albertvillanova HF staff commited on
Commit
b65b9bb
1 Parent(s): b966160

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

This dataset uses `tasks`, which are deprecated and will raise an error after the next release of `datasets`. See: https://github.com/huggingface/datasets/pull/6999

README.md CHANGED
@@ -22,6 +22,51 @@ pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching i
22
  tags:
23
  - speech-recognition
24
  - code-switching
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ---
26
 
27
  # Dataset Card for ASCEND
 
22
  tags:
23
  - speech-recognition
24
  - code-switching
25
+ dataset_info:
26
+ config_name: main
27
+ features:
28
+ - name: id
29
+ dtype: string
30
+ - name: path
31
+ dtype: string
32
+ - name: audio
33
+ dtype:
34
+ audio:
35
+ sampling_rate: 16000
36
+ - name: transcription
37
+ dtype: string
38
+ - name: duration
39
+ dtype: float32
40
+ - name: language
41
+ dtype: string
42
+ - name: original_speaker_id
43
+ dtype: int64
44
+ - name: session_id
45
+ dtype: int64
46
+ - name: topic
47
+ dtype: string
48
+ splits:
49
+ - name: train
50
+ num_bytes: 1014573740.14
51
+ num_examples: 9869
52
+ - name: test
53
+ num_bytes: 106171230.135
54
+ num_examples: 1315
55
+ - name: validation
56
+ num_bytes: 106772517.43
57
+ num_examples: 1130
58
+ download_size: 1223536062
59
+ dataset_size: 1227517487.7050002
60
+ configs:
61
+ - config_name: main
62
+ data_files:
63
+ - split: train
64
+ path: main/train-*
65
+ - split: test
66
+ path: main/test-*
67
+ - split: validation
68
+ path: main/validation-*
69
+ default: true
70
  ---
71
 
