import os import pandas as pd from datasets import Dataset, DatasetDict, Audio import soundfile as sf import numpy as np from sklearn.model_selection import train_test_split # Paths audio_folder = '/home/azureuser/data2/dg_16/' # Path where your audio files are stored csv_file = 'digital_green_recordings.csv' # Path to the CSV that contains audio paths and transcripts # Read your CSV file (assumes it has columns: 'path' and 'transcript') df = pd.read_csv(csv_file, sep="$") # Create a new column for client_id (random or default if you don’t have speaker info) df['client_id'] = ['speaker_' + str(i) for i in range(len(df))] # If your CSV has relative paths, ensure the paths are correct df['path'] = df['path'].apply(lambda x: os.path.join(audio_folder, x)) # Add additional columns needed for the Common Voice format (can be optional) df['up_votes'] = 0 df['down_votes'] = 0 df['age'] = None df['gender'] = None df['accent'] = None # Function to load and possibly convert audio to mono def load_audio(file_path): # Load audio file audio, sr = sf.read(file_path) # Convert to mono if stereo if len(audio.shape) > 1: audio = np.mean(audio, axis=1) return {'audio': {'array': audio, 'sampling_rate': sr}} # Apply audