File size: 1,584 Bytes
a86ac76 fd52a8e a86ac76 fd52a8e a86ac76 fd52a8e cea0bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': MH
'1': DR
'2': AMD
'3': NORMAL
'4': RVO
splits:
- name: train
num_bytes: 542923384.716
num_examples: 1534
- name: validation
num_bytes: 55514206
num_examples: 171
- name: test
num_bytes: 63512486
num_examples: 182
download_size: 661715573
dataset_size: 661950076.716
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: cc-by-4.0
task_categories:
- image-classification
tags:
- medical
size_categories:
- 1K<n<10K
---
# Dataset Card for OCTDL2024
<!-- Provide a quick summary of the dataset. -->
The OCTDL2024 dataset is a subset of the dataset OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods.
## Citation
```bibtex
@article{kulyabin2024octdl,
title={OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods},
author={Kulyabin, Mikhail and Zhdanov, Aleksei and Nikiforova, Anastasia and Stepichev, Andrey
and Kuznetsova, Anna and Ronkin, Mikhail and Borisov, Vasilii and Bogachev, Alexander
and Korotkich, Sergey and Constable, Paul A and Maier, Andreas},
journal={Scientific Data},
volume={11},
number={1},
pages={365},
year={2024},
publisher={Nature Publishing Group UK London},
doi={https://doi.org/10.1038/s41597-024-03182-7}
}
``` |