Datasets:
File size: 7,078 Bytes
950cc77 37049ea 7d49cd7 950cc77 7d49cd7 37049ea fd9656a eefd6c2 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 b975373 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea 7d49cd7 37049ea fd9656a 37049ea 7d49cd7 98acad7 7d49cd7 37049ea 98acad7 37049ea fd9656a 37049ea 7d49cd7 37049ea 7d49cd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
license: cc-by-4.0
task_categories:
- image-to-text
language:
- fr
- en
- nl
- it
- es
- ca
pretty_name: CATMuS Medieval
size_categories:
- 100K<n<1M
tags:
- optical-character-recognition
- humanities
- handwritten-text-recognition
---
# Dataset Card for CATMuS Medieval
![Banner for the CATMuS Project](banner_catmus_medieval_centered.png)
Join our Discord to ask questions about the dataset: [![Join the Discord](https://img.shields.io/badge/CATMuS-Discord?style=flat-square&logo=discord&logoColor=%23333333&color=%235865F2)](https://discord.gg/J38xgNEsGk)
## Dataset Details
Handwritten Text Recognition (HTR) has emerged as a crucial tool for converting manuscripts images into machine-readable formats,
enabling researchers and scholars to analyse vast collections efficiently.
Despite significant technological progress, establishing consistent ground truth across projects for HTR tasks,
particularly for complex and heterogeneous historical sources like medieval manuscripts in Latin scripts (8th-15th century CE), remains nonetheless challenging.
We introduce the **Consistent Approaches to Transcribing Manuscripts (CATMuS)** dataset for medieval manuscripts,
which offers:
1. a uniform framework for annotation practices for medieval manuscripts,
2. a benchmarking environment for evaluating automatic text recognition models across multiple dimensions thanks to rich metadata (century of production,
language, genre, script, etc.),
3. a benchmarking environment for other tasks (such as script classification or dating approaches),
4. a benchmarking environment and finally for exploratory work pertaining to computer vision and digital paleography around line-based tasks, such as generative approaches.
Developed through collaboration among various institutions and projects, CATMuS provides an inter-compatible dataset spanning more than 200 manuscripts and incunabula in 10
different languages, comprising over 160,000 lines of text and 5 million characters spanning from the 8th century to the 16th.
The dataset's consistency in transcription approaches aims to mitigate challenges arising from the diversity in standards for medieval manuscript transcriptions,
providing a comprehensive benchmark for evaluating HTR models on historical sources.
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Thibault Clérice
- **Funded by:** BnF Datalab, Biblissima +, DIM PAMIR
- **Language(s) (NLP):** Middle and Old French, Middle Dutch, Catalan, Spanish, Navarese, Italian, Venitian, Old English, Latin
- **License:** CC-BY
<!--
### Dataset Sources [optional]
Provide the basic links for the dataset.
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
-->
## Uses
### Direct Use
- Handwritten Text Recognition
- Date classification
- Script classification
### Out-of-Scope Use
- Text-To-Image
## Dataset Structure
- Data contains the main `split` that is loaded through `load_dataset("CATMuS/medieval")`
- Data can be split with each manuscript inside train, val and test using the `gen_split` columns which results in a 90/5/5 split
- The image is in the `im` column, and the text in the `text` column
<!--
## Dataset Creation
### Curation Rationale
Motivation for the creation of this dataset.
[More Information Needed]
### Source Data
This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...).
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc.
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if
this information is available.
[More Information Needed]
-->
### Annotations [optional]
#### Annotation process
The annotation process is described in the [dataset paper](https://inria.hal.science/hal-04453952).
#### Who are the annotators?
- Pinche, Ariane
- Clérice, Thibault
- Chagué, Alix
- Camps, Jean-Baptiste
- Vlachou-Efstathiou, Malamatenia
- Gille Levenson, Matthias
- Brisville-Fertin, Olivier
- Boschetti, Federico
- Fischer, Franz
- Gervers, Michael
- Boutreux, Agnès
- Manton, Avery
- Gabay, Simon
- Bordier, Julie
- Glaise, Anthony
- Alba, Rachele
- Rubin, Giorgia
- White, Nick
- Karaisl, Antonia
- Leroy, Noé
- Maulu, Marco
- Biay, Sébastien
- Cappe, Zoé
- Konstantinova, Kristina
- Boby, Victor
- Christensen, Kelly
- Pierreville, Corinne
- Aruta, Davide
- Lenzi, Martina
- Le Huëron, Armelle
- Possamaï, Marylène
- Duval, Frédéric
- Mariotti, Violetta
- Morreale, Laura
- Nolibois, Alice
- Foehr-Janssens, Yasmina
- Deleville, Prunelle
- Carnaille, Camille
- Lecomte, Sophie
- Meylan, Aminoel
- Ventura, Simone
- Dugaz, Lucien
## Bias, Risks, and Limitations
The data are skewed toward Old French, Middle Dutch and Spanish, specifically from the 14th century.
The only language that is represented over all centuries is Latin, and in each scripts. The other language with a coverage close to Latin is Old French.
Only one document is available in Old English.
## Citation
**BibTeX:**
```tex
@unpublished{clerice:hal-04453952,
TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
URL = {https://inria.hal.science/hal-04453952},
NOTE = {working paper or preprint},
YEAR = {2024},
MONTH = Feb,
KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
HAL_ID = {hal-04453952},
HAL_VERSION = {v1},
}
```
**APA:**
> Thibault Clérice, Ariane Pinche, Malamatenia Vlachou-Efstathiou, Alix Chagué, Jean-Baptiste Camps, et al.. CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond. 2024. ⟨hal-04453952⟩
## Glossary
![Examples of bookscripts and their name](CATMuS_reference_v2.png)
- Scripts: In the middle ages, the writing style changed over time, specifically in "litterary" manuscripts, for which we call the general scripts "Bookscripts". This is what CATMuS Medieval covers at the time
## Dataset Card Contact
Thibault Clérice ([email protected]) |