File size: 1,584 Bytes
a86ac76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd52a8e
a86ac76
 
fd52a8e
a86ac76
 
 
 
 
 
 
 
 
 
 
 
fd52a8e
 
 
 
 
 
 
cea0bc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': MH
          '1': DR
          '2': AMD
          '3': NORMAL
          '4': RVO
  splits:
  - name: train
    num_bytes: 542923384.716
    num_examples: 1534
  - name: validation
    num_bytes: 55514206
    num_examples: 171
  - name: test
    num_bytes: 63512486
    num_examples: 182
  download_size: 661715573
  dataset_size: 661950076.716
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: cc-by-4.0
task_categories:
- image-classification
tags:
- medical
size_categories:
- 1K<n<10K
---
# Dataset Card for OCTDL2024

<!-- Provide a quick summary of the dataset. -->

The OCTDL2024 dataset is a subset of the dataset OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods.

## Citation

```bibtex
@article{kulyabin2024octdl,
  title={OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods},
  author={Kulyabin, Mikhail and Zhdanov, Aleksei and Nikiforova, Anastasia and Stepichev, Andrey 
          and Kuznetsova, Anna and Ronkin, Mikhail and Borisov, Vasilii and Bogachev, Alexander 
          and Korotkich, Sergey and Constable, Paul A and Maier, Andreas},
  journal={Scientific Data},
  volume={11},
  number={1},
  pages={365},
  year={2024},
  publisher={Nature Publishing Group UK London},
  doi={https://doi.org/10.1038/s41597-024-03182-7}
}
```