MononitoGoswami commited on
Commit
2b4d220
1 Parent(s): 82ae9d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -4
README.md CHANGED
@@ -41,11 +41,24 @@ configs:
41
  data_files:
42
  - split: test
43
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ---
45
 
46
- # Dataset Card for TimeSeriesExam1
47
 
48
- This dataset contains Question-Anwser (QA) pairs for [paper](https://arxiv.org/pdf/2410.14752) TimeSeriesExam. The example inference code are provided [here](https://github.com/moment-timeseries-foundation-model/TimeSeriesExam).
49
 
50
  ## 📖Introduction
51
  Large Language Models (LLMs) have recently demonstrated a remarkable ability to model time series data. These capabilities can be partly explained if LLMs understand basic time series concepts. However, our knowledge of what these models understand about time series data remains relatively limited. To address this gap, we introduce TimeSeriesExam, a configurable and scalable multiple-choice question exam designed to assess LLMs across five core time series understanding categories: pattern recognition, noise understanding, similarity analysis, anomaly detection, and causality analysis.
@@ -92,5 +105,5 @@ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLI
92
 
93
  See [MIT LICENSE](LICENSE) for details.
94
 
95
- <img align="right" height ="120px" src="asset/cmu_logo.png">
96
- <img align="right" height ="110px" src="asset/autonlab_logo.png">
 
41
  data_files:
42
  - split: test
43
  path: data/test-*
44
+ task_categories:
45
+ - question-answering
46
+ language:
47
+ - en
48
+ tags:
49
+ - Time-series
50
+ - LLMs
51
+ - GPT
52
+ - Gemini
53
+ - Phi
54
+ pretty_name: timeseriesexam1
55
+ size_categories:
56
+ - n<1K
57
  ---
58
 
59
+ # Dataset Card for TimeSeriesExam-1
60
 
61
+ This dataset provides Question-Answer (QA) pairs for the paper [TimeSeriesExam: A Time Series Understanding Exam](https://arxiv.org/pdf/2410.14752). Example inference code can be found [here](https://github.com/moment-timeseries-foundation-model/TimeSeriesExam).
62
 
63
  ## 📖Introduction
64
  Large Language Models (LLMs) have recently demonstrated a remarkable ability to model time series data. These capabilities can be partly explained if LLMs understand basic time series concepts. However, our knowledge of what these models understand about time series data remains relatively limited. To address this gap, we introduce TimeSeriesExam, a configurable and scalable multiple-choice question exam designed to assess LLMs across five core time series understanding categories: pattern recognition, noise understanding, similarity analysis, anomaly detection, and causality analysis.
 
105
 
106
  See [MIT LICENSE](LICENSE) for details.
107
 
108
+ <img align="right" width ="120px" src="asset/cmu_logo.png">
109
+ <img align="right" width ="110px" src="asset/autonlab_logo.png">