps2bVLRokXtw/r27atjx47pyy+/tLwcY4zi4+Pl4eGRalh8fLxcXV2zZIdi1ebNm/X7779r06ZNCgsL06effqrw8PCcLitL3bhxQ8nJyZY+tAsWLFDJkiVVp04de9u6detUokQJLVq0SDabTcHBwWratKni4+Pl7u6uGzduaNCgQRo9evRtd+bNmzdXgQIFtGjRIo0bNy5dtbRq1Uo1a9a0P+/Ro4cCAgL04YcfEibygJv/0Fjh6empJ5980qFt2bJlunTpUqp2/DOcnZ3l7OycrnGdnJzk7u6ezRVlXM7/VcojpkyZoitXrui9995zCBIpypcvrxdeeMH+/MaNG3rttddUrlw5ubm5qXTp0ho5cqQSEhIcpks5LLx27VrVrFlTHh4eeuedd+znxZYtW6aXX35ZxYsXV/78+RUbGytJ2rlzpx588EH5+voqf/78atSokbZt25aqrjNnzqhHjx4qVqyY3NzcVKZMGfXp00fXr1/XwoUL1bFjR0lSkyZN7Ic203MubsmSJapcubKaNGmi5s2ba8mSJanGSXkNH3/8sSZMmKASJUrI3d1dzZo107FjxxzGPXr0qDp06KDAwEC5u7urRIkS6ty5s2JiYiRJjz76qO6//36Hadq2bSubzaYvvvjC3rZz507ZbDaHw/fR0dEaOHCggoKC5ObmpvLly2vy5MlKTk62j5Ny6Hfq1KmaMWOGfbsdPHhQkjRr1ixVqVJF+fPnV4ECBVSzZk0tXbr0ruvps88+U9OmTWWz2ext165dk5+fn72tYMGCMsbYT5O9/fbbSkpKUv/+/W87XxcXFzVu3Fiff/75XWu4HT8/P3l4eChfvr+/UxhjVLp0abVr1y7VuPHx8fL19dVzzz2X6eWl2Lp1qzp27KiSJUvKzc1NQUFBGjRoUKrThN27d5eXl5fOnDmj9u3by8vLS4ULF9aQIUOUlJTkMO5ff/2lp556Sj4+PvLz81N4eLgOHDggm83mcKi4cePGaty4caqaunfvnurI3NSpU1W3bl35+/vLw8NDISEh+uSTT1JNe+3aNQ0YMECFChWSt7e3Hn74YZ05c0Y2m02vvvqqw7hnzpzRM888o4CAALm5ualKlSr63//+l671dmufiZTTV9u2bdPgwYNVuHBheXp66pFHHtEff/yRrnlmREJCQrqWs2bNGjVo0ECenp7y9vZW69at9csvvziMk7JtT506pTZt2sjLy0vFixdXRESEJOmnn35S06ZN5enpqVKlSqX5WUvP51qSzp07p8OHDysxMfGOr+92fRFS9g0p76OpU6fKZrOl2QdqxIgRcnV11aVLl+xt6dlX39pnonTp0vrll1+0ZcsW+3455X2bVp1323/+EzgykU6rVq1S2bJlVbdu3XSN/+yzz2rRokV67LHH9OKLL2rnzp2aNGmSDh06pJUrVzqMGxkZqS5duui5555Tz549VbFiRfuw1157Ta6urhoyZIgSEhLk6uqqTZs2qVWrVgoJCdGYMWPk5OSkBQsWqGnTptq6datq1aolSTp79qxq1aql6Oho9erVS5UqVdKZM2f0ySefKC4uTg0bNtSAAQP01ltvaeTIkQoODpYk+7+3k5CQoBUrVujFF1+UJHXp0kVPP/20zp8/r8DAwFTjv/7663JyctKQIUMUExOjKVOmqGvXrtq5c6ck6fr16woLC1NCQoL69++vwMBAnTlzRqtXr1Z0dLR8fX3VoEEDff7554qNjZWPj4+MMdq2bZucnJy0detWPfzww5L+/kPl5OSkevXqSZLi4uLUqFEjnTlzRs8995xKliyp77//XiNGjNC5c+c0Y8YMh1oXLFig+Ph49erVS25ubipYsKDmz5+vAQMG6LHHHtMLL7yg+Ph4/fjjj9q5c6eeeOKJ266nM2fO6NSpU6lC0AMPPKAXX3xRH374oerUqaMJEyaofPnyKlCggP744w+NHTtWH3zwgVxcXO64HUJCQhzWyd3ExMTozz//lDFGFy5c0KxZs3TlyhX7t1GbzaYnn3xSU6ZM0cWLF1WwYEH7tKtWrVJsbGyWfHNdvny54uLi1KdPH/n7+2vXrl2aNWuWfv/9dy1fvtxh3KSkJIWFhal27dqaOnWqNmzYoGnTpqlcuXLq06ePJCk5OVlt27bVrl271KdPH1WqVEmff/655SNlM2fO1MMPP6yuXbvq+vXrWrZsmTp27KjVq1erdevW9vG6d++ujz/+WE899ZTq1KmjLVu2OAxPERUVpTp16shms6lfv34qXLiw1qxZox49eig2NlYDBw7MVJ39+/dXgQIFNGbMGJ04cUIzZsxQv3799NFHH2X2pWd6OYsXL1Z4eLjCwsI0efJkxcXFac6cOapfv75++OEHh8CWlJSkVq1aqWHDhpoyZYqWLFmifv36ydPTU6NGjVLXrl316KOPau7cuerWrZtCQ0NVpkwZSRn7XI8YMUKLFi3S8ePHM3Qq93Yef/xxDR06VB9//LFeeuklh2Eff/yxWrZsqQIFCkhSuvfVt5oxY4b69+8vLy8vjRo1SpIUEBCQ5rjp2X/+IwzuKiYmxkgy7dq1S9f4+/fvN5LMs88+69A+ZMgQI8ls2rTJ3laqVCkjyXz99dcO437zzTdGkilbtqyJi4uztycnJ5sKFSqYsLAwk5ycbG+Pi4szZcqUMS1atLC3devWzTg5OZndu3enqjFl2uXLlxtJ5ptvvknXazPGmE8++cRIMkePHjXGGBMbG2vc3d3Nm2++meZrCA4ONgkJCfb2mTNnGknmp59+MsYY88MPPxhJZvny5bdd5u7du40k89VXXxljjPnxxx+NJNOxY0dTu3Zt+3gPP/ywqVGjhv35a6+9Zjw9Pc2RI0cc5jd8+HDj7OxsTp06ZYwx5vjx40aS8fHxMRcuXHAYt127dqZKlSrpXT12GzZsMJLMqlWrUg0bMGCAkWQkmYIFC9rfEz179jQPPvhguua/dOlSI8ns3LnzjuMtWLDAvqybH25ubmbhwoUO40ZGRhpJZs6cOQ7tDz/8sCldurTDey4tpUqVMq1bt77jODe/n1NMmjTJ2Gw2c/LkSXtbeHi4kWTGjRvnMG6NGjVMSEiI/fmKFSuMJDNjxgx7W1JSkmnatKmRZBYsWGBvb9SokWnUqFGq5YeHh5tSpUrdsc7r16+bqlWrmqZNm9rb9u7daySZgQMHOozbvXt3I8mMGTPG3tajRw9TtGhR8+effzqM27lzZ+Pr65vmerlZqVKlTHh4uP15ynZt3ry5w3YZNGiQcXZ2NtHR0Xec381at26d6vVndDmXL182fn5+pmfPng7Tnz9/3vj6+jq0p2zbiRMn2tsuXbpkPDw8jM1mM8uWLbO3Hz58ONW6TO/n+uZlHT9+/I7rIGV/deu+MGXfcPP7KDQ01OE9aIwxu3btMpLM+++/b4zJ2L46ZR3fXGOVKlXSfK/eWmd69p//BE5zpEPKqYX0djD86quvJEmDBw92aE/5Jn9r34oyZcooLCwszXmFh4c79J/Yv3+/jh49qieeeEJ//fWX/vzzT/3555+6evWqmjVrpm+//VbJyclKTk7WZ599prZt2zqcJ09x82H3jFqyZIlq1qyp8uXLS5L9UGZapzok6emnn3bod9CgQQNJf3dElGRPzmvXrlVcXFya86hRo4a8vLz07bffSvr7CESJEiXUrVs37du3T3FxcTLG6LvvvrPPX/r7W3CDBg1UoEAB+7r6888/1bx5cyUlJdnnl6JDhw6p+in4+fnp999/1+7du9O9jqS/D71Lsn9LudnMmTN18uRJ7dy5UydPnlSTJk20f/9+vf/++3rzzTcVExOjJ598UsWLF1fjxo116NChVPNIme+ff/6ZrnoiIiK0fv16rV+/Xh988IGaNGmiZ599Vp9++ql9nHvuuUe1a9d22JYXL17UmjVr1LVrV0vvmxQ3v5+vXr2qP//8U3Xr1pUxRj/88EOq8Xv37u3wvEGDBvb3jiR9/fXXcnFxUc+ePe1tTk5O6tu3b5bVeenSJcXExKhBgwbat2+fw7Il6fnnn3eY9tZTVMYYrVixQm3btpUxxuG9GBYWppiYGIf5ZkSvXr0ctkuDBg2UlJSUZZcip3c569evV3R0tLp06eLw+pydnVW7dm198803qeb57LPP2v/v5+enihUrytPTU48//ri9vWLFivLz83PY5hn5XC9cuNB+Ci+rdOrUSXv37tWvv/5qb/voo4/k5uZmP02Y3n21VenZf/4TOM2RDimHkC9fvpyu8U+ePCknJyf7H9sUgYGB8vPzS/UhTzl0l5Zbh6X07r/TIdyYmBhdv35dsbGxqlq1arpqTq/o6Gh99dVX6tevn0O/h3r16mnFihU6cuSI7rnnHodpSpYs6fA85Y9gynnFMmXKaPDgwZo+fbqWLFmiBg0a6OGHH9aTTz5p/6A4OzsrNDRUW7dulfR3mGjQoIHq16+vpKQk7dixQwEBAbp48aJDmDh69Kh+/PHH23ZkvHDhgsPztLbFsGHDtGHDBtWqVUvly5dXy5Yt9cQTT9hPpdyNMSbN9pIlSzqsmwEDBqh3796qVKmSnnzySZ0+fVqff/65Fi1apLZt2+rw4cP2/g03zze9f+Br1arlECy7dOmiGjVqqF+/fmrTpo098HXr1k39+vXTyZMnVapUKS1fvlyJiYl66qmn0rWcuzl16pRGjx6tL774wuHcsqRU53jd3d1TbbsCBQo4THfy5EkVLVpU+fPndxjv1s9fRq1evVrjx4/X/v37Hfo63by+Uz7rt75vbl32H3/8oejoaM2bN++2V3zd+l5Mr7t9vrLK3ZaTsm9q2rRpmtPfeiourW3r6+urEiVKpHpP+/r6OryejH6us1rHjh01ePBgffTRRxo5cqSMMVq+fLlatWplf53p3Ven9WUjI9Kz//wnECbSwcfHR8WKFcvwTYLSu5NP68qN2w1LSbJvvPGGqlevnuY0Xl5eunjxYvqKzKDly5crISFB06ZN07Rp01INX7JkicaOHevQdrteyjf/kZ02bZq6d++uzz//XOvWrdOAAQM0adIk7dixQyVKlJAk1a9fXxMmTFB8fLy2bt2qUaNGyc/PT1WrVtXWrVvt5xRvDhPJyclq0aKFhg4dmmYNtwaftLZFcHCwIiMjtXr1an399ddasWKFZs+erdGjR6d6rTfz9/eXlL6d+kcffaRDhw7piy++UFJSkj7++GOtW7dONWvWVJUqVTR//nzt2LFD9evXt0+TMt9ChQrddf5pcXJyUpMmTTRz5kwdPXpUVapUkSR17txZgwYN0pIlSzRy5Eh98MEHqlmzpkNfnsxKSkpSixYtdPHiRQ0bNkyVKlWSp6enzpw5o+7du6f6ppbeHu7pZbPZ0gx3t3boTOmH07BhQ82ePVtFixaVi4uLFixYkK6Ot7dKeV1PPvnkbf+43HvvvRmer5S+z1dWuNtyUl7j4sWL0+w7dXMQvtP80vN6Mvq5To/b7a9vfW9IUrFixdSgQQN9/PHHGjlypHbs2KFTp05p8uTJDjVKd99XZ4X07D+zG2Eindq0aaN58+Zp+/btCg0NveO4pUqVUnJyso4ePerQmTEqKkrR0dEONy/KqJR7Cvj4+Kh58+a3Ha9w4cLy8fG5awDK6GHrJUuWqGrVqhozZkyqYe+8846WLl16xz+wd1KtWjVVq1ZNL7/8sr7//nvVq1dPc+fO1fjx4yX9HRKuX7+uDz/8UGfOnLGHhoYNG9rDxD333OPQUalcuXK6cuXKHddVenh6etrvDXH9+nU9+uijmjBhgkaMGHHby7QqVaok6e/Liu8kLi5OL730kl577TX5+fkpKipKiYmJKlasmKS/A06BAgV05swZh+mOHz8uJyenTO04U9y4cUOSdOXKFXtbwYIF7aetunbtqm3btqXqqJpZP/30k44cOaJFixapW7du9vb169dnep6lSpXSN998o7i4OIejE7deMST9/W365sPlKW49WrhixQq5u7tr7dq1DpdkLliwINWyk5OTdfz4cVWoUOG2yy5cuLC8vb2VlJRk+b2YW6Xsm4oUKZLtrzGrPtc3SzlCEB0d7dB+u9NFnTp10vPPP6/IyEh99NFHyp8/v9q2betQo3T3ffXtZHTffLf9Z3ajz0Q6DR06VJ6ennr22WcVFRWVavivv/6qmTNnSpIeeughSUq1A54+fbokpdnTO71CQkJUrlw5TZ061eEPQIqUS7WcnJzUvn17rVq1Ks3b4KakfE9PT0mpP0BpOX36tL799ls9/vjjeuyxx1I9nn76aR07dsx+lUZ6xcbG2v+opahWrZqcnJwcDi/Xrl1bLi4umjx5sgoWLGj/Jt2gQQPt2LFDW7ZscTgqIf3d83r79u0ON4RKER0dnWq5aUnp+5DC1dVVlStXljHmjpebFS9eXEFBQXe9DfHkyZNVoEAB+zl/f39/5cuXT4cPH5b0d5+IP/74I9W3vb1796pKlSqZPpSZmJiodevWydXVNdUVPE899ZQOHjyol156Sc7OzurcuXOmlnGrlG+dN3/LNMbYPzuZERYWpsTERM2fP9/elpycbL/M8GblypXT4cOHHS5pPHDgQKpL9ZydnWWz2Ry+lZ44cUKfffZZqmVLf99g6GazZs1KNb8OHTpoxYoVaQb87LiU858WFhYmHx8fTZw4Mc3PRVa+xox8rtN7aWipUqXk7Oycqh/Vrds2RYcOHeTs7KwPP/xQy5cvV5s2bez7Uyn9++rb8fT0TNd+Ob37z+zGkYl0KleunJYuXapOnTopODjY4Q6Y33//vZYvX26/Bvy+++5TeHi45s2bp+joaDVq1Ei7du3SokWL1L59ezVp0iTTdTg5Oendd99Vq1atVKVKFT399NMqXry4zpw5o2+++UY+Pj5atWqVJGnixIlat26dGjVqpF69eik4OFjnzp3T8uXL9d1338nPz0/Vq1eXs7OzJk+erJiYGLm5ualp06YqUqRIqmUvXbpUxhj7ZZi3euihh5QvXz4tWbJEtWvXTvdr2rRpk/r166eOHTvqnnvu0Y0bN7R48WL7DjhF/vz5FRISoh07dtjvMSH9fWTi6tWrunr1aqow8dJLL+mLL75QmzZt1L17d4WEhOjq1av66aef9Mknn+jEiRN3PU3QsmVLBQYGql69egoICNChQ4f09ttvq3Xr1nftlNuuXTutXLlSxpg0v2mcOnVKb7zxhr788kv7H9p8+fKpXbt2GjhwoE6dOqWVK1eqWLFiDkfEEhMTtWXLllQd/+5kzZo19oBy4cIFLV26VEePHtXw4cNTnc9u3bq1/P397eeB03o/3M6xY8fS/DZUo0YNtWzZUuXKldOQIUN05swZ+fj4aMWKFZbO77dv3161atXSiy++qGPHjqlSpUr64osv7Kf6bl7vzzzzjKZPn66wsDD16NFDFy5c0Ny5c1WlShV7R+uU1z99+nQ9+OCDeuKJJ3ThwgVFRESofPny+vHHH+3jhYSEqEOHDpoxY4b++usv+6WhR44cSbXs119/Xd98841q166tnj17qnLlyrp48aL27dunDRs2ZNupyX+Kj4+P5syZo6eeekr333+/OnfurMKFC+vUqVP68ssvVa9ePb399ttZsqyMfK7Te2mor6+vOnbsqFmzZslms6lcuXJavXr1bftfpNySfvr06bp8+XKqnxXIyL46LSEhIZozZ47Gjx+v8uXLq0iRImn2R0nv/jPb/cNXj+R5R44cMT179jSlS5c2rq6uxtvb29SrV8/MmjXLxMfH28dLTEw0Y8eONWXKlDEuLi4mKCjIjBgxwmEcY25/KV3K5T+3u9znhx9+MI8++qjx9/c3bm5uplSpUubxxx83GzdudBjv5MmTplu3bqZw4cLGzc3NlC1b1vTt29fhUs358+ebsmXLGmdn5zteJlqtWjVTsmTJO66fxo0bmyJFipjExMTbvoZbL7X67bffzDPPPGPKlStn3N3dTcGCBU2TJk3Mhg0bUs3/pZdeMpLM5MmTHdrLly9vJJlff/011TSXL182I0aMMOXLlzeurq6mUKFCpm7dumbq1Knm+vXrDjW98cYbqaZ/5513TMOGDe3ruly5cuall14yMTExd1wXxhizb98+I8ls3bo1zeEdO3Y0jz76aKr2qKgo07ZtW+Pt7W3uv/9+s2fPHofha9ascbg8907SujTU3d3dVK9e3cyZM+e2l3s+//zzRpJZunTpXZeRIuVS57QePXr0MMYYc/DgQdO8eXPj5eVlChUqZHr27GkOHDiQ6vK78PBw4+npmWoZY8aMMbfuuv744w/zxBNPGG9vb+Pr62u6d+9utm3bZiQ5XGZojDEffPCBKVu2rHF1dTXVq1c3a9euTfPS0Pfee89UqFDBuLm5mUqVKpkFCxakueyrV6+avn37moIFCxovLy/Tvn17+yW2r7/+usO4UVFRpm/fviYoKMi4uLiYwMBA06xZMzNv3rx0rdu0Lg299dLv213ieCfpuTQ0vcv55ptvTFhYmPH19TXu7u6mXLlypnv37g7v4dtt20aNGqV5GXZa+8n0fK5TlqV0XBpqzN/vow4dOpj8+fObAgUKmOeee878/PPPqd6bKebPn28kGW9vb3Pt2rU055mefXVal4aeP3/etG7d2nh7extJ9stEb13vGdl/ZiebMVncSweAg2bNmqlYsWKpfg/Bivbt28tms6W6AVpWGjRokN577z2dP38+1ZUSecFnn32mRx55RN999126r7zJKvv371eNGjX0wQcfqGvXrv/osoGcQJgAstnOnTvVoEEDHT161FLn2xSHDh1StWrVtH///iy/9DdFfHy8goKC1KZNm1SdDnOja9euOVyJk5SUpJYtW2rPnj06f/78Ha+YyuplS3/fFXPx4sU6ceKEgoKCsm3ZQG5Bnwkgm9WuXVvXr1/PsvkFBwenq+NoZly4cEEbNmzQJ598or/++svh92Zys/79++vatWsKDQ1VQkKCPv30U33//feaOHFitgYJ6e/f7dm7d6+aNGmifPnyac2aNVqzZo169epFkMB/BmECgN3BgwfVtWtXFSlSRG+99dZtr4/PbZo2bapp06Zp9erVio+PV/ny5TVr1iz169cv25ddt25drV+/Xq+99pquXLmikiVL6tVXX7X/pgLwX8BpDgAAYAn3mQAAAJYQJgAAgCX/+j4TycnJOnv2rLy9vbPkFw8BAPivMMbo8uXLKlasmJycbn/84V8fJs6ePUuPagAALDh9+vQdfzTsXx8mUm53fPr06VS3DAYAALcXGxuroKCgu/50wL8+TKSc2vDx8SFMAACQCXfrJkAHTAAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACW5MvpAvKq0sO/zOkS/vVOvN46W+bLtst+2bXtJLbfPyE7tx/+nTgyAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsCTHw8SZM2f05JNPyt/fXx4eHqpWrZr27NljH26M0ejRo1W0aFF5eHioefPmOnr0aA5WDAAAbpajYeLSpUuqV6+eXFxctGbNGh08eFDTpk1TgQIF7ONMmTJFb731lubOnaudO3fK09NTYWFhio+Pz8HKAQBAihz9CfLJkycrKChICxYssLeVKVPG/n9jjGbMmKGXX35Z7dq1kyS9//77CggI0GeffabOnTv/4zUDAABHOXpk4osvvlDNmjXVsWNHFSlSRDVq1ND8+fPtw48fP67z58+refPm9jZfX1/Vrl1b27dvT3OeCQkJio2NdXgAAIDsk6Nh4rffftOcOXNUoUIFrV27Vn369NGAAQO0aNEiSdL58+clSQEBAQ7TBQQE2IfdatKkSfL19bU/goKCsvdFAADwH5ejYSI5OVn333+/Jk6cqBo1aqhXr17q2bOn5s6dm+l5jhgxQjExMfbH6dOns7BiAABwqxwNE0WLFlXlypUd2oKDg3Xq1ClJUmBgoCQpKirKYZyoqCj7sFu5ubnJx8fH4QEAALJPjoaJevXqKTIy0qHtyJEjKlWqlKS/O2MGBgZq48aN9uGxsbHauXOnQkND/9FaAQBA2nL0ao5Bgwapbt26mjhxoh5//HHt2rVL8+bN07x58yRJNptNAwcO1Pjx41WhQgWVKVNGr7zyiooVK6b27dvnZOkAAOD/y9Ew8cADD2jlypUaMWKExo0bpzJlymjGjBnq2rWrfZyhQ4fq6tWr6tWrl6Kjo1W/fn19/fXXcnd3z8HKAQBAihwNE5LUpk0btWnT5rbDbTabxo0bp3Hjxv2DVQEAgPTK8dtpAwCAvI0wAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwJIcDROvvvqqbDabw6NSpUr24fHx8erbt6/8/f3l5eWlDh06KCoqKgcrBgAAt8rxIxNVqlTRuXPn7I/vvvvOPmzQoEFatWqVli9fri1btujs2bN69NFHc7BaAABwq3w5XkC+fAoMDEzVHhMTo/fee09Lly5V06ZNJUkLFixQcHCwduzYoTp16vzTpQIAgDTk+JGJo0ePqlixYipbtqy6du2qU6dOSZL27t2rxMRENW/e3D5upUqVVLJkSW3fvv2280tISFBsbKzDAwAAZJ8cPTJRu3ZtLVy4UBUrVtS5c+c0duxYNWjQQD///LPOnz8vV1dX+fn5OUwTEBCg8+fP33aekyZN0tixY7O5cgBARpUe/mVOl/Cvd+L11jmy3BwNE61atbL//95771Xt2rVVqlQpffzxx/Lw8MjUPEeMGKHBgwfbn8fGxiooKMhyrQAAIG05fprjZn5+frrnnnt07NgxBQYG6vr164qOjnYYJyoqKs0+Finc3Nzk4+Pj8AAAANknV4WJK1eu6Ndff1XRokUVEhIiFxcXbdy40T48MjJSp06dUmhoaA5WCQAAbpajpzmGDBmitm3bqlSpUjp79qzGjBkjZ2dndenSRb6+vurRo4cGDx6sggULysfHR/3791doaChXcgAAkIvkaJj4/fff1aVLF/31118qXLiw6tevrx07dqhw4cKSpDfffFNOTk7q0KGDEhISFBYWptmzZ+dkyQAA4BY5GiaWLVt2x+Hu7u6KiIhQRETEP1QRAADIqFzVZwIAAOQ9hAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJfkyM9Hx48e1detWnTx5UnFxcSpcuLBq1Kih0NBQubu7Z3WNAAAgF8tQmFiyZIlmzpypPXv2KCAgQMWKFZOHh4cuXryoX3/9Ve7u7uratauGDRumUqVKZVfNAAAgF0l3mKhRo4ZcXV3VvXt3rVixQkFBQQ7DExIStH37di1btkw1a9bU7Nmz1bFjxywvGAAA5C7pDhOvv/66wsLCbjvczc1NjRs3VuPGjTVhwgSdOHEiK+oDAAC5XLrDxJ2CxK38/f3l7++fqYIAAEDekqkOmDf78ssvtXnzZiUlJalevXrq0KFDVtQFAADyCEuXhr7yyisaOnSobDabjDEaNGiQ+vfvn1W1AQCAPCBDRyb27NmjmjVr2p9/9NFHOnDggDw8PCRJ3bt3V+PGjTVr1qysrRIAAORaGToy0bt3bw0cOFBxcXGSpLJly2ratGmKjIzUTz/9pDlz5uiee+7JlkIBAEDulKEwsXPnThUtWlT333+/Vq1apf/973/64YcfVLduXTVo0EC///67li5dml21AgCAXChDpzmcnZ01bNgwdezYUX369JGnp6fefvttFStWLLvqAwAAuVymOmCWLVtWa9eu1SOPPKKGDRsqIiIiq+sCAAB5RIbCRHR0tIYOHaq2bdvq5Zdf1iOPPKKdO3dq9+7dqlOnjn766afsqhMAAORSGQoT4eHh2rlzp1q3bq3IyEj16dNH/v7+WrhwoSZMmKBOnTpp2LBh2VUrAADIhTIUJjZt2qT33ntPvXv31rJly/Tdd9/ZhzVr1kz79u2Ts7Nzpgp5/fXXZbPZNHDgQHtbfHy8+vbtK39/f3l5ealDhw6KiorK1PwBAED2yFCYqFChgubNm6cjR45o7ty5qX4Z1N3dXRMnTsxwEbt379Y777yje++916F90KBBWrVqlZYvX64tW7bo7NmzevTRRzM8fwAAkH0yFCb+97//adOmTapRo4aWLl2qOXPmWC7gypUr6tq1q+bPn68CBQrY22NiYvTee+9p+vTpatq0qUJCQrRgwQJ9//332rFjh+XlAgCArJGhMFG9enXt2bNHV69e1bZt2xQcHGy5gL59+6p169Zq3ry5Q/vevXuVmJjo0F6pUiWVLFlS27dvv+38EhISFBsb6/AAAADZJ933mTDGyGazZenCly1bpn379mn37t2php0/f16urq7y8/NzaA8ICND58+dvO89JkyZp7NixWVonAAC4vXQfmahSpYqWLVum69ev33G8o0ePqk+fPnr99dfvON7p06f1wgsvaMmSJXJ3d09vGXc1YsQIxcTE2B+nT5/OsnkDAIDU0n1kYtasWRo2bJief/55tWjRQjVr1lSxYsXk7u6uS5cu6eDBg/ruu+/0yy+/qF+/furTp88d57d3715duHBB999/v70tKSlJ3377rd5++22tXbtW169fV3R0tMPRiaioKAUGBt52vm5ubnJzc0vvywIAABalO0w0a9ZMe/bs0XfffaePPvpIS5Ys0cmTJ3Xt2jUVKlRINWrUULdu3dS1a1eHjpR3mt+tN7l6+umnValSJQ0bNkxBQUFycXHRxo0b1aFDB0lSZGSkTp06pdDQ0Ay+TAAAkF0y9NscklS/fn3Vr1/f8oK9vb1VtWpVhzZPT0/5+/vb23v06KHBgwerYMGC8vHxUf/+/RUaGqo6depYXj4AAMgaGQ4T/6Q333xTTk5O6tChgxISEhQWFqbZs2fndFkAAOAmuSpMbN682eG5u7u7IiIi+CExAABysUz9aigAAEAKwgQAALCEMAEAACzJVJjYt2+fw2Wdn3/+udq3b6+RI0fe9aZWAADg3yVTYeK5557TkSNHJEm//fabOnfurPz582v58uUaOnRolhYIAAByt0yFiSNHjqh69eqSpOXLl6thw4ZaunSpFi5cqBUrVmRlfQAAIJfLVJgwxig5OVmStGHDBj300EOSpKCgIP35559ZVx0AAMj1MhUmatasqfHjx2vx4sXasmWLWrduLUk6fvy4AgICsrRAAACQu2UqTMyYMUP79u1Tv379NGrUKJUvX16S9Mknn6hu3bpZWiAAAMjdMnwHzKSkJEVHR+vbb79N9YNeb7zxhpydnbOsOAAAkPtl+MiEs7OzWrZsqejo6FTD3N3d5eLikhV1AQCAPCJTpzmqVq2q3377LatrAQAAeVCmwsT48eM1ZMgQrV69WufOnVNsbKzDAwAA/Hdk6ldDUy4Fffjhh2Wz2eztxhjZbDYlJSVlTXUAACDXy1SY+Oabb7K6DgAAkEdlKkw0atQoq+sAAAB5VKZ/NXTr1q168sknVbduXZ05c0aStHjxYn333XdZVhwAAMj9MhUmVqxYobCwMHl4eGjfvn1KSEiQJMXExGjixIlZWiAAAMjdMn01x9y5czV//nyH+0rUq1dP+/bty7LiAABA7pepMBEZGamGDRumavf19U3zZlYAAODfK1NhIjAwUMeOHUvV/t1336ls2bKWiwIAAHlHpsJEz5499cILL2jnzp2y2Ww6e/aslixZoiFDhqhPnz5ZXSMAAMjFMnVp6PDhw5WcnKxmzZopLi5ODRs2lJubm4YMGaL+/ftndY0AACAXy1SYsNlsGjVqlF566SUdO3ZMV65cUeXKleXl5ZXV9QEAgFwuU2Fi06ZNqlu3rtzd3VW5cuWsrgkAAOQhmQoTDz/8sG7cuKEHHnhAjRs3VqNGjVSvXj15eHhkdX0AACCXy1QHzEuXLmnjxo1q1aqVdu3apUceeUR+fn6qV6+eXn755ayuEQAA5GKZChMuLi6qV6+eRo4cqbVr12rHjh3q0qWLdu3apUmTJmV1jQAAIBfL1GmOI0eOaPPmzdq8ebO2bNmihIQENWjQQFOnTlXjxo2zuEQAAJCbZSpMVKpUSYULF9YLL7yg4cOHq1q1arLZbFldGwAAyAMydZpjwIABKl68uMaNG6fevXtr1KhRWrduneLi4rK6PgAAkMtlKkzMmDFD+/bt0/nz5zVixAhdv35do0aNUqFChVSvXr2srhEAAORimQoTKZKSkpSYmKiEhATFx8crISFBkZGRWVUbAADIAzJ9muPee+9VQECAnnvuOZ09e1Y9e/bUDz/8oD/++COrawQAALlYpjpgnjt3Tr169VLjxo1VtWrVrK4JAADkIZkKE8uXL8/qOgAAQB6VqdMcixYt0pdffml/PnToUPn5+alu3bo6efJklhUHAAByv0yFiYkTJ9p/h2P79u2KiIjQlClTVKhQIQ0aNChLCwQAALlbpk5znD59WuXLl5ckffbZZ+rQoYN69eqlevXqcQdMAAD+YzJ1ZMLLy0t//fWXJGndunVq0aKFJMnd3V3Xrl3LuuoAAECul6kjEy1atNCzzz6rGjVq6MiRI3rooYckSb/88otKly6dlfUBAIBcLlNHJiIiIhQaGqo//vhDK1askL+/vyRp79696tKlS5YWCAAAcrdMHZnw8/PT22+/nap97NixlgsCAAB5S6bChCRFR0dr165dunDhgpKTk+3tNptNTz31VJYUBwAAcr9MhYlVq1apa9euunLlinx8fBx+fpwwAQDAf0um+ky8+OKLeuaZZ3TlyhVFR0fr0qVL9sfFixezukYAAJCLZSpMnDlzRgMGDFD+/Pmzuh4AAJDHZCpMhIWFac+ePVldCwAAyIMy1WeidevWeumll3Tw4EFVq1ZNLi4uDsMffvjhLCkOAADkfpkKEz179pQkjRs3LtUwm82mpKQka1UBAIA8I1Nh4uZLQQEAwH9bpvpM3E50dHSaN7MCAAD/XlkSJjZu3KgnnnhCRYsW1ZgxY7JilgAAII/IdJg4ffq0xo0bpzJlyqhly5ay2WxauXKlzp8/n5X1AQCAXC5DYSIxMVHLly9XWFiYKlasqP379+uNN96Qk5OTRo0apQcffDDVlR0AAODfLUMdMIsXL65KlSrpySef1LJly1SgQAFJ4pdCAQD4D8vQkYkbN27IZrPJZrPJ2dk5u2oCAAB5SIbCxNmzZ9WrVy99+OGHCgwMVIcOHbRy5UqHH/oCAAD/LRkKE+7u7uratas2bdqkn376ScHBwRowYIBu3LihCRMmaP369dywCgCA/5hMX81Rrlw5jR8/XidPntSXX36phIQEtWnTRgEBAVlZHwAAyOUs32fCyclJrVq10ieffKLff/9dI0eOTPe0c+bM0b333isfHx/5+PgoNDRUa9assQ+Pj49X37595e/vLy8vL3Xo0EFRUVFWSwYAAFkoS++AWbhwYQ0ePDjd45coUUKvv/669u7dqz179qhp06Zq166dfvnlF0nSoEGDtGrVKi1fvlxbtmzR2bNn9eijj2ZlyQAAwKJM/TZHVmnbtq3D8wkTJmjOnDnasWOHSpQooffee09Lly5V06ZNJUkLFixQcHCwduzYoTp16uREyQAA4BZZemTCiqSkJC1btkxXr15VaGio9u7dq8TERDVv3tw+TqVKlVSyZElt3779tvNJSEhQbGyswwMAAGSfHA8TP/30k7y8vOTm5qbevXtr5cqVqly5ss6fPy9XV1f5+fk5jB8QEHDHW3ZPmjRJvr6+9kdQUFA2vwIAAP7bMhUmxo0bp7i4uFTt165d07hx4zI0r5Tbcu/cuVN9+vRReHi4Dh48mJmyJEkjRoxQTEyM/XH69OlMzwsAANxdpsLE2LFjdeXKlVTtcXFxGjt2bIbm5erqqvLlyyskJESTJk3Sfffdp5kzZyowMFDXr19XdHS0w/hRUVEKDAy87fzc3NzsV4ekPAAAQPbJVJgwxqR518sDBw6oYMGClgpKTk5WQkKCQkJC5OLioo0bN9qHRUZG6tSpUwoNDbW0DAAAkHUydDVHgQIF7L/Ncc899zgEiqSkJF25ckW9e/dO9/xGjBihVq1aqWTJkrp8+bKWLl2qzZs3a+3atfL19VWPHj00ePBgFSxYUD4+Purfv79CQ0O5kgMAgFwkQ2FixowZMsbomWee0dixY+Xr62sf5urqqtKlS2foqMGFCxfUrVs3nTt3Tr6+vrr33nu1du1atWjRQpL05ptvysnJSR06dFBCQoLCwsI0e/bsjJQMAACyWYbCRHh4uCSpTJkyqlevnvLls3abivfee++Ow93d3RUREaGIiAhLywEAANknU30mrl696tCXIcXatWsdbocNAAD+/TIVJoYPH57mr4MaYzR8+HDLRQEAgLwjU2Hi6NGjqly5cqr2SpUq6dixY5aLAgAAeUemwoSvr69+++23VO3Hjh2Tp6en5aIAAEDekakw0a5dOw0cOFC//vqrve3YsWN68cUX9fDDD2dZcQAAIPfLVJiYMmWKPD09ValSJZUpU0ZlypRRcHCw/P39NXXq1KyuEQAA5GKZurbT19dX33//vdavX68DBw7Iw8ND9957rxo2bJjV9QEAgFwu0zeKsNlsatmypRo2bCg3N7c0b68NAAD+/TJ1miM5OVmvvfaaihcvLi8vLx0/flyS9Morr9z1RlQAAODfJVNhYvz48Vq4cKGmTJkiV1dXe3vVqlX17rvvZllxAAAg98tUmHj//fc1b948de3aVc7Ozvb2++67T4cPH86y4gAAQO6XqTBx5swZlS9fPlV7cnKyEhMTLRcFAADyjkyFicqVK2vr1q2p2j/55BPVqFHDclEAACDvyNTVHKNHj1Z4eLjOnDmj5ORkffrpp4qMjNT777+v1atXZ3WNAAAgF8v0HTBXrVqlDRs2yNPTU6NHj9ahQ4e0atUqtWjRIqtrBAAAuViGj0zcuHFDEydO1DPPPKP169dnR00AACAPyfCRiXz58mnKlCm6ceNGdtQDAADymEyd5mjWrJm2bNmS1bUAAIA8KFMdMFu1aqXhw4frp59+UkhISKqfHeeXQwEA+O/IVJh4/vnnJUnTp09PNcxmsykpKclaVQAAIM/IVJhITk7O6joAAEAeleE+E4mJicqXL59+/vnn7KgHAADkMRkOEy4uLipZsiSnMgAAgKRMXs0xatQojRw5UhcvXszqegAAQB6TqT4Tb7/9to4dO6ZixYqpVKlSqa7m2LdvX5YUBwAAcr9MhYn27dtncRkAACCvylSYGDNmTFbXAQAA8qhMhYkUe/fu1aFDhyRJVapU4efHAQD4D8pUmLhw4YI6d+6szZs3y8/PT5IUHR2tJk2aaNmyZSpcuHBW1ggAAHKxTF3N0b9/f12+fFm//PKLLl68qIsXL+rnn39WbGysBgwYkNU1AgCAXCxTRya+/vprbdiwQcHBwfa2ypUrKyIiQi1btsyy4gAAQO6XqSMTycnJcnFxSdXu4uLCrbYBAPiPyVSYaNq0qV544QWdPXvW3nbmzBkNGjRIzZo1y7LiAABA7pepMPH2228rNjZWpUuXVrly5VSuXDmVKVNGsbGxmjVrVlbXCAAAcrFM9ZkICgrSvn37tGHDBh0+fFiSFBwcrObNm2dpcQAAIPfL9H0mbDabWrRooRYtWmRlPQAAII/J0GmOTZs2qXLlyoqNjU01LCYmRlWqVNHWrVuzrDgAAJD7ZShMzJgxQz179pSPj0+qYb6+vnruuec0ffr0LCsOAADkfhkKEwcOHNCDDz542+EtW7bU3r17LRcFAADyjgyFiaioqDTvL5EiX758+uOPPywXBQAA8o4MhYnixYvr559/vu3wH3/8UUWLFrVcFAAAyDsyFCYeeughvfLKK4qPj0817Nq1axozZozatGmTZcUBAIDcL0OXhr788sv69NNPdc8996hfv36qWLGiJOnw4cOKiIhQUlKSRo0alS2FAgCA3ClDYSIgIEDff/+9+vTpoxEjRsgYI+nve06EhYUpIiJCAQEB2VIoAADInTJ806pSpUrpq6++0qVLl3Ts2DEZY1ShQgUVKFAgO+oDAAC5XKbvgFmgQAE98MADWVkLAADIgzL1Q18AAAApCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLcjRMTJo0SQ888IC8vb1VpEgRtW/fXpGRkQ7jxMfHq2/fvvL395eXl5c6dOigqKioHKoYAADcKkfDxJYtW9S3b1/t2LFD69evV2Jiolq2bKmrV6/axxk0aJBWrVql5cuXa8uWLTp79qweffTRHKwaAADcLF9OLvzrr792eL5w4UIVKVJEe/fuVcOGDRUTE6P33ntPS5cuVdOmTSVJCxYsUHBwsHbs2KE6derkRNkAAOAmuarPRExMjCSpYMGCkqS9e/cqMTFRzZs3t49TqVIllSxZUtu3b09zHgkJCYqNjXV4AACA7JNrwkRycrIGDhyoevXqqWrVqpKk8+fPy9XVVX5+fg7jBgQE6Pz582nOZ9KkSfL19bU/goKCsrt0AAD+03JNmOjbt69+/vlnLVu2zNJ8RowYoZiYGPvj9OnTWVQhAABIS472mUjRr18/rV69Wt9++61KlChhbw8MDNT169cVHR3tcHQiKipKgYGBac7Lzc1Nbm5u2V0yAAD4/3L0yIQxRv369dPKlSu1adMmlSlTxmF4SEiIXFxctHHjRntbZGSkTp06pdDQ0H+6XAAAkIYcPTLRt29fLV26VJ9//rm8vb3t/SB8fX3l4eEhX19f9ejRQ4MHD1bBggXl4+Oj/v37KzQ0lCs5AADIJXI0TMyZM0eS1LhxY4f2BQsWqHv37pKkN998U05OTurQoYMSEhIUFham2bNn/8OVAgCA28nRMGGMues47u7uioiIUERExD9QEQAAyKhcczUHAADImwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsCRHw8S3336rtm3bqlixYrLZbPrss88chhtjNHr0aBUtWlQeHh5q3ry5jh49mjPFAgCANOVomLh69aruu+8+RUREpDl8ypQpeuuttzR37lzt3LlTnp6eCgsLU3x8/D9cKQAAuJ18ObnwVq1aqVWrVmkOM8ZoxowZevnll9WuXTtJ0vvvv6+AgAB99tln6ty58z9ZKgAAuI1c22fi+PHjOn/+vJo3b25v8/X1Ve3atbV9+/bbTpeQkKDY2FiHBwAAyD65NkycP39ekhQQEODQHhAQYB+WlkmTJsnX19f+CAoKytY6AQD4r8u1YSKzRowYoZiYGPvj9OnTOV0SAAD/ark2TAQGBkqSoqKiHNqjoqLsw9Li5uYmHx8fhwcAAMg+uTZMlClTRoGBgdq4caO9LTY2Vjt37lRoaGgOVgYAAG6Wo1dzXLlyRceOHbM/P378uPbv36+CBQuqZMmSGjhwoMaPH68KFSqoTJkyeuWVV1SsWDG1b98+54oGAAAOcjRM7NmzR02aNLE/Hzx4sCQpPDxcCxcu1NChQ3X16lX16tVL0dHRql+/vr7++mu5u7vnVMkAAOAWORomGjduLGPMbYfbbDaNGzdO48aN+werAgAAGZFr+0wAAIC8gTABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAEsIEAACwhDABAAAsIUwAAABLCBMAAMASwgQAALCEMAEAACwhTAAAAEsIEwAAwBLCBAAAsIQwAQAALCFMAAAASwgTAADAkjwRJiIiIlS6dGm5u7urdu3a2rVrV06XBAAA/r9cHyY++ugjDR48WGPGjNG+fft03333KSwsTBcuXMjp0gAAgPJAmJg+fbp69uypp59+WpUrV9bcuXOVP39+/e9//8vp0gAAgKR8OV3AnVy/fl179+7ViBEj7G1OTk5q3ry5tm/fnuY0CQkJSkhIsD+PiYmRJMXGxmZpbckJcVk6P6SW1dssBdsu+2XXtpPYfv8EPnt5V1Zvu5T5GWPuOF6uDhN//vmnkpKSFBAQ4NAeEBCgw4cPpznNpEmTNHbs2FTtQUFB2VIjso/vjJyuAJnFtsvb2H55V3Ztu8uXL8vX1/e2w3N1mMiMESNGaPDgwfbnycnJunjxovz9/WWz2XKwspwVGxuroKAgnT59Wj4+PjldDjKAbZd3se3yLrbd34wxunz5sooVK3bH8XJ1mChUqJCcnZ0VFRXl0B4VFaXAwMA0p3Fzc5Obm5tDm5+fX3aVmOf4+Pj8pz8YeRnbLu9i2+VdbDvd8YhEilzdAdPV1VUhISHauHGjvS05OVkbN25UaGhoDlYGAABS5OojE5I0ePBghYeHq2bNmqpVq5ZmzJihq1ev6umnn87p0gAAgPJAmOjUqZP++OMPjR49WufPn1f16tX19ddfp+qUiTtzc3PTmDFjUp0CQu7Htsu72HZ5F9suY2zmbtd7AAAA3EGu7jMBAAByP8IEAACwhDABAAAsIUxAkrRw4cJ0348jI+Mi+5w4cUI2m0379+/P6VKAf7Xu3burffv29ueNGzfWwIED0zVtRsbNy3L91Rz4Z3Tq1EkPPfRQTpeRJzVu3FjVq1fXjBkzcroUZIPu3bsrOjpan332WU6Xglzi008/lYuLS06XkasQJiBJ8vDwkIeHR06XAeQaSUlJ/+lb8OP2ChYsmNMl5Dqc5sglPvnkE1WrVk0eHh7y9/dX8+bNdfXqVfvhtbFjx6pw4cLy8fFR7969df36dfu0X3/9terXry8/Pz/5+/urTZs2+vXXX+3DUw6Hf/rpp2rSpIny58+v++67z+GXV289dXHgwAE1adJE3t7e8vHxUUhIiPbs2eNQ89q1axUcHCwvLy89+OCDOnfuXPatoFyqe/fu2rJli2bOnCmbzSabzaZff/1VPXr0UJkyZeTh4aGKFStq5syZDtPduHFDAwYMsG+zYcOGKTw83OFQ6t22a1q2bNmiWrVqyc3NTUWLFtXw4cN148YN+/DLly+ra9eu8vT0VNGiRfXmm2/+aw7DNm7cWP369VO/fv3k6+urQoUK6ZVXXrH/2uGlS5fUrVs3FShQQPnz51erVq109OhR+/Qpn4EvvvhClStXlpubm5555hktWrRIn3/+uX37bt68WZs3b5bNZlN0dLR9+v3798tms+nEiRP2tvnz5ysoKEj58+fXI488ounTpzt8zm49fC5JAwcOVOPGje3Pk5OTNWnSJPv76b777tMnn3xiH37p0iV17dpVhQsXloeHhypUqKAFCxbYh58+fVqPP/64/Pz8VLBgQbVr186hxrzuTusnZTtt3LhRNWvWVP78+VW3bl1FRkY6zGP8+PEqUqSIvL299eyzz2r48OGqXr36bZd562dm9uzZqlChgtzd3RUQEKDHHnssVY1Dhw5VwYIFFRgYqFdffTWrXn6uQZjIBc6dO6cuXbromWee0aFDh7R582Y9+uij9p3gxo0b7e0ffvihPv30U4dfRr169aoGDx6sPXv2aOPGjXJyctIjjzyi5ORkh+WMGjVKQ4YM0f79+3XPPfeoS5cuDn9obta1a1eVKFFCu3fv1t69ezV8+HCHw3pxcXGaOnWqFi9erG+//VanTp3SkCFDsmHt5G4zZ85UaGioevbsqXPnzuncuXMqUaKESpQooeXLl+vgwYMaPXq0Ro4cqY8//tg+3eTJk7VkyRItWLBA27ZtU2xsbKrD6OndrinOnDmjhx56SA888IAOHDigOXPm6L333tP48ePt4wwePFjbtm3TF198ofXr12vr1q3at29ftqybnLBo0SLly5dPu3bt0syZMzV9+nS9++67kv7+w71nzx598cUX2r59u4wxeuihh5SYmGifPi4uTpMnT9a7776rX375RW+99ZYef/xxe1g+d+6c6tatm65atm3bpt69e+uFF17Q/v371aJFC02YMCHDr2nSpEl6//33NXfuXP3yyy8aNGiQnnzySW3ZskWS9Morr+jgwYNas2aNDh06pDlz5qhQoUKSpMTERIWFhcnb21tbt27Vtm3b7OH/5i8kednd1o/0975v2rRp2rNnj/Lly6dnnnnGPmzJkiWaMGGCJk+erL1796pkyZKaM2dOupe/Z88eDRgwQOPGjVNkZKS+/vprNWzY0GGcRYsWydPTUzt37tSUKVM0btw4rV+/3vqLz00MctzevXuNJHPixIlUw8LDw03BggXN1atX7W1z5swxXl5eJikpKc35/fHHH0aS+emnn4wxxhw/ftxIMu+++659nF9++cVIMocOHTLGGLNgwQLj6+trH+7t7W0WLlyY5vwXLFhgJJljx47Z2yIiIkxAQED6X/S/SKNGjcwLL7xwx3H69u1rOnToYH8eEBBg3njjDfvzGzdumJIlS5p27drddh63264//PCDMcaYkSNHmooVK5rk5GT7NBEREfb3SmxsrHFxcTHLly+3D4+Ojjb58+e/a/15QaNGjUxwcLDD6x82bJgJDg42R44cMZLMtm3b7MP+/PNP4+HhYT7++GNjzP+9r/fv3+8w3/Dw8FTb5ZtvvjGSzKVLl+xtP/zwg5Fkjh8/bowxplOnTqZ169YO03Xt2tXhc5bWvF944QXTqFEjY4wx8fHxJn/+/Ob77793GKdHjx6mS5cuxhhj2rZta55++uk018nixYtTvScSEhKMh4eHWbt2bZrT5CV3Wz8p22nDhg32YV9++aWRZK5du2aMMaZ27dqmb9++DtPXq1fP3Hffffbnt26nmz/zK1asMD4+PiY2NjbNGhs1amTq16/v0PbAAw+YYcOGZfTl5mocmcgF7rvvPjVr1kzVqlVTx44dNX/+fF26dMlheP78+e3PQ0NDdeXKFZ0+fVqSdPToUXXp0kVly5aVj4+PSpcuLUk6deqUw3Luvfde+/+LFi0qSbpw4UKaNQ0ePFjPPvusmjdvrtdffz3V4fX8+fOrXLlyDvO73bz+iyIiIhQSEqLChQvLy8tL8+bNs2+PmJgYRUVFqVatWvbxnZ2dFRIS4jCP9G7XFIcOHVJoaKjDef569erpypUr+v333/Xbb78pMTHRYbm+vr6qWLFiVr3sHFenTh2H1x8aGqqjR4/q4MGDypcvn2rXrm0f5u/vr4oVK+rQoUP2NldXV4fPiRWRkZEO61pSqud3c+zYMcXFxalFixby8vKyP95//337Z7JPnz5atmyZqlevrqFDh+r777+3T3/gwAEdO3ZM3t7e9mkLFiyo+Pj4u54yywvSs36kO+/7rG6nFi1aqFSpUipbtqyeeuopLVmyRHFxcQ7j3Pqe+jfuL+mAmQs4Oztr/fr1+v7777Vu3TrNmjVLo0aN0s6dO9M1fdu2bVWqVCnNnz9fxYoVU3JysqpWrZrqMObNpylSdri3O2T+6quv6oknntCXX36pNWvWaMyYMVq2bJkeeeSRVPNKmZ/hzuySpGXLlmnIkCGaNm2aQkND5e3trTfeeCPd2zNFercrso6Hh0e6Ol06Of39Pezm9/zNp0vSy8nJKdXn5ub5XLlyRZL05Zdfqnjx4g7jpfxmRKtWrXTy5El99dVXWr9+vZo1a6a+fftq6tSpunLlikJCQrRkyZJUyy5cuHCG681t7rZ+UgJFRvZ9GeXt7a19+/Zp8+bNWrdunUaPHq1XX31Vu3fvtvePSWt/mVXLzy04MpFL2Gw21atXT2PHjtUPP/wgV1dXrVy5UtLf3y6uXbtmH3fHjh3y8vJSUFCQ/vrrL0VGRurll19Ws2bNFBwc7HBUw4p77rlHgwYN0rp16/Too486dOrC/3F1dVVSUpL9+bZt21S3bl09//zzqlGjhsqXL+/wLcnX11cBAQHavXu3vS0pKcmh70JmtmtwcLC9L8DNtXh7e6tEiRIqW7asXFxcHJYbExOjI0eOWHr9ucmtgW3Hjh2qUKGCKleurBs3bjgMT1nHlStXvuM8b92+0v/9Ib650/Gt9/uoWLGiw7qWlOp54cKFU3Vcvnk+KR1BT506pfLlyzs8goKCHOYTHh6uDz74QDNmzNC8efMkSffff7+OHj2qIkWKpJre19f3jq87L0jv+rmT9Gynu8mXL5+aN2+uKVOm6Mcff9SJEye0adOmDM0jr+PIRC6wc+dObdy4US1btlSRIkW0c+dO/fHHHwoODtaPP/6o69evq0ePHnr55Zd14sQJjRkzRv369ZOTk5MKFCggf39/zZs3T0WLFtWpU6c0fPhwS/Vcu3ZNL730kh577DGVKVNGv//+u3bv3q0OHTpk0Sv+dyldurR27typEydOyMvLSxUqVND777+vtWvXqkyZMlq8eLF2796tMmXK2Kfp37+/Jk2apPLly6tSpUqaNWuWLl26ZP/WlJnt+vzzz2vGjBnq37+/+vXrp8jISI0ZM0aDBw+Wk5OTvL29FR4erpdeekkFCxZUkSJFNGbMGDk5Of1rLoE8deqUBg8erOeee0779u3TrFmzNG3aNFWoUEHt2rVTz5499c4778jb21vDhw9X8eLF1a5duzvOs3Tp0lq7dq0iIyPl7+8vX19f+x+rV199VRMmTNCRI0c0bdo0h+n69++vhg0bavr06Wrbtq02bdqkNWvWOKzrpk2b6o033tD777+v0NBQffDBB/r5559Vo0YNSX9/6x0yZIgGDRqk5ORk1a9fXzExMdq2bZt8fHwUHh6u0aNHKyQkRFWqVFFCQoJWr16t4OBgSX93pH7jjTfUrl07jRs3TiVKlNDJkyf16aefaujQoSpRokQWb4F/1t3WT6lSpe46j/79+6tnz56qWbOm6tatq48++kg//vijypYtm64aVq9erd9++00NGzZUgQIF9NVXXyk5OflfdfowXXK2ywaMMebgwYMmLCzMFC5c2Li5uZl77rnHzJo1yxjzfx1/Ro8ebfz9/Y2Xl5fp2bOniY+Pt0+/fv16ExwcbNzc3My9995rNm/ebCSZlStXGmNSd9QzxphLly4ZSeabb74xxjh2wExISDCdO3c2QUFBxtXV1RQrVsz069fP3mHp1s6axhizcuVK8199O0VGRpo6deoYDw8PI8kcPnzYdO/e3fj6+ho/Pz/Tp08fM3z4cIcOXYmJiaZfv37Gx8fHFChQwAwbNsx07NjRdO7c2T5OZrbr5s2bzQMPPGBcXV1NYGCgGTZsmElMTLQPj42NNU888YTJnz+/CQwMNNOnTze1atUyw4cPz+7VlO0aNWpknn/+edO7d2/7eh05cqS98+HFixfNU089ZXx9fY2Hh4cJCwszR44csU+f1vvaGGMuXLhgWrRoYby8vBw+M999952pVq2acXd3Nw0aNDDLly936IBpjDHz5s0zxYsXNx4eHqZ9+/Zm/PjxJjAw0GH+o0ePNgEBAcbX19cMGjTI9OvXz94B0xhjkpOTzYwZM0zFihWNi4uLKVy4sAkLCzNbtmwxxhjz2muvmeDgYOPh4WEKFixo2rVrZ3777Tf79OfOnTPdunUzhQoVMm5ubqZs2bKmZ8+eJiYmxuIazx3utH7S01HWGGPGjRtnChUqZLy8vMwzzzxjBgwYYOrUqWMffqcOmFu3bjWNGjUyBQoUMB4eHubee+81H330UZrjpmjXrp0JDw/PwrWQ8/gJ8lyOu+/9NyQnJys4OFiPP/64XnvttX9suVevXlXx4sU1bdo09ejR4x9bbnbIC3ci7dmzpw4fPqytW7fmdCm4gxYtWigwMFCLFy/O6VLyDE5zADng5MmTWrdunRo1aqSEhAS9/fbbOn78uJ544olsXe4PP/ygw4cPq1atWoqJidG4ceMk6a6H+pE5U6dOVYsWLeTp6ak1a9Zo0aJFmj17dk6XhZvExcVp7ty5CgsLk7Ozsz788ENt2LDh33cfiGxGmABygJOTkxYuXKghQ4bIGKOqVatqw4YN9nPd2Wnq1KmKjIyUq6urQkJCtHXrVvtNjpC1du3apSlTpujy5csqW7as3nrrLT377LM5XRZuYrPZ9NVXX2nChAmKj49XxYoVtWLFCjVv3jynS8tTOM0BAAAs4dJQAABgCWECAABYQpgAAACWECYAAIAlhAkAAGAJYQIAAFhCmAD+w7p376727dvndBkA8jjCBAAAsIQwASBN06dPV7Vq1eTp6amgoCA9//zzunLlin34woUL5efnp7Vr1yo4OFheXl568MEHHX5S+8aNGxowYID8/Pzk7++vYcOGKTw83OFoSOnSpVP9nkb16tX16quvprsWSZo/f76CgoKUP39+PfLII5o+fbr8/Pwcxvn88891//33y93dXWXLltXYsWN148YNy+sK+K8jTABIk5OTk9566y398ssvWrRokTZt2qShQ4c6jBMXF6epU6dq8eLF+vbbb3Xq1CkNGTLEPnzy5MlasmSJFixYoG3btik2NjZTP1p3t1q2bdum3r1764UXXtD+/fvVokULTZgwwWEeW7duVbdu3fTCCy/o4MGDeuedd7Rw4cJU4wHIhBz9zVIAOerWn1a+k+XLlxt/f3/78wULFhhJ5tixY/a2iIgIExAQYH8eEBBg3njjDfvzGzdumJIlSzoss1SpUubNN990WNZ9991nxowZk+5aOnXqZFq3bu0wTteuXR1+UrxZs2Zm4sSJDuMsXrzYFC1a9LbLAZA+/NAXgDRt2LBBkyZN0uHDhxUbG6sbN24oPj5ecXFxyp8/vyQpf/78KleunH2aokWL6sKFC5KkmJgYRUVFqVatWvbhzs7OCgkJUXJycpbWEhkZqUceecRhmlq1amn16tX25wcOHNC2bdscjkQkJSWlek0AMo7THABSOXHihNq0aaN7771XK1as0N69exURESFJun79un08FxcXh+lsNptMBn870MnJKdU0iYmJGa7lbq5cuaKxY8dq//799sdPP/2ko0ePyt3dPUM1A3DEkQkAqezdu1fJycmaNm2anJz+/s7x8ccfZ2gevr6+CggI0O7du9WwYUNJfx8J2Ldvn6pXr24fr3Dhwg6dNmNjY3X8+PEM1VKxYkXt3r3boe3W5/fff78iIyNVvnz5DL0OAHdHmAD+42JiYrR//36HtkKFCikxMVGzZs1S27ZttW3bNs2dOzfD8+7fv78mTZqk8uXLq1KlSpo1a5YuXbokm81mH6dp06ZauHCh2rZtKz8/P40ePVrOzs724eXLl79rLf3791fDhg01ffp0tW3bVps2bdKaNWscljN69Gi1adNGJUuW1GOPPSYnJycdOHBAP//8s8aPH5/h1wbgJjndaQNAzgkPDzeSUj169Ohhpk+fbooWLWo8PDxMWFiYef/9940kc+nSJWPM3x0wb+7gaIwxK1euNDfvVhITE02/fv2Mj4+PKVCggBk2bJjp2LGj6dy5s32cmJgY06lTJ+Pj42OCgoLMwoULU3XAvFstxhgzb948U7x4cePh4WHat29vxo8fbwIDAx3q+/rrr03dunWNh4eH8fHxMbVq1TLz5s3LsvUJ/FfZjMngCU4AyKTk5GQFBwfr8ccf12uvvZaty+rZs6cOHz6srVu3ZutyAHCaA0A2OnnypNatW6dGjRopISFBb7/9to4fP64nnngiy5c1depUtWjRQp6enlqzZo0WLVqk2bNnZ/lyAKRGmACQbZycnLRw4UINGTJExhhVrVpVGzZsUHBwcJYva9euXZoyZYouX76ssmXL6q233tKzzz6b5csBkBqnOQAAgCXcZwIAAFhCmAAAAJYQJgAAgCWECQAAYAlhAgAAWEKYAAAAlhAmAACAJYQJAABgyf8DmyN7X/39iJUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1iV5f8H8PdB9l4CoiBOcJCK5MKFW3FrpuXWMFeuMheBIxErzW2YM0PcOzVx4ERFIDXBbYobEZAl6/79we88X44c4IAMgffrus4VPPd4Ps9zRpyP95AJIQSIiIiIiIiIiIiKkVpJB0BEREREREREROUPk1JERERERERERFTsmJQiIiIiIiIiIqJix6QUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExY5JKSIiIiIiIiIiKnZMShERERERERERUbFjUoqIiIiIiIiIiIodk1JERFSsvLy8IJPJIJPJSjoUIipiDx8+lN7vmzZtKulwiApFSkoKatWqBZlMhl27dpVYHOPHj4dMJsOwYcNKLAYiog/FpBQR0Ucg6xe3D3mUV+Hh4Zg7dy5at24NGxsb6OjoQF9fH1WrVkWPHj2wZMkSPH/+vKTDJCVGjBghvX7t7e1LOhwqh+zs7D74s/f06dMlfRkFkvUfCQr6GD58eElfRrFbtmwZ7t69i/r166Nfv35K6+zatQvNmzeHnp4eDA0N0bFjR5w5cybPvq9fvw4NDQ2YmpoiKioq17rff/89NDU18ccff+Dq1asFuhYiopLGpBQRUTm3adMm6cvFw4cPSzqcfImOjsbQoUNRv359eHl54ezZs4iMjERycjISEhLw6NEjHDp0CNOmTYONjQ3Gjh2L6Ojokg671CjqUW2JiYkKowxu376NoKCgIjkXUVnDUacl4+3bt/Dx8QEAzJkzR+n9/+WXX/DZZ58hKCgIiYmJePv2LQICAtCuXTvs2bMn1/7Hjx+PtLQ0/PjjjzA3N8+1rq2tLYYNGwYhBDw8PAp+UUREJUi9pAMgIiKgcuXKuH79eo7ljo6OAABnZ2ds3LixuML6qN2/fx9du3bF7du3AQAWFhb44osv0Lp1a1SqVAkymQxPnz7F6dOnsXv3bjx58gRr165F586d0bt375INngAAe/bsQXx8PABAT08PCQkJ2LJlC5o1a1bCkVF58vfffyMlJUVp2YgRIxAcHAwAuX5GV6tWrUhiK2rjxo1D//79lZbt378fc+bMAQAsWLAAvXr1UlrPxMSkyOL7GK1ZswavX7+Gra0tPvvss2zl9+/fx4wZMwAA3bt3x6RJk5CSkoL58+cjKCgIo0ePRqdOnaCvr5+t7ZYtW3D27Fk0btwYY8aMUSmeadOmYd26dThy5AiuXr2Kxo0bf9gFEhEVMyaliIg+AhoaGqhfv36e9fT09FSqV9YlJiaiR48eUkJq1KhRWLp0KQwMDLLV7dOnD3766SesXbsWs2fPLu5QKRdbtmwBADRu3BhNmzbF6tWrsX37dvz666/Q1NQs4eiovKhdu3aOZXp6etLPZfGz18LCAhYWFkrL5Mk4IPMfTsri9edXeno6Vq5cCQAYNGgQ1NSyTzr5888/kZaWhjp16mD//v1SndatW8POzg6vX7/Gvn37MHjwYIV2sbGxmD59OmQyGVatWqW0b2Xs7e3h5OSEkJAQrFixgmu3EVGpw+l7RERU6sycORM3b94EAIwePRq///670oSUnKamJr755hsEBQXBxsamuMKkXDx9+hQnTpwAAHz55ZfSF7To6GgcOnSoJEMjIlLq+PHjePz4MYDMzy1lwsLCAAADBgxQSCzp6+uje/fuCnWy8vDwwIsXLzBy5Eg0bdo0X3HJY9m5cyfevn2br7ZERCWNSSkiojIgIyMDW7duRbdu3WBlZQVNTU1UrFgRrq6uWL16tdKpKadPn4ZMJsOIESOkY9WqVctzAd+goCDMmTMHbdu2lc5laGiIunXrYuzYsVKyqKi8evUK69atAwBUqlQJv/76q8pt69Wrl+PUhvj4eCxatAjNmzeHqakptLS0UKVKFfTv3z/PJEnbtm0hk8nQtm1bAMCdO3cwYcIE1KpVC7q6ugrrdeWnrlxycjJWrlyJ9u3bS/fcwsICHTp0wPr165GWlpbntb979w6+vr5wc3ND5cqVoaWlBT09PdSrVw+jR4/GsWPHIIQA8L91xubOnSu1V7bA8YesQbZ161ZkZGSgQoUKGDRoEJo3b46aNWsC+N8IqtzIF6eWL7J869YtfPXVV7Czs4OWlhYsLS3Rp0+fPNeoSk5OxvLly9G2bVtUrFhRWmDY3t4eXbt2xZIlSxSuMz09HUZGRpDJZNIUnfdlXesnp6mi/v7+Up2IiAildWJjY+Ht7Q0XFxdUrFgRmpqaqFSpEnr06IFdu3ZJz5cy8r69vLwAACdPnsRnn30GGxsbaGhowM7OTqH+06dPMWPGDDg5OcHIyAgaGhqwtLSEo6MjBg0ahE2bNiEuLi7H8+XHzp070aFDB1hYWEBHRwcODg6YOXMmYmJistVNTU2FlZUVZDIZunTpkmffN27ckK598eLFhRKvKp4/f47Zs2fD2dlZ+vywsbHBgAEDEBAQkGvb9PR0bNq0CZ07d5be30ZGRqhVqxbat2+PhQsXKnyuFsf7My9OTk6QyWSoU6dOnnVfv34NLS0tyGQyjBs3TqHs/ddpQEAAevbsiUqVKkFbWxvVq1fHhAkT8OTJE5XiCgkJwddffw17e3vo6+tDT08P9vb2GDt2rDSy9kPs2LEDAFCrVi1pWv37YmNjAWT+/+l9VlZWCnXk/vnnH6xevRomJiZYtGhRvuOSL7aemJiI/fv357s9EVGJEkRE9NEDIACINm3aZCt7/fq1cHFxkeooe9SpU0c8fPhQod2pU6dybSN/nDp1SmqzcePGPOtXqFBBrFq1Ksdr8fT0lOoWxPLly6X2Hh4eBerjfSEhIcLa2jrX6+rbt69ISkpS2r5NmzbS87Nv3z6hp6eXrf2DBw/yXVcIIcLCwkTVqlVzje3TTz8Vz58/z/H6QkNDRbVq1fJ87uTnVeV5fj/O/Kpfv74AIDp16iQdk782NDQ0RFRUVK7t5fdk2LBhYs+ePUJXVzfH16O/v7/SPp4+fSrq1q2b53VOmzZNoV23bt0EANG0aVOl/bZt21Zqa2JiItLT07PV+frrrwUAYWlpqbSPgIAAYWZmlmtc3bp1E2/fvlXaXl7H09NTzJo1K1vbqlWrSnXPnDkjDA0N87wPBw8eVHqu3Dx48EBqv3HjRjFy5Mgc+7e2thbh4eHZ+vjuu+8EAKGmpiYiIyNzPd+UKVMEAKGuri6ePXuW73jfJ3+/5vZ5tXXrVqXv46yPUaNGidTU1Gxt3759K1q1apXnve/Xr5/Upjjen++fZ+PGjQplq1atksouXryYaz/Lli2T6l65ckWhLOvr1MvLK8drMTIyEmfOnMnxHOnp6WLKlClCJpPl2Ie6urr47bffCnw/hBDCzs5OABBDhgzJsU7fvn0FAOHl5ZWtbNiwYdk+UzIyMqT/h69evbrAsVlZWQkA4osvvihwH0REJYFJKSKiUkD+R/X7Sam0tDTRvHlzhfKdO3eK4OBgceDAAdG7d2+prEaNGgpfYOPj48X169fFggULpDrHjh0T169fV3jEx8dLbdatWydMTEzE8OHDxYYNG8TZs2dFSEiIOHTokJg3b54wNzcXAIRMJhMnTpxQei0fmpTq16+f1D4oKKhAfWQVGRkpTExMpLhHjBghjh07JoKDg8WWLVtEgwYNpPN9/vnnSvuQf3GtVq2a0NfXFxUrVhSLFi0S58+fF0FBQWLFihXi1atX+a57584dYWRkJAAIQ0NDMXPmTLF3714RHBwsjh07JsaPHy/U1dWlBElKSkq22G7evCn09fWla+jTp4/Yvn27uHLliggKChJbtmwRgwcPFnp6etKX2Ddv3ojr16+LsWPHSu3ef11cv35d6flUcfXqVanfLVu2SMfv3LkjHV+xYkWufciTUk5OTkJbW1tUq1ZNrFy5UgQFBYmLFy8KLy8voa2tLd27ly9fZusj62tp8ODBYs+ePSIoKEhcuXJFHDhwQPzwww+iQYMG2ZJSixcvlr7kvp8USk5Ols4rf4SGhmY7t4ODgwAgBgwYkK3s3LlzQkNDQ0paLViwQBw8eFBcvXpVHDx4UAwePFjqu2/fvkrvj7zc0dFR+u+GDRvE5cuXRWBgoFi2bJkUrzwha2BgIKZPny6OHDkirl69Ki5evCj8/PzEhAkTROXKlT84KfXpp58KAKJJkyZi27ZtIjg4WPz1119iwIABUh1bW1sRFxen0MetW7ek8oULF+Z4rpSUFFGxYkUBQPTo0SPfsSqTV1Jq+/btUiKkevXqYsmSJeLo0aPi6tWrYvfu3VICE4CYMmVKtvbTpk2Tyrt37y62bdsmzp8/L65evSqOHDkiFi5cKFq0aCH69+8vtSnq96dcbkmpmJgYoaOjIwAId3f3XPtp2LChACA++eSTbGXy/p2dnQUAYW9vL9avXy+uXLkiAgICxJgxY4Sampr0Pn706JHSc4wbN07qq3Xr1mLDhg3i9OnT4vLly2LdunWiXr16Uvn+/fsLdD8eP34s9bF8+fIc682dO1cAEPXr1xcZGRnS8fj4eCnR/Mcff0jH5ffZyclJaQJbVT179hQAROXKlQvcBxFRSWBSioioFMgpKbVy5UqpbOjQoQp/AMtlHSUxffr0bOVZv3jk9S/rkZGRIiEhIcfymJgY8cknnwgAomXLlkrrfGhSqmbNmgLIHDWRnJxcoD6y6t+/vxTP77//nq08OTlZuLq6SnX++uuvbHWyfnG1trYW//33X47ny0/dFi1aCACiUaNGUqLqfUeOHJG+tPn6+mYrd3Jyku7Xtm3bcjxXVFSUSExMVDj2oc9VTiZNmiQACF1d3WxJnaZNm0oJjNxkHT3WuHFjERsbm63O1q1bpTpLlixRKEtKSpISP+8nnd73+vVrhd8vXbok9XvkyBGFssDAQGlkR+vWrQUAsXTpUoU6z58/l9q/PzIiJSVFGo3RpUuXHN9vvr6+Uh9///13tvKsSbH27dvn+F45ceKEVC+3pFNqaqrSe5yXrEkpIHN0l7IRQ/PmzZPqfPfdd9nK5aOJateuneO59uzZI/Wxd+/efMeqTG5JqVevXklJ45EjRyq9LiH+9xmspqYmIiIiFMpsbGwEAIWkkzLvvwaFKLr3p1xuSSkhhBgyZIj0Wn//s0MuJCRE6uP994EQiq9TJycnpSP/tmzZItX57LPPspX//fffuX6GC5H5fm/Xrp0AMkcJ5vRc5Wb79u3Sec6ePZtjvTt37ogKFSoIIPMfAU6cOCH++usvaTSUsbGxlHh98+aNsLCwEDKZLM8RZ3mRJ8MA5DpylojoY8OkFBFRKZBTUqpOnToCgKhYsWK20QVyqamp0qgMExOTbF9O85OUUsW+ffuk/pRNwfrQL1LyUU0mJiYfGqp48uSJ9OWhS5cuOdZ78OCBNCKpW7du2cqzfnHNOvJHGVXrnjlzRqp37dq1XPuUjzRp0aKFwvFjx45JfUyePDnXPpQpii+9qampwsLCQgDKp5lkTbQqm8ollzUp9c8//yitk5GRIY0C6tOnj0LZkydPCjxyIi0tTRgYGAgA4vvvv1cok38xdHNzk37u1auXQp2sX27//fdfhTL5F3BtbW2lo7uyatKkSY73Ud6/mpparu/rP//8U6pbkKRTXrImpbS0tMSTJ0+U1ktPT5emdJqamop3794plG/evFnq59y5c0r76NGjhwAgLCwsCpR0UCa3pJQ8kVa5cuVcE+SpqamicuXKAoCYNWuWQpk8MSofuZYfJZ2UkidgAYitW7cq7WPixIkCgNDU1FSaWM+alAoODs4xlq5duwpA+bRMebIp6xRHZW7evJlrIjcvv/zyi9T+1q1budb98ccfFa5N/qhQoYLYsWOHVG/8+PFSUvNDrVmzRjrPhQsXPrg/IqLiwoXOiYhKqadPnyI8PBxA5i4/Oe0+p66uLi1m/ubNG4SEhBRaDAkJCXj48CH+/fdf3LhxAzdu3ICGhoZU/s8//xTaueTkOwtl3aq9oE6fPo309HQAwKhRo3KsZ2dnh44dO2Zr8z5NTU189tlnKp07r7oHDhwAkLndd04L6sq1bt0aAHDlyhWFRc+zLtA+efJkleIqakePHsXLly8BINuW6ADw+eefS6+hP/74I8/+HB0d8cknnygtk8lkaNSoEQDg/v37CmVmZmbQ1NSUzqPKYvFyFSpUgIuLCwBk2wggMDAQQOaC9vLF7M+cOYOMjIxsdSwsLFC3bl2F9vLnvU2bNqhYsWKuccif94sXL+ZYx8XFJdui5lllXYx548aNuZ7vQ3Xq1AnW1tZKy9TU1DBs2DAAmTswvv859dlnn8HIyCjHOF+8eIEjR44AAIYMGQJ1dfXCDF0p+XPVvXt3aGlp5VhPXV0dzZs3B5D9uZLf/+3btyMxMbGIIi0arVu3Ru3atQEof05SUlLg5+cHAOjRowfMzc1z7MvR0THHTSgAYOTIkQCAtLQ0hfdcXFyc9Hv//v1zjbdOnTpSDLm9Z3Ly6tUr6WcTE5Nc686aNQt+fn5o0qQJdHR0oK+vj3bt2iEgIED63A8NDcXatWthYmICHx8fqa2/vz+aNm0KXV1dGBsbw83NTaX/b5uamko/P3/+PL+XR0RUYpiUIiIqpW7cuCH9nNf20VnLs7YriKioKMyaNQv29vYwMDBAtWrVUL9+fTg6OsLR0RFubm4KdQubPPmWkJDwwX0V5B4mJiZmS3DI1apVC9ra2iqdO6+6wcHBADJ3lVO2s1bWx4QJEwBk7lQWHR0t9REaGgoAsLW1RdWqVVWKq6ht3rwZQGZCRp7oy8rc3BydO3cGkLlDn8hlhzkAcHBwyLVc/kXt/W3StbS08PnnnwMAdu3ahZo1a2L69On466+/lO4C9z55wunq1auIj48HkPklXP5lt23btmjatCl0dHTw5s0bXLt2TWor/xItTyplJX/ejx07lufz/vPPPwPI/QtoTgk7uZYtW6J69eoAMhOXTZo0gbe3N86fP690184P8emnn+Za3qRJE+nn69evK5Tp6Ojgiy++AJC5A9r7CZysiUV5AqMopaenIywsDADw22+/5flc7dq1C0D250qeiLtw4QKqVauGCRMmYO/evQoJkI+ZPJl/8uRJ/PfffwplBw4cwOvXrwHk/ZwU9LURGhoqJXwHDRqU5/Mg/39SQZI2WT9b80pKyeO5dOkSEhMT8fbtW5w4cUL63BBCYNy4cUhPT8eCBQukZJmPjw8GDRqEy5cvw9LSEhoaGvjrr7/QsmVLnD17NtfzZY2pMP7/SERUXJiUIiIqpbL+gWxhYZFrXfk21O+3y6+rV6/CwcEB3t7euH37dp4Jg6SkpAKfKydmZmYAMrfUfvfu3Qf1Vdj3UJUvKqrWlY8myq+sX9blX8CUbU1eEmJiYnDw4EEAwMCBA3MczTJkyBAAwKNHj7KNRHqfrq5uruVqapl/6igb3bZy5Ur06NEDAPDff//hp59+gpubG8zMzPDpp5/ip59+yrZ1u1ybNm0AZI7cOHfuHADg8uXLSEpKgpGRERo1agQtLS00a9YMwP8SUa9evcLNmzcB/C+xlVVBnvfc3md5vc40NDRw8OBB1KlTB0DmaLtZs2ahZcuWMDY2RpcuXeDn55fj6MD8yOs9ZmlpKf2s7D02evRoAJkJRnmSR04+Uqdp06bZRp8Vhejo6HyNrpN7P5nm4eGBkSNHQiaT4eXLl1i1ahX69u0LCwsL1K9fH56ennjx4kVhhV3ohg0bBg0NDQghpISz3IYNGwAAlStXlhLNOSnoa6MwPidVlfUfET70/20bNmxAUFAQnJyc8PXXXwMA7t27hzlz5kAmk2Hnzp148OABXr58icmTJyMpKQmjRo1SGHH5vqwxZR2xTET0sSv6sc1ERFTkZDJZkZ8jJSUFAwYMwOvXr6GhoYGJEyeiV69eqF27NkxMTKTpK/fv30eNGjUAIM+kVUE0aNAAd+/eRUZGBsLCwvIc4aSqwriHFSpUKLS68iRAgwYNsHXrVpX7rVy5ssp1i9v27dulROLy5cuxfPnyPNts2bIFrq6uRRKPoaEhDhw4gMuXL2PHjh04ffo0wsLCkJ6ejuDgYAQHB+Pnn3/Gvn37pOlXcs7OztDX10d8fDxOnz6NLl26SNPyWrZsKT2/bdq0walTp3D69GlMnjwZZ86ckfqQJ7aykj/vXbt2xeLFiz/4GlV5TdatWxfXr1/HwYMHcfDgQZw5cwZ3795FUlISjh07hmPHjmHJkiX466+/8kwe5OZD32NOTk5o1KgRQkNDsXHjRgwdOhQAcOnSJSnRVxyjpADFJOfo0aMxadIkldrJp4zKaWhoYP369Zg2bRq2bduGkydPIjg4GCkpKfj333/x77//YsmSJdi6dSt69epVqNdQGCwtLdG9e3fs3bsXmzZtgoeHB2QyGZ4+fYq///4bADB06NA8X4cFfW1kfR5+++03tGjRQqV2+fkHBLms02mjo6NznDKflzdv3mDGjBmQyWRYtWqVlDj38/NDWloaevToIU1FlMlk8Pb2xp9//ok7d+7gwoULaNmypdJ+sybrjI2NCxQbEVFJYFKKiKiUyrp+RF7/kp51qkLWdvlx8uRJadra6tWrpVEL7/uQkViqaNOmDXbv3g0AOHz48Aclpd6/hzY2NjnWLYx7mB/yEWHx8fGoX79+gfqQTwl59uxZocX1IbZs2ZLvNrt378aqVavyHBH1IZo0aSJND3r79i1Onz6NTZs2Yc+ePXj58iX69euHe/fuQUdHR2qjrq6OFi1a4O+//5ZGQcn/m3UE1PvrSsnrmJubo169etliMTMzw9OnT5GSklLg570gKlSogN69e6N3794AMl8zR48exapVq3D16lVcvXoVY8aMwd69ewt8jrw+p7KW5/QeGz16NMaPH4/AwEA8ePAA1apVk0ZJ6erqYuDAgQWOLz+yxieE+ODnqm7dupg/fz7mz5+P5ORknDt3Dn5+ftiyZQvi4+MxaNAg3Lt376MZ9ZjV6NGjsXfvXjx48ACBgYFo27YttmzZIiWM5Gsa5qagrw355ySQ+fwX5Xsma1LqzZs3BZ4SPWvWLERFRWHkyJHSSEoA0nRQ+Xp1ctra2nBycsKxY8cQFhaWY1LqzZs30s+2trYFio2IqCRw+h4RUSmV9Y/vS5cu5Vr38uXLStsBqv8L9b///iv9LF+LRxn5mjhFZeDAgVJy4Pfff/+gtTMKcg91dXWlNXiKUtYFugu6aK2TkxOAzGlw76/3oorCHIF37949XLhwAUDmc7ht27ZcHz/++COAzCTRhyRC8svAwAA9evTA7t278c033wDITNDIp+hllXVdqTdv3kjXlzUp1axZM2hra0vrSslHU7Vu3Vrp/ZU/7/LRMiWlUqVKGDFiBC5evCi9jg4dOvRB05auXLmicnlOyYUvv/wSOjo6EEJg06ZNSEpKgr+/PwCgX79+MDQ0LHB8+aGpqSklFc+fP1+ofWtra6NDhw7YsGEDfvrpJwCZU7OyblwAFM8IWVV06dIFVapUAfC/aZTy/7Zq1Qq1atXKs4+CvjYaNmwo3YfCfh7el3XDidu3bxeoj6tXr8LX1xcmJiZYtGiRQpl8qrB8Qf+s5COfcppOnDUmLS0t1KxZs0DxERGVBCaliIhKKWtra2kdmB07dkiLLb8vPT0dmzZtApA5ZUH+BVMu6zoZua3RlHX9lJwSQRkZGVi3bp1K8RdUxYoV8dVXXwHITBbkZ1e5mzdv4urVq9Lvbdu2laaVyNc/UebRo0c4fvx4tjZFqWfPngAyR2EsW7asQH3I10sCgKVLl+a7vaqvDVVkHSX17bffYuDAgbk+pk+fLo2CKMgIq8LQvn176Wdli/ZnXVdq6dKlSExMlNaTksu6rtTu3bulxfWVrScF/O95j42NLfLd8FShoaGhcJ2qLAKfk7///jvHUXsZGRnSmkTKPqfkjIyMpKlNmzdvxq5du6Qv6sU1dU9O/lxFRETg2LFjRXKO3F6Dhfn+/BBqamrSaKhdu3bh6NGjUoJE1efk+vXr0sYMysg/nytUqKDw3qlYsaL0/vLz8yvSBeKdnZ2le55XEk0ZIQTGjx+PjIwMLFiwINvumvJkVGRkZLa2jx8/BoBck67ymBo1asQ1pYioVGFSioioFBs/fjyAzMWT5aM63jd37lxpvZWvvvoq29blWaeD3Lt3L8dzZf3XbnmS630zZ85UaevqD7Vw4UIpIff777/jq6++yjEpB2TuSrdy5Uo0bdpU+uMeyEzs9enTBwBw5MiRbAv1AplraY0cORKpqakAIO10V9Q6deokTSn76aefsGPHjlzry9cEyqpDhw7SNusrVqyQRpQo8/r162yjYFR9beRFCCGti2VnZ5fr1u9y6urq0lSyEydOFPoUxPv370ujlnIiXxMHAKpVq5at/NNPP5WmFcrXx8q6npScPKmzYsUKaZ01ZetJAZkLR8unkX777bcKa1Apc+7cuTyvIzdnz57F3bt3cyxPSUmR+tfX18/2RTo/3r17hzFjxihdNH3RokXSrmojR47M9jmVlXzq8H///Yfp06cDAGrUqJHjPS0qkyZNgr6+PoDMKWpZR5Mqc/jwYYVdGKOjo3Hw4MFc197L7TVYWO/PwiBfrD0xMVFKUBkYGOCzzz5TuQ93d3el/+Dh5+eHv/76CwDQu3fvbFMY58yZAwCIi4tD//79c02cvnv3DqtWrUJycrLKcclpampK08Wzjj5W1e+//45Lly6hUaNG0uLmWTVo0ABA5tp7Wd8j9+7dk0byNmzYUGnf7969k15bnTp1yndsREQlShAR0UcPgAAg2rRpo3A8LS1NNG/eXCpv166d2LVrl7h69ao4dOiQ6Nu3r1RWo0YN8fbt22x9x8XFCW1tbQFAODk5ib///lvcunVL3LlzR9y5c0ckJiYKIYSIj48XFhYWAoCoUKGCGDNmjDh69KgIDg4W/v7+on379gKAcHFxkc65cePGbOfz9PSUyj/EvXv3RO3ataW+LCwsxJQpU8S+ffvEpUuXRFBQkNi7d6+YMmWKsLW1lert3btXoZ/Hjx8LExMTAUCoqamJ0aNHi+PHj4vg4GCxdetW0bBhQ6ntgAEDlMbSpk0bpc/Ph9a9e/euMDU1lc7fo0cPsXXrVnHp0iURHBws/vrrL/Hjjz+KZs2aCQBi2rRp2fq4efOm0NfXl/ro27ev2LFjhwgODhaXLl0Sf/75pxg2bJjQ09MTDx48UGh7584dqV2nTp1EYGCguH37tvTaSE1NzfMahBDizJkzUj/KYszJX3/9JbVbvHixQlnVqlUFADFs2LBc+xg2bJgAIKpWrapw/NSpUwKAqFu3rpg9e7bYu3evuHz5srh8+bLYvXu3GDBggHTuhg0bioyMDKX9d+jQQaoHQPz000/Z6sjPJX+YmZnl2J8QQly8eFFoaWlJ77Uvv/xS7Ny5UwQHB4vLly+L/fv3ix9++EE4OjoKAGLFihXZ+pCfy9PTM9f74+npKdTU1ESbNm3E4sWLxdGjR8XVq1fFuXPnxIYNG0STJk2kviZNmpRrX8o8ePBAau/s7CwAiKZNmwp/f39x9epVceTIETFw4ECpTpUqVURMTEye/WZ97wMQ8+fPz3dsqpC/X3P6vNq9e7eQyWQCgNDW1hZff/212L9/v7h69aoICgoSu3btEtOnTxfVq1cXAMTBgweltvJ7Y2dnJ6ZOnSq2b98ugoKCRHBwsDh48KBwd3cXampqAoCoXLlyts/vwnp/5mTjxo25fpa/r2PHjgrPyahRo/Js8/5rw8HBQWzcuFEEBweLEydOiLFjx0r3wMDAINtnlNykSZOkvqysrISXl5cICAgQoaGh4ty5c2LTpk1i1KhR0me9sv8XqmLJkiXScx0XF6dyu9evXwszMzMhk8nExYsXlda5e/euUFdXFwCEm5ubCAgIEPv27ZNe6zVq1BDp6elK2/7999/S9YeGhhbk0oiISgyTUkREpUBOSSkhMv/YzZoIUvaoU6eOePjwYY79T58+Pce2p06dkuodPXpUSmApe7Rt21bcuHGjWJJS8msfMmSI9KUlt4eGhob45ptvlH7hDQkJEdbW1rm279u3r0hKSlIaR1ElpYQQ4tatW6J+/fp5Xh8AMXfuXKV9BAcHCxsbmzzbK/vClzU5o0p9ZUaPHi21yekLmTIpKSnC2NhYABCOjo4KZYWVlMrr4eDgIO7fv59j/wsWLFCof+XKlWx1kpKSpCQTANG7d+88r/3ixYsqPWcAxObNm7O1l5epkpRS5Ry9evWSEtT5kTUptXHjRjF8+PAcz1GpUiXx77//qtSvj4+P1E5NTU08fvw437GpIq+klBBCHDhwQCF5nNNDTU1NnDx5UmqX9d7k9qhUqZIIDg5Weu7CeH/mJL9Jqe3btyuc//z583m2yfo6ze21aGhoKE6fPp1jPxkZGWLu3LlSUie3h56eXoFey0IIERUVJb2Xlb3vcuLu7i4AiBEjRuRaz9vbW2nMWlpauV6//H1Vr149lWMiIvpYMClFRFQKyP8wzSmRkZ6eLrZs2SK6dOkiLC0thYaGhjAzMxNt27YVK1euFO/evcu1/4yMDLFu3TrRqlUrYWpqKipUqCCdM2tSSgghbty4IQYPHiysra2FhoaGqFixomjTpo3w9fUV6enp2b6Evq8wk1JyN2/eFJ6enqJly5aicuXKQktLS+jq6gpbW1vRo0cPsXTpUvHixYtc+3j79q3w9vYWTZs2FcbGxkJTU1NYW1uLvn37igMHDuTatiiTUkJkjojz8/MT/fr1E7a2tkJHR0doamqKSpUqibZt24o5c+aIq1ev5tpHYmKiWL58uWjXrp2wsLAQ6urqQl9fXzg6Ogp3d3dx4sQJpe1SUlLE4sWLRZMmTYSRkZFCAlCVL71JSUnCyMhIAJmjPXIbIaTMkCFDpPOFhIRIxz80KZWWliZOnz4tZs6cKVxdXUXNmjWFgYGB0NDQEJaWlqJTp05i7dq1Ijk5Odf+z549K8VnZGQk0tLSlNbLmtz49ddfVbr25ORksXbtWuHm5iasra2Fpqam0NbWFjY2NqJTp07ixx9/FBEREUrbqpqUevv2rdi9e7cYO3asaNasmbC1tRXa2tpCW1tb2NnZiQEDBohDhw6pFK8yyj4P/Pz8RNu2bYWZmZnQ0tIStWvXFtOnTxfR0dEq9/v06VOp386dOxc4vryokpQSQojY2Fjx888/i3bt2kmfwTo6OqJatWqie/fuYsmSJeLRo0cKbTIyMsTly5eFl5eX6NSpk7C3txfGxsZCXV1dmJubi9atW4uffvpJxMbG5njeD31/5ia/Sal3795JozIdHBxUOsf7r9OjR48KNzc3YWlpKTQ1NYWdnZ0YN26cyknH+/fvi+nTpwtnZ2fp/2UGBgaibt264ssvvxSbN2/O1wgnZQYNGpSv193ly5eFmpqaMDY2Fi9fvsyzvp+fn3B2dhY6OjrC0NBQdO3aVWmyWy4pKUkYGhoKAGLVqlUqXwcR0cdCJkQuE9mJiIiIiD4yx48fl9bO2b59OwYMGFDCEdGdO3dQu3ZtAICPj4+03ldu5DvneXp6wsvLqyjDKzSXLl1Cs2bNUKFCBdy7dw9Vq1Yt0Xi2bt2KIUOGwMzMDA8fPpTWOSMiKi240DkRERERlSry3djMzMzQq1evEo6GgP89J+rq6hg6dGgJR1N0mjZtir59+yI9PR3e3t4lGktGRgYWLlwIAPjuu++YkCKiUolJKSIiIiIqNe7du4ddu3YByNz1Lred+qh4xMTEwNfXF0DmDnlWVlYlHFHRWrhwIdTV1bFx40ZERkaWWBw7d+5EeHg4bG1tc9yBl4joY6de0gEQEREREeXmyZMnSExMxP379/H9998jLS0N2tramDJlSkmHVm69fPkScXFxePr0Kby8vBAdHQ2ZTIaZM2eWdGhFzt7eHhs2bMC9e/fw6NEjVKlSpUTiSE9Ph6enJ9q1awcdHZ0SiYGI6EMxKUVEREREH7Uvv/wSgYGBCsfmz58Pa2vrEoqIpk+fjs2bNyscGzduHJycnEooouI1ZMiQkg4BX3zxRUmHQET0wZiUIiIiIqJSQVdXF7Vr18bkyZMxbNiwkg6HAGhqaqJGjRr46quvMHHixJIOh4iIShnuvkdERERERERERMWOI6X+X0ZGBp4+fQoDAwNpe1oiIiIiIiIiIsofIQTevn0La2trqKnlvMcek1L/7+nTp7CxsSnpMIiIiIiIiIiIyoTHjx/nuiEEk1L/z8DAAEDmDTM0NCzhaIiIiIiIiIiISqe4uDjY2NhIuZacMCn1/+RT9gwNDZmUIiIiIiIiIiL6QHktj5TzxD4iIiIiIiIiIqIiwqQUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExY5JKSIiIiIiIiIiKnZMSpHk4cOHkMlkKj3OnDmTrX1AQAC6desGc3Nz6OjowMHBAbNnz0Z8fHy+Yzl9+nSeMaxdu1ZpWz8/P9SrVw9aWlqwtbWFl5cX0tPTldZNSEiAnZ0d6tevj5SUlHzHSUREREREREQFo17SAdDHQ19fH8OGDcux/ObNm7hy5QoMDAzQuHFjhbKlS5di6tSpkMlkaNWqFSwtLXH27FksXLgQu3fvxrlz52Bubp7vmCwtLdGlSxelZfb29tmOHTp0CF9++SVMTEzg5uaGsLAwzJ07F69fv8aKFSuy1Z8zZw4ePXqEc+fOQVNTM9/xEREREREREVHByIQQoqSD+BjExcXByMgIsbGxMDQ0LOlwPkrdunXDkSNH8NVXX8HX11c6HhoaisaNG0NNTQ0HDx5E165dAQCJiYno2bMnTpw4gX79+mHXrl0qn+v06dNwdXVFmzZtcPr0aZXbNWrUCDdv3sT169dRu3ZtJCQkwNnZGXfu3EFkZCSsrKykusHBwWjWrBnGjBmDVatWqXwOIiIiIiIiIsqZqjkWTt8jlTx58gTHjh0DAIwaNUqhzNvbG0IIjBgxQkpIAYCuri7Wr18PNTU17N69GxEREUUaY0pKCq5fv442bdqgdu3aAAA9PT0MHjwY6enpuHz5slQ3PT0d7u7usLKygre3d5HGRURERERERETZMSlFKtm0aRMyMjJQr149NG3aVDqekpKCw4cPAwC++OKLbO2qVq0KFxcXAMDevXuLNMaYmBikp6fD1NRU4biZmRkAKKxttXTpUoSGhmLlypUcGUdERERERERUArimFKlk06ZNALKPkrp9+zYSExMBAM7OzkrbOjs74+zZswgNDc33eV+8eIF58+bhyZMn0NbWhoODA9zc3GBra5utroWFBXR1dREeHq5wXP575cqVAWQu6O7p6Yk+ffqgd+/e+Y6JiIiIiIiIiD4ck1KUp8DAQNy9exeampoYMmSIQtmDBw8AAMbGxjAwMFDa3sbGRqFufkRERMDT01PhmLq6OiZOnIjFixdDXV3xJdyzZ0/4+/tjyZIlGD16NIKCgrBx40ZYWFigWbNmAICxY8dCXV0dK1euzHc8RERERERERFQ4OH2P8rRhwwYAmQmf93fQe/v2LYDMtZtyoq+vDyBzoTNVGRkZYfLkyQgMDMSzZ8+QkJCAa9euYcqUKZDJZFi6dCnGjRuXrZ23tzcsLS0xbdo0GBkZoXPnzkhOTsa6deugpaWFbdu24ejRo1i0aBGsra2ldsnJyUhPT1c5PiIiIiIiIiL6MExKUa7i4uKkXfNGjhxZbOdt1KgRli5ditatW8PKygq6urpwdHTEkiVL4O/vDwBYt24dwsLCFNrZ2dnhxo0b8PHxwVdffYU5c+bg2rVr6NmzJ968eYPJkyfDxcUFX3/9NQBg+/btsLe3h46ODnR0dODm5lagEV1ERERERERElD+cvke58vf3R2JiIqpUqYLOnTtnK5dP2UtISMixD/kC44W1oHjfvn3RsGFDhIWF4eDBg2jYsKFCubm5OaZPn56t3bfffouYmBj4+vpCJpNh//79GDhwIFq2bAlvb288e/YMs2fPhqurK27cuCGN8CIiIiIiIiKiwsekFOVKPnVv+PDhUFPLPrDOzs4OQObOd2/fvlW6rtTjx48V6haGOnXqICwsDJGRkSrVDwwMxMaNG+Hh4YG6desCABYtWgQ9PT0cOHAAJiYmAIAKFSpg7Nix8PPzg7u7e6HFS0RERERERESKOH2PcnTz5k1cunQJMpkMI0aMUFrH3t4eurq6AIDg4GCldeTHnZycCi22169fA0COi6tn9e7dO4wZMwb29vaYNWuWdDwsLAx16tSRElIA0LJlS6mMiIiIiIiIiIoOk1KUo/Xr1wMAXF1dUb16daV1NDU14ebmBgDw8/PLVv7ff//hwoULAIA+ffoUSlxPnjzB2bNnAQBNmjTJs/6PP/6I27dv47fffoOWlpZ0XCaTZZt2KP9dJpMVSqxEREREREREpByTUqRUamoqtm7dCgAYNWpUrnVnzJgBmUyGjRs34ujRo9LxxMREjBo1Cunp6ejXrx8cHBwU2l2+fBkODg7ZjgPAsmXLEBUVle34tWvX0KNHDyQlJaFGjRro1atXrrHdvHkTPj4+GD16NFq3bq1Q5uTkhPDwcJw/f1465uvrK5URERERERERUdGRCSFESQfxMYiLi4ORkRFiY2MLbUHu0mzv3r3o27cvjI2N8ezZM2hra+daf+nSpZg6dSpkMhnatGkDCwsLnD17Fs+ePYO9vT3OnTsHc3NzhTanT5+Gq6srAOD9l6GxsTHi4+PRsGFDVKtWDWpqarh37x5CQ0ORkZEBW1tbHD16FHXq1MkxJiEEWrVqhXv37iE8PBzGxsYK5UePHkW3bt2gra2Njh074vnz57h8+TJq1qyJf/75R5qWSERERERERESqUzXHwpFSpJR8gfMvvvgiz4QUAEyZMgXHjx9H586dce3aNezfvx/6+vqYOXMmrly5ki0hlZfZs2eje/fuiI2NxfHjx7Fnzx48ePAALVq0wE8//YQbN27kmpACMkc9nT9/HsuXL8+WkAKALl264MCBA6hfvz6OHj2K27dvY+DAgQgMDGRCioiIiIiIiKiIcaTU/+NIKSIiIiIiIiKiD8eRUkRERERERERE9NFiUoqIiIiIiIiIiIodk1JERERERERERFTsmJQiIiIiIiIiIqJix6QUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExY5JKSIiIiIiIiIiKnbqJR2AKuzs7PDff/9lOz5u3DisWrUKycnJmDZtGvz9/fHu3Tt07twZq1evhqWlZQlEW/LsZhwu6RDKrYeL3Eo6BCIiIiIiIqJSoVSMlLpy5QqePXsmPY4fPw4A+OyzzwAAU6ZMwcGDB7Fz504EBgbi6dOn6Nu3b0mGTEREREREREREuSgVI6UqVqyo8PuiRYtQo0YNtGnTBrGxsVi/fj38/PzQrl07AMDGjRtRp04dBAUFoVmzZiURMhERERERERER5aJUjJTKKiUlBVu3bsXIkSMhk8lw9epVpKamokOHDlIdBwcH2Nra4uLFizn28+7dO8TFxSk8iIiIiIiIiIioeJS6pNS+ffsQExOD4cOHAwCeP38OTU1NGBsbK9SztLTE8+fPc+zH29sbRkZG0sPGxqYIoyYiIiIiIiIioqxKXVJq/fr16Nq1K6ytrT+on5kzZyI2NlZ6PH78uJAiJCIiIiIiIiKivJSKNaXk/vvvPwQEBGDPnj3SMSsrK6SkpCAmJkZhtNSLFy9gZWWVY19aWlrQ0tIqynCJiIiIiIiIiCgHpWqk1MaNG2FhYQE3NzfpWOPGjaGhoYETJ05Ix27duoVHjx6hefPmJREmERERERERERHlodSMlMrIyMDGjRsxbNgwqKv/L2wjIyOMGjUKU6dOhampKQwNDTFx4kQ0b96cO+8REREREREREX2kSk1SKiAgAI8ePcLIkSOzlS1duhRqamro168f3r17h86dO2P16tUlECUREREREREREalCJoQQJR3ExyAuLg5GRkaIjY2FoaFhSYfzQexmHC7pEMqth4vc8q5EREREREREVIapmmMpVWtKERERERERERFR2cCkFBERERERERERFTsmpYiIiIiIiIiIqNgxKUVERERERERERMWOSSkiIiIiIiIiIip2TEoREREREREREVGxY1KKiOj/paSkYPny5WjZsiVMTU2hra2NKlWqoGvXrti+fbtCXS8vL8hkslwfERER+Y4hLS0Nq1evRrNmzWBoaAhdXV04Ojpi/vz5SEpKyrHdsmXLULNmTWhpaaFWrVpYtWpVjnWfPHkCIyMjdOrUKd/xFRXeeyIiIiKi8ke9pAMgIvoYREZGonPnzrh58ybMzc3h4uICPT09PH78GGfOnIGenh4+//zzbO0aNGiAhg0bKu3TyMgoXzG8e/cO3bt3R0BAALS0tKTkyKVLl/DDDz9g9+7dOH36NIyNjRXarVy5EpMnT0alSpXg5uaGixcvYsKECUhOTsa0adOynWfChAlIS0vD2rVr8xVfUeG9JyIiIiIqn5iUIqJyLykpCR07dkRERAS8vLwwa9YsaGhoSOWJiYm4ffu20ra9e/eGl5dXocTh4eGBgIAAVK5cGUePHkX9+vUBAG/fvsWgQYNw+PBhjB8/Hn/++afUJj09HXPnzoW5uTmuXbsGc3NzvHz5EnXq1MGCBQvwzTffKFzL3r17sW/fPixevBjVq1cvlLg/BO89EREREVH5xel7RFTueXt7IyIiAu7u7vD09FRIJACArq5ujiNyCktqairWrFkDAFiwYIGUFAEAAwMD/P7779DR0cG2bdtw9+5dqezhw4eIiopCnz59YG5uDgCwsLBA3759ERMTg/DwcKnu27dvMXHiRDRs2BBTpkwp0utRFe89EREREVH5xaQUEZVrWRMS3333XYnFER4ejvj4eABAhw4dspVbWVmhfv36EEJg9+7d0vHXr18DAExNTRXqm5mZAYDUJwDMnDkTz58/x7p166CuXvIDZXnviYiIiIjKN/5lTETlWkhICKKiomBtbY2aNWvi+vXr2LNnD54+fQoTExO0atUKXbt2hZqa8hx+SEgIZsyYgejoaBgZGaFRo0bo0aMHDAwM8hVH1gSGPKnxPvlonKtXr0rH7OzsAEBhVE7W3ytXrgwACAoKwpo1azBp0iQ4OzvnK7aiwntPRERERFS+MSlFROXatWvXAABVqlTBjBkzsHjxYgghpHIfHx80atQI+/btg62tbbb2Bw8exMGDBxWOGRkZYfny5Rg6dKjKcVhYWEg/379/H/Xq1ctW5/79+wCABw8eKLRr3rw5Dh8+DH9/f7i5ueHQoUM4fPgwPvnkE1StWhWpqalwd3eHjY0N5s+fr3JMRY33noiIiIiofOP0PSIq1+RTsEJDQ+Hj44Nx48bh1q1biI2NxfHjx1G7dm2EhobCzc0NqampUrsaNWpg4cKFCA0NRXR0NKKjo3Hu3Dl0794dsbGxGDZsmMKi2HmpWbOmlHhZt25dtvLTp0/j1q1bAIC4uDiFsuXLl0NHRweDBg2CoaEhvvjiC+jp6Un9/Pzzz7h+/TrWrFkDPT09qV1SUpJCEqi48d6X3L0nIiIiIvoYyAT/KgaQ+UXDyMgIsbGxMDQ0LOlwPojdjMMlHUK59XCRW0mHQPnk7e2NWbNmAQAGDRoEPz8/hfJHjx7B3t4eycnJ2LJlC4YMGZJnn9988w1WrFiBihUrIjIyEpqamirFsmHDBowaNQpqamqYPXs2Ro0aBUNDQ5w4cQLjx4/HmzdvkJqaCgcHh2xTxv777z9s3rwZkZGRsLW1xbBhw2BjY4N79+7B0dERvXv3lq5txYoVWLx4MSIjI6Gjo4PevXtjxYoVOU5dKyq89yV374mIiIiIipKqORaOlCKici3r+kNjxozJVm5raws3t8xkY0BAgEp9enl5oUKFCnj16hUuXbqkciwjR47E3LlzIZPJMH/+fNjZ2cHU1BSfffYZLCwspMXA319YGwCqVq2KH374Ab6+vpgzZw5sbGyka9LR0cGvv/4KIHNkzzfffIPGjRtj37598PDwwO7du9G1a1dkZGSoHGth4L0vuXtPRERERPQx4JpSRFSuVa9eXenPyuo8e/ZMpT5NTU1hYWGBZ8+eITIyMl/x/PDDDxg8eDD27NmDe/fuQVNTE82aNUO/fv3g5eUFAHB0dFSpr82bN+PEiRPYsGGDtG7SokWLULVqVezatQvq6uro1asXYmNj4ePjg4CAAHTq1Clf8X4I3vuSu/dERERERB8DJqWIqFxzcnKCTCaDEAJRUVHSKJesoqKiAAD6+voq9Zmeno7Y2FgAyPdOcEBmIubbb7/Ndvzs2bMAgI4dO+bZR1RUFKZNmwZXV1eMGDECAPDixQs8e/YM/fv3h7r6/z7+W7ZsCR8fH4SFhRVrYoT3vuTuPRERERHRx4DT94ioXLOyskLLli0BKJ8ilpqaisDAQABAkyZNVOrzwIEDSExMhEwmg7Ozc6HEGRQUhHPnzsHGxga9evXKs/7UqVORkJCA3377TTomk8kAAAkJCQp15b/Ly4sL733J3XsiIiIioo8Bk1JEVO55enoCyFx4OygoSDqelpaGadOm4f79+zAwMJBGvTx69Ahbt25FcnJytr727duH0aNHAwC+/PJLWFlZKZRfvnwZDg4OcHBwyNb2zZs30i5vWQUFBaFfv36QyWTw9fVVGGmjTEBAAP744w94eHigVq1a0nELCwtUqVIFp06dwr179wBkjizasGEDgMyRS8WN977k7j0RERERUUnj7nv/j7vvUWHg7nul14IFC+Dh4QF1dXU0adIEVlZWCAkJwcOHD6Gjo4OdO3dKi26HhYWhUaNG0NfXR6NGjVC5cmUkJSXh5s2buHPnDgDA1dUVBw4cyDbt7PTp03B1dQUAvP/xK++3Tp06qFmzJvT09HDr1i2EhoZCQ0MDv/32m5ScyUlSUhIcHR2hq6uLq1evQkNDQ6Hc19cXY8aMgbGxMVxdXXH79m38+++/cHFxwdmzZ0tkxA7vfcndeyIiIiKioqBqjoVrShERAZgzZw6aNGmCX3/9FZcuXcKVK1dgZWWF4cOH4/vvv1cYXWNjY4Pvv/8eV65cwd27dxESEoKUlBSYm5uje/fu+OKLL/D5559DTS1/g1ErV66MMWPG4Ny5cwgMDMS7d+9gbW2Nr776CtOmTYO9vX2efcybNw8PHjzAhQsXsiVFAMDd3R2ampr4+eefcejQIRgbG2PMmDHw8fEpsaQI733J3XsiIiIiopLEkVL/jyOlqDBwpBQRERERERGVd6rmWLimFBERERERERERFTsmpYiIiIiIiIiIqNgxKUVERERERERERMWOSSkiIiIiIiIiIip2TEoREREREREREVGxY1KKiIiIiIiIiIiKHZNSRERERERERERU7JiUIiIiIiIqJ1JSUrB8+XK0bNkSpqam0NbWRpUqVdC1a1ds375doe6RI0cwevRoODs7o1KlStDS0oKBgQEaNmyIWbNmISoqKt/nv3DhAsaNG4fmzZujcuXK0NbWhp6eHurWrYuJEyfi4cOHStulpaXBw8MDNjY20NLSgqOjI3bu3JnjecLCwqChoQF3d/d8x0hERMVHJoQQJR3ExyAuLg5GRkaIjY2FoaFhSYfzQexmHC7pEMqth4vcSjqEcstxs2NJh1Bu7fBOK+kQyq06EeElHQIRlSKRkZHo3Lkzbt68CXNzczRr1gx6enp4/PgxwsLC0LVrV+zatUuqP3jwYPz555+oWbMm7OzsULFiRbx+/RqXL19GTEwMLCwscPLkSdSrV0/lGObMmYMff/wRtra2qFGjBiwtLREbG4uQkBC8ePECenp6OHToENq2bavQ7ttvv8Uvv/yC6tWro0GDBjh16hRiYmKwc+dO9O/fX6Fueno6mjVrhsjISISHh8PY2PhDbhsRERWAqjkWJqX+H5NSVBiYlCo5TEqVHCalSg6TUkSkqqSkJDg5OSEiIgJeXl6YNWsWNDQ0pPLExETcvn0bDRs2lI6FhYXBysoKVlZWCn3Fx8dj5MiR2LlzJ5o1a4aLFy+qHEd4eDh0dHRgZ2encDwlJQXTp0/HsmXLUKVKFTx8+BAVKlQAALx8+RI2NjaoWbMmrly5Al1dXUREROCTTz5B7dq1cePGDYW+li5diqlTp2LHjh347LPPVI6NiIgKj6o5Fk7fIyIiIiIq47y9vREREQF3d3d4enoqJKQAQFdXVyEhBQANGzbMlpACAH19ffzyyy8AgKCgIMTFxakcR506dbIlpABAU1MTP/30E7S1tREZGYmbN29KZdevX0dKSgq+/PJL6OrqAgAcHBzQpk0b/Pvvvwrnf/ToETw8PNC9e3cmpIiISgEmpYiIiIiIyrDU1FSsWbMGAPDdd98VSp/q6uoAADU1tWwJroKSyWRQU8v8eqKlpSUdf/36NQDA1NRUob6ZmRmAzJFbcuPHj4dMJsPq1asLJSYiIipa6iUdABERERERFZ2QkBBERUXB2toaNWvWxPXr17Fnzx48ffoUJiYmaNWqFbp27SolhPLy7t07zJo1CwDQsWNH6OjofHCM6enpmDt3LhITE1G3bl3UrFlTKpOPrAoPV5yyHB4eDk1NTZibmwMAduzYgUOHDmHZsmWwsbH54JiIiKjoMSlFRERERFSGXbt2DQBQpUoVzJgxA4sXL0bWZWV9fHzQqFEj7Nu3D7a2ttnah4SEYPny5RBC4NWrV7hy5QqioqLw6aefYv369QWK6dGjR/jhhx8AANHR0QgNDUVkZCRq1qyJHTt2KCTIGjZsiKpVq2Ljxo1wc3NDs2bN8Pvvv+PatWvo2bMnNDU1ERMTg0mTJqFJkyaYMGFCgWIiIqLix+l7RERERERlmHz6W2hoKHx8fDBu3DjcunULsbGxOH78OGrXro3Q0FC4ubkhNTU1W/tHjx5h8+bN2LJlC44cOYKoqCh06NAB/v7+qFy5coFiio6OxubNm7F582YcPHgQkZGRcHJywq5du7Lt5qepqYkVK1YgKSkJnTt3hpGREaZNm4ZKlSph6dKlAIDvv/8eUVFR+P333xUSWomJiQWKj4g+XEpKCpYvX46WLVvC1NQU2traqFKlCrp27Yrt27dL9TIyMnDhwgX88MMPaNmyJczMzKChoQFzc3N07NgRf/75JwqyP9umTZsgk8lyfRw9elRp22XLlqFmzZrQ0tJCrVq1sGrVqhzP8+TJExgZGaFTp075jpE4UoqIiIiIqEyTf5lLTU3FoEGDsHLlSqmsQ4cOOH78OOzt7XHjxg34+/tjyJAhCu179+4NIQTS09MRGRmJgIAAeHp6on79+tiyZQv69++f75gaNmwIIQSEEHj69Kn0hbRx48ZYsmQJvvnmG4X6PXr0QFhYGPz8/PDq1SvUrl0bI0eOhKmpKc6dO4d169ZhxowZcHR0lKYCrlmzBlFRUTA0NMTgwYPx008/SQulE1HRioyMROfOnXHz5k2Ym5vDxcUFenp6ePz4Mc6cOQM9PT18/vnnAID79+/DxcUFQObacc7OzjAxMcH9+/cREBCAgIAA+Pv7Y/fu3dDU1Mx3LDVq1EDLli2VlilLrK9cuRKTJ09GpUqV4ObmhosXL2LChAlITk7GtGnTstWfMGEC0tLSsHbt2nzHRoBMFCTlWAapul1haWA343BJh1BuPVzkVtIhlFuOmx1LOoRya4d3WkmHUG7ViQjPuxIRlXsrV67ExIkTAQCnT59GmzZtstXp378/du/ejaFDh2Lz5s159vnw4UPUq1cPampquHPnjtJd+vIrJiYG9erVw/PnzxESEoIGDRrk2SYlJQUNGzZEamoqrl+/Dm1tbUydOhVLly7FqFGj0KtXL5w9exY///wz+vTpg927d39wnESUu6SkJDg5OSEiIgJeXl6YNWuWwoYIiYmJuH37trTj57179+Du7o7vvvsOHTt2RIUKFaS6gYGBcHNzQ0JCAubOnStN+1XFpk2bMGLECAwbNgybNm1SqU16err0eRYeHg5zc3O8fPkSderUQUZGBl6+fKlwLXv37kXfvn2xePHiQttIoqxQNcfC6XtERERERGVY9erVlf6srM6zZ89U6tPOzg6urq6Ij4/H8ePHPzxIAMbGxujTpw8yMjJw4MABldp4e3sjPDwcv/32G7S1tfH27VusWrUKLVq0wO+//44ePXpg8eLFGDBgAPbs2YPbt28XSqxElDNvb29ERETA3d0dnp6e2Xbo1NXVlRJSQOZIphMnTqBLly4KCSkAaNOmDWbMmAEA2LJlS5HH/vDhQ0RFRaFPnz7SJgoWFhbo27cvYmJiFDZcePv2LSZOnIiGDRtiypQpRR5bWcWkFBERERFRGebk5ASZTAYAiIqKUlpHflxfX1/lfvX09AAAL1++/MAIC9bnrVu34O3tjeHDh6Ndu3YAgJs3byIlJQUtWrRQqCufuhMWFlZosRJRdqmpqVizZg0AFNrIoUaNGgEAHj9+XCj95Ua+Bp+pqanCcTMzMwBAfHy8dGzmzJl4/vw51q1bB3V1roxUULxzRERERERlmJWVFVq2bImzZ88iICBA+oInl5qaisDAQABAkyZNVOrz3bt3OHfuHACgdu3ahRbryZMnVepTCIExY8bAyMgIv/zyi3RcnnxLSEhQqC//XV5OREUjJCQEUVFRsLa2Rs2aNXH9+nXs2bMHT58+hYmJCVq1aoWuXbsqbEiQlzt37gAAKlWqVKCY7t69izlz5uDly5fQ19dH/fr10bNnT2kkVFZ2dnYAoDAiKuvv8jWogoKCsGbNGkyaNAnOzs4FiosycaQUEREREVEZ5+npCSBzWk1QUJB0PC0tDdOmTcP9+/dhYGCAESNGAMgcqbRmzRrExcVl6+vJkycYMmQInj59Cjs7O3Ts2FGhfO/evXBwcED79u2ztfX29sarV6+yHX/z5g0mTpyI4OBgGBkZYcCAAblez/r16xEYGIilS5cqjGioW7cutLS0sHfvXkRHRwPIXL9m69atAJAtIUdEhevatWsAgCpVqmDGjBlo0KABvLy84OvrCx8fH3Tv3h3Ozs549OiRSv0lJiZi+fLlAIB+/foVKKbz58/jxx9/xLp166T15mxsbODj45OtroWFBZo3b47Dhw/D398fb9++xbZt23D48GF88sknqFq1KlJTU+Hu7g4bGxvMnz+/QDHR/3CkFBERERFRGde+fXvMnz8fHh4eaNWqFZo0aQIrKyuEhITg4cOH0NHRwbZt22BpaQkg84vguHHjMHnyZDRs2BB2dnYQQuDx48cICQlBSkoKrK2tsW/fPmhrayucKzY2Frdu3UJycnK2OGbNmgUPDw84OjqiRo0aUFdXx5MnTxAaGoqEhAQYGRlh586dUhzKvHjxAtOnT0eXLl3wxRdfKJTp6+tj6tSp8Pb2Rr169eDi4oKQkBA8ePAAgwYNQs2aNQvhbhJRTuTT30JDQ3H58mWMHz8e33zzDaysrKTfQ0ND4ebmhpCQkGzrTb1v3LhxePDgAaytrTFr1qx8xWJlZYXZs2ejZ8+eqF69OrS0tHDr1i2sWLECf/zxB2bMmIH09PRs/S5fvhyurq4YNGiQdMzQ0BDr1q0DAPz888+4fv06/vrrL2nKMZC5wLu2tjZHZOYTd9/7f9x9jwoDd98rOdx9r+Rw972Sw933iCi//v77b/z666+4dOkS3r59CysrK7Rv3x7ff/89HBwcpHqJiYlYu3Ytzpw5gxs3buDly5dISkqCsbEx6tatix49esDd3V3p383yHa+qVq2Khw8fKpStWrUKZ8+eRWhoKF6+fIn4+HgYGBjA3t4enTt3xtixY3NNSAHAoEGDcPDgQdy4cUOaapOVEAI///wzfvvtN/z333+wtLTE4MGDMW/evAJtJ09EqvP29paSPIMGDYKfn59C+aNHj2Bvb4/k5GRs2bIFQ4YMybGv+fPn44cffoC2tjYCAgLg4uJSaHEuWbIE06ZNg5aWlvQ5kdV///2HzZs3IzIyEra2thg2bBhsbGxw7949ODo6onfv3tK1rVixAosXL0ZkZCR0dHTQu3dvrFixQlqHqrxSNcfCpNT/Y1KKCgOTUiWHSamSw6RUyWFSioiIiD4mK1euxMSJEwEAp0+fRps2bbLV6d+/P3bv3o2hQ4di8+bNSvvJmjTat28funTpUqhxpqenw8rKClFRUXkmx7Lq0KEDQkNDER4eDgsLCyxfvhyTJk1Cr169MGLECNy8eRNeXl5o0KABgoKC8rV2Vlmjao6F0/eIiIiIiIiI6INVr15d6c/K6jx79kxp+YoVKzBt2jRoampi9+7dhZ6QAoAKFSqgVq1aiIqKQmRkpEptNm/ejBMnTmDDhg2wsLAAACxatAhVq1bFrl27oK6ujl69eiE2NhY+Pj4ICAhAp06dCj32sqb8pu2IiIiIiIiIqNA4OTlJaypFRUUprSM/rq+vn61s1apV+Oabb6SElJtb0c1Eka9/ZWBgkGfdqKgoTJs2Da6urtKGEC9evMCzZ8/w6aefQl39f+N9WrZsCQAICwsr/KDLICaliIiIiIiIiOiDWVlZSUmZgICAbOWpqakIDAwEADRp0kShbO3atZgwYYKUkOrevXuRxRkSEoLbt28rjUOZqVOnIiEhAb/99pt0TJ58S0hIUKgr/50LnquGSSkiIiIiIiIiKhSenp4AMhc9DwoKko6npaVh2rRpuH//PgwMDKQRRwCwbt06jBs3Lt8Jqb1798LBwQHt27dXOJ6YmIhVq1bh7du32dqcOXMG/fr1A5A5qimvpFRAQAD++OMPeHh4oFatWtJxCwsLVKlSBadOncK9e/cAZK5VtWHDBgCZo8Yob1xTioiIiIiIiIgKRfv27TF//nx4eHigVatWaNKkCaysrBASEoKHDx9CR0cH27Ztk3a8CwsLw5gxYyCEQPXq1bFr1y7s2rVLad+bNm1S+D02Nha3bt1CcnKywvGUlBRMmDAB06ZNQ6NGjWBra4u0tDTcvn0bN27cAAA4Ojpix44duV5LUlISvv76azg6OuK7777LVu7h4YExY8bA2dkZrq6uuH37Nv7991+4uLigXbt2qt6yco1JKSIiIiIiIiIqNHPmzEGTJk3w66+/4tKlS7hy5QqsrKwwfPhwfP/993BwcJDqxsTEQAgBAIiIiEBERESO/b6flMqJrq4uPDw8EBwcjIiICPz7779ISkqCiYkJOnTogM8++wzDhw+HpqZmrv3MmzcPDx48wIULF6ChoZGt3N3dHZqamvj5559x6NAhGBsbY8yYMfDx8eH0PRXJhPzZL+dU3a6wNLCbcbikQyi3Hi4quoX4KHeOmx1LOoRya4d3WkmHUG7ViQgv6RCIiIiIiLJRNcfCkVJERERERKUA/+Gx5PAfHomIigYXOiciIiIiIiIiomLHpBQRERERERERERU7JqWIiIiIiIiIiKjYMSlFRERERERERETFjkkpIiIiIiIiIiIqdkxKERERERERUZmUkpKC5cuXo2XLljA1NYW2tjaqVKmCrl27Yvv27UrbBAQEoFu3bjA3N4eOjg4cHBwwe/ZsxMfHFziOu3fvYvjw4ahSpQq0tLRQpUoVDB8+HPfv38+xjZ+fH+rVqwctLS3Y2trCy8sL6enpSusmJCTAzs4O9evXR0pKSoHjJCpuTEoRERERERFRmRMZGYlGjRph0qRJuHXrFlxcXNC7d29UrVoVZ86cwc6dO7O1Wbp0KTp27IijR4+iXr166NGjB2JjY7Fw4UI4OzsjKioq33GcP38eDRo0wObNm2FsbIw+ffrA2NgYmzdvxieffIKgoKBsbQ4dOoQvv/wSz549g5ubG9TV1TF37lxMnjxZ6TnmzJmDR48ewdfXF5qamvmOkaikqJd0AERERERERESFKSkpCR07dkRERAS8vLwwa9YsaGhoSOWJiYm4ffu2QpvQ0FBMmzYNFSpUwMGDB9G1a1epbs+ePXHixAl8/fXX2LVrl8pxJCYmYsCAAUhMTMTMmTOxcOFCqWzWrFnw9vbGgAEDcOvWLejo6EhlHh4e0NTURFBQEGrXro2EhAQ4OztjzZo1mD17NqysrKS6wcHBWLFiBcaOHYsWLVrk+17lJNyhTqH1RaqrExFe0iEUK46UIiIiIiIiojLF29sbERERcHd3h6enp0JCCgB0dXXRsGHDbG2EEBgxYoSUkJLXXb9+PdTU1LB7925ERESoHMemTZvw9OlT1K5dGwsWLFAoW7BgAWrXro3Hjx9jy5Yt0vGUlBRcv34dbdq0Qe3atQEAenp6GDx4MNLT03H58mWpbnp6Otzd3WFlZQVvb2+V4yL6WDApRURERERERGVGamoq1qxZAwD47rvvVGqTkpKCw4cPAwC++OKLbOVVq1aFi4sLAGDv3r0qxyKvO3DgQKipKX79VlNTw+effw4A2LNnj3Q8JiYG6enpMDU1VahvZmYGAAprWy1duhShoaFYuXIlDA0NVY6L6GPB6XtERERERERUZoSEhCAqKgrW1taoWbMmrl+/jj179uDp06cwMTFBq1at0LVrV4Uk0e3bt5GYmAgAcHZ2Vtqvs7Mzzp49i9DQUJVjkdfNrc+s9QDAwsICurq6CA9XnMYl/71y5coAgIcPH8LT0xN9+vRB7969VY6J6GPCpBQRERERERGVGdeuXQMAVKlSBTNmzMDixYshhJDKfXx80KhRI+zbtw+2trYAgAcPHgAAjI2NYWBgoLRfGxsbhbp5efv2LV6/fg0A0nly6vPVq1dISEiAnp4eAKBnz57w9/fHkiVLMHr0aAQFBWHjxo2wsLBAs2bNAABjx46Furo6Vq5cqVI8RB8jTt8jIiIiIiKiMkOeCAoNDYWPjw/GjRuHW7duITY2FsePH0ft2rURGhoKNzc3pKamAshMIAGQkkLK6OvrAwDi4uJUikPeZ279yvt8v19vb29YWlpi2rRpMDIyQufOnZGcnIx169ZBS0sL27Ztw9GjR7Fo0SJYW1tL7ZKTk5Genq5SfEQfAyaliIiIiIiIqMyQj4pKTU3FoEGDsHLlStSuXRuGhobo0KEDjh8/Dm1tbdy4cQP+/v4lHK1ydnZ2uHHjBnx8fPDVV19hzpw5uHbtGnr27Ik3b95g8uTJcHFxwddffw0A2L59O+zt7aGjowMdHR24ubmpPKKLqCQxKUVERERERERlRtbpd2PGjMlWbmtrCzc3NwBAQECAQpuEhIQc+5UvMK7qguJZ48ip36yLlr/fr7m5OaZPnw5fX1/Mnz8fDg4OAIBvv/0WMTEx8PX1hUwmw/79+zFw4EBYWFhg9+7dWLp0Kc6fPw9XV1eF/ok+RlxTioiIiIiIiMqM6tWrK/1ZWZ1nz54ByByZBGTufPf27Vul60o9fvxYoW5eDAwMYGpqiujoaDx69AgNGjTIsU9zc/Ncpw7KBQYGYuPGjfDw8EDdunUBAIsWLYKenh4OHDgAExMTAECFChUwduxY+Pn5wd3dXaV4iUoCR0oRERERERFRmeHk5ASZTAYAiIqKUlpHfly+ppO9vT10dXUBAMHBwUrbyI87OTnlK5bC6vPdu3cYM2YM7O3tMWvWLOl4WFgY6tSpIyWkAKBly5ZSGdHHjEkpIiIiIiIiKjOsrKykpIx8el5WqampCAwMBAA0adIEAKCpqSlN6fPz88vW5r///sOFCxcAAH369FE5Fnldf39/ZGRkKJRlZGRg+/btAIC+ffvm2dePP/6I27dv47fffoOWlpZ0XCaTZZseKP9dnpwj+lgxKUVERERERERliqenJ4DMXeyCgoKk42lpaZg2bRru378PAwMDjBgxQiqbMWMGZDIZNm7ciKNHj0rHExMTMWrUKKSnp6Nfv37S2k5yly9fhoODQ7bjADB8+HBYW1vj9u3b8PDwUCjz8PDA7du3UaVKFQwdOjTX67l58yZ8fHwwevRotG7dWqHMyckJ4eHhOH/+vHTM19dXKiP6mHFNKSIiIiIiIipT2rdvj/nz58PDwwOtWrVCkyZNYGVlhZCQEDx8+BA6OjrYtm0bLC0tpTZOTk745ZdfMHXqVHTr1g1t2rSBhYUFzp49i2fPnsHe3h5r167Ndq7ExETcunVLaRy6urrYsWMHOnXqhIULF+LAgQOoX78+bty4gRs3bkBPTw87d+6Ejo5OjtcihIC7uztMTU2xePHibOVz5sxBt27d0LFjR3Ts2BHPnz/H5cuXUbNmTQwaNKgAd4+o+HCkFBEREREREZU5c+bMwbFjx9CxY0dERETg4MGDSE9Px/DhwxESEiJN18tqypQpOH78ODp37oxr165h//790NfXx8yZM3HlyhWYm5vnOw4XFxf8888/GDp0KKKjo7F7925ER0dj6NCh+Oeff9CsWbNc2/v6+uL8+fNYvnw5jI2Ns5V36dJFSnYdPXoUt2/fxsCBAxEYGCitk0X0sZIJIURJB/ExiIuLg5GREWJjY1Xe4vNjZTfjcEmHUG49XJT9f2xUPBw3O5Z0COXWDu+0kg6h3KoTEV7SIRBRMeLfeCWHf+NReRTuUKekQyiXysrfd6rmWDhSioiIiIiIiIiIih2TUkREREREREREVOyYlCIiIiIiIiIiomJXapJST548weDBg2FmZgYdHR04OjoiODhYKhdC4IcffkClSpWgo6ODDh064M6dOyUYMRERERERERER5aRUJKXevHkDFxcXaGho4MiRI7h58yZ++eUXmJiYSHUWL16M5cuXY+3atbh06RL09PTQuXNnJCcnl2DkRERERERERESkjHpJB6AKHx8f2NjYYOPGjdKxatWqST8LIfDrr79izpw56NWrFwBgy5YtsLS0xL59+zBw4MBij5mIiIiIiIiIiHJWKkZKHThwAM7Ozvjss89gYWGBRo0aYd26dVL5gwcP8Pz5c3To0EE6ZmRkhKZNm+LixYtK+3z37h3i4uIUHkREREREREREVDxKxUip+/fvY82aNZg6dSpmzZqFK1eu4JtvvoGmpiaGDRuG58+fAwAsLS0V2llaWkpl7/P29sbcuXOLPHYiIiIiIiIqGMfNjiUdQrm1o6QDoHKhVIyUysjIgJOTExYuXIhGjRrB3d0dX331FdauXVvgPmfOnInY2Fjp8fjx40KMmIiIiIiIiIiIclMqklKVKlVC3bp1FY7VqVMHjx49AgBYWVkBAF68eKFQ58WLF1LZ+7S0tGBoaKjwICIiIiIiIiKi4lEqklIuLi64deuWwrHbt2+jatWqADIXPbeyssKJEyek8ri4OFy6dAnNmzcv1liJiIiIiIiIiChvpWJNqSlTpqBFixZYuHAhBgwYgMuXL8PX1xe+vr4AAJlMhsmTJ2PBggWoVasWqlWrBg8PD1hbW6N3794lGzwREREREREREWVTKpJSn376Kfbu3YuZM2di3rx5qFatGn799Vd8+eWXUp3p06cjISEB7u7uiImJQcuWLXH06FFoa2uXYORERERERERERKRMqUhKAUD37t3RvXv3HMtlMhnmzZuHefPmFWNURERERERERERUEKViTSkiIiIiIiIiIipbmJQiIiIiIiIiIqJix6QUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExY5JKSIiIiIiIiIiKnZMShERERERERERUbFjUoqIiIiIiIiIiIodk1JERERERERERFTsmJQiIiIiIiIiIqJix6QUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExY5JKSIiIiIiIiIiKnZMShERERERERERUbFjUoqIiIiIiIiIiIodk1JERERERERERFTsmJQiIiIiIiIiIqJix6QUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExY5JKSIiIiIiIiIiKnZMShERERERERWR4cOHQyaT5fpITk7Os5+//vpLqt+hQ4d8x3Hr1i38+uuv6NatGypXrgxNTU0YGhri008/hbe3N+Lj43Nsu2zZMtSsWRNaWlqoVasWVq1alWPdJ0+ewMjICJ06dcp3jERU/qiXdABERERERERlnYuLC2rWrKm0rEKFCrm2ffPmDb766ivIZDIIIQp0/vbt2+PJkyfQ1taGs7MzWrdujRcvXuDixYsIDg7G+vXrcfLkSdja2iq0W7lyJSZPnoxKlSrBzc0NFy9exIQJE5CcnIxp06ZlO8+ECROQlpaGtWvXFihOIipfmJQiIiIiIiIqYqNHj8bw4cML1HbixIl48eIFvv76a6xZs6ZAfdjb22PevHkYMGAA9PX1peMPHz5E9+7d8e+//2L48OE4efKkVJaeno65c+fC3Nwc165dg7m5OV6+fIk6depgwYIF+Oabb6ChoSHV37t3L/bt24fFixejevXqBYqTiMoXTt8jIiIiIiL6SO3duxd//vknpk6diiZNmhS4nxMnTmDkyJEKCSkAsLOzk0Y1nTp1CpGRkVLZw4cPERUVhT59+sDc3BwAYGFhgb59+yImJgbh4eFS3bdv32LixIlo2LAhpkyZUuA4iah8YVKKiIiIiIjoIxQVFYWvv/5aGuVUVBo1aiT9/PjxY+nn169fAwBMTU0V6puZmQGAwjpUM2fOxPPnz7Fu3Tqoq3NCDhGphp8WRERERERERezUqVO4fv063r59CzMzMzRp0gTdunWDlpZWjm3Gjh2LqKgo7NmzB9ra2kUW2507d6SfK1WqJP1sZ2cHAAojorL+XrlyZQBAUFAQ1qxZg0mTJsHZ2bnI4iSisodJKSIiIiIioiK2ZcuWbMcqVaqEDRs2oEuXLtnK/P39sWvXLkyaNAkuLi5FGtuiRYsAAE5OTlIiCsicqte8eXMcPnwY/v7+cHNzw6FDh3D48GF88sknqFq1KlJTU+Hu7g4bGxvMnz+/SOMkorKH0/eIiIiIiIiKSIMGDbBs2TLcuHEDcXFxePHiBf7++2+0aNECz549Q8+ePXH69GmFNs+fP8f48eNRo0YNLFy4sEjj27RpE7Zv344KFSpg2bJl2cqXL18OHR0dDBo0CIaGhvjiiy+gp6eHdevWAQB+/vlnXL9+HWvWrIGenp7ULikpqcA7BRJR+cGRUkREREREREXk/UW/DQwM0LFjR3To0AF9+vTB/v37MXnyZISFhUl13N3d8ebNG+zevRu6urpFFtuJEycwZswYAMDixYvRsmXLbHWcnZ1x48YNbN68GZGRkbC1tcWwYcNgY2ODe/fuYf78+Rg0aBC6du0KAFixYgUWL16MyMhI6OjooHfv3lixYoW0DhURUVZMShERERERERUzmUyGuXPnYv/+/fjnn3/w+PFj2NjYYPPmzTh48CDGjh2Ltm3bFtn5z507h169eiElJQWenp6YOnVqjnWrVq2KH374IdvxMWPGQEdHB7/++iuAzFFVkyZNQq9evbBy5UrcvHkTXl5euHv3LoKCgqCmxok6RKSISSkiIiIiIqISUKdOHennyMhI2NjYYO/evQCAK1euZEtKPX/+HABw9epVqczf3x9WVlb5Ou+FCxfQrVs3JCQkYPbs2fDy8sp37Js3b8aJEyewYcMGWFhYAMhcm6pq