File size: 1,234 Bytes
b75c6d1 e3a940d 4636c88 e3a940d e50aaad b75c6d1 e50aaad b75c6d1 e50aaad b4e35f5 e50aaad b4e35f5 e50aaad b4e35f5 b75c6d1 e50aaad b4e35f5 69b20bc b75c6d1 824ff80 36740c5 824ff80 36740c5 824ff80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
dataset_info:
features:
- name: image
dtype: image
- name: gonogo
sequence:
sequence: int64
- name: organs
sequence:
sequence: int64
splits:
- name: train
num_bytes: 3194200648
num_examples: 812
- name: test
num_bytes: 798550162
num_examples: 203
download_size: 254933651
dataset_size: 3992750810
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: cc
task_categories:
- feature-extraction
- image-segmentation
---
## Dataset Structure
This dataset contains vision data from cholecystectomy surgery (gallbladder removal).
### Data Fields
- **image**: The PIL image of the surgery view.
- **gonogo**: The (360,640) label of background (0), safe (1), and unsafe (2).
- **organs**: The (360,640) label of background (0), liver (1), gallbladder (2), and hepatocystic triangle (3).
### Data Splits
- **train**: 812 samples
- **test**: 203 samples
- Total: 1015 samples
## Usage
```
from datasets import load_dataset
train_dataset = load_dataset("BrachioLab/cholecystectomy_segmentation", split="train")
test_dataset = load_dataset("BrachioLab/cholecystectomy_segmentation", split="test")
``` |