Akhil2507 commited on
Commit
0048292
1 Parent(s): e972b5f

Update loading_script.py

Browse files
Files changed (1) hide show
  1. loading_script.py +144 -0
loading_script.py CHANGED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+
16
+ """TODO: This Dataset is provided by intel for oneAPI_AI Hackathon contest."""
17
+
18
+
19
+ import csv
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @InProceedings{huggingface:dataset,
29
+ title = {oneAPIDataset},
30
+ author={huggingface, Inc.
31
+ },
32
+ year={2023}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+
43
+ # TODO: Add link to the official dataset URLs here
44
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
45
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
46
+ # _URLS = {
47
+ # "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
48
+ # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
49
+ # }
50
+
51
+
52
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
53
+ class NewDataset(datasets.GeneratorBasedBuilder):
54
+ """TODO: Short description of my dataset."""
55
+
56
+ VERSION = datasets.Version("1.1.0")
57
+
58
+ # This is an example of a dataset with multiple configurations.
59
+ # If you don't want/need to define several sub-sets in your dataset,
60
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
61
+
62
+ # If you need to make complex sub-parts in the datasets with configurable options
63
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
64
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
65
+
66
+ # You will be able to load one or the other configurations in the following list with
67
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
68
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
69
+ BUILDER_CONFIGS = datasets.BuilderConfig(name="first_domain", version=VERSION, description="oneAPI dataset contains context,question and answer")
70
+
71
+ DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
72
+
73
+ def _info(self):
74
+
75
+ features = datasets.Features(
76
+ {
77
+
78
+ "Story": datasets.Value("string"),
79
+ "Question": datasets.Value("string"),
80
+ "span_start": datasets.Value("int32")
81
+ "span_end": datasets.Value("int32"),
82
+ "span_text": datasets.Value("string"),
83
+ "Answer" : datasets.Value("string"),
84
+ # These are the features of the dataset
85
+ }
86
+ )
87
+ return datasets.DatasetInfo(
88
+ # This is the description that will appear on the datasets page.
89
+ description=_DESCRIPTION,
90
+ # This defines the different columns of the dataset and their types
91
+ features=features, # Here we define them above because they are different between the two configurations
92
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
93
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
94
+ # supervised_keys=("sentence", "label"),
95
+
96
+ # Citation for the dataset
97
+ citation=_CITATION,
98
+ )
99
+
100
+ def _split_generators(self, dl_manager):
101
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
102
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
103
+
104
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
105
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
106
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
107
+ # urls = _URLS[self.config.name]
108
+ data_dir = "./Data"
109
+ return [
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.TRAIN,
112
+ # These kwargs will be passed to _generate_examples
113
+ gen_kwargs={
114
+ "filepath": os.path.join(data_dir, "train.csv"),
115
+ "split": "train",
116
+ },
117
+ ),
118
+ datasets.SplitGenerator(
119
+ name=datasets.Split.TEST,
120
+ # These kwargs will be passed to _generate_examples
121
+ gen_kwargs={
122
+ "filepath": os.path.join(data_dir, "test.csv"),
123
+ "split": "test"
124
+ },
125
+ ),
126
+ ]
127
+
128
+
129
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
130
+ def _generate_examples(self, filepath):
131
+
132
+ with open(filepath, mode="r", newline="", encoding="utf-8") as f:
133
+ csv_reader = csv.DictReader(f)
134
+ for row in (csv_reader):
135
+ yield {
136
+ "Story": row["Story"],
137
+ "Question": row["Question"],
138
+ "span_start": row["span_start"],
139
+ "span_end": row["span_end"],
140
+ "span_text": row["span_text"],
141
+ "Answer": row["Answer"]
142
+ }
143
+
144
+