AmelieSchreiber
commited on
Commit
•
dff8ab6
1
Parent(s):
a92b07f
Upload cluster_landscapes_v3.py
Browse files- cluster_landscapes_v3.py +134 -0
cluster_landscapes_v3.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from transformers import EsmModel, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
from scipy.spatial.distance import pdist, squareform
|
6 |
+
from gudhi import RipsComplex
|
7 |
+
from gudhi.representations.vector_methods import Landscape
|
8 |
+
from sklearn.cluster import DBSCAN
|
9 |
+
# import matplotlib.pyplot as plt
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
# Define a helper function for hidden states
|
13 |
+
def get_hidden_states(sequence, tokenizer, model, layer):
|
14 |
+
model.config.output_hidden_states = True
|
15 |
+
encoded_input = tokenizer([sequence], return_tensors='pt', padding=True, truncation=True, max_length=1024)
|
16 |
+
with torch.no_grad():
|
17 |
+
model_output = model(**encoded_input)
|
18 |
+
hidden_states = model_output.hidden_states
|
19 |
+
specific_hidden_states = hidden_states[layer][0]
|
20 |
+
return specific_hidden_states.numpy()
|
21 |
+
|
22 |
+
# Define a helper function for Euclidean distance matrix
|
23 |
+
def compute_euclidean_distance_matrix(hidden_states):
|
24 |
+
euclidean_distances = pdist(hidden_states, metric='euclidean')
|
25 |
+
euclidean_distance_matrix = squareform(euclidean_distances)
|
26 |
+
return euclidean_distance_matrix
|
27 |
+
|
28 |
+
# Define a helper function for persistent homology
|
29 |
+
def compute_persistent_homology(distance_matrix, max_dimension=0):
|
30 |
+
max_edge_length = np.max(distance_matrix)
|
31 |
+
rips_complex = RipsComplex(distance_matrix=distance_matrix, max_edge_length=max_edge_length)
|
32 |
+
st = rips_complex.create_simplex_tree(max_dimension=max_dimension)
|
33 |
+
st.persistence()
|
34 |
+
persistence_pairs = np.array([[p[1][0], p[1][1]] for p in st.persistence() if p[0] == 0 and p[1][1] < np.inf]) # Filter out infinite death times
|
35 |
+
return st, persistence_pairs
|
36 |
+
|
37 |
+
# Define a helper function for persistent homology
|
38 |
+
def compute_persistent_homology2(distance_matrix, max_dimension=0):
|
39 |
+
max_edge_length = np.max(distance_matrix)
|
40 |
+
rips_complex = RipsComplex(distance_matrix=distance_matrix, max_edge_length=max_edge_length)
|
41 |
+
st = rips_complex.create_simplex_tree(max_dimension=max_dimension)
|
42 |
+
st.persistence()
|
43 |
+
return st, st.persistence()
|
44 |
+
|
45 |
+
# Define a helper function for Landscape transformations with tqdm
|
46 |
+
#def compute_landscapes(persistence_diagrams, num_landscapes=5, resolution=10000):
|
47 |
+
# landscape_transformer = Landscape(num_landscapes=num_landscapes, resolution=resolution)
|
48 |
+
# landscapes = landscape_transformer.fit_transform([d for d in persistence_diagrams if len(d) > 0]) # Filter out empty diagrams
|
49 |
+
# return landscapes
|
50 |
+
|
51 |
+
def compute_landscapes(persistence_diagrams, num_landscapes=5, resolution=10000):
|
52 |
+
landscape_transformer = Landscape(num_landscapes=num_landscapes, resolution=resolution)
|
53 |
+
landscapes = []
|
54 |
+
|
55 |
+
for diagram in tqdm(persistence_diagrams, desc="Computing Landscapes"):
|
56 |
+
if len(diagram) > 0:
|
57 |
+
landscape = landscape_transformer.fit_transform([diagram])[0]
|
58 |
+
landscapes.append(landscape)
|
59 |
+
|
60 |
+
return landscapes
|
61 |
+
|
62 |
+
# Load the tokenizer and model
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
|
64 |
+