72
  # Dataset Card for ASCEND
dataset_infos.json CHANGED
@@ -1 +1,428 @@
1
- {"train": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "train", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {"num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"}}, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879}, "validation": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "validation", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {"num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"}}, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879}, "test": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "test", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {"num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"}}, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
4
+ "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
5
+ "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
6
+ "license": "",
7
+ "features": {
8
+ "id": {
9
+ "dtype": "string",
10
+ "id": null,
11
+ "_type": "Value"
12
+ },
13
+ "path": {
14
+ "dtype": "string",
15
+ "id": null,
16
+ "_type": "Value"
17
+ },
18
+ "audio": {
19
+ "sampling_rate": 16000,
20
+ "mono": true,
21
+ "decode": true,
22
+ "id": null,
23
+ "_type": "Audio"
24
+ },
25
+ "transcription": {
26
+ "dtype": "string",
27
+ "id": null,
28
+ "_type": "Value"
29
+ },
30
+ "duration": {
31
+ "dtype": "float32",
32
+ "id": null,
33
+ "_type": "Value"
34
+ },
35
+ "language": {
36
+ "dtype": "string",
37
+ "id": null,
38
+ "_type": "Value"
39
+ },
40
+ "original_speaker_id": {
41
+ "dtype": "int64",
42
+ "id": null,
43
+ "_type": "Value"
44
+ },
45
+ "session_id": {
46
+ "dtype": "int64",
47
+ "id": null,
48
+ "_type": "Value"
49
+ },
50
+ "topic": {
51
+ "dtype": "string",
52
+ "id": null,
53
+ "_type": "Value"
54
+ }
55
+ },
56
+ "post_processed": null,
57
+ "supervised_keys": null,
58
+ "task_templates": [
59
+ {
60
+ "task": "automatic-speech-recognition",
61
+ "audio_column": "audio",
62
+ "transcription_column": "transcription"
63
+ }
64
+ ],
65
+ "builder_name": "ascend",
66
+ "config_name": "train",
67
+ "version": {
68
+ "version_str": "1.0.0",
69
+ "description": "",
70
+ "major": 1,
71
+ "minor": 0,
72
+ "patch": 0
73
+ },
74
+ "splits": {
75
+ "train": {
76
+ "name": "train",
77
+ "num_bytes": 4316724,
78
+ "num_examples": 9869,
79
+ "dataset_name": "ascend"
80
+ },
81
+ "test": {
82
+ "name": "test",
83
+ "num_bytes": 559170,
84
+ "num_examples": 1315,
85
+ "dataset_name": "ascend"
86
+ },
87
+ "validation": {
88
+ "name": "validation",
89
+ "num_bytes": 489562,
90
+ "num_examples": 1130,
91
+ "dataset_name": "ascend"
92
+ }
93
+ },
94
+ "download_checksums": {
95
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {
96
+ "num_bytes": 1081181,
97
+ "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"
98
+ },
99
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {
100
+ "num_bytes": 127658,
101
+ "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"
102
+ },
103
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {
104
+ "num_bytes": 118552,
105
+ "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"
106
+ },
107
+ "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {
108
+ "num_bytes": 929707032,
109
+ "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"
110
+ }
111
+ },
112
+ "download_size": 931034423,
113
+ "post_processing_size": null,
114
+ "dataset_size": 5365456,
115
+ "size_in_bytes": 936399879
116
+ },
117
+ "validation": {
118
+ "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
119
+ "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
120
+ "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
121
+ "license": "",
122
+ "features": {
123
+ "id": {
124
+ "dtype": "string",
125
+ "id": null,
126
+ "_type": "Value"
127
+ },
128
+ "path": {
129
+ "dtype": "string",
130
+ "id": null,
131
+ "_type": "Value"
132
+ },
133
+ "audio": {
134
+ "sampling_rate": 16000,
135
+ "mono": true,
136
+ "decode": true,
137
+ "id": null,
138
+ "_type": "Audio"
139
+ },
140
+ "transcription": {
141
+ "dtype": "string",
142
+ "id": null,
143
+ "_type": "Value"
144
+ },
145
+ "duration": {
146
+ "dtype": "float32",
147
+ "id": null,
148
+ "_type": "Value"
149
+ },
150
+ "language": {
151
+ "dtype": "string",
152
+ "id": null,
153
+ "_type": "Value"
154
+ },
155
+ "original_speaker_id": {
156
+ "dtype": "int64",
157
+ "id": null,
158
+ "_type": "Value"
159
+ },
160
+ "session_id": {
161
+ "dtype": "int64",
162
+ "id": null,
163
+ "_type": "Value"
164
+ },
165
+ "topic": {
166
+ "dtype": "string",
167
+ "id": null,
168
+ "_type": "Value"
169
+ }
170
+ },
171
+ "post_processed": null,
172
+ "supervised_keys": null,
173
+ "task_templates": [
174
+ {
175
+ "task": "automatic-speech-recognition",
176
+ "audio_column": "audio",
177
+ "transcription_column": "transcription"
178
+ }
179
+ ],
180
+ "builder_name": "ascend",
181
+ "config_name": "validation",
182
+ "version": {
183
+ "version_str": "1.0.0",
184
+ "description": "",
185
+ "major": 1,
186
+ "minor": 0,
187
+ "patch": 0
188
+ },
189
+ "splits": {
190
+ "train": {
191
+ "name": "train",
192
+ "num_bytes": 4316724,
193
+ "num_examples": 9869,
194
+ "dataset_name": "ascend"
195
+ },
196
+ "test": {
197
+ "name": "test",
198
+ "num_bytes": 559170,
199
+ "num_examples": 1315,
200
+ "dataset_name": "ascend"
201
+ },
202
+ "validation": {
203
+ "name": "validation",
204
+ "num_bytes": 489562,
205
+ "num_examples": 1130,
206
+ "dataset_name": "ascend"
207
+ }
208
+ },
209
+ "download_checksums": {
210
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {
211
+ "num_bytes": 1081181,
212
+ "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"
213
+ },
214
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {
215
+ "num_bytes": 127658,
216
+ "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"
217
+ },
218