1arYtWsX1NXV0atXL8TGxsLHxwcBAQHo1KlTvs9DRGUbk1JEREREREQl4PXr19LPBgYGCmXBwcE5touJiUFgYCAAIDk5OV/nDAoKQpcuXfD27VvMmjULCxYsyFd7AIiKisK0adPg6uqKESNGAABevHiBZ8+eoX///lBX/9/XzJYtW8LHxwdhYWFMShFRNhw/SUREREREVAL8/f0BAIaGhrC3twcA7Nu3D0IIpY+NGzcCANq3by8dy7pbXl4uX76Mzp07SwmpH3/8sUBxT506FQkJCfjtt9+kYzKZDACQkJCgUFf+u7yciCgrJqWIiIiIiIiKQFhYGA4cOIC0tDSF4xkZGVi/fj1mzZoFAPjmm2+goaHxwee7fPkyHBwc4ODgkK0sODgYnTp1Qlxc3AclpAICAvDHH3/Aw8MDtWrVko5bWFigSpUqOHXqFO7duwcASE9Px4YNGwAATk5OBTofEZVtnL5HRERERERUBB4+fIg+ffrAxMQETk5OsLS0RExMDG7cuIFHjx4BAAYNGgRPT89COV9iYiJu3bqltKxTp06IjY2FsbExnjx5guHDhyutN2PGDKVJLQBISkrC119/DUdHR3z33XfZyj08PDBmzBg4OzvD1dUVt2/fxr///gsXFxe0a9euwNdFRGUXk1JERERERERFoEGDBpg8eTKCg4MRERGB8+fPQwgBS0tL9O/fHyNGjEC3bt2KJZY3b94AyFyPavPmzTnWGz58eI5JqXnz5uHBgwe4cOGC0pFd7u7u0NTUxM8//4xDhw7B2NgYY8aMgY+PD6fvEZFSMiGEKOkgPgZxcXEwMjJCbGwsDA0NSzqcD2I343BJh1BuPVzkVtIhlFuOmx1LOoRya4d3Wt6VqEjUiQgv6RCIqBjxb7ySw7/xSg7/xis5/BuvZJSVv+9UzbFwTSkiIiIiIiIiIip2TEoREREREREREVGxY1KKiIiIiIiIiIiKHZNSRERERERERERU7JiUIiIiIiIiIiKiYsekFBERERERERERFTv1wugkLS0Nr169wqtXr5CcnAwzMzNUrFgx123/iIiIiIiIiIio/CpwUiowMBBHjx5FYGAgrl69irS0tGx1KlWqhNatW6NNmzbo378/zMzMPihYIiIiIiKiYudlVNIRlF/VbEs6AiIqQvlKSsXFxeH333+Hr68v7ty5AwAQQuRY/+nTp/D398f27dsxefJk9O3bF2PHjkXLli0/LGoiIiIiIiIiIirVVEpKpaWlYdWqVViwYAGio6MhhICBgQGaNGmCpk2bolGjRjA3N4epqSl0dHQQHR2N6OhoPHjwAJcuXcKlS5dw69YtbNu2Df7+/ujSpQt++ukn1K1bt6ivj4iIiIiIiIiIPkIqJaXq1q2Le/fuQV1dHT179sTgwYPRo0cPaGpq5tl27NixAIA7d+5g69at8PPzw5EjR/D3339jw4YNGDJkyIddARERERERERERlToq7b7333//wd3dHXfv3sXevXvRr18/lRJSWdWqVQtz587FnTt3sG3bNtjb2+PBgwcFCpqIiIiIiIiIiEo3lUZK3b17FzY2NoV20s8//xwDBgzA06dPC61PIiIiIiIiIiIqPVQaKVWYCSk5mUyGypUrF3q/RERERERERET08VMpKUVERERERERERFSYVJq+l1+vX7/G/fv3AQDVqlWDubl5UZyGiIiIiIiIiIhKqUIdKRUSEoJWrVrBwsICzZo1Q7NmzWBpaYlWrVrh6tWrhXkqIiIiIiIiIiIqxQptpNTVq1fRpk0bJCYmwtzcHNWqVUNSUhLu3r2L8+fPo3Xr1jhz5gwaN25cWKckIiIiIiIiIqJSqtBGSs2aNQvv3r3DunXr8Pz5c1y6dAnXrl1DZGQkBg4ciKSkJMyaNauwTkdERERERERERKWYykmpx48f51p+4cIF9O7dG6NGjYKa2v+6NTU1xfr166GhoYGLFy8WPFIiIiIiIiIiIiozVE5K1atXD8uXL4cQQmm5TCbLsQxArmVERERERERERFS+qJyUsra2xpQpU9C0aVOEhYVlK2/evDkOHDiArVu3KhyPjY3FmDFjkJaWhubNm39wwEREREREREREVPqpnJS6du0a5syZg2vXrqFJkyb47rvvkJSUJJUvXLgQGhoaGDZsGKysrNC8eXM0bNgQ1tbW2Lp1K7S1tbFgwYIiuQgiIiIiIiIiIipdVE5KaWpqYu7cuQgLC0OzZs3wyy+/oF69ejhy5AgAoHHjxggMDESzZs3w8uVLaaHzpKQkNG3aFCdPnsSnn35aZBdCRERERERERESlR75333NwcMCZM2fg6+uL2NhYdO/eHQMHDsSLFy/g7OyM8+fP48WLF7h48SIuXryI58+f4+LFi2jWrFlRxE9ERERERERERKVQvpNScqNHj0ZERAQ+//xz7NixA3Xq1IGvry8AoGLFimjatCmaNm0KCwuLQguWiIiIiIiIiIjKhgInpYDM5JOfnx+OHDkCY2NjjB07Fq1bt0Z4eHhhxUdERERERERERGXQByWl5Dp37oybN2/iu+++Q1BQEBo1aoQffvgBKSkphdE9ERERERERERGVMflKSqWnp2PLli0YPHgwOnfujMGDB2Pz5s1IS0uDtrY2Fi1ahKtXr6JRo0ZYsGABPvnkE5w6daqoYiciIiIiIiIiolJK5aRUYmIi2rZtixEjRsDPzw/Hjx+Hn58fRo4ciTZt2iAhIQEA4OjoiAsXLmDFihV4/vw5OnTogBEjRiA6OrrILoKIiIiIiIiIiEoXlZNSnp6eOH/+PCpVqoRly5bhr7/+wrJly1C5cmUEBQXB09NTqiuTyTB+/HiEh4ejd+/e2Lx5MxwcHPDHH38UyUUQEREREREREVHponJSaufOnZDJZPjrr78wceJEdOnSBRMnTsThw4chhMDOnTuztalUqRJ2796Nffv2QVtbG8OHDy/M2ImIiIiIiIiIqJRSOSn17Nkz6Onp4ZNPPlE47ujoCH19fTx//jzHtj179kR4eDi++eabgkdKRERERERERERlhspJKSsrKyQkJCA8PFzh+M2bNxEfHw9LS8tc2+vp6WHp0qUFi5KIiIiIiIiIiMoUlZNSffv2hRAC3bp1w9q1a/H3339jzZo1cHNzg0wmQ79+/YoyTiIiIiIiIiIiKkPUVa04f/58XLhwAVeuXMH48eOl40IIODs7Y968eUUSIBERERERERERlT0qJ6X09fVx7tw5bN26FcePH0dUVBTMzMzQsWNHDB48GJqamkUZJxERERERERERlSEqJ6UAQENDAyNGjMCIESOKKh4iIiIiIiIiIioHVF5TioiIiIiIiIiIqLAwKUVERERERERERMVOpaTU+PHj8ezZs0I98a5du7Bt27ZC7ZOIiIiIiIiIiEoHlZJSa9asQY0aNTBp0iSEh4cX+GRJSUnYunUrPvnkE3z++ee4c+eOSu28vLwgk8kUHg4ODlJ5cnIyxo8fDzMzM+jr66Nfv3548eJFgeMkIiIiIiIiIqKipVJSytfXF0ZGRlixYgXq168PZ2dn/PLLL7h8+TJSU1Nzbfvo0SPs3LkTQ4YMgaWlJYYNG4YbN26gX79+GD58uMqB1qtXD8+ePZMe586dk8qmTJmCgwcPYufOnQgMDMTTp0/Rt29flfsmIiIiIiIiIqLipdLue6NHj8agQYOwePFirFixAiEhIQgNDQWQuSOfvb09KlasCFNTU2hpaeHNmzeIjo7GgwcP8PLlSwCAEAIA4Orqih9//BHNmjXLX6Dq6rCyssp2PDY2FuvXr4efnx/atWsHANi4cSPq1KmDoKCgfJ+HiIiIiIiIiIiKnkpJKQDQ09PD3LlzMXPmTPj7+2PdunW4dOkSUlJScP36dameTCaTElByFhYWGDRoEMaMGaMw7S4/7ty5A2tra2hra6N58+bw9vaGra0trl69itTUVHTo0EGq6+DgAFtbW1y8eJFJKSIiIiIiIiKij5DKSSk5bW1tDB8+HMOHD0dcXBzOnTuHS5cu4enTp3j16hWSk5NhZmaGihUrom7dumjdunWBE1FyTZs2xaZNm2Bvb49nz55h7ty5aNWqFW7cuIHnz59DU1MTxsbGCm0sLS3x/PnzHPt89+4d3r17J/0eFxf3QTESEREREREREZHq8p2UysrQ0BDdunVDt27dCisepbp27Sr9/Mknn6Bp06aoWrUqduzYAR0dnQL16e3tjblz5xZWiERERERERERElA8qLXT+sTE2Nkbt2rVx9+5dWFlZISUlBTExMQp1Xrx4oXQNKrmZM2ciNjZWejx+/LiIoyYiIiIiIiIiIrlSmZSKj4/HvXv3UKlSJTRu3BgaGho4ceKEVH7r1i08evQIzZs3z7EPLS0tGBoaKjyIiIiIiIiIiKh4fND0veLy7bffokePHqhatSqePn0KT09PVKhQAYMGDYKRkRFGjRqFqVOnwtTUFIaGhpg4cSKaN2/ORc6JiIiIiIiIiD5SpSIpFRkZiUGDBuH169eoWLEiWrZsiaCgIFSsWBEAsHTpUqipqaFfv3549+4dOnfujNWrV5dw1ERERERERERElJNSkZTy9/fPtVxbWxurVq3CqlWriikiIiIiIiIiIiL6EKVyTSkiIiIiIiIiIirdmJQiIiIiIiIiIqJix6QUEREREREREREVOyaliIiIiIiIiIio2DEpRURERERERERExa7ASamUlBQ8evQIz58/z1YWHx+Pb7/9Fg0aNECjRo3g4eGBpKSkDwqUiIiIiIiIiIjKDvWCNvz9998xceJEDBs2DBs2bFAoc3Nzw7lz5yCEAABcu3YNZ8+exalTpyCTyT4sYiIiIiIiIiIiKvUKPFLq2LFjAIAvvvhC4fiBAwdw9uxZyGQyfPnllxg9ejQ0NDRw9uxZ/PHHHx8WLRERERERERERlQkFTkqFh4cDABo3bqxw3M/PDzKZDN9//z3++OMP+Pr64tdff4UQAn5+fh8WLRERERERERERlQkFTkq9evUKurq6MDExUTh+6tQpAMDo0aOlY0OGDAEA/PPPPwU9HRERERERERERlSEFTkolJCRATU2x+cOHD/Hq1SvY2NigWrVq0nE9PT0YGxsjOjq64JESEREREREREVGZUeCklKmpKeLj4xETEyMdO3nyJACgRYsW2eqnpaVBX1+/oKcjKnemT58OmUwGmUyGBQsWZCv38vKSynN6RERE5Oucp0+fzrPPtWvXKm3r5+eHevXqQUtLC7a2tvDy8kJ6errSugkJCbCzs0P9+vWRkpKSrxiJiIiIiIiobCjw7ntOTk44duwY1q9fj2nTpiEjIwPr16+HTCaDq6urQt1Xr14hPj4ederU+eCAicqDCxcu4JdffoFMJpN2scxJgwYN0LBhQ6VlRkZGBTq/paUlunTporTM3t4+27FDhw7hyy+/hImJCdzc3BAWFoa5c+fi9evXWLFiRbb6c+bMwaNHj3Du3DloamoWKEYiIiIiIiIq3QqclBo2bBiOHj2KGTNmICAgAK9evUJISAgMDAzw2WefKdQ9e/YsADApRaSCxMREDB8+HJUqVcKnn36Kffv25Vq/d+/e8PLyKtQYHBwcsGnTJpXre3h4QFNTE0FBQahduzYSEhLg7OyMNWvWYPbs2bCyspLqBgcHY8WKFRg7dqzSUZVERERERERUPhR4+t7nn3+O4cOHIz09HceOHUNISAi0tbWxdu1aGBsbK9Tdvn270hFURJTdzJkzcefOHfj6+hZ4pFNxSklJwfXr19GmTRvUrl0bQOY6coMHD0Z6ejouX74s1U1PT4e7uzusrKzg7e1dUiETERERERHRR6DAI6UAYMOGDRg1ahQuXLgAY2NjtG/fHtWrV1eok5KSAiMjIwwdOhTdunX7oGCJyrrTp09jxYoV0vtlx44dJR1SnmJiYpCeng5TU1OF42ZmZgCA+Ph46djSpUsRGhqKvXv3wtDQsFjjJCIiIiIioo/LByWlAMDFxQUuLi45lmtqasLX1/dDT0NU5sXHx2PkyJGwtLTEr7/+qnK7kJAQzJgxA9HR0TAyMkKjRo3Qo0cPGBgYFDiWFy9eYN68eXjy5Am0tbXh4OAANzc32NraZqtrYWEBXV1dhIeHKxyX/165cmUAmbtzenp6ok+fPujdu3eBYyMiIiIiIqKyocBJqWrVqkFNTQ3Hjh1DzZo1CzMmonLp22+/xYMHD7B3716YmJio3O7gwYM4ePCgwjEjIyMsX74cQ4cOLVAsERER8PT0VDimrq6OiRMnYvHixVBXV/zo6NmzJ/z9/bFkyRKMHj0aQUFB2LhxIywsLNCsWTMAwNixY6Guro6VK1cWKCYiIiIiIiIqWwq8ptSzZ8/w6tUrJqSICsHff/+N3377DQMHDlR5FFGNGjWwcOFChIaGIjo6GtHR0Th37hy6d++O2NhYDBs2DH/++We+4jAyMsLkyZMRGBiIZ8+eISEhAdeuXcOUKVMgk8mwdOlSjBs3Lls7b29vWFpaYtq0aTAyMkLnzp2RnJyMdevWQUtLC9u2bcPRo0exaNEiWFtbS+2Sk5ORnp6erxiJiIiIiIiobChwUsra2jrPreqJKG+xsbEYNWoUKlasiBUrVqjcbsiQIZg5cyYaNmwIExMTmJiYwMXFBQcPHsTEiRMBAFOmTEFKSorKfTZq1AhLly5F69atYWVlBV1dXTg6OmLJkiXw9/cHAKxbtw5hYWEK7ezs7HDjxg34+Pjgq6++wpw5c3Dt2jX07NkTb968weTJk+Hi4oKvv/4aQObmB/b29tDR0YGOjg7c3Nzw4MEDleMkIiIiIiKi0q/ASakOHTogMTERoaGhhRkPUbkzefJkREZGYuXKlTA3Ny+UPr28vFChQgW8evUKly5dKpQ++/bti4YNGwJAtumCAGBubo7p06fD19cX8+fPh4ODA4DMaYkxMTHw9fWFTCbD/v37MXDgQFhYWGD37t1YunQpzp8/D1dXV4VF0YmIiIiIiKhsK/CaUjNmzIC/vz8mTJiA48ePQ1dXtzDjIio39u7dC3V1daxevRqrV69WKIuIiAAArF+/HgEBAbCyspJGLOXG1NQUFhYWePbsGSIjIwst1jp16iAsLEzlPgMDA7Fx40Z4eHigbt26AIBFixZBT08PBw4ckNbOqlChAsaOHQs/Pz+4u7sXWrxERERERET08SpwUkpdXR2//fYbxowZg/r162PixIlo0aIFLCwsUKFChRzbKdu9i6i8S0tLQ2BgYI7lDx8+xMOHD1G1alWV+ktPT0dsbCwAfNAufO97/fq1yn2+e/cOY8aMgb29PWbNmiUdDwsLQ/369RUWc2/ZsqVURkREREREROXDB+2+J5eQkIBvv/02zzYymQxpaWkFPSVRmRQTE5Nj2fDhw7F582bMnz8fc+bMUbnPAwcOIDExETKZDM7OzoUQJfDkyROcPXsWANCkSZM86//444+4ffs2Tp8+DS0tLem4TCZDQkKCQl357zKZrFBiJSIiIiIioo9fgdeUEkLk+5GRkVGYsROVW48ePcLWrVuRnJycrWzfvn0YPXo0AODLL7+ElZWVQvnly5fh4OAgrfmU1bJlyxAVFZXt+LVr19CjRw8kJSWhRo0a6NWrV67x3bx5Ez4+Phg9ejRat26tUObk5ITw8HCcP39eOubr6yuVERERERERUflQ4JFS3CmLqORER0djyJAhGDt2LBo1aoTKlSsjKSkJN2/exJ07dwAArq6uWLNmTba2iYmJuHXrltJ+PT09MW3aNDRs2BDVqlWDmpoa7t27h9DQUGRkZMDW1hYHDx5UGPn0PiEE3N3dYWpqisWLF2crnzNnDrp164aOHTuiY8eOeP78OS5fvoyaNWti0KBBBbwjREREREREVNoUOCml6to2RFT4bGxs8P333+PKlSu4e/cuQkJCkJKSAnNzc3Tv3h1ffPEFPv/8c6ip5W8w5OzZs3H+/Hn8+++/OH78OBISEmBoaIgWLVqgV69eGDNmTJ7rSfn6+uL8+fPYsWMHjI2Ns5V36dIFBw4cwLx583D06FHo6upi4MCB+OWXX7hhAhERERERUTkiE0KIkg7iYxAXFwcjIyPExsbC0NCwpMP5IHYzDpd0COXWw0VuJR1CueW42bGkQyi3dnhzrcCSUicivKRDIKJixL/xSs5D7S9KOoRyy7EaN8oqKfwbr2SUlb/vVM2xFHik1PtevXqF//77D4mJidnWkCEiIiIiIiIiIsqqwAudyx04cABOTk6wsrJC06ZN0a5dO4XyN2/eoEuXLujSpYu0RT0REREREREREZVvH5SUWrRoEfr06YOwsDCFXfayMjExgY6ODo4fP45du3Z9ULBERERERERERFQ2FDgpFRQUhNmzZ0NdXR1Lly5FVFQULC0tldYdPHgwhBA4fvx4gQMlIiIiIiIiIqKyo8BrSi1btgwAMHPmTEyaNCnXum3atAEAhIaGFvR0RERERERERERUhhR4pNT58+cBABMmTMizrrm5OfT09PD06dOCno6IiIiIiIiIiMqQAielXr58CQMDA5ibm6tUX0tLCykpKQU9HRERERERERERlSEFnr6np6eHt2/fIj09HRUqVMi1bnx8PGJiYlCxYsWCno6odPAyKukIyq9qtiUdAREREREREeVDgUdK2dvbIz09HdeuXcuz7r59+5CRkYGGDRsW9HRERERERERERFSGFDgp1bNnTwgh4O3tnWu9yMhIzJgxAzKZDP369Svo6YiIiIiIiIiIqAwpcFJqwoQJqFy5Mnbv3o2hQ4fixo0bUllqairu3LmDJUuWoHHjxnj69Clq166NYcOGFUrQRERERERERERUuhV4TSl9fX0cPHgQnTt3xtatW/Hnn39KZdra2tLPQghYW1tj37590NDQ+LBoiYiIiIiIiIioTCjwSCkAaNiwIf755x+MGDECWlpaEEIoPDQ0NDB8+HAEBwfD3t6+sGImIiIiIiIiIqJSrsAjpeSsrKywfv16rF69GlevXsXTp0+Rnp4OKysrfPrpp9DV1S2MOImIiIiIiIiIqAz54KSUnJaWFlq0aFFY3RERERERERERURlW4Ol77969K8w4iIiIiIiIiIioHCnwSCljY2M0b94cbdu2haurK5o1a8aFzImIiIiIiIiISCUFTkq9e/cOp0+fRmBgIObOnQttbW20aNECrq6ucHV1RZMmTVChQoXCjJWIiIiIiIiIiMqIAielLly4gJMnT+LUqVO4cOECkpKScOLECZw8eRIAoKenh5YtW0pJqsaNG0MmkxVa4EREREREREREVHoVOCnVrFkzNGvWDLNmzUJKSgqCgoKkJNWlS5cQHx+Po0eP4tixYwAAQ0NDtG7dGvv37y+04ImIiIiIiIiIqHQqlN33NDU10bp1a7Ru3RpeXl5ISkrCuXPncOrUKRw5cgT//PMPYmNjcejQocI4HRERERERERERlXIF3n0vJxkZGfjnn39w5coVXL58Gbdv3y7sUxARERERERERUSlXKCOlwsLCcPLkSZw8eRJnz55FfHw8AEAIAT09PXTu3Bmurq5o165dYZyOiIiIiIiIiIhKuQInpVavXo2TJ08iMDAQ0dHREEIAALS1tdG2bVspCdWkSROoqxdK7ouIiIiIiIiIiMqIAmeLJkyYAJlMBnV1dTRv3hzt2rWDq6srWrRoAS0trcKMkYiIiIiIiIiIypgPXlNKQ0MDurq60NXVhZ6eHjQ0NAojLiIiIiIiIiIiKsMKPFLqxx9/xKlTp3D+/HkEBATgxIkTAAADAwO0bt0a7dq1Q7t27fDJJ58UWrBERERERERERFQ2FDgpNXPmTMycOROpqakICgrCqVOncOLECVy6dAmHDh3C4cOHAQBmZmZo27atlKSqXbt2oQVPRERERERERESl0wevQK6hoYFWrVqhVatW+OGHH5CcnIxz587h1KlTOHXqFIKDg7F7927s3r0bMpkMaWlphRE3ERERERERERGVYoW+LZ62tjZcXV2hq6sLbW1tpKamIiQkRNqdj4iIiIiIiIiIqNCSUiEhITh58iROnjyJc+fOISEhAQCkZJSmpiaaN29eWKcjIiIiIiIiIqJSrMBJqZs3b0pJqMDAQMTExAD4XxJKXV0dzs7OaNeuHVxdXeHi4gJtbe1CCZqIiIiIiIiIiEq3AielHB0dAfwvCaWmpoZGjRrB1dUV7dq1Q6tWraCnp1c4URIRERERERERUZlS4KSUEAKOjo5SEqpNmzYwMjIqzNiIiIiIiIiIiKiMKnBS6tWrVzAzMyvMWIiIiIiIiIiIqJxQK2hDJqSIiIiIiIiIiKigCm33vfddv34dAQEBUFNTQ+fOneHg4FBUpyIiIiIiIiIiolKmwCOl/o+9u46vsvz/OP4+awZsY8RGhyDd3V0CipQIKKUYoAhY+AURUREDECUMUqSGNEhKd3dKDhgMloz17t8f/DhyXLCdxWHj9Xw89vCcKz/3mbCLz677uv/++281a9ZMn3zySby68ePHq2rVqnr//fc1dOhQVaxYUT/++GOqAgUAAAAAAEDWYXVSysfHR1u3blWxYsUsys+dO6ePPvpIcXFxcnJyUrZs2RQbG6shQ4bo8OHDqY0XAAAAAAAAWYDVSaldu3ZJktq2bWtR/ttvvyk2NlaNGzfWnTt3FBgYqC5duiguLk5TpkxJXbQAAAAAAADIEqxOSt2+fVv29vYqVKiQRfnatWtlMpn06aefKnv27HJ0dNTYsWMlSdu2bUtdtAAAAAAAAMgSrE5KBQQEyM3NTSaTyVwWGhqqkydPKnv27GrcuLG5/JlnnpGLi4t8fX1TFy0AAAAAAACyBKuTUi4uLgoODpZhGOayXbt2yTAM1a5dW3Z2lkNny5bN+igBAAAAAACQpVidlCpZsqTi4uK0detWc9mSJUtkMpnUoEEDi7ZRUVEKDg6Wl5eX9ZECAAAAAAAgy3CwtmO7du10+PBh9e/fX1999ZVu3rypWbNmSZI6depk0fbw4cOKi4tTkSJFUhUsAAAAAAAAsgark1JDhw7V7NmzdenSJfXo0UOSZBiGXnrpJVWsWNGi7fLlyxPcQQUAAAAAAICnk9VJKQ8PD+3atUujRo3S7t275eHhofbt2+uDDz6waBcVFaUZM2bIMAw1bdo01QEDAAAAAAAg87M6KSVJBQsW1G+//ZZkGycnJ/n5+aVmGgAAAAAAAGQxVh90DgAAAAAAAFiLpBQAAAAAAAAyXKpu33to9+7dOnbsmAICAhQdHZ1k208//TQtpgQAAAAAAEAmlqqk1MaNGzVgwABduXIl2X1ISgEAAAAAAMDqpNS+ffvUvn17RUVFSZKKFy+uAgUKyMEhTTZfAQAAAAAAIAuzOoM0ZswYRUVFqUyZMlq0aJEqVKiQlnEl6uuvv9bw4cM1ePBgTZw4UZIUERGhYcOGacGCBYqMjFTr1q01ZcoUeXl5ZUhMAAAAAAAASBmrDzrfvXu3TCaTfv/99wxLSO3fv18///yzKlWqZFE+ZMgQrVy5Uj4+Ptq6datu3LihTp06ZUhMAAAAAAAASDmrk1L379+Xq6urqlevnpbxJOrevXvq2bOnfv31V+XKlctcHhwcrOnTp2v8+PFq1qyZqlevrpkzZ2rXrl3as2dPhsQGAAAAAACAlLE6KVW0aFHFxcWlZSxJGjhwoNq1a6cWLVpYlB88eFDR0dEW5WXKlFGRIkW0e/fuRMeLjIxUSEiIxRcAAAAAAAAyhtVJqc6dOysiIkLbtm1Ly3gStGDBAh06dEhjx46NV+fn5ycnJyd5eHhYlHt5ecnPzy/RMceOHSt3d3fzV+HChdM6bAAAAAAAACTC6qTUxx9/rBIlSmjgwIG6e/duWsZk4dq1axo8eLD++OMPubi4pNm4w4cPV3BwsPnr2rVraTY2AAAAAAAAkmb10/cOHTqkMWPGaODAgSpfvrwGDBig2rVrK2fOnEn2a9SoUYrmOXjwoG7fvq1q1aqZy2JjY7Vt2zb99NNPWrdunaKiohQUFGSxW+rWrVvy9vZOdFxnZ2c5OzunKBYAAAAAAACkDauTUk2aNJHJZDK///LLLx/bx2QyKSYmJkXzNG/eXMePH7co69u3r8qUKaOPPvpIhQsXlqOjozZt2qTOnTtLks6ePaurV6+qbt26KZoLAAAAAAAAGcPqpJQkGYaRru0lKWfOnKpQoYJFWfbs2ZU7d25zef/+/TV06FB5enrKzc1N77zzjurWras6deqkeD4AAAAAAACkP6uTUhn55L3HmTBhguzs7NS5c2dFRkaqdevWmjJliq3DAgAAAAAAQCJStVPKVrZs2WLx3sXFRZMnT9bkyZNtExAAAAAAAABSxOqn76VUbGysli1bllHTAQAAAAAA4AmW7julzpw5o+nTp2vu3Lny9/dP8UHnAAAAAAAAyHrSJSkVFhamBQsWaMaMGdqzZ4+kB4ecP/q0PgAAAAAAADy90jQptXPnTs2YMUM+Pj4KCwszP22vSJEi6tKli7p165aW0wEAAAAAACCTSnVS6vbt25o9e7ZmzJihc+fOSfp3V9TgwYPVvXt31a5dO9WBAgAAAAAAIOuwKikVFxen1atXa/r06frrr78UExMjwzDk4uKijh07asGCBZKkL7/8Uq6urmkaMAAAAAAAADK/FCWlzp8/r+nTp2vOnDm6deuW+fa8+vXrq3fv3urWrZvc3NzMSSkAAAAAAAAgIclOSjVs2FC7du0yJ6KKFSumV199Va+++qpKlCiRbgECAAAAAAAg60l2Umrnzp0ymUzq1auXXn/9dTVs2DA94wIAAAAAAEAWluIzpdasWSM3Nze5uLioZs2a6RETAAAAAAAAsji75DacPHmyqlWrpoCAAE2dOlV16tRR2bJlNXbsWF27di09YwQAAAAAAEAWk+yk1FtvvaX9+/fryJEjGjhwoHLlyqWzZ89qxIgRKl68uJo3b645c+YoLCwsPeMFAAAAAABAFpDspNRDlSpV0qRJk3Tjxg3NmzdPzZo1k2EY2rx5s/r27Stvb29z24eHogMAAAAAAACPSnFS6iEnJyd1795dGzZs0MWLFzVy5EgVLlzYYqdUyZIlNWjQIG3dupUEFQAAAAAAAMysTko9qmjRoho9erQuXbqkdevWqWvXrnJ0dNStW7c0depUNWvWTAULFtQ777yTFtMBAAAAAAAgk0uTpNRDJpNJLVu21MKFC3Xjxg1NmDBBFSpUkGEY8vPz05QpU9JyOgAAAAAAAGRSaZqUepSnp6cGDx6so0ePat++fRowYIBy5syZXtMBAAAAAAAgE0m3pNSjatSooWnTpsnPzy8jpgMAAAAAAMATLkOSUg+5uLhk5HQAAAAAAAB4QmVoUgoAAAAAAACQSEoBAAAAAADABkhKAQAAAAAAIMORlAIAAAAAAECGIykFAAAAAACADEdSCgAAAAAAABmOpBQAAAAAAAAynNVJKTs7OxUsWDDZ7YsXLy4HBwdrpwMAAAAAAEAWkqqdUoZhpGt7AAAAAAAAZE0ZdvteVFSU7Oy4WxAAAAAAAAAZlJQKCgrS7du3lStXroyYDgAAAAAAAE+4ZB/ydOzYMR05csSiLDw8XHPmzEm0j2EYCgoK0uLFixUXF6eqVataHSgAAAAAAACyjmQnpZYuXarPP//coiwkJER9+/Z9bF/DMGQymTR06NCURwgAAAAAAIAsJ9lJKQ8PDxUpUsT8/sqVK7Kzs1OhQoUS7WNnZyc3NzdVqFBBAwYMUMOGDVMXLQAAAAAAALKEZCelBg8erMGDB5vf29nZKW/evLp06VK6BAYAAAAAAICsK9lJqf8aNWqUcuTIkZaxAAAAAAAA4CmRqqQUAAAAAAAAYA07azuGhoZqxYoV2rx582Pb/v3331qxYoXu3btn7XQAAAAAAADIQqxOSv3xxx968cUX9ddffz22rY+Pj1588UUtXLjQ2ukAAAAAAACQhVidlFq6dKkk6eWXX35s2379+skwDP3555/WTgcAAAAAAIAsxOqk1Llz5+To6KgqVao8tm316tXl6Oios2fPWjsdAAAAAAAAshCrk1J+fn5yc3OTyWR6/CR2dnJzc5Ofn5+10wEAAAAAACALsTop5erqquDgYMXGxj62bUxMjEJCQuTk5GTtdAAAAAAAAMhCrE5KlSpVSjExMdq0adNj227atEnR0dF65plnrJ0OAAAAAAAAWYjVSannnntOhmHogw8+UGhoaKLt7t27pw8++EAmk0nPPfectdMBAAAAAAAgC7E6KTVo0CDlypVLJ06cUM2aNbV06VKFh4eb68PDw7VkyRLVqFFDJ06ckLu7uwYPHpwmQQMAAAAAACBzc7C2o6enp+bPn6+OHTvq3Llz6tKli+zt7ZUnTx5J0p07dxQbGyvDMOTi4qJFixYpd+7caRY4AAAAAAAAMi+rd0pJUqtWrbRz507Vr19fhmEoJiZGfn5+8vPzU0xMjAzDUKNGjbR79261aNEirWIGAAAAAABAJmf1TqmHqlatqu3bt+vChQvatWuX/Pz8ZDKZ5O3trXr16nG4OQAAAAAAAOJJdVLqoZIlS6pkyZJpNRwAAAAAAACysFTdvgcAAAAAAABYI012Sq1YsULr1q3TlStXFB4erk2bNpnrwsLCdPToUZlMJtWtWzctpgMAAAAAAEAml6qk1LVr19SpUycdOnRIkmQYhkwmk0UbJycnvfzyy/L19dWuXbtUu3bt1EwJAAAAAACALMDq2/fCwsLUqlUrHTx4UAULFtTAgQOVPXv2eO0cHR3Vv39/GYahpUuXpipYAAAAAAAAZA1WJ6UmT56ss2fPqlq1ajp9+rQmTZqkHDlyJNj2hRdekCTt3LnT2ukAAAAAAACQhVidlPrzzz9lMpk0fvz4BHdIPapChQqyt7fXuXPnrJ0OAAAAAAAAWYjVSamzZ8/K3t5e9evXf2xbe3t7eXh4KCgoyNrpAAAAAAAAkIVYnZSKjIxUtmzZZG9vn6z29+/fl4uLi7XTAQAAAAAAIAuxOinl5eWle/fuJWv308mTJxUeHq7ChQtbOx0AAAAAAACyEKuTUg0aNJAkLVy48LFtv/nmG5lMJjVt2tTa6QAAAAAAAJCFWJ2Uevvtt2UYhj777DOdOHEiwTZRUVEaPny4fv/9d5lMJr311ltWBwoAAAAAAICsw8HajvXq1dM777yjH3/8UXXq1FGbNm107949SdInn3yiK1euaOPGjbpz544kacSIESpXrlzaRA0AAAAAAIBMzeqklCRNnDhRbm5u+vrrr7VkyRJJkslk0rhx4yRJhmHIwcFBI0eO1MiRI1MfLQAAAAAAALKEVCWlTCaTxowZo9dee02zZs3Szp07dePGDcXGxsrb21v169dXv379VKJEibSKFwAAAAAAAFmA1Umpq1evSpLy5cunokWLatSoUWkWFAAAAAAAALI2qw86L1asmEqUKKGAgIC0jAcAAAAAAABPAat3SuXIkUOOjo4qUKBAWsYDAAAAAACAp0Cqdkrdv39fsbGxaRkPAAAAAAAAngJWJ6U6duyoqKgorVmzJi3jAQAAAAAAwFPA6qTURx99pJIlS+rNN9/UsWPH0jImAAAAAAAAZHFWnyn1559/6o033tBnn32mGjVqqE2bNqpfv77y5csne3v7RPu9+uqr1k4JAAAAAACALMLqpFSfPn1kMpkkSYZhaPXq1Vq9enWSfUwmE0kpAAAAAAAAWJ+UKlKkiDkpBQAAAAAAAKSE1Umpy5cvp2EYAAAAAAAAeJpYnZTatm2bJKlSpUry8PBIq3gAAAAAAADwFLA6KdWkSRPZ29vr9u3baRkPAAAAAAAAngJWJ6Xc3d1lb2+vXLlypWU8AAAAAAAAeArYWduxZMmSCg0NVWRkZFrGAwAAAAAAgKeA1Ump7t27Kzo6WosWLUrLeAAAAAAAAPAUsDopNXjwYNWtW1eDBg3SmjVr0jImAAAAAAAAZHFWnyn11VdfqVGjRjp+/Lg6dOig8uXLq379+sqXL5/s7e0T7ffpp59aOyUAAAAAAACyCKuTUp999plMJpMMw5AknThxQidPnnxsP2uSUlOnTtXUqVN1+fJlSVL58uX16aefqm3btpKkiIgIDRs2TAsWLFBkZKRat26tKVOmyMvLK8VzAQAAAAAAIP1ZnZRq1KiRTCZTWsaSqEKFCunrr79WqVKlZBiGZs+erRdeeEGHDx9W+fLlNWTIEK1evVo+Pj5yd3fXoEGD1KlTJ+3cuTND4gMAAAAAAEDKWJ2U2rJlSxqGkbQOHTpYvP/yyy81depU7dmzR4UKFdL06dM1b948NWvWTJI0c+ZMlS1bVnv27FGdOnUyLE4AAAAAAAAkj9UHndtKbGysFixYoLCwMNWtW1cHDx5UdHS0WrRoYW5TpkwZFSlSRLt377ZhpAAAAAAAAEiM1TulMtrx48dVt25dRUREKEeOHFq6dKnKlSunI0eOyMnJSR4eHhbtvby85Ofnl+h4kZGRioyMNL8PCQlJr9ABAAAAAADwH2mSlIqKitKGDRt04MAB3b59W5KUL18+1axZUy1atJCTk1Oq5yhdurSOHDmi4OBgLV68WL1799bWrVutHm/s2LEaPXp0quMCAAAAAABAyqU6KfXLL79o5MiRunPnToL1efLk0RdffKHXX389VfM4OTmpZMmSkqTq1atr//79+uGHH/TSSy8pKipKQUFBFrulbt26JW9v70THGz58uIYOHWp+HxISosKFC6cqRgAAAAAAACRPqs6U+uijj/TWW2/J399fhmGoQIECqlWrlmrVqqUCBQrIMAz5+/vrzTff1Mcff5xWMUuS4uLiFBkZqerVq8vR0VGbNm0y1509e1ZXr15V3bp1E+3v7OwsNzc3iy8AAAAAAABkDKuTUlu3btW3334rwzDUuXNnnTp1SteuXdPu3bu1e/duXbt2TadPn1aXLl1kGIa+/fZbbd++3aq5hg8frm3btuny5cs6fvy4hg8fri1btqhnz55yd3dX//79NXToUG3evFkHDx5U3759VbduXZ68BwAAAAAA8ISyOik1efJkSVL//v3l4+OjMmXKxGtTunRpLVq0SP3795dhGPrpp5+smuv27dt69dVXVbp0aTVv3lz79+/XunXr1LJlS0nShAkT1L59e3Xu3FmNGjWSt7e3lixZYu2lAQAAAAAAIJ1ZfabUrl27ZGdnpy+//PKxbb/44gvNmDFDO3futGqu6dOnJ1nv4uKiyZMnmxNlAAAAAAAAeLJZvVPqzp07cnd3V758+R7b1svLSx4eHokehg4AAAAAAICni9VJqZw5cyo0NFQRERGPbRseHq7Q0FDlyJHD2ukAAAAAAACQhVidlKpUqZJiY2M1Y8aMx7adMWOGYmJiVLlyZWunAwAAAAAAQBZidVKqZ8+eMgxDw4YNS/LMp99++03Dhg2TyWTSK6+8Yu10AAAAAAAAyEKsPui8T58++v3337V161YNGDBAn3/+uZo2baqCBQtKknx9fbV582Zdv35dhmGoSZMm6t27d5oFDgAAAAAAgMzL6qSUnZ2dli9frn79+mnJkiW6du2afv/9d4s2hmFIkjp37qzp06fLZDKlLloAAAAAAABkCVYnpSTJzc1Nixcv1r59+7Rw4UIdOHBAt2/fliTly5dPNWrUUPfu3VWzZs00CRYAAAAAAABZQ6qSUg/VqlVLtWrVSouhAAAAAAAA8BSw+qBzAAAAAAAAwFop2im1f/9+7d69Wy4uLhowYMBj2xuGod9++03h4eFq2LChqlatanWgAAAAAAAAyDqSvVMqJiZGPXr00JAhQ8wHmD/Ow4PN33vvPb366qvJ7gcAAAAAAICsLdlJqTVr1uiff/5RpUqV9MYbbyR7gtdff11Vq1bVqVOntHbtWquCBAAAAAAAQNaS7KTUkiVLZDKZ9O6776Z4knfffVeGYcjHxyfFfQEAAAAAAJD1JDsptX//fklS27ZtUzxJ69atJUn79u1LcV8AAAAAAABkPclOSl2/fl3Ozs7y9vZO8STe3t5ycXGRr69vivsCAAAAAAAg60l2Uio8PFzZsmWzeqJs2bIpPDzc6v4AAAAAAADIOpKdlMqVK5eCg4MVExOT4kliYmIUFBSkXLlypbgvAAAAAAAAsp5kJ6WKFi0qwzC0Z8+eFE+yZ88eGYahokWLprgvAAAAAAAAsp5kJ6WaNm0qwzA0bdq0FE8ybdo0mUwmNWnSJMV9AQAAAAAAkPUkOynVs2dPmUwmLViwQEuWLEn2BEuWLNH8+fNlMpnUq1cvq4IEAAAAAABA1pLspFTFihXVvXt3xcXF6eWXX9ZXX32V5MHl4eHh+vLLL/Xyyy9Lkrp27aqKFSumPmIAAAAAAABkeg4pafzzzz/r6NGjOnXqlEaOHKnvvvtOLVu2VNWqVeXp6SlJCggI0OHDh7VhwwYFBwfLMAyVK1dOv/76a7pcAAAAAAAAADKfFCWlcuTIoR07dqhHjx5au3atgoKCtHjxYi1evDheW8MwJEmtWrXSvHnzlCNHjrSJGAAAAAAAAJlesm/fe8jDw0Nr1qzR6tWr9dxzzyl79uwyDMPiK3v27Hruuee0evVqrV271ryLCgAAAAAAAJBSuFPqUW3btlXbtm0VGxurK1eu6O7du5Kk3Llzq2jRorK3t0+zIAEAAAAAAJC1WJ2Uesje3l4lSpRQiRIl0iIeAAAAAAAAPAVSfPseAAAAAAAAkFokpQAAAAAAAJDhSEoBAAAAAAAgw5GUAgAAAAAAQIYjKQUAAAAAAIAMR1IKAAAAAAAAGY6kFAAAAAAAADIcSSkAAAAAAABkOJJSAAAAAAAAyHAkpQAAAAAAAJDhHJLTyN7ePk0mM5lMiomJSZOxAAAAAAAAkHklKyllGEZ6xwEAAAAAAICnSLKSUps3b07vOAAAAAAAAPAUSVZSqnHjxukdBwAAAAAAAJ4iHHQOAAAAAACADEdSCgAAAAAAABkuWbfvJYdhGAoMDFRYWFiSB6MXKVIkraYEAAAAAABAJpXqpNSqVas0adIk7d69W/fv30+yrclkUkxMTGqnBAAAAAAAQCaXqqTUhx9+qO+//z7JnVGPSm47AAAAAAAAZG1Wnym1du1afffdd3JwcNB3332nkydPSpLy5s2rCxcuaMeOHRo1apQ8PT2VJ08erVy5UpcuXUqzwAEAAAAAAJB5WZ2U+vnnn2UymTRy5EgNHTpUZcuWlSTZ29urRIkSqlevnkaNGqUjR47I3d1d/fv3l7Ozc5oFDgAAAAAAgMzL6qTUvn37JEmvv/66Rfl/b9ErVKiQfvrpJ92+fVvjxo2zdjoAAAAAAABkIVYnpe7evStXV1d5eXmZy+zt7RM87Lxly5ZycXHR6tWrrZ0OAAAAAAAAWYjVB527ubnFe5Keu7u7AgMDFRYWpuzZs5vL7ezs5ODgoOvXr1sfaSZhGIZiYmIUGxtrsxgK5rS32dxPuwjnwrYO4amV3yl/hsxjyFBEXIRCYkIUp7gMmRMAAAAAsiKrk1IFCxbU8ePHFRERIRcXF0nSs88+q71792rnzp1q1aqVue358+d179495cyZM/URP6EMw1BgYKCCgoIUGRlp01g+a5rPpvM/zS6Zvrd1CE+tjxxS9TDRFIkz4hQcHazDwYd1KOSQfCN9M2xuAAAAAMgqrP5XXKVKlXTs2DEdPnxYdevWlfTgNr09e/bok08+UaVKleTt7S1/f3+9/vrrMplMqlGjRpoF/qS5deuWAgMDlTNnTuXNm1cODg4ymUw2iSUqW4hN5oVU3OobYpFaMY6OGTOR8eArX1Q+FXIrpPph9TXTd6bOhJ3JmPkBAAAAIIuwOinVpk0b/f7771q2bJk5KTVw4ED9+OOPOnz4sIoUKaK8efPq1q1b5sPPP/jgg7SJ+gkTHByswMBA5c+fXx4eHrYORyaHCFuH8NRysbNNIhKSnWPGZgTtnO2UI0cOOQc5q6/66sfLP7JjCgAAAABSwOp/xXXs2FEzZ85U/fr1zWX58uXT6tWrVbhwYcXExOjmzZuKi4uTq6urpkyZojZt2qRJ0E+akJAQubq6PhEJKQAZx2QyydHDUZ7ZPVXVraqtwwEAAACATMXqnVLZsmVT796945XXrVtX//zzj3bv3q1r167J3d1dDRo0kJubW6oCfVLFxcUpLCxMefPmtXUoAGzAZDIpW/ZsquZeTav9V3P4OQAAAAAkU7qcDGxvb68GDRqkx9BPnJiYGBmGYT7sHcDTx87ZTu6O7nJzcFNQTJCtwwEAAACATMHq2/c+//xzjR8/PtntJ02apM8//9za6Z5YcXEPdkXY2XHCNfDUMkl2Jjs52znbOhIAAAAAyDSszqR89tln+u6775LdfsKECRo9erS10z3xbPWkPQBPgP//429n/V+pAAAAAPDU4V9QAAAAAAAAyHAZlpQKCAjg3CUAAAAAAABIyqCklI+Pj0JDQ1WkSJGMmA4AAAAAAABPuGQ/fe+HH37QDz/8YFHm7++vEiVKJNrHMAwFBQUpJCREJpNJ7dq1sz5SAAAAAAAAZBnJTkoFBQXp8uXLFmWxsbHxyhLTvHlzffrppymJDUiWkUPeVmhIsCZO/8PWoQAAAAAAgGRKdlKqY8eOKlasmKQHO6D69esnd3d3TZw4MdE+dnZ2cnNzU4UKFfTMM8+kNlYAAAAAAABkEclOSlWuXFmVK1c2v+/Xr5+yZcum3r17p0tgQFqY88tkLV/0h3yvXpG7h4cat2ijIf8bLdfsOSRJyxfN07ejh2vc5Bn6dvQn8rtxXVVr1tHn3/+kvF7ekqSYmBh99/n/tOrPBbKzs9eLL7+iu/63dS8kxLw7q23dSurZ/y19M6CNee4qLburY5sm+mzYm5Kk8T/P1cxFK3Txiq88PdzVoWUjfTNisHJkdzX3+fWPJfp8wq+6Gxis1k3qqmGtqvp84i8KOr3N3Gb5ui0aPf4XnTp/UQW88qp31/b637v95eCQ7D/OAAAAAADYnNUHncfFxenGjRtpGQuQ5uzs7PTR5+O0ZNNujZkwVft2bdeEL0dZtAkPD9ecX37SlxOnaebi1fK74avxX4w018+cMlFrlvpo9HeTNXvpWoWFhmrzutVWxGLSpM8/0MnNizV74mj9vXO/Pvzi33Padu4/ojc//kqDX3tZR9bPV8uGtfXlpOkWY2zfe0ivDv5Ug/u/rFObF+vncf/TrEUr47UDAAAAAOBJlyFP3wNspddrb6lWvYYqWLiIatdvpEEf/E/rVy2zaBMTHa0RX41X+cpVVbZiZXXv/Zr27vx3Z9L8Wb+q/8Ahat62vYqXfFbDv/hWOd3cUxzLe6/3VNP6NVWscAE1a1BLX3z4that3GCu/3HGArVtWk/vv/mqnn2mqN7u001tm9WzGGP0+F/08cA+6t2tg0oULaSWjepozAdv6ee5f6Y4HgAAAAAAbCnV9/sYhqGlS5dq/vz5OnDggG7fvi1Jypcvn2rWrKkePXrohRdekMlkSnWwQErt2b5F0ydP0KUL5xV2L1SxMTGKjIxQePh9Zcv24LY5l2yuKlysuLlPnnzeCrjjL0kKDQnWXf/bqlClmrne3t5eZStWkREXl6JYNm7bq7E/zdCZfy4rJDRMMbGxioiI1P3wcLlmy6az/1zRi22bWvSpVaWCVm3cbn5/9NQ57Txw1GJnVGxcnMU4AAAAAABkBqlKSt26dUtdunTRrl27JD1IUD105coVXb16VX/++afq16+vRYsWydvbO3XRAilw/dpVvdO3u7r16qd3PhwhN49cOrxvjz774B1FR0XrYf7G0dHyj4HJZLL4fzk5THZ28fpEx8SYX1++dkPt+wzWW6900ZcfDZSnh7t27D+s/sM+V1RUjFyTmUu6dz9co4e9oU5tm8Wrc3F2TlHMAAAAAADYktVJqaioKLVu3VrHjx+XYRiqVauWWrZsqUKFCkmSfH19tXHjRu3du1c7d+5U27ZttW/fPjk6OqZZ8EBSTh8/ori4OA379AvZ2T24U3X9ymUpGiOnm7ty582nE0cPq3qd+pKk2NhYnTlxVKXLVTS3y+WZR3du+5nfh4Te06Wr/565dvDYacXFxen7UUPNsTx6654klX6mqPYfOWlR9t/31SqU0dl/rqhk8SIpug4AAAAAAJ40Vielpk6dqmPHjsnNzU1z585V+/bt47UZM2aM1qxZox49eujYsWOaNm2a3nnnnVQFDCQkNDREZ04etyjzyJVbMdHRmj/zFzVu0UaHD+yRz9yZKR775T6va8bkCSpSrISKlyyleTN/UUhwkPTILam16jfUCp/52t6qsjzccurT76bJ3v7fI9tKFius6OgY/ThjgTq0bKSd+49o2u+LLeZ5p193Ner0msb/PFcdWjbS3zv36a/Nuyxuff10yOtq3/s9FSnorS7tWsjOzqSjp87rxJkL+uKjgSm+NgAAAAAAbMXqg84XLVokk8mkyZMnJ5iQeui5557T5MmTZRiGFixYYO10QJIO7N6hl9o0svhatWSh3v/0S82c8oM6t6inNUsX692PRz5+sP/o+/Z7avNCZ40Y8qZeeaGVXLNnV73GzeX8yO1y/QcOUfXa9dS+93tq9+pgdWzdRM8ULWSur1z+WY0fNVTjpsxShWbd9MfSvzR2+CCLeerXrKJpX3+i8b/MVeWW3bV2y24Neb2HxW15rZvU06rZE7V+6x7VfO4V1enQRxN+/UNFC+W34lMDAAAAAMB2TEZKD8/5f56enrp//77u3bsnB4ekN1zFxMQoR44ccnV1VUBAgFWBpreQkBC5u7srODhYbm5uye4XERGhS5cuqXjx4nJxcUnHCJPvmG+QrUPI0uLi4tSxaW21at9Rgz74n0VdJbtLaTrX6x+M0ZkLl7R96Yw0HTcrOunkZLO546LjdNv3tsZdGKebUTdtFoetLBob8/hGSBdlz5y2dQgAMlCxj1fbOoSn1mWXHrYO4alVkWMrbIY1nm1klfVdcnMsVt++Fx4eLldX18cmpCTJwcFBrq6uCg8Pt3Y6wGZu+F7V7m2bVb1OfUVHRmr+7F91/doVPdexS5rP9d20OWrZsI6yu7ror827NNtnpaZ8NTzN5wEAAAAAwNasTkp5eXnp2rVrunr1qooUSTp7ffnyZQUFBT22HfAksrOz0wqfeRr/xUgZhlSydBn9Mm+pSpQqneZz7Tt8Ut9Mma3QsPsqUaSgJn3+oV7r8WKazwMAAAAAgK1ZnZRq1KiR5s6dqyFDhmjx4sUWhzE/yjAMDR06VCaTSY0bN7Y6UMBWvAsU0uyl6zJkrkU/j8uQeQAAAAAAsLVkH3Q+Z84c+fj4mN8/TDQtW7ZMzZo106ZNmxQdHW2uj46O1saNG9W0aVMtW7ZMJpNJQ4YMSdvoAQAAAAAAkCkle6dUnz59lD9/fnXt2lWSVKVKFX333XcaNmyYtm3bplatWsnBwUF58uSRJN25c0cxMTF6eI76d999pypVqqT9FQAAAAAAACDTSfZOKUn674P6hgwZohUrVqh06dIyDEPR0dG6efOmbt68qejoaBmGoXLlymnlypV677330jJuAAAAAAAAZGJWnyn1UPv27dW+fXsdP35cBw4c0O3btyVJ+fLlU40aNVSxYsVUBwkAAAAAAICsJdVJqYcqVqyYbgmosWPHasmSJTpz5oyyZcumevXqady4cSpd+t+nn0VERGjYsGFasGCBIiMj1bp1a02ZMkVeXl7pEhMAAAAAAACsl6Lb92xl69atGjhwoPbs2aMNGzYoOjparVq1UlhYmLnNkCFDtHLlSvn4+Gjr1q26ceOGOnXqZMOoAQAAAAAAkJg02ymVntauXWvxftasWcqXL58OHjyoRo0aKTg4WNOnT9e8efPUrFkzSdLMmTNVtmxZ7dmzR3Xq1LFF2AAAAAAAAEhEinZK3bp1S/b29lZ/OTikTQ4sODhYkuTp6SlJOnjwoKKjo9WiRQtzmzJlyqhIkSLavXt3mswJAAAAAACAtJPiLNF/n8CX0eLi4vTee++pfv36qlChgiTJz89PTk5O8vDwsGjr5eUlPz+/BMeJjIxUZGSk+X1ISEi6xQwAAAAAAABLKUpKZc+eXcOGDUuvWJJl4MCBOnHihHbs2JGqccaOHavRo0enUVQAAAAAAABIiRQlpXLkyKFRo0alVyyPNWjQIK1atUrbtm1ToUKFzOXe3t6KiopSUFCQxW6pW7duydvbO8Gxhg8frqFDh5rfh4SEqHDhwukWOwAAAAAAAP6VKZ6+ZxiGBg0apKVLl+rvv/9W8eLFLeqrV68uR0dHbdq0yVx29uxZXb16VXXr1k1wTGdnZ7m5uVl8AQAAAAAAIGNkiqfvDRw4UPPmzdPy5cuVM2dO8zlR7u7uypYtm9zd3dW/f38NHTpUnp6ecnNz0zvvvKO6devy5D0AAAAAAIAnUKbYKTV16lQFBwerSZMmyp8/v/lr4cKF5jYTJkxQ+/bt1blzZzVq1Eje3t5asmSJDaMG0k+f90bJVLCaitVul6bjfvb9NJkKVpOpYLU0HRcAAAAAgP/KFDulkvPEPxcXF02ePFmTJ0/OgIgAAAAAAACQGplipxQAAAAAAACylmTvlIqLi0vPOJ4axT5ebesQ0s2KQfVtHcJTY9bE0Zo1cbStwwAAAAAAwGrslAIAAAAAAECGIykFAAAAAACADJcpDjoHHnXb76bmzfxZu7dtlu+VS4oID5ebRy555s6jkqXLql7j5mretr1y5HQz96lcOJck6c0hH+mtoR9rz/YtmjfjZ508dlghwUHK6+WtBk1bqv/AIfLKXyDRuX2vXNamtat0YM8OXThzSnf9/SVJnnnyqGLVmhrSvZnaNE38NsZZC1eo79DPJEmX9qxSkYLe+m3eUs1atFKnL1xSVFS0nilWSC91aKUhA3rKNVu2BMfp894ozfZZqaKF8uvy3oRvCV3619+a7bNKB46ekn9AoJwcHZU3dy4V9M6rJnVrqEPLRqpVtUISn7QUERGpH2cu0Pxl63T+0lVJUtlSxfVql3Z685UucnDgrxAAAAAAgHX4FyUylUN7d+mdvt11LzTUojzgjr8C7vjrwtnTWrtiiTw8PdW4RZsEx5g2YZymjv/aouz61StaOPs3rVm6SJNmzFe12vXi9fO9ekXtGlRNcMyb131187qv1q9aql6dntPMCZ89NmFzPzxCrV5+W5t27LMoP376go6fvqAVG7bp70U/K7trwompxMTGxurltz+Rz6oNFuVRUdG6F3Zfl65e1459R/TX5p068NcfiY5zy/+u2vQcpCMnz1qU7z9yUvuPnNT6rXu0bMZ42dmx4RIAAAAAkHIkpZBpREVG6sOBr+leaKiy58iprq/0Va26DeWZJ6+io6N0/eoVHTm4T3+vTfww+e2b1uvkscMq9kwp9XnzXT1btrzuhYZo/eplWjJvjkJDQvRO3+76c+MueRcoZNE3LjZWjk5Oqteomeo0aqpnSpWWm0cuhQQF6srFC1ow+zf9c+6M5i5ZoxJFC2r0+28leT2vfzBGew4dV++uHdStQ0t558utq9f99M2U2dp98Jj2HT6hL374TWOHv5Oiz2nqHB9zQqpBrSp67eUX9UyxQsrumk13A4J17PR5rd2yS8Gh95Icp9Nr7+vU+Yt6t//L6tCikTxzuensP1c0ZuKvOn3+klZu2KZf/1iiN17pkqL4AAAAAACQSEohEzl8YK/8b92UJI398Zd4O6EqVaupth276INRXyki/H6CY5w8dlhlK1bWDJ9Vcs2ew1xeu0FjValRWyPee0v3QkP1/ZiR+nbqTIu+eby89Neuo8rr5R1v3NoNGqvrK/008f3emrVopb7/ea6GDugld7eciV7PrgNH9fukMerVuZ25rFrFsmrbtL5qPNdLJ85c0K9/LNWYD95K0W1yi1Y+SEjVrlpBm31+ide3RaPaGvpGLwUEBic5zv6jJ7V+3hQ1qVfDIr7WjeuqXNMuuuV/V1Nm+5CUAgAAAABYhftukGncvX3L/Lp6ArfXPeTg4GBxntR/ffr1RIuE1EMdOndXg6YtJEl/r12lO4/MJ0murtkTTEg9ZDKZ9P2nQ2Vvb6+w++HauH1fom0lqdNzzSwSUg85OztpUJ9ukqS7gUE6de5ikuP8l9/tu5KkejUqJ5nM8szlnuQ47/TtbpGQerRf35eelyQdP3NBwSGh8doAAAAAAPA4JKWQaeR5JCG0fNE8q8YoVaacylWqkmh9x5d6SZJiYmK0f/eOJMeKjo7WrZvXdfH8WZ0/c0rnz5zSjVv+yv3/yZ6jp84l2b/ni20TrateqZz59cWr15Mc57/ye+WRJK3csE13AgJT1PdRPTslEV/FspIkwzB06eoNq+cAAAAAADy9uH0PmUbVmnVUqEgx+V69rG8+G67VS33UvE07VatdTxUqV5Ojk9NjxyhfuVqS9RWq/Ft/4cwp6YXOFvXR0dH6849ZWrVkkc6cPKboqKhEx7oTEJTkXGVKFk+0ztPj351eoffCkhznv3p3ba9tew7pwuVrKln/BXVq20wtG9VRw1pVVaiAV7LHKVOyWPLiC0tZfAAAAAAASCSlkIk4Ojpq0sz5ev/NPrp4/qxOHj2kk0cPSZJcXLKpWu166tD5JbV+vpPs7e0THMMzT54k58idJ5/5dXCQ5S6j4MBAvdmzk04dP5KseMMjIpKsd83mkmjdo0+0i42NS9Z8D/Xr3lH/XPbVN1PnKDjknmYuXKGZC1dIkp4pVkgvtGqigX26qUTRQkmO45ot8af+pSY+AAAAAAAkbt9DJvPMs2W0eMNOTfh1rjq+1EtFipWQJEVEhGvX1k0a/u4A9erQQnfv+CfY3yST1XOP++xjc0Kqaet2+mHGPP21+6j2nruhI1cDdPRaoIzrh1S4wIPbDA3D6qlS7cuPB+nCzmX68qOBala/pjkB9s9lX43/Za7KNO6kaXMW2y5AAAAAAMBTj51SyHTs7e3VrE07NWvz4JBw/1t+2rllkxbO/k2njh/RqeNHNObjIZr429x4fRNLVv1bf9v82t0jl/n1vdAQrVu5VJL03ItdNXbSL4mOERgckqLrSS9FCxXQJ+/21yfv9ld0dLT2HzmlRSvX6+c/ligiIlJvfzJWtatVUNUKZWwdKgAAAADgKcROKWR6eb281fGlnpqzfL3KVqwsSdq+aZ0iwsPjtX14u19iTh49bH5dsnRZ8+urly4qJjpaktS6w4uJ9j9z4ZLuhd1PUfwZwdHRUfVqVtbEzz/QvJ++lPTgkPLFqzbaODIAAAAAwNOKpBSyDEdHR1WvXV/Sg6fnhYYEx2tz/swpnT5xLNExli18sLvK3t5eNeo2MJfHxMaYX4ffTzzplBluiWveoJb59eMOYwcAAAAAIL2QlEKmcWjvLl29dDHR+uioKB3cu1OS5Jo9h3LlTvhQ8zEfvaf79+M/MW7NUh9t/3uDpAdnRuX18jbXFSlWQibTg/OoVi6eLyOBA6O2bPhLP81alPwLSidz/1ytmJiYROvXb91jfl28SMGMCAkAAAAAgHg4UwqZxt6d2/TLD9+qWq26ati8lUqVKS/P3HkUERGuKxf/kc/cmTp9/Kgk6cXuveTgEP9/7/KVqurkscPq0a6Z+r41WKXKlFNoaIg2rl6uxX/MkiRlz5FTQ0eMsejnkctTDZq11PZN67Vzyya92bOTur7STwUKFlbAXX9tXLNSK3zmqUSRggoKCZX/3cB4c2eUV94dqffHTFSnts1Ur0YlPVO0kFxcnHXL/642bNurqf+/mytHdlf1fLGtzeIEAAAAADzdSEohU4mLi9OBPTt1YM/ORNs0bfWc3v3o0wTrGjZvpYbNW2nahHH6dNjAePU5cubUD9Pnq2DhIvHqRnz1vfp0aqub1321Z/sW7dm+xaI+f8FCWjZjvJ575Z2UXFK6uOV/V1Pn+GjqHJ8E693dcmjBlLEqXNA7wXoAAAAAANIbSSlkGr3fGKRSZctr7/YtOnPyuPxv3VTAnTuSpNz58qlC5erq0OUlNWreOslx3hr6sSpVq6n5s37RqWNHFBIcpLxe3mrYtKX6Dxoir/wJ39LmXaCQFvy1VTOnTNTm9X/p5vVrcnZ2VoFCRdS0dTv17PemynnabofUQyf+9tHqTdu1Y98R/XPFV7f8AxQUEqqcOVxV5pliat2krt56tau88ua2dagAAAAAgKeYyUjocJynUEhIiNzd3RUcHCw3N7dk94uIiNClS5dUvHhxubi4pGOEyXfMN8jWITxxKhfOJUl6c8hHemvox+k2TyW7S+k2NpJ20snJZnPHRcfptu9tjbswTjejbtosDltZNDbxM8yQvsqeOW3rEABkoGIfr7Z1CE+tyy49bB3CU6ti8fh3MCBjsMazjayyvktujoWDzgEAAAAAAJDhSEoBAAAAAAAgw5GUAgAAAAAAQIYjKQUAAAAAAIAMR1IKAAAAAAAAGc7B1gEAGeHotUBbhwAAAAAAAB7BTikAAAAAAABkOJJSAAAAAAAAyHAkpQAAAAAAAJDhSEoBAAAAAAAgw5GUAgAAAAAAQIYjKQUAAAAAAIAMR1IKAAAAAAAAGY6kFAAAAAAAADIcSSkAAAAAAABkOJJSAAAAAAAAyHAkpQAAAAAAAJDhSEoBAAAAAAAgw5GUAgAAAAAAQIYjKQVkAsVqt5OpYDX1eW+UrUMBAAAAACBNkJQCAAAAAABAhiMphUxl+aJ5qlw4lyoXzqXr167aOhwAAAAAAGAlB1sH8NT5zD3dp6iU7jMk7NhrV2w0MwAAAAAAyGzYKQUAAAAAAIAMR1IKAAAAAAAAGY7b95Ap7N+9Q69162BR9ly9yvHa/bZopWrWbSBJOnZov7ZtXKfD+/fo0j/nFRwUKGdnF3nlL6Dqtevp5b4D9MyzZR47983r1zT9pwnauXWT7ty+JXf3XKpQpZp69H9Tteo11NTxX2vahHGSJOP6oXj9w+6Ha9WGbdqwfa8OHD2lS9du6H54hDzccqjcsyXUoWUjvflKF+XI7mrNR2Nh5fqtmu2zSnsOHZd/QKByuLrq2RJF9ELrJhrU96XHznE/PFzfT5srn9Ub9M9lX7k4O6tsqeLq1/159X3pBW3dfVBNuw6QJG32+UVN6tVIdcwAAAAAgKcTSSlkScsXzdOnwwbGK4+JjtbF82d18fxZLZk/Rx+N/lov9X4t0XH27tym9/r31P2we+Yy/9t+2rx+jbZs+EuDPvjfY2Np9+q72rr7YLzyOwFB2rbnkLbtOaQps3205vdJKlOyeDKv0FJERKR6DPpES//abFEeEBWsPYeOa8+h4/px5gKtnj1JVSqUTnAM3xu31KzbGzp/6d8D5O+HR2jn/iPauf+Ilv61We/2f9mq+AAAAAAA+C+SUsgUyleuqsUbdmrL+jX66dsvJUlT5/6pvF7eFu0KFikqSYqNjZGbu4eatHpO1WvXU5HiJZTNNbv8b93U6ePHNH/mzwoMuKuxIz9UsZLPqnb9RvHm9L1yWYP79VD4/TA5ODio6yv91LR1O+XIkVMXzp7WrJ9/1I/ffKGKVZPeLRQTE6uKZUvq+ZaNVaNyORXwyivDMHTF96aWrt2sRSs36NLV6+rYb5iOrJ8vFxfnFH8+vd/71JyQqlzuWQ17o5fKliqhgKBgLVi+TrMWrdQNP381f+lNHdu4UAXz57PoHx0drXavvmtOSLVr3kCv9+ykQvnzyffmbf0yd4lWbdwu/7uBKY4NAAAAAICEkJRCpuDqml2lypTTqWNHzGVFS5RUwcJFEmxfv0kLte3YRdmyWd6uVrZCJTVq3lo9+g1Qvy7tdO70SU39fmyCSanvxoxQ+P0wSdK3U2epWZt25rrylauqVYeOeq3b8zp++ECSsc8c/5lKlYgfZ+1qFdXt+Vbq372jWvccqLP/XNYfS/9S/5c7Jjnef63euF2LVm6QJDVvUEtrfv9RTk6O5vpWjeuqbvVKGvDhFwoICtbQ0d9r4bRxFmNMme2jY6fPS5Lee62HJox+31xXvVI5vdC6id4ZMU4/zVyYotgAAAAAAEgMB50jS/LKXyBeQupROd3c9fawTyRJh/fvUVBggEX9bb+b2rZxrSSpZbsXLBJSD2XL5qpPx014bCwJJaQe1aJRbT3fqrEkadnazUm2Tcjk2YskSY6ODpo5/jOLhNRDr/fspBYNa0uSlvy1WTdv+VvUT/t9sSSpUH4vff3JuwnO883/BquAd94UxwcAAAAAQEJISuGpcP9+mK5fu6oLZ0/r/JlTOn/mlBwc/90oePbUCYv2+3dvV2xsrCSpfaduiY5bulxFlS5XIUWx+N8N1PmLV3XizAXzV97cHpKko6fOp2ismJgY83lVrRrVUeGC3om2fb3Hi+Y+Wx454+r6zds6c+GyJKlr+xZydnZKsH+2bC7q2q5FiuIDAAAAACAx3L6HLCsw4K5+/2WyNv61Ulcv/SPDMBJtGxRw1+L9hbOnza/LVqyS5DzlKlWNl9T6r537j2jS9PnauH2fAoKCE213JyAoyXH+6+KV67ofHiFJql21YpJta1f7N3l24syFf1+f/fd19UplkxyjRuVyKYoPAAAAAIDEkJRClnTq2BG91atzvNvyEhMZEWHxPiQ4yPzaM3eeJPvmyp07yfrPvp+m0eN/SVYc4f+J43EeTXDly5Mrybbeef+9joCgEPPrwOBQ8+u8uZMe43H1AAAAAAAkF0kpZDnRUVH64K2+CgoMkIOjo17uM0BNW7VV0RIl5ebuISfnB0+3871yWe0aVJWkJHdRpcam7XvNCakSRQvp/TdeUYNaVVSkoLeyu2aTg8ODP4KffjtVYyb+mqq5TCZTquMFAAAAACCjkJRClrNv5zb5Xr0sSfrfl9+p08uvJtguOCgw0THc3D3MrwPu3pFX/gKJtg28ezfRul/nLZUk5fJw056VsxPdaZTULX1J8fRwN7++5Z/0rjA//zuP9HMzv87lntP82v9u4p9JcuoBAAAAAEguDjpHppKc3UAXzp0xv27d4cVE2508djjRumeeLWN+ffr4kSTnO5XEOCfPXZQkNa1XI8lb3w4cPZXkHIkpUbSgXLO5SJL2Hj6eZNt9h0+aX1coU9L8uvyzz5hfHzx2WkmxNk4AAAAAAP6LpBQylYe33klSdFRkgm1iY2PMr8Pv30+wTVxcnJbMn5PoPDXrNpCd3YM/HquWLEq03dlTx5M85Dwm5kEsYffDE21z+MQZ7T2c9EHpiXFwcFDjutUlSRu275XvjVuJtv1t/lJznyb/30eSChXw0rMlikqSfFZtVGRkVIL9IyIi5bN6o1VxAgAAAADwXySlkKnkzedlfn3tyqUE2xQp/u/On+U+8xJs88PXo3X6+NFE5/HKX1ANm7WSJG1YvVx/r10dr01EeLg+/2hIkvGWKl5EkrRj3xFduHQ1Xr3/3UC98u7IJMd4nIG9u0mSoqKi1f/90YqOjo7XZsaCZVq/dY8kqVPbpsrvldei/o1enSVJvjdv6eOvJiU4zwdfTNQNP/9UxQoAAAAAwEOcKYVMpUyFSnJ2dlFkZIQmf/eVHBwclb9QYdmZHuRX83nnV73GzeSZJ68C7vhr8rdf6obvVTVr3V65PHPr6uWLWjJ/jvbu2KoqNWvryP69ic71/qdfau/ObYoIv68P3uqjrq/0U7M27ZUjR05dOHtaM6dN0sVzZ1S+cjWdPHoowTFe7dJeKzdsU9j9cDXu8ro+HthX1SuWlSTtOnhU43+ZK7/bd1W3eiXtPnjMqs+kXYuG6tq+pXxWbdD6rXtUp0NvDR3QS2VKFlNgUKgWrFinGQuWS3pwBtX4UcPijTGo70uauWiFTpy5oIm/zdOFy9f0es9OKpQ/n3xv3tYvc//U6k07VKtqBe37/11dHKwOAAAAAEgNklLIVLLnyKmX+w3QrKmTdPr4Ub3Zs5NF/W+LVqpm3Qb6YsJUDXmtlyIjI7R47iwtnjvLol2Nug00fMw36tyiXqJzFSleQhN/m6shr7+i8Pthmj/zF82f+YtFmzeHfKS4uDidPHpIzs4u8cbo0r6F+r70vGYuXKEbfv56d+Q3FvX29vaa8NkwBQaHWJ2UkqQ5P3yumNgYLf1rsw4dP6Ne74yI16aAd16tnj1JBfPni1fn5OSo1XN+ULNub+ify75atXG7Vm3cbtGmVeM6GvJ6T7Xt9Y4kycXZyep4AQAAAADg9j1kOu8N/0yjvvlB1WrVlbtHLtnb28drU79Jc81b/bfadeqmvF755eDoqFy586hGnfr6dNxE/bpgubK5Zn/sXHUbNdWfG3epS68+KlCosBydnJQ7bz41bN5KU35frLeGfqywe6GSpBxubgmOMWP8Z/p90hg1rF1VOXNkl7Ozk4oWyq9XOrfTruUzNfi1Hqn7QCS5uDhryW/fa8XMCer0XDMV8M4rJydH5fJwU+2qFTR2+Ds6u22pqlQonegYRQrm19ENCzX6/TdVoUxJZXNxkYd7TtWpVlFTvhquv+b+pIhHzptyd8uR6rgBAAAAAE8vk2EYhq2DeBKEhITI3d1dwcHBckskuZCQiIgIXbp0ScWLF5eLS/ydMrZwzDfI1iE8VQa83FF7d2xV1Zp1dGjZFFuHk66+mPibRn47RQ4ODgo9u10uLs6P75RBTjrZbudWXHScbvve1rgL43Qz6qbN4rCVRWNjHt8I6aLsmaSfmAkgayn2cfwzLpExLruk/peIsE7F/z+jFRmPNZ5tZJX1XXJzLOyUAlLhtt9NHdy7S5JUqVoNG0eTvgzD0MKV6yVJVco/+0QlpAAAAAAAmQ9JKSAJVy9dTLQuIjxcI4cOVMz/P+2uQ+fuGRVWurh87YZiYhL/bcin307ViTMXJEm9u7bPqLAAAAAAAFkUB50DSRj94bsKv39frTp0VNmKVeTukUv374Xq5LEjWjRnuq5efpC0erH7KypVtrykS7YNOBVmLVqhmQtXqMeLbVW/RmUV8M6r6OgYnT5/SbN9VmnL7gOSpHLPltDrPTo9ZjQAAAAAAJJGUgp4jJPHDuvkscOJ1jdr014ffz4uAyNKP1ev++nrn2YmWl+mZDGtnjNJzjx5DwAAAACQSiSlgCS8/+mX2rR2lfbv2qZbN28o8O5dGYYhzzx5VLFqTT3ftbsaNmtl6zDTRP/uHeWeM4fWb9ujC5euyT8gUPfDI+Tp4a7K5UrpxTbN1K/7C3JycrR1qAAAAACALICkFJCEshUrq2zFypL+Z+tQ0l3hgt4aMqCXhgzoZetQAAAAAABPAQ46BwAAAAAAQIYjKQUAAAAAAIAMR1IKAAAAAAAAGY6kFAAAAAAAADIcSSkAAAAAAABkOJJSAAAAAAAAyHAkpQAAAAAAAJDhSEoBAAAAAAAgw5GUAgAAAAAAQIYjKQUAAAAAAIAMR1IKAAAAAAAAGY6kFAAAAAAAADJcpkhKbdu2TR06dFCBAgVkMpm0bNkyi3rDMPTpp58qf/78ypYtm1q0aKHz58/bJlgAAAAAAAA8VqZISoWFhaly5cqaPHlygvXffPONJk2apGnTpmnv3r3Knj27WrdurYiIiAyOFAAAAAAAAMnhYOsAkqNt27Zq27ZtgnWGYWjixIkaMWKEXnjhBUnSnDlz5OXlpWXLlql79+4ZGSoAAAAAAACSIVMkpZJy6dIl+fn5qUWLFuYyd3d31a5dW7t37040KRUZGanIyEjz+5CQkHSPVZIqzq6YIfPYwh/Nt9s6hCfSrIUr1HfoZ5KkS3tWqVjhAjaNBwAAAACAJ0GmuH0vKX5+fpIkLy8vi3IvLy9zXULGjh0rd3d381fhwoXTNU4AAAAAAAD8K9Mnpaw1fPhwBQcHm7+uXbtm65AAAAAAAACeGpk+KeXt7S1JunXrlkX5rVu3zHUJcXZ2lpubm8UXAAAAAAAAMkamT0oVL15c3t7e2rRpk7ksJCREe/fuVd26dW0YGdLD1PFfq3LhXKpcOJckKSQ4WFO+H6sXm9dVndKF1LBCcfXv1kF/LVv82LGuX7uqbz/7RC82r6u6ZQqrdqkC6tCwuj7/+D2dP30yyb4PY5g6/mtJ0t6d2/T+m31UuEZbORatpWK122nLrgMyFaxmPk9KkorXaS9TwWoWX1t2HTDXN+nyukwFq6lJl9eTnP+z76eZ+ydl5fqtatNzoPJWbCbXZ+rp2QYd9cGYCfK7fUeSVKx2O5kKVlOf90ZZPcfD6/zvtfxXbGysZi9aqfavvqsC1VrJuXht5S7fVA069tP4n+cqPDzpp2UePHZK/YeN1rMNOip7yXpyKVFHhWu0VfU2PTTwk7HavHazDMNItP/Vi1c1bsQ4vdjoRdUpUUfVC1dXmxpt9L9B/9OJIyeSnBsAAAAAkPYyxUHn9+7d04ULF8zvL126pCNHjsjT01NFihTRe++9py+++EKlSpVS8eLFNXLkSBUoUEAdO3a0XdBId75Xr+jNHi/q2pVL5rJwSQd279CB3Tv097o1GvvjL3JwiP+/+crFC/T5x+8p6pHD7iXp6uWLunr5opYtmKuB73+i/oOGPjaOH8eN0W8/jU/19aS1gZ+M1ZTZPhZl5y9d1XfTftfcJX9pze+TMiyWq9dv6vk+Q3T01DmL8oCoYO3cf0Q79x/R1Dk+Wj1nkp59pmi8/hN+mav3x0xUXFycRbnvzVvyvXlLh46fkWb7aN+lfXLN4Rqv/8zJM/XDlz8oJjrGsv8VX/le8dWKRSv0xtA3NOjjQWlwtQAAAACA5MgUSakDBw6oadOm5vdDhz5IFPTu3VuzZs3Shx9+qLCwMA0YMEBBQUFq0KCB1q5dKxcXF1uFjAzw4dv9dP3aFXXt1Vct272gHDnddO70Sc2c+oOuXLyg9auWKp+Xtz747CuLfts2rdPIoW/LMAy5Zs+hVwcMVO0GjeXg4KAjB/ZpxuQJCgy4q0njxiinm7u6vdo/0Rg2/bVS58+cUqky5dTrtbfVtqy7wiMidOTkOdWsUl7HNy3S8nVbNOKbKZKkdfMmq4BXXosxihcpmOafzTdTZpkTUoULeOvjgX1Uo3I5RUZFad2W3Rr/yx/qMuBD3X/M7qS0cDcgSA069te1G35ydnbS6z1eVOM61VWscAHdC7uv9Vt364fp83Xh8jW1feUdHVr7h9zdcpr7Hzt1zpyQKl6koAb1eUlVyj8rTw93hYaF6ew/V7R51wEtXbclwfln/DRD40c/SBo+W/5ZvdTnJRUtUVQ53XPq8oXLmjd9no7uP6pp30+Th6eHeg3ole6fCQAAAAAgkySlmjRpkuRtOSaTSZ9//rk+//zzDIwKtnby6CF9/eOvatuxi7msfOWqatX+BfXt/JzOnjqheTN/VsfuvVSqTDlJUnR0tD7/aIg5ITXzzzUqU76iuX+lajXV4rkOevWF1vK/7afvv/hULdt3VC7P3AnGcP7MKdVu0Fg/zVooJ2dnVbJ7sGurUZ3qkqQKZUrqwNFT5vbPliiqYoULpPln8Si/23c06vufJUklixXW7pWzlMczl7m+Ye1qeq5ZAzXtNkBRUdHpGoskvfvpt7p2w09FC+XXZp9f4iXhmtSroa4dWqrhi/118YqvvpkyW18+smNp8epNiouLU3bXbNq9Ypa88lp+LxrWrqbXeryoPRGRcnG1TET/c/YfTfrqwY6wtz54S29/8LZMJpO5vnzl8mr7Ylt9MugTrfJZpUlfTVKHbh3k7uGe1h8DAAAAAOA/Mv2ZUnh6NWrR2iIh9VD2HDk18uuJkqS4uDj5zJ1prvt77Sr537opSXr93WEWCamHChQqoiEjRkuSIsLva/miPxKNwc7OTqO+mSQnZ+fUXEqamu2zShERD25LnDj6fYuE1EP1albWwN7d0j2Wy9duaOGK9ZKkn774KNFdYVUrlNHAPg/imeWz0qLOz//B+VfPligaLyH1qJxuOWVnZ/lX2qwpsxQTHaPyVcrHS0g9ZGdnp0/GfiInZyfdD7uvDSs3JP8CAQAAAABWIymFTOuFbj0TratYtbqeebaMJGnvjq3m8oevTSaTOr6U+G1ardp1VM7/fyLjnu1bE21XpUZtFSxcJEVxp7eN2/dKkvJ4eqhts/qJtnu1S/t0j2X1pu2KjY2VazaXJGORpEa1HxyofsPPX1ev3zSX58+XR5J06vxF7TucsgPJt65/8L1r2b5lggmph9zc3VSqbClJ0pH9R1I0BwAAAADAOpni9j0gIRUqV026vkp1/XPujK5cvKDoqCg5OjnpwtkHt9IVLFxUnrnzJNrX0clJpctX0oHdO3Th7OlE25UqW9664NPRibP/SJKqlC8db+fQoyqWLSknJ8d0vYXv4a2L98Mj5FCkZrL7+d2+qyIF80uSXu7YRmN/mqnIyCjV79hPbZrUVbvmDdWgVhWVL/1MosmmG9duKOBOgCRp4hcTNfGLicma++7tu8mOEwAAAABgPXZKIdPyzJ03yfrceR/UG4ahkOAgSVJw0IP/euZJuq8k5cmbT5IUEhSYaBs3d4/HB5rBAoNDJEl5c8e/be9R9vb28kzns5Nu30n8s0vKowewlylZXPMnj1UuDzfFxMRo1cbtemv4V6rYvJvyVWquV94Zoe17D8Ub4+4d65JL4eHhVvUDAAAAAKQMO6WQaSV1O9bj+6ZNDPb29mkzUBYVGxcr6cGthJt9fkl2v/+ePdW5XXO1aFhLC1es17qtu7V972H53w3UnYAgzV2yRnOXrNELL72gMZPGmHeHxcXGmfu/+f6bav1862TNnc01W7LjBAAAAABYj6QUMq27d27Lu0ChxOv9/SU9SF493NHk7uFhUZeUO/63JUluHknvOEpLdv+fLYuLi0uyXdj9xHfz5HJ3k9/tO/K/m/QupdjYWPOuqgRjeeTWv7i4uERvBUwqlty5PCRJoWH3VbZU8VQl8dzdcmpAr84a0KuzJOn0+Ytavm6rfpy5QDf8/LV84XKVqVhGr7zxiiTJ4//nliRHB0fzmVEAAAAAgCcDt+8h0zpx9HCS9SePPrilq0jxZ+To5CRJKlm6nCTp+rUrCrh7J9G+0dHROnvy2P/3KZuqOFOyoytnjuySpMDg0CTbnbt4NdG68s+WkCQdOXk2yeTW8dMXFBkZlXgs2V3NrwODEk9enbt4JdG6qhVKS5IiI6PM50ullbKlSujjQX21Z8VsZf//3U3rlq8z1xcqVkg53XJKkg7vS/r/FQAAAABAxiMphUxrpc/8ROtOHDlkPqC8ToPG5vLa///aMAwtX/RHov03rl6u0JAHiZg6DRsn2i45XJydzK+TSgJJUvHCBSQ9SPSE3gtLsM2dgEBt2LY30TGaN6j1/+2C9NffOxNtN2fxqqRjeeQWugPHEk8oLVixPtG6Di0amZNyE3+bl+R81ipc0FvPligqSQoKCDKX29vbq2GLhpKkXVt26Z9z/6TL/AAAAAAA65CUQqa1ZcNfWrdyabzy+2H3NGb4EEkPbkHr0quPua5Z63bK6/XgqW6//fi9zp8+Ga+/3w1fff/Fp5Ikl2yueqFbz1TFmd/r36f8/XPFN8m2jetWlyRFRUXrxxkL4tVHR0frtffHKDwiIl7dQ727dpDz/yfC3hv1ne4ExL+Nb/eBo5o8e1GSsdSrUVkODg/u8J3w6x8yDCNem2+nzta+wycSHaN0yWLq2r6FJGnB8nUa//PcJOe8dPW65i9ba1G2bO1mBSWxc+zadT+duXBZklTwP2dRvTb4Ndnb2ysuLk5D+w2V3w2/RMeJjY3VqsWrkmwDAAAAAEg7nCmFTKt8paoa/s7rOrhnp1q0e0E5cuTUudMnNXPqD7r8z3lJ0ku9X9OzZSuY+zg6OenTcRP0bt+XdS80VL07tVXvN95R7QaNZGdvr6MH9mnGlIkKuPPgzKlhIz5XLs/cqYqzaoUycnFxVkREpEZ+O0WOjg4qWjC/7Owe7CAq6J1P2bK5SJLaNW+oooXy64rvTY38dqruBASp03PN5OLsrJNn/9GkGfN1+MRZ1alWUXsOHU9wvgLeeTVqyAB98vVPunD5mqq36amPB/ZVjcrlFBkVpXVbduv7n+eqgFdehd0Pl//dwAQPfs+Xx1Nd27fQ/GVrtW7Lbj3f5z0N7NNNXnlz6+p1P/2+eLX+XLNJ9WpU1q4DRxO9/qljP9GBY6d18Yqvhn0+XsvXb9GrXdqr/LMl5OzspLsBwTp66pzWbtmlv3fu14ttmurljm3M/Sf+Nk89B/1P7Zo3VLP6NVW2VHG558yhwOAQHTh2Sj/OWGhO0nXr081i7mfLPav3P3tf40aO0z9n/9GLDV9Ul1e7qHaD2sqdN7ciIyN149oNHdl/RBtWbpD/LX8t3bZU3gW8U/Q9BgAAAACkHEkpZFrfTJ2pAS+/oIVzpmvhnOnx6ls897ze//TLeOWNmrfW599P1pjhQxR2L1RTvv9KU77/yqKNvb29Br7/ibq92j/VcebMkV3v9uuub6bM1qHjZ9Tq5bct6jf7/KIm9WpIkpycHDX3xy/Upucghd0P14Rf/9CEX/+9zdDe3l4TR7+vgKDgRJNSkvTxoL664ntTP8/9U1ev++ntT8Za1Ofx9JDPz9+o02vvS5JcnJ0THGfCZ8N04Ogpnb90Vas2bteqjdst6ru/0FqvvdxRLbq/lWgsnrnctXPZDHV78yNt33tY2/Yc0rY9hxJt75Yze7yy++ER8lm1QT6rNiTYx87OTgM/HKjmzzWPV/fKm68oW/ZsGjdinEJDQjXzp5ma+dPMBMdxdHKUcyKfBQAAAAAgbZGUQqZVqEhRLVi9RbN//lF/r1utG77X5OjooGfLVlDnnr3V7sVuifZ9vuvLql6nvv6YPlW7t23Wzeu+MuLilNfLW7XqN9LLfV5XqbLl0yzWrz95V6WKF9Gcxat08uxFBYfeU2xsbIJtG9SqqoN//aEvJ03Xpp375H83UHk8PVSvemUNHdBL9WpW1mffT0tyPpPJpGnj/qfnmjfQ5FkLdeDoad2PiFAh73x6rnkDffDmqypUwEsh9+5JktzdciQ4jlfe3Nq7ao7GTZmlJWv+1tUbfsqeLZsqlHlGA3p2Us9Oz2nLrgOPvX7vfHm0bcl0rd64XfOXr9Xug8fld/uOomNi5OGWU6WKF1Hd6pX0fKtGalSnukXf+ZO/0qqN27Vl90GdOndRfv53dScgSC7OTipaKL8a1a6mN1/pLPsqFRKZXeryShc1ad1EPnN8tGvzLl3+57JCg0Pl6OQor/xeKlW2lOo2qauW7VsqV+6Me9oiAAAAADzNTEZCB8U8hUJCQuTu7q7g4GC5ubklu19ERIQuXbqk4sWLy8XFJR0jTL5jvkG2DiHdTB3/taZNGCdJOnot/llJtlbJ7pKtQ0g23xu3VLhmW0nSb999qv4vd7RtQKl00snp8Y3SSVx0nG773ta4C+N0M+qmzeKwlUVjY2wdwlOr7JnTtg4BQAYq9vFqW4fw1Lrs0sPWITy1KhYvYusQnlqs8Wwjq6zvkptj4aBz4Ck1f/m/B4rXqVbRhpEAAAAAAJ5GJKWALCjsfrhu3vJPtP7wiTMaM/E3SVL1SmVVvvQzGRUaAAAAAACSOFMKyJL87waqbJPO6ti6ido0qafSzxSVs7OTbvj5a+2WXZo+f7nCIyJkMpk0ftRQW4cLAAAAAHgKkZQCsqiIiEgtWL5OC5avS7DeyclRv34zMt7B4gAAAAAAZASSUkAWVNA7rxZO/Vprt+zS/qOn5H83UAFBwXLN5qJihQqoRcPaeqffSypaqICtQwUAAAAAPKVISiFTeWvox3pr6Me2DuOJ5+joqG7Pt1K351vZOhQAAAAAABLEQecAAAAAAADIcCSlAAAAAAAAkOFISgEAAAAAACDDkZQCAAAAAABAhiMpBQAAAAAAgAxHUgoAAAAAAAAZjqQUAAAAAAAAMhxJKQAAAAAAAGQ4klIAAAAAAADIcCSlAAAAAAAAkOFISgEAAAAAACDDkZQCAAAAAABAhiMpBQAAAAAAgAxHUgqwkcvXbshUsJpMBatp1sIV8epnLVxhrr987Uaazbtl1wHzuFt2HUizcQEAAAAASAmSUgAAAAAAAMhwDrYO4GlzukzZdJ/DMd1nSFj0xt02mhkAAAAAAGQ27JQCnlB9XnpexvVDMq4fUrHCBWwdDgAAAAAAaYqkFAAAAAAAADIcSSkAAAAAAABkOJJSyLT27dquEUPe0nP1q6h2qQKqV7aIOreop/FfjNRtv5sJ9pk6/mtVLpxLlQvnkiRFRkRo1rRJeqltY9UtU1h1yxRWj/bNNX/WL4qJiXlsDIf27dbQAa+qWbXSqlnSWyXqdtCbH32pC5euSpKadHldpoLV1KTL6ym+vuQ8fe/gsVPqP2y0nm3QUdlL1pNLiToqXKOtqrfpoYGfjNWK9VtlGMZj51q0Yr2ad3tDeSs2U7Zn6qp0wxf14RcTFRAYnOK4AQAAAABIDg46R6YTGRGhT4cN1NoVS+LVXTh7WhfOntai32fq659+VZOWbRMd567/bb31ShedPXncovzk0UM6efSQdm/drInT/5CdXcK52xlTJmrS159bJH0uXb2un+f+qXnL1mrxL99YeYXJM+GXuXp/zETFxcVZlPvevCXfm7d06PgZTZnto9BzO5Qju2uCY8TFxemVd0Zo7pI1FuXnLl7Rt1PnaOlfm7V96XR558uTbtcBAAAAAHg6kZRCpmIYhoa92VvbN62XJDVu0UatOnRUoSLFZGdnp+NHDun3X37Szeu+ev/NPpq9ZK3KV66a4FhDB7yii+fPqke/N9S4RRu5e+TS5X/O65dJ3+ni+bPaunGt/pw3W1179Y3Xd93Kpfph7GhJkrtHLvV9e7Cq1aqrkqYb2r7vsL6ePEvd3x6uvJ650uVzOHbqnDkhVbxIQQ3q85KqlH9Wnh7uCg0L09l/rmjzrgNavm5LkuOM/Haqdh04qo5tmurVLu1UtFB+3fIP0ORZC7V60w5duHxNQz77XvOnjE2X6wAAAAAAPL1ISiFTWTJ/jrZvWi8HR0dNmj5P9Zu2sKivVK2mOnR6SX06t9U/587om9HDNXvJ2gTHOnH0sKb9sUQ16zYwl5WtWFn1GjfXi83r6K7/bS2aMz1eUioqMlLjRn0sScrlmVtzlq1XkeIlHsxvd0l1a1RWx9ZNVff5Pjp38UpaXr7Z4tWbFBcXp+yu2bR7xSx55c1tUd+wdjW91uNFBYeEyjWbS6Lj7DpwVF98+Lb+N/g1i/I2TeupTc+BWr91jxav3qRJdwOVN3f6JNgAAAAAAE8nzpRCpmEYhmZO+UGS1KPvG/ESUg+5eXho6IjPJUlH9u/VlUv/JNju5T4DLBJSD7nnyqUXuvWQJJ0/c0qhIZbnKv29brXu+t+WJL055CNzQupRzz5TVKOGDkjmlaWcn/+dB/OUKBovIfUod7ecid5+KEnVK5XVJ+/2j1duMpk0dEAvSVJMTIx2HzyWyogBAAAAALBEUgqZxj/nzujalUuSpJbtnk+ybbXa9cyvjx3cn2Cbdi92TbR/uYpVJD1IhF2/dtWibu+OrZIkOzs7Pfdit0TH6NXpOZlMpiTjtFb+/z/j6dT5i9p3+ITV4/To2DbRGKtXKmt+ffGKr9VzAAAAAACQEG7fQ6Zx6tgR8+tXXmiV7H53/G8lWF6sZKlE+7h5/Hur2v17oRZ1F86eliQVKlJMbu7uiY7hmctdJYoW1D+X0z6h83LHNhr700xFRkapfsd+atOkrto1b6gGtaqofOlnkp0MK1OyWKJ1nh7/XlvovfupDRkAAAAAAAvslEKmEXDX36p+EeHhCZZny5bwE+kkWdzyFvufp9uFBAdJknLlTvy2uYfS66DzMiWLa/7kscrl4aaYmBit2rhdbw3/ShWbd1O+Ss31yjsjtH3voceOk9R5U5afQWyaxA0AAAAAwEPslEKmERv7b2Jk0sz5KlCoSLL6eebJm14h2VTnds3VomEtLVyxXuu27tb2vYflfzdQdwKCNHfJGs1dska9u3bQjPGjkjxXCgAAAAAAWyAphUzDI5en+XVON3eVKlPOJnG4uXtIkgLv3n1sW/+AwHSNxd0tpwb06qwBvTpLkk6fv6jl67bqx5kLdMPPX7N9VqpqhdIa/FqPdI0DAAAAAICUYvsEMo0y5SuZXx85sNdmcTzzbBlJku/VywoJCkq0XUBgsC5euZ5BUT1QtlQJfTyor/asmK3srtkkSYtWbsjQGAAAAAAASA6SUsg0ylasLK/8BSRJf/4xW5ERETaJo3b9RpKkuLg4rVnmk2i7uUvWyDCMjArLQuGC3nq2RFFJ0p2AIJvEAAAAAABAUkhKIdOws7PTa4OGSnqwS2nEkLcUFRmZaPt7oSGaP+uXNI+jWZv25nOqpk0Yp2uXL8Vrc/7iVY0en/ZzP7Rs7WYFBYcmWn/tup/OXLgsSSpepEC6xQEAAAAAgLU4UwqZStdX+mn39i36e+0qrV+1TKePH1WXXn1UoXJ15XBzU1hoiC79c14Hdu/Qlg1r5ezsrJf7DEjTGJxdXPThqK/08TuvKzDgrno930J93x6sarXq6r7phrbtPaRxk2crzohTqeJFdP7SVZlkStMYJv42Tz0H/U/tmjdUs/o1VbZUcbnnzKHA4BAdOHZKP85YqPD/30n25itd0nRuAAAAAADSAkkpZComk0nfTJmhb0Z9LJ+5M3XtyiVN+HJUou098+RJlzjaduwi36uXNfm7rxQUGBAvBtdsLvL5+Rt9PXmmzl+6KhcXpzSP4X54hHxWbZDPqoTPjLKzs9PoYW+qY5umaT43AAAAAACpRVIKmY6jo6P+99X36vZKP/05f44O7N4hvxu+uh8WJtfs2VWgcFGVq1hFDZq2UKPmrdMtjtfffV/Va9fTnF+n6OjBfboXGqL8eT3VvEEtvf/mKypbqoQ++fonSZJ7zhxpOvf8yV9p1cbt2rL7oE6duyg//7u6ExAkF2cnFS2UX41qV9Obr3RWpXLPpum8AAAAAACkFZNhq5OYnzAhISFyd3dXcHCw3Nzckt0vIiJCly5dUvHixeXi4pKOESbfMd8gW4fw1Kpk9+/5UtHR0XIv01jhEREaMfg1jfnwbRtGlvWddEr73WjJFRcdp9u+tzXuwjjdjLppszhsZdHYGFuH8NQqe+a0rUMAkIGKfbza1iE8tS679LB1CE+tisWL2DqEpxZrPNvIKuu75OZYOOgcSCfL1m4xn+tUp1pFG0cDAAAAAMCThaQUYKWrly4mWnf52g0NHT1ekuSVN7daN6mbUWEBAAAAAJApcKYUYKWOTWupQdOWatSitZ55toyyuWaXX8Bxbd51QNN+X6yg4FBJ0ncj35ODA3/UAAAAAAB4FP9SBqwUGxurrRvXauvGtQnW29nZ6YsP31avzu0yODIAAAAAAJ58JKUAK02aOV87N2/UkYP7FODvr6CgALk4Oaqgd141qVtDA/t0U4UyJW0dJgAAAAAATySSUoCVGrdoo8Yt2liUPfr0PQAAAAAAkDgOOgcAAAAAAECGIykFAAAAAACADEdSCgAAAAAAABmOpBQAAAAAAAAyHEmpNGIYhq1DAGAr///HP05xto0DAAAAADIRklKpZGf34COMi+Mfo8BTy5DijDhFxkXaOhIAAAAAyDRISqWSg4OD7OzsFBERYetQANhIXGScgqODFRITYutQAAAAACDTICmVSnZ2dnJ1ddW9e/dsHQoAGzAMQ+Fh4ToUfIjb9wAAAAAgBUhKpQE3Nzfdv39fgYGBtg4FQAYyDEPRQdEKCAvQ4ZDDtg4HAAAAADIVB1sHkBW4u7srPDxcfn5+CgsLk7u7uxwcHGQymWwSjxETZZN5IUXYceC9rcSZMmiXkvHgKy4yTuFh4QoIC9BM35nyjfTNmPkBAAAAIIsgKZVGvLy85OTkpKCgIPn62vYfp7cDw206/9PMyeRv6xCeWrcdMu6vszjjwRlSh4IP6XDIYRJSAAAAAGAFklJpxGQyydPTU7ly5VJMTIxiY2NtFstrS7bYbO6n3Sbn920dwlNrcMECGTJPnB48ZS8kJoQzpAAAAAAgFUhKpTGTySRHR0c5OjraLIbrobZLiD3tXKKv2TqEp9bNKNvcLgsAAAAAsA4HnQMAAAAAACDDkZQCAAAAAABAhiMpBQAAAAAAgAxHUgoAAAAAAAAZjqQUAAAAAAAAMhxJKQAAAAAAAGS4LJWUmjx5sooVKyYXFxfVrl1b+/bts3VIAAAAAAAASECWSUotXLhQQ4cO1ahRo3To0CFVrlxZrVu31u3bt20dGgAAAAAAAP4jyySlxo8fr9dff119+/ZVuXLlNG3aNLm6umrGjBm2Dg0AAAAAAAD/kSWSUlFRUTp48KBatGhhLrOzs1OLFi20e/duG0YGAAAAAACAhDjYOoC0cOfOHcXGxsrLy8ui3MvLS2fOnEmwT2RkpCIjI83vg4ODJUkhISHpF2gGiYu8b+sQnlohJsPWITy1YsNjbR3CU+teLJ+9rWSFn1kAko81nu2wxrMd1ni2wxrPNrLK+u7hdRhG0n9/ZomklDXGjh2r0aNHxysvXLiwDaJBVuFu6wCeaqdtHcBTq5atA3iaufO3DgBkBP62tSXWeLbCGs9Gstj6LjQ0VO5JXFOWSErlyZNH9vb2unXrlkX5rVu35O3tnWCf4cOHa+jQoeb3cXFxCggIUO7cuWUymdI1XgB4VEhIiAoXLqxr167Jzc3N1uEAAAAglVjf4WlnGIZCQ0NVoECBJNtliaSUk5OTqlevrk2bNqljx46SHiSZNm3apEGDBiXYx9nZWc7OzhZlHh4e6RwpACTOzc2NRQsAAEAWwvoOT7Okdkg9lCWSUpI0dOhQ9e7dWzVq1FCtWrU0ceJEhYWFqW/fvrYODQAAAAAAAP+RZZJSL730kvz9/fXpp5/Kz89PVapU0dq1a+Mdfg4AAAAAAADbyzJJKUkaNGhQorfrAcCTytnZWaNGjYp3SzEAAAAyJ9Z3QPKYjMc9nw8AAAAAAABIY3a2DgAAAAAAAABPH5JSAAAAAAAAyHAkpQA8VUwmk0wmk7Zs2WLrUNJVnz59ZDKZ1KdPH1uHAgAAMqEtW7aY100pqUutWbNmyWQyqVixYmk+tjWetHieRJ999plMJpOaNGli61AkPXnxIGkkpQBY5eFf9gl9ubq6qlSpUurdu7d27dpl61CfCKdOndK7776rypUry93dXU5OTipQoICqVq2qnj17atq0aTp37pytwwQAAFlQbGysFi1apFdffVXPPvusPDw85OTkpHz58qlBgwYaPny4Tpw4YeswM7333ntPJpNJI0aMsCj39/fXl19+qQYNGihPnjxydHRUnjx5VL58eXXo0EHjxo1jzYynVpZ6+h4A2/Dy8jK/jouLU0BAgC5cuKALFy5ozpw5GjVqlD777DPbBfiI0qVLS5JcXV0zbM5vv/1Wn3zyiWJiYsxlHh4eCgoK0s2bN3XkyBHNmzdPjRs3TrMdXPnz51fp0qWVP3/+NBkPAABkTnv27FHv3r0tfvnl6OionDlz6u7du9q5c6d27typr7/+Wp06ddL8+fPl5OSU5Jiurq7mNVVac3d3V+nSpVWwYMF0GT89LV++XJLUsWNHc9mmTZvUrVs3BQQEmMuyZ8+u6OhonTp1SqdOndKqVaskSZn1GWR58uRR6dKlVaRIEVuHgkyInVIAUs3Pz8/8dfv2bUVGRmrHjh2qXr26JGn06NFPzG9/zpw5ozNnzqhWrVoZMt+SJUv04YcfKiYmRo0aNdL69esVHh6uwMBA3b9/X76+vpo/f766dOny2AVgSowdO1ZnzpzR2LFj02xMAACQuaxcuVJNmjTRuXPnlDt3bo0dO1bnzp1TVFSU7t69q6ioKO3fv18ff/yx3NzctGTJEt2/f/+x49aqVcu8pkprL774os6cOaNNmzal+djp6dixY7p8+bIKFixoXgNfvXpVHTt2VEBAgIoVK6YZM2YoMDBQ9+7dU3BwsIKCgrRu3ToNHDhQuXLlsvEVWG/QoEE6c+aM5syZY+tQkAmxUwpAmrO3t1f9+vW1bNkyFS5cWNKD3xzVq1fPxpFlvO+//16SVKFCBW3atEkODpZ/7RYsWFDdu3dX9+7dFR4ebosQAQBAFnT+/Hn16