"""Arabic review multi-classification dataset.""" import csv import datasets from datasets.tasks import TextClassification _CITATION = """\ ----ArabicNLPDataset---- """ _DESCRIPTION = """\ The dataset, prepared in Arabic, includes 10.000 tests, 10.000 validations and 80000 train data. The data is composed of customer comments and created from e-commerce sites. """ _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/BihterDass/ArabicTextClassificationDataset/main/train.csv" _VALIDATION_DOWNLOAD_URL ="https://raw.githubusercontent.com/BihterDass/ArabicTextClassificationDataset/main/dev.csv" _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/BihterDass/ArabicTextClassificationDataset/main/test.csv" class ArabicNLPDatasetConfig(datasets.BuilderConfig): """BuilderConfig for ArabicNLPDataset Config""" def __init__(self, **kwargs): """BuilderConfig for ArabicNLPDatasetConfig Args: **kwargs: keyword arguments forwarded to super. """ super(ArabicNLPDatasetConfig, self).__init__(**kwargs) class ArabicNLPDataset(datasets.GeneratorBasedBuilder): """ArabicNLPDataset Classification dataset.""" BUILDER_CONFIGS = [ ArabicNLPDatasetConfig( name="ArabicData", version=datasets.Version("1.0.0"), description="ArabicNLPDataset: It is a classification study that will contribute to natural language processing operations.", ), ] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.ClassLabel(names=["neg", "nor","pos"]), } ), supervised_keys=None, # Homepage of the dataset for documentation homepage="https://github.com/BihterDass/ArabicTextClassificationDataset", citation=_CITATION, task_templates=[TextClassification(text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True, ) for id_, row in enumerate(csv_reader): ( text, label, ) = row yield id_, { "text": text, "label": int(label), }