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {
219
+ "num_bytes": 118552,
220
+ "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"
221
+ },
222
+ "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {
223
+ "num_bytes": 929707032,
224
+ "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"
225
+ }
226
+ },
227
+ "download_size": 931034423,
228
+ "post_processing_size": null,
229
+ "dataset_size": 5365456,
230
+ "size_in_bytes": 936399879
231
+ },
232
+ "test": {
233
+ "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
234
+ "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
235
+ "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
236
+ "license": "",
237
+ "features": {
238
+ "id": {
239
+ "dtype": "string",
240
+ "id": null,
241
+ "_type": "Value"
242
+ },
243
+ "path": {
244
+ "dtype": "string",
245
+ "id": null,
246
+ "_type": "Value"
247
+ },
248
+ "audio": {
249
+ "sampling_rate": 16000,
250
+ "mono": true,
251
+ "decode": true,
252
+ "id": null,
253
+ "_type": "Audio"
254
+ },
255
+ "transcription": {
256
+ "dtype": "string",
257
+ "id": null,
258
+ "_type": "Value"
259
+ },
260
+ "duration": {
261
+ "dtype": "float32",
262
+ "id": null,
263
+ "_type": "Value"
264
+ },
265
+ "language": {
266
+ "dtype": "string",
267
+ "id": null,
268
+ "_type": "Value"
269
+ },
270
+ "original_speaker_id": {
271
+ "dtype": "int64",
272
+ "id": null,
273
+ "_type": "Value"
274
+ },
275
+ "session_id": {
276
+ "dtype": "int64",
277
+ "id": null,
278
+ "_type": "Value"
279
+ },
280
+ "topic": {
281
+ "dtype": "string",
282
+ "id": null,
283
+ "_type": "Value"
284
+ }
285
+ },
286
+ "post_processed": null,
287
+ "supervised_keys": null,
288
+ "task_templates": [
289
+ {
290
+ "task": "automatic-speech-recognition",
291
+ "audio_column": "audio",
292
+ "transcription_column": "transcription"
293
+ }
294
+ ],
295
+ "builder_name": "ascend",
296
+ "config_name": "test",
297
+ "version": {
298
+ "version_str": "1.0.0",
299
+ "description": "",
300
+ "major": 1,
301
+ "minor": 0,
302
+ "patch": 0
303
+ },
304
+ "splits": {
305
+ "train": {
306
+ "name": "train",
307
+ "num_bytes": 4316724,
308
+ "num_examples": 9869,
309
+ "dataset_name": "ascend"
310
+ },
311
+ "test": {
312
+ "name": "test",
313
+ "num_bytes": 559170,
314
+ "num_examples": 1315,
315
+ "dataset_name": "ascend"
316
+ },
317
+ "validation": {
318
+ "name": "validation",
319
+ "num_bytes": 489562,
320
+ "num_examples": 1130,
321
+ "dataset_name": "ascend"
322
+ }
323
+ },
324
+ "download_checksums": {
325
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {
326
+ "num_bytes": 1081181,
327
+ "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"
328
+ },
329
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {
330
+ "num_bytes": 127658,
331
+ "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"
332
+ },
333
+ "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {
334
+ "num_bytes": 118552,
335
+ "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"
336
+ },
337
+ "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {
338
+ "num_bytes": 929707032,
339
+ "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"
340
+ }
341
+ },
342
+ "download_size": 931034423,
343
+ "post_processing_size": null,
344
+ "dataset_size": 5365456,
345
+ "size_in_bytes": 936399879
346
+ },
347
+ "main": {
348
+ "description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n",
349
+ "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n",
350
+ "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND",
351
+ "license": "",
352
+ "features": {
353
+ "id": {
354
+ "dtype": "string",
355
+ "_type": "Value"
356
+ },
357
+ "path": {
358
+ "dtype": "string",
359
+ "_type": "Value"
360
+ },
361
+ "audio": {
362
+ "sampling_rate": 16000,
363
+ "_type": "Audio"
364
+ },
365
+ "transcription": {
366
+ "dtype": "string",
367
+ "_type": "Value"
368
+ },
369
+ "duration": {
370
+ "dtype": "float32",
371
+ "_type": "Value"
372
+ },
373
+ "language": {
374
+ "dtype": "string",
375
+ "_type": "Value"
376
+ },
377
+ "original_speaker_id": {
378
+ "dtype": "int64",
379
+ "_type": "Value"
380
+ },
381
+ "session_id": {
382
+ "dtype": "int64",
383
+ "_type": "Value"
384
+ },
385
+ "topic": {
386
+ "dtype": "string",
387
+ "_type": "Value"
388
+ }
389
+ },
390
+ "task_templates": [
391
+ {
392
+ "task": "automatic-speech-recognition"
393
+ }
394
+ ],
395
+ "builder_name": "parquet",
396
+ "dataset_name": "ascend",
397
+ "config_name": "main",
398
+ "version": {
399
+ "version_str": "1.0.0",
400
+ "major": 1,
401
+ "minor": 0,
402
+ "patch": 0
403
+ },
404
+ "splits": {
405
+ "train": {
406
+ "name": "train",
407
+ "num_bytes": 1014573740.14,
408
+ "num_examples": 9869,
409
+ "dataset_name": null
410
+ },
411
+ "test": {
412
+ "name": "test",
413
+ "num_bytes": 106171230.135,
414
+ "num_examples": 1315,
415
+ "dataset_name": null
416
+ },
417
+ "validation": {
418
+ "name": "validation",
419
+ "num_bytes": 106772517.43,
420
+ "num_examples": 1130,
421
+ "dataset_name": null
422
+ }
423
+ },
424
+ "download_size": 1223536062,
425
+ "dataset_size": 1227517487.7050002,
426
+ "size_in_bytes": 2451053549.705
427
+ }
428
+ }
main/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4c81d2b5ed6124f052089a695972808c16e0ce0c365ec9773c5d1a8fcf043a7
3
+ size 105756434
main/train-00000-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d66ba76f324e0711b779cfb01ee4e772a24a929e1d77a2063cde0506f75976f
3
+ size 316735328
main/train-00001-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:569f84f771c3637ca8535bd35e10e62feed2c240833534711909a9c04f51e589
3
+ size 366824932
main/train-00002-of-00003.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa76b7ef4a74ff111fd1d2573d0b69e6b6f901df6054618d8e5658a7a394523e
3
+ size 327687102
main/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bdec53d2abfd3dd4f0d86a6df4e27e60f20660edc9b66055ae0ef8ec05cf7e2
3
+ size 106532266