|
import os |
|
import random |
|
from glob import glob |
|
import json |
|
from huggingface_hub import hf_hub_download |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
from astropy.io import fits |
|
from astropy.wcs import WCS |
|
import datasets |
|
from datasets import DownloadManager |
|
from fsspec.core import url_to_fs |
|
|
|
def get_fits_footprint(fits_path): |
|
""" |
|
Process a FITS file to extract WCS information and calculate the footprint. |
|
|
|
Parameters: |
|
fits_path (str): Path to the FITS file. |
|
|
|
Returns: |
|
tuple: A tuple containing the WCS footprint coordinates. |
|
""" |
|
with fits.open(fits_path) as hdul: |
|
hdul[0].data = hdul[0].data[0, 0] |
|
wcs = WCS(hdul[0].header) |
|
shape = sorted(tuple(wcs.pixel_shape))[:2] |
|
footprint = wcs.calc_footprint(axes=shape) |
|
coords = list(footprint.flatten()) |
|
return coords |
|
|
|
def calculate_pixel_scale(header): |
|
""" |
|
Calculate the pixel scale in arcseconds per pixel from a FITS header. |
|
|
|
Parameters: |
|
header (astropy.io.fits.header.Header): The FITS header containing WCS information. |
|
|
|
Returns: |
|
Mean of the pixel scales in x and y. |
|
""" |
|
|
|
cd1_1 = header.get('CD1_1', np.nan) |
|
cd1_2 = header.get('CD1_2', np.nan) |
|
cd2_1 = header.get('CD2_1', np.nan) |
|
cd2_2 = header.get('CD2_2', np.nan) |
|
|
|
|
|
pixscale_x = np.sqrt(cd1_1**2 + cd1_2**2) * 3600 |
|
pixscale_y = np.sqrt(cd2_1**2 + cd2_2**2) * 3600 |
|
|
|
return np.mean([pixscale_x, pixscale_y]) |
|
|
|
|
|
def make_split_jsonl_files(config_type="tiny", data_dir="./data", |
|
outdir="./splits", seed=42): |
|
""" |
|
Create jsonl files for the GBI-16-4D dataset. |
|
|
|
config_type: str, default="tiny" |
|
The type of split to create. Options are "tiny" and "full". |
|
data_dir: str, default="./data" |
|
The directory where the FITS files are located. |
|
outdir: str, default="./splits" |
|
The directory where the jsonl files will be created. |
|
seed: int, default=42 |
|
The seed for the random split. |
|
""" |
|
random.seed(seed) |
|
os.makedirs(outdir, exist_ok=True) |
|
|
|
fits_files = glob(os.path.join(data_dir, "*.fits")) |
|
random.shuffle(fits_files) |
|
if config_type == "tiny": |
|
train_files = fits_files[:2] |
|
test_files = fits_files[2:3] |
|
elif config_type == "full": |
|
split_idx = int(0.8 * len(fits_files)) |
|
train_files = fits_files[:split_idx] |
|
test_files = fits_files[split_idx:] |
|
else: |
|
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.") |
|
|
|
def create_jsonl(files, split_name): |
|
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl") |
|
with open(output_file, "w") as out_f: |
|
for file in tqdm(files): |
|
|
|
with fits.open(file, memmap=False, ignore_missing_simple=True) as hdul: |
|
image_id = os.path.basename(file).split(".fits")[0] |
|
ra = hdul[0].header.get('CRVAL1', np.nan) |
|
dec = hdul[0].header.get('CRVAL2', np.nan) |
|
pixscale = calculate_pixel_scale(hdul[0].header) |
|
ntimes = hdul[0].data.shape[0] |
|
nbands = hdul[0].data.shape[1] |
|
footprint = get_fits_footprint(file) |
|
item = {"image_id": image_id, "image": file, "ra": ra, "dec": dec, |
|
"pixscale": pixscale, "ntimes": ntimes, "nbands": nbands, "footprint": footprint} |
|
out_f.write(json.dumps(item) + "\n") |
|
|
|
create_jsonl(train_files, "train") |
|
create_jsonl(test_files, "test") |
|
|
|
if __name__ == "__main__": |
|
make_split_jsonl_files("tiny") |
|
make_split_jsonl_files("full") |