tVLkZGRKleunNatW6dChQpZtLG3t1eNGjVUo0YNffDBB+rXr5+Nos38Hu6Sev75581nbf3888+6d++enJyctHXr1ng7idzd3dWqVSu1atVK3377bYbHDDwJ2CkFIN0UKlRIuXPnliTdu3cvXn10dLRWrFihAQMGqEaNGsqfP7/5fIPWrVtr/vz5SW5j9vX11ZAhQ1S+fHllz55dzs7OKlCggKpXr64hQ4Zo//798fok56Dz9evXq3v37ipatKiyZcsmT09PVapUSe+88452796dos/gyJEjkqTnnnsuXkLqv7Jly5ZoXVhYmMaPH6/GjRsrT548cnJyUqFChdS4cWN9//33unXrlkX75Bx0fvnyZb333nsqX768cuTIIVdXV5UpU0aDBw/W1atXE+zz38M+Dx48qG7duil//vxydnZWiRIlNHToUAUGBiZ5rSm9ntTEDADA02jEiBEKCQmRi4uLli5dGi8h9V+enp5atmyZ3N3dHzt2Ugedp3atkJyDxVO6jggMDNT06dPVrVs3VaxYUZ6ennJxcVHRokXVo0cP7dmz57HX/DjLli2TJL3wwgvmsofrwCpVqjz21raE1oHJ+SwuX75s/l5cvnw5yf6bN29Wx44dlT9/ftnb28dbJ27btk0dOnRQnjx5lC1bNpUuXVr/+9//dO/evSRjSc7B4nfv3tXnn3+u2rVrmz//YsWKqVWrVpo6daqCg4Mt2vv5+enHH3/UCy+8oLJly8rd3V3ZsmVTyZIl9dprr+nkyZOJzoVMxgAAK4waNcqQZCT114ivr6+5zQ8//BCvfvPmzeZ6SYabm5uRM2dOi7KuXbsasbGx8foeOXLEyJUrl7mdvb29kStXLsNkMpnLevfuHa/fw7rNmzfHqwsLCzO6du1qMX/OnDkNd3d38/vKlSun5GMyXF1dDUlGjx49UtTvUQcPHjQKFy5sjsHOzs7w9PQ0nJ2dzWUTJkyw6NO7d+9EPwPDMIy5c+da9Hd2djayZctmcd3r1q2L12/mzJmGJKNo0aLGH3/8YTg6OhqSDHd3d8POzs7cv3z58kZoaGiaXU9qYgYA4Gnj5+dn/rncv39/q8Z4dJ2WkrrUrhUe7Z8Qa9YRj65bH64ZH21vMpkSXKsmJx7DMIyrV6+a17KRkZHm8ueee86QZBQqVMiIi4tLtH9ikjP3pUuXzNdx6dKlRPtPnDjRvE52d3c3HB0dLdaJkyZNslhHu7u7G05OToYko2zZssaECRMSjeXh59u4ceMEY1y3bp3Fut3BwcHInTu3+f8NScbSpUst+jxcyz5s7+npaTg4OFisAxcvXpzgfI+LB08WdkoBSHOxsbHavXu3XnzxRUlSvnz59Oqrr8Zr5+rqqjfeeEMbNmxQcHCwgoODFRISort37+qHH36Qm5ubfHx89NNPP8XrO2zYMAUGBqpatWravXu3oqOjFRAQoIiICJ07d07fffedypcvn6K4+/btKx8fH9nZ2emjjz7StWvXFBISoqCgIPn7++uPP/5Q3bp1UzTmw7OrFi1apHnz5ikuLi5F/a9du6bWrVvr2rVrKly4sBYsWKDQ0FDdvXtX4eHhOnnypD777DPlzZs32WNu2LBBr776qmJjY/Xhhx/q0qVLCg8PV1hYmM6cOaOuXbsqNDRUXbt2TXT3kb+/v/r166fevXvr6tWrCgoKUmhoqH766Sc5Ojrq5MmT+uabb9LsetIiZgAAnhabN282rzkerscymrVrhaRYu44oUKCARo0apQMHDuj+/fsKCAhQeHi4Ll68qMGDB0uShg4dqsOHD1t1rStWrJAktW3b1uKM0IfrQF9fX73//vsKCwuzavzUunXrloYNG2bxvQgPD9fIkSMlSbt27dJ7770nwzDUsmVLnT17VkFBQQoLC5OPj49u3bqlzz//3Kq5Dx8+rBdeeEGBgYEqX7681qxZo/v37+vOnTsKDw/XgQMHNGzYMOXMmdOiX8mSJfXtt9/q+PHjCg8P1927dxUZGakTJ06oZ8+eioyMVO/evXXjxo1Ufz6wMVtnxQBkTo/+xsnLy8v8lTdvXsPe3t7826KePXsaly9ftmoOHx8fQ5LxzDPPxKt7uENm165dKRrzYcz/3Sm1ceNGc92UKVOsijchW7Zssfitjre3t9GtWzfjm2++Mf7++2/j3r17Sfbv1auXIcnInTu3cfXq1WTPm9hOqdjYWKNUqVKGJOPnn39OtP/zzz9vSDIGDx5sUf7wN24Jjf3Q0KFDDUlGyZIl0+R6UhszAABPmxEjRph/Xl+/ft2qMVK7U8ratUJSu4OsXRc9zsCBAxPdVZac3UotW7Y0JBnz5s2zKPf39zcKFChg/jyyZ89utGnTxhg5cqSxbNky49atW0nGlVY7pSQZnTp1SnSM5s2bG5KMcuXKGREREfHq//77b/M4Kd0p1aBBA0OSUapUKSMoKCjRGFKqXbt2hiRjzJgxKYoHTx52SgFItVu3bpm//P39FRsbK0m6f/++goODEz0f6HHatWsnSfrnn3/k5+dnUefh4SFJunnzpvWBP2LGjBmSHhxI/tZbb6XJmJLUuHFjrV271vzYZD8/Py1atEgffvihmjVrply5cqldu3batm1bvL5hYWFauHChJOnjjz82HxqfGtu2bdP58+eVJ08evfbaa4m2e7izbd26dYm2GTFiRILlD89SuHDhgsUTfKy9nrSMGQCAp8Hdu3fNrz09PW0WR0rXCklJj3XRQw/XnDt27Ehx3+DgYG3ZskWOjo567rnnLOry5MmjHTt2qGXLlpIeXMPatWs1ZswYdezYUV5eXqpRo4ZmzZqV4t30KTV8+PAEywMCAvT3339Lkj744AM5OzvHa9O0aVM1bNgwxXOeP3/e/Jl+9dVXyTqvLLlS8z3Dk4Wn7wFINeM/h5FHRETozJkz+umnnzR9+nRt2LBBCxYsUMeOHeP1DQ0N1bRp07Rq1SqdPn1aQUFBio6OjtfO19dX3t7e5vft27fXr7/+qt69e2vnzp16/vnnVbNmTbm6ulp1Dbt27TKPm9aaN2+uU6dOafv27Vq3bp327t2rI0eOKCAgQNHR0VqzZo3WrFmjkSNHWmyNPnDggPmz6NChQ5rEsnPnTkkPFlAFChRItF1UVJQk6cqVKwnWe3p6qmTJkgnWPTpuYGCg+Xti7fWkVcwAACDjWLNWSEpq10UXL17UlClTtHnzZv3zzz8KDQ2Nlwjy9fVN8bhr1qxRdHS0WrRokWDSpXjx4lq/fr1Onz6tFStWaPfu3Tp8+LD5uIGDBw+qb9++mj9/vpYvXy4XF5cUx/A42bJlU7Vq1RKsO3z4sHkt37hx40THaNKkibZv356ieR+ur+3t7dW2bdsU9ZWko0eP6ueff9aOHTt0+fJl3bt3L96/O6z5nuHJQlIKQJpzcXFRlSpV9NtvvykgIEBLly5Vnz59dPXqVbm5uZnbnTt3Ts2bN7f4YeLq6ioPDw/Z2T3YyPlwl9V/78H/5ptvdOHCBW3evFnjx4/X+PHjZW9vrypVqqhdu3YaMGCAChYsmOyYH+7EKlq0qNXXnRQ7Ozs1btzY4of9mTNnNH/+fH3//fcKCwvTmDFjVKtWLXNi7NHdYWkV18P77qOjo5O1gy08PDzB8v/e9/+oR58y+GiC0drrSauYAQB4Wjx8+rH0YCdMUr/USS/WrBWSkpp10dKlS/Xyyy8rMjLSXObm5iYXFxeZTCZFRUUpMDDQqjOfli9fLkkJ/vL1UWXLllXZsmXN7/38/LR8+XKNHTtWV65c0fr16zVixAh99913KY7hcXLnzm1eW/+Xv7+/+XVS/5+kZF390MPvWZ48eZQ9e/YU9f3pp580ePBgc+LQZDLJ3d3dvJMrPDxcISEhNjunC2mH2/cApKvXX39d0oNdLmvWrLGo69u3r3x9fVWsWDH5+Pjo7t27CgsL0+3bt+Xn56fr16+b2/73tyIeHh76+++/tX37dn344YeqX7++HBwcdPDgQX3++ecqVaqU5s+fn+w4E3qkcXorU6aMRo8erRUrVpjn/+2339I1poe3VtauXVuGYSTrK61Yez22jBkAgMzo0Ye9WHt495PG2nXE3bt31adPH0VGRqpZs2basmWLxRETfn5+8vHxsWrsqKgo/fXXX5Kk559/PkV9vb299cYbb2jv3r3Kly+fpAfHSaTHbXz29vbJapfWa09rxzt9+rTee+89xcXFqWvXrtq3b58iIiIUGBgoPz8/+fn5afz48ZLi/xsBmQ9JKQDp6tHfZF26dMn8+tq1a+YtvfPnz1eXLl3inXnw33OkEtKgQQONGzdOO3bsUFBQkJYvX66KFSsqPDxc/fr1S/Z5Vg9vDbTFrV/NmjUzb28/e/ZsvJjSMi5bXqe112PLmAEAyIyaNm1q3hmzdOlSG0eTNqxdR6xZs0YhISHKlSuXVq5cqcaNGytbtmwWbZKz5kzIli1bFBISomrVqll9xpWXl5f5jK3AwECLnUsPd5RFREQk2j84ONiqeR969EmFST3J7tFfFifXw+/ZnTt3UrSjafHixYqNjVXZsmW1YMEC1axZ0+KphpL13zM8eUhKAUhXj96a9+i23WvXrplfV61aNcG+GzduTNFcLi4uev7557VkyRJJD36AJ/fww3r16kmSVq5cmaI500qOHDkkyeJwyRo1aph/AKdVXPXr15f04Af5gQMH0mTM5LL2emwZMwAAmZGXl5c6d+4sSZo3b57OnTuX7L5P6s4Ta9cRD9ecpUuXTvTsqpSuOR9atmyZpH8PbrfWw3WgZLkWzJUrlyTp9u3bFrcePmrv3r2pmrtq1armHU1btmxJtF1SdYl5uL6OjY017yhLjoffs8qVKyd626G13zM8eUhKAUhX8+bNM7+uUaOG+fWjB0EePXo0Xr/Q0FB98cUXCY4ZExOT5NbmR3/7ldgPsv/q37+/JOnkyZOaOnVqsvokx/r16x+7uDt69Kj5M3j0EEpXV1d1795dkvT1119bJPKs1bRpU/OurCFDhpgPB09MQEBAqud8yNrrsWXMAABkVl988YVy5Mih8PBwderU6bE7XQIDA9W5c+dU77xJL9auIx6uOc+dO5fgjqMjR45YrFeTyzAMrVixQlLi50lt3779sU8XvHfvnvkXqsWLFzc/YVp6kJR5OFdCO97Cw8M1YcKEFMf+KE9PTzVt2lSS9P333ye4ztq2bVuKDzmXpJIlS6pRo0aSpE8++UQhISHJ6vfwe3b8+PEE19F//fWXVUkyPJlISgFIF35+fhoxYoRmz54tSapTp47q1q1rri9btqyKFCkiSerXr58OHjxortu9e7eaNGmiwMDABMf29fVVqVKl9MUXX+jw4cOKiYkx1x07dky9evWS9GBnVlJPEXlU06ZNzQudQYMGafjw4Ra7vO7cuaPffvvNnLxKrh49eqhMmTIaM2aM9u/fb/GD3s/PTxMmTFCLFi0UFxcnBwcHDR482KL/l19+qTx58uju3buqX7++Fi1aZD7I2zAMnThxQh988IF+//33ZMXj4OCgadOmycHBQTt27FCjRo20adMmi0NGL168qGnTpqlmzZqaMmVKiq73cay5HlvHDABAZvTss8/q999/l5OTk06ePKkqVapo3LhxunDhgrlNbGysDh8+rE8//VQlSpQwJ0eeVNasI1q1aiU7OzsFBASoZ8+e5uRcVFSUFi1apFatWiV5KHtiDh48qOvXr6tYsWKqVKlSgm1++OEHFSlSRO+88442btxokZQJCQnRokWLVK9ePfPtiMOGDbPoX6hQITVo0ECSNHToUG3cuNF81ubBgwfVokUL3b59O8Wx/9fo0aNlMpl04sQJPf/88zp//rykB78IXrJkiTp37mzetZVSP/zwg1xcXHT+/HnVr19fa9euNa/hYmNjtX//fr355psWO5/atGkj6cEviwcOHGj+hWNYWJh+/vlndenSxeIwf2RyBgBYYdSoUYYkQ5Lh5eVl8eXu7m6uk2RUrFjRuH79erwxVq5caTg4OJjbubq6Gq6uroYkI3v27MbGjRvNdZs3bzb3u3TpksX49vb2hqenp+Hk5GQuc3JyMnx8fOLNmdB4D4WFhRmdOnWyGNvNzc3ieipXrpyiz8nb29tiPDs7OyNXrlyGs7OzRXnOnDkTjNcwDOPgwYNGwYIFLa43d+7chouLi7lswoQJFn169+5tSDJ69+6d4JhLly41cubMae7v6Oho5M6dO15cX3zxhUW/mTNnGpKMokWLJnrNj35/Ll26lCbXk5qYAQB4mu3YscMoWbKkxc9KJycnw9PT07CzszOXmUwm4+WXXzaioqIMwzCMzZs3m+v+K6m61K4VHtffmnXERx99ZHH97u7uhqOjoyHJKF68uPHHH3+k+HpGjBhhSDIGDx6c6HV2797dYt6Ha74cOXLEWx9+9NFHCY5x+PBhw83NzdzWxcXFyJ49u3kNvnr1aqs/y0dNmDDBIiYPDw/zGqtChQrm+tKlS8fr+/DfBY0bN05w7HXr1lmspx+u4R5+D/6vvXuPqbr+4zj+Ag6gokBoHBJ1oKAoaSpd2HQDzEsikRLmlpeYJNllKWnaxQwLt3LNrWnOcGZORZtmiQY6VJJUxAstnQWogYV5geAoV+X2+4NxfpKAYHgweD62s519v5/P57w/h7Gdvff+vL+Sar/77rtmvztnZ+daGxubWkm1fn5+tatWrWpyb3eLBw+W/z+LEwDu0T+bidva2srNzU2PPfaYwsPDNWvWrDuaE0pSSEiIUlNTtXz5ch05ckRlZWVyc3PT008/rcWLF2vQoEGNfp67u7sSEhKUkpKitLQ05eXl6dq1azIYDPLy8lJQUJDmzZsnb2/vVu2jW7du+vbbb/XDDz9o/fr1Sk9PV0FBgXr06KFhw4YpMDBQ06dPb9Wa2dnZ2rdvn1JSUpSRkaELFy6oqKhI1tbWMhqNGjx4sMaNG6fIyEgZjcZG1xg5cqR+++03rVmzRt9//70yMzNVXFwso9GoAQMGKDQ0VC+++GKr4po8ebLOnz+vNWvWKCkpSefOnZPJZJKDg4N8fHz0xBNPaNKkSQoODm7Vui1xr/tpz5gBAPivGjVqlDIzM7V9+3bt2bNH6enpunbtmoqLi+Xi4iIfHx8FBARo5syZTf72epDcy++ITz75RL6+vlq9erXOnDmjyspKeXl5acqUKVq0aNE9PaFw165dkprvJ7Vp0yZFRUUpOTlZx48fV1ZWlvLz81VdXa2HHnpIXl5eGj16tCIiIpqstho+fLjS09O1bNkyHTx4UCaTSUajUREREVqyZEmzTdBbY/78+RoxYoRWrFihtLQ0lZeXy8PDQ1OnTtU777yjuLg4SWpwvLClxo8fr3Pnzunzzz9XYmKiLly4oNLSUrm7u2vQoEEKCwvTmDFjGszZsmWL/P399dVXXykrK0vV1dUaOnSopk2bpujo6FY9ZRsPNqva2ge0kx0AAAAAAA+Y33//XQMGDJCLi4uuXr1qfkpeRzZ9+nTFx8dr9uzZWr9+fXuHgw6EnlIAAAAAALRQfZXUpEmTOkVCKjs729xvrL7fE9BWOv5/EAAAAAAAbcTd3V0ffvihnn322fYOpc0sXbpUrq6uCg0NVZ8+fWRtba3S0lLt2bNHb731lioqKuTj49PkkwaBe8XxPQAAAAAAOrHJkyebK8BsbW3Vo0cPmUwm1dTUSKpLxO3du1ePPvpoe4aJDohKKQAAAAAAOrHo6Gj17t1bR48e1eXLl1VYWKgePXpo4MCBCgkJ0RtvvCEXF5f2DhMdEJVSAAAAAAAAsDganQMAAAAAAMDiSEoBAAAAAADA4khKAQAAAAAAwOJISgEAAAAAAMDiQH7IMgAACqlJREFUSEoBAAAAAADA4khKAQAAAAAAwOJISgEAgA7Dysrqnl9ff/21RWI0mUyKiYlRTEyMTCZTq+dHRETc8x4DAwPbfD8AAAD3ytDeAQAAALQVo9HY6PWSkhKVlpY2O6Zr1673La7bmUwmLVu2TFJdgsnZ2blV852cnBrdQ3V1tQoKCiRJjo6Oje7HxcWl9QEDAADcJ1a1tbW17R0EAADA/RQTE2NOBLX3T5/c3Fx5enpKknJycuTh4dHm627YsEERERFtsi4AAMD9wvE9AAAAAAAAWBxJKQAAAEn5+flasmSJRowYIScnJ3Xp0kX9+/dXZGSkzp492+S8vLw8RUdHy9fXVw4ODrK3t1fv3r3l5+en6OhonThxwjw2MDDQXM0kSZ6enve951NmZqZ5/ePHjzc7dubMmXfEkZuba56fm5urc+fOKSIiQn369JG9vb369eunuXPn6q+//mp27ZqaGm3ZskXBwcEyGo2ys7PTww8/rPHjx2vr1q3tXsEGAAAsj55SAACg09u/f7+mTp1qbjxua2srOzs75eTkKCcnR5s3b9a6des0a9asBvN++eUXBQUFqaioSJJkY2MjR0dHXblyRZcvX1ZGRoaKiorMTdRdXFzUq1cvc++nXr16ycbGxrze/ej55OPjo4CAAB06dEhxcXF68sknGx1XVFSkHTt2SJKioqIaHZOenq45c+aouLhY3bt3l42Njf788099+eWX2r59u5KTkzVy5Mg75hUWFmrKlClKTU01X3NyclJBQYGSk5OVnJysbdu2afv27bKzs2uDXQMAgP8CKqUAAECndubMGYWGhspkMmnOnDn69ddfVV5erpKSEl28eFGvvfaabt26pcjISJ08ebLB3AULFqioqEgjR45UWlqaKisrVVhYqIqKCmVnZ+uzzz6Tr6+vefzOnTsbVE6dOHFCV65cMb927tx5X/b46quvSpK2bdum4uLiRsds3rxZFRUV6tmzp55//vlGx7zyyivy9PRUenq6iouLVVpaqn379qlfv37mxNM/16+urlZYWJhSU1M1fPhw7d69W6WlpTKZTCopKdHGjRvl6uqqhIQELV68uG03DgAAHmgkpQAAQKc2f/58lZeX691331VcXJwGDx5srl7q16+fvvjiC7355puqqqpSbGxsg7lHjx6VJK1evVr+/v6ysrKSJNnZ2cnb21sLFizQ22+/bdkNNSIsLEyurq4qLS1VfHx8o2PWrVsnSXrppZdkb2/f6BiDwaDk5GRztZWVlZXGjx+vvXv3ys7OTn/88YfWrl3bYE58fLwOHTokHx8f/fjjjwoJCVG3bt0kSQ4ODpo1a5YSExNlZWWlNWvW6Nq1a221bQAA8IAjKQUAADqt3NxcHTx4UAaDQQsXLmxyXP2xvf3796u6utp83dnZWZJ0+fLl+xrnv2Vra6vIyEhJUlxc3B33jx07pjNnzkhq+uieJM2dO1eurq53XB88eLDCw8Ml1VVj3W79+vWS6qq1nJycGl3Xz89Pvr6+unXrllJSUlqwIwAA0BGQlAIAAJ3WkSNHJNU14R4yZIjc3NwafT3zzDOSpNLSUv3999/m+SEhIZLqqosWLFigQ4cOqayszPIbaYGoqChZW1srIyNDGRkZDe7VV0kFBARo0KBBTa4xZsyYu947ffq0KisrJdUd3Tt27JgkKSYmpsnv183NTVlZWZKkixcv3vsmAQDAfwqNzgEAQKdV/8S4mpoaXb16tUVzbk86rVixQufPn1dKSopWrlyplStXysbGRsOHD9ekSZMUFRUld3f3+xJ7a3l4eGjChAlKSkpSXFyc+ZjdjRs39M0330iq6xnVnOb2Un+vqqpKhYWFMhqNKiws1M2bNyXJ3Az+bh7UpB4AAGh7VEoBAIBOq/4ontFoVG1tbYteHh4e5vnOzs46ePCgfvrpJy1atEijRo2SwWDQqVOn9NFHH8nb21tbt25tp93dqb7heXx8vEpLSxu879mzp8LCwtr0824/6piUlNSi7zcmJqZNYwAAAA8uklIAAKDTcnNzkyQVFBSYkzT3YvTo0fr00091+PBhmUwm7dq1S0OHDlV5eblmz57d4iqs+y04OFh9+/ZVcXGxufdT/dG9iIiIJhuc17t06dJd7xkMBrm4uEiSevbsKYOhrjCfY3kAAOCfSEoBAIBOa9SoUZLqKnqSkpLaZM0uXbooNDRUO3fulCRVVFTo8OHD5vvW1v//+VVbW9smn9lSNjY25kbmcXFxDfpLNdfgvF5zTcjr7w0bNky2traS6hqs1z+pb/fu3f8qdgAA0PGQlAIAAJ2Wt7e3AgMDJUnvv/++rl+/3uz4wsJC8/uqqirV1NQ0ObZr167m97cnohwdHc3vTSZTKyP+9yIjI2UwGHT8+HFFR0dLqmtwPnDgwLvOXbt2rQoKCu64npWVpR07dkiSpk2b1uBefbIrMTFRiYmJza5/+/cLAAA6PpJSAACgU1u1apW6d++u7Oxs+fv7a9euXaqoqDDfv3TpkjZt2qSnn35aixcvNl/Py8uTt7e3YmNj9fPPP6uqqsp87/Tp05oxY4YkycHBQQEBAeZ7zs7O5qbgGzZsaDDPEh555BE999xzkqTU1FRJd29wXq+yslLjxo3TiRMnJNVVeu3fv18TJkzQzZs31bdvX82dO7fBnBkzZmjs2LGqra3VlClTFBsba24wL9U90TAlJUWvv/66+vfv3xZbBAAA/xFWtZauGwcAALCwmJgYLVu2TFLjR+aOHDmi8PBwXblyRVLdMTdnZ2eVlZWpvLzcPO7ll18292DKzc2Vp6en+Z6NjY2cnJxUUlKiW7duSZLs7Oy0ZcsWhYeHN/i82NhYffDBB5Ike3t7ubq6ytraWv7+/uZeT611ezwbNmxQREREk2MPHDigsWPHSqrr+3Tp0qUm+0ndvu62bds0Z84cFRcXq3v37qqpqTE/Lc/Z2VnJycl6/PHH71jjxo0bmj59uvbs2WO+5ujoKGtra12/ft38NzEYDKqsrGz95gEAwH+Sob0DAAAAaG+jRo1Sdna24uLilJCQoLNnz8pkMqlr164aPHiw/Pz8NHHiRHOFkSS5u7srISFBKSkpSktLU15enq5duyaDwSAvLy8FBQVp3rx58vb2vuPz3nvvPTk6OmrTpk3KzMxUXl7eHU/2u5/GjBkjFxcXFRYWtqjBeb2nnnpKJ0+e1PLly3XgwAHl5+fL3d1dwcHBWrp0qfr06dPoPEdHR+3evVtJSUnauHGj0tLSdPXqVdXW1srd3V1DhgxRUFCQXnjhhbbcJgAAeMBRKQUAANDJnDp1ylzRlJWV1Ww/qdsrpXJyciyWOAMAAB0fPaUAAAA6mVWrVkmqq5hqSYNzAACA+4GkFAAAQCeSmJiozZs3S5IWLlzYztEAAIDOjJ5SAAAAHVxeXp5Gjx6tsrIy5efnS5JCQkI0ceLEdo4MAAB0ZiSlAAAAOriqqipdvHhRVlZW6tOnj8LDw/Xxxx+3d1gAAKCTo9E5AAAAAAAALI6eUgAAAAAAALA4klIAAAAAAACwOJJSAAAAAAAAsDiSUgAAAAAAALA4klIAAAAAAACwOJJSAAAAAAAAsDiSUgAAAAAAALA4klIAAAAAAACwOJJSAAAAAAAAsLj/AYCW1nDCbGFJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "TEMPERATURE = str(TEMPERATURE).replace('.', '_')\n", "\n", "run_analysis(model=MODEL, temperature=TEMPERATURE, n_repetitions=N_REPETITIONS, languages=LANGUAGES)" ] }, { "cell_type": "code", "execution_count": 4, "id": "dffeddc1", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
testyearthemematch_spanishmatch_tagalogmatch_portuguesematch_englishTotal
0Teórica I2022anatomy168131521
1Teórica I2022cornea11111
2Teórica I2022embryology11112
3Teórica I2022genetics21222
4Teórica I2022glaucoma11111
5Teórica I2022oncology11111
6Teórica I2022pharmacology33333
7Teórica I2022refraction546412
8Teórica I2022retina10111
9Teórica II2022contact lenses21113
10Teórica II2022cornea33439
11Teórica II2022cornea/lens11111
12Teórica II2022glaucoma66678
13Teórica II2022glaucoma/uveitis11111
14Teórica II2022lens/cataract43458
15Teórica II2022low vision01001
16Teórica II2022neuro-ophthalmology65657
17Teórica II2022ocular plastic surgery1189916
18Teórica II2022oncology/ocular plastic surgery31333
19Teórica II2022optics10111
20Teórica II2022optics/refraction10111
21Teórica II2022pharmacology54556
22Teórica II2022pharmacology/glaucoma11111
23Teórica II2022refraction977819
24Teórica II2022refraction/low vision11112
25Teórica II2022refractive surgery22222
26Teórica II2022retina898711
27Teórica II2022retina/oncology11111
28Teórica II2022strabismus555911
29Teórica II2022uveitis55548
\n", "
" ], "text/plain": [ " test year theme match_spanish \\\n", "0 Teórica I 2022 anatomy 16 \n", "1 Teórica I 2022 cornea 1 \n", "2 Teórica I 2022 embryology 1 \n", "3 Teórica I 2022 genetics 2 \n", "4 Teórica I 2022 glaucoma 1 \n", "5 Teórica I 2022 oncology 1 \n", "6 Teórica I 2022 pharmacology 3 \n", "7 Teórica I 2022 refraction 5 \n", "8 Teórica I 2022 retina 1 \n", "9 Teórica II 2022 contact lenses 2 \n", "10 Teórica II 2022 cornea 3 \n", "11 Teórica II 2022 cornea/lens 1 \n", "12 Teórica II 2022 glaucoma 6 \n", "13 Teórica II 2022 glaucoma/uveitis 1 \n", "14 Teórica II 2022 lens/cataract 4 \n", "15 Teórica II 2022 low vision 0 \n", "16 Teórica II 2022 neuro-ophthalmology 6 \n", "17 Teórica II 2022 ocular plastic surgery 11 \n", "18 Teórica II 2022 oncology/ocular plastic surgery 3 \n", "19 Teórica II 2022 optics 1 \n", "20 Teórica II 2022 optics/refraction 1 \n", "21 Teórica II 2022 pharmacology 5 \n", "22 Teórica II 2022 pharmacology/glaucoma 1 \n", "23 Teórica II 2022 refraction 9 \n", "24 Teórica II 2022 refraction/low vision 1 \n", "25 Teórica II 2022 refractive surgery 2 \n", "26 Teórica II 2022 retina 8 \n", "27 Teórica II 2022 retina/oncology 1 \n", "28 Teórica II 2022 strabismus 5 \n", "29 Teórica II 2022 uveitis 5 \n", "\n", " match_tagalog match_portuguese match_english Total \n", "0 8 13 15 21 \n", "1 1 1 1 1 \n", "2 1 1 1 2 \n", "3 1 2 2 2 \n", "4 1 1 1 1 \n", "5 1 1 1 1 \n", "6 3 3 3 3 \n", "7 4 6 4 12 \n", "8 0 1 1 1 \n", "9 1 1 1 3 \n", "10 3 4 3 9 \n", "11 1 1 1 1 \n", "12 6 6 7 8 \n", "13 1 1 1 1 \n", "14 3 4 5 8 \n", "15 1 0 0 1 \n", "16 5 6 5 7 \n", "17 8 9 9 16 \n", "18 1 3 3 3 \n", "19 0 1 1 1 \n", "20 0 1 1 1 \n", "21 4 5 5 6 \n", "22 1 1 1 1 \n", "23 7 7 8 19 \n", "24 1 1 1 2 \n", "25 2 2 2 2 \n", "26 9 8 7 11 \n", "27 1 1 1 1 \n", "28 5 5 9 11 \n", "29 5 5 4 8 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "N_REPETITIONS = 1 if N_REPETITIONS < 1 else N_REPETITIONS\n", "pd.read_csv(f'results/results_{MODEL}_Temperature{TEMPERATURE}_Repetitions{N_REPETITIONS}/matches_results_{MODEL}.csv')" ] }, { "cell_type": "code", "execution_count": null, "id": "c23866b3-c0c6-42de-968c-6994b2b8b7fa", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "dc0d5998-4539-4318-b8ec-d4e6cb7e1d9a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "llm_bias", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" } }, "nbformat": 4, "nbformat_minor": 5 }