model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D")
|
65 |
+
|
66 |
+
# Define layer to be used
|
67 |
+
layer = model.config.num_hidden_layers - 1
|
68 |
+
|
69 |
+
# Load the TSV file
|
70 |
+
file_path = 'clustering_and_evoprotgrad/filtered_protein_interaction_pairs.tsv'
|
71 |
+
protein_pairs_df = pd.read_csv(file_path, sep='\t')
|
72 |
+
|
73 |
+
# Only process the first 1000 proteins
|
74 |
+
protein_pairs_df = protein_pairs_df.head(30000)
|
75 |
+
|
76 |
+
# Extract concatenated sequences
|
77 |
+
concatenated_sequences = protein_pairs_df['Protein1'] + protein_pairs_df['Protein2']
|
78 |
+
|
79 |
+
# Initialize list to store persistent diagrams
|
80 |
+
persistent_diagrams = []
|
81 |
+
|
82 |
+
# Loop over concatenated sequences to compute their persistent diagrams
|
83 |
+
for sequence in tqdm(concatenated_sequences, desc="Computing Persistence Diagrams"):
|
84 |
+
hidden_states_matrix = get_hidden_states(sequence, tokenizer, model, layer)
|
85 |
+
distance_matrix = compute_euclidean_distance_matrix(hidden_states_matrix)
|
86 |
+
_, persistence_diagram = compute_persistent_homology(distance_matrix)
|
87 |
+
persistent_diagrams.append(persistence_diagram)
|
88 |
+
|
89 |
+
# Compute landscapes
|
90 |
+
landscapes = compute_landscapes(persistent_diagrams)
|
91 |
+
|
92 |
+
# Compute the L2 distances between landscapes
|
93 |
+
with tqdm(total=len(landscapes)*(len(landscapes)-1)//2, desc="Computing Pairwise L2 Distances") as pbar:
|
94 |
+
l2_distances = np.zeros((len(landscapes), len(landscapes)))
|
95 |
+
for i in range(len(landscapes)):
|
96 |
+
for j in range(i+1, len(landscapes)):
|
97 |
+
l2_distances[i, j] = l2_distances[j, i] = np.linalg.norm(landscapes[i] - landscapes[j])
|
98 |
+
pbar.update(1)
|
99 |
+
|
100 |
+
# Compute the second-level persistent homology using the L2 distance matrix
|
101 |
+
with tqdm(total=1, desc="Computing Second-Level Persistent Homology") as pbar:
|
102 |
+
st_2, persistence_2 = compute_persistent_homology2(l2_distances)
|
103 |
+
pbar.update(1)
|
104 |
+
|
105 |
+
# Function to calculate the epsilon for DBSCAN
|
106 |
+
def calculate_epsilon(persistence_diagrams, threshold_percentage, max_eps=np.inf):
|
107 |
+
lifetimes = [p[1][1] - p[1][0] for p in persistence_diagrams if p[0] == 0]
|
108 |
+
lifetimes.sort()
|
109 |
+
threshold_index = int(threshold_percentage * len(lifetimes))
|
110 |
+
epsilon = lifetimes[threshold_index]
|
111 |
+
# Ensure epsilon is within a reasonable range
|
112 |
+
epsilon = min(epsilon, max_eps)
|
113 |
+
return epsilon
|
114 |
+
|
115 |
+
# Calculate epsilon with a maximum threshold
|
116 |
+
threshold_percentage = 0.35 # 50%
|
117 |
+
max_epsilon = 5000.0 # Example maximum threshold
|
118 |
+
epsilon = calculate_epsilon(persistence_2, threshold_percentage, max_eps=max_epsilon)
|
119 |
+
|
120 |
+
# Perform DBSCAN clustering
|
121 |
+
with tqdm(total=1, desc="Performing DBSCAN Clustering") as pbar:
|
122 |
+
dbscan = DBSCAN(metric="precomputed", eps=epsilon, min_samples=1)
|
123 |
+
dbscan.fit(l2_distances) # Use L2 distances here
|
124 |
+
labels = dbscan.labels_
|
125 |
+
pbar.update(1)
|
126 |
+
|
127 |
+
# Add the cluster labels to the DataFrame
|
128 |
+
protein_pairs_df['Cluster'] = labels
|
129 |
+
|
130 |
+
# Save the DataFrame with cluster information
|
131 |
+
output_file_path = 'clustering_and_evoprotgrad/clustered_protein_pair_landscapes_l2_dist_100K.tsv'
|
132 |
+
protein_pairs_df.to_csv(output_file_path, sep='\t', index=False)
|
133 |
+
|
134 |
+
print(f"Clustered data saved to: {output_file_path}")
|