File size: 1,234 Bytes
b75c6d1
 
 
e3a940d
4636c88
e3a940d
e50aaad
 
b75c6d1
e50aaad
 
b75c6d1
e50aaad
b4e35f5
e50aaad
 
b4e35f5
e50aaad
 
b4e35f5
b75c6d1
 
 
e50aaad
 
 
 
b4e35f5
69b20bc
 
 
b75c6d1
824ff80
 
 
 
 
 
 
 
 
 
 
36740c5
 
 
824ff80
 
 
 
36740c5
 
824ff80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: gonogo
    sequence:
      sequence: int64
  - name: organs
    sequence:
      sequence: int64
  splits:
  - name: train
    num_bytes: 3194200648
    num_examples: 812
  - name: test
    num_bytes: 798550162
    num_examples: 203
  download_size: 254933651
  dataset_size: 3992750810
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: cc
task_categories:
- feature-extraction
- image-segmentation
---

## Dataset Structure

This dataset contains vision data from cholecystectomy surgery (gallbladder removal).

### Data Fields
- **image**: The PIL image of the surgery view.
- **gonogo**: The (360,640) label of background (0), safe (1), and unsafe (2).
- **organs**: The (360,640) label of background (0), liver (1), gallbladder (2), and hepatocystic triangle (3).

### Data Splits
- **train**: 812 samples
- **test**: 203 samples
- Total: 1015 samples

## Usage
```
from datasets import load_dataset
train_dataset = load_dataset("BrachioLab/cholecystectomy_segmentation", split="train")
test_dataset = load_dataset("BrachioLab/cholecystectomy_segmentation", split="test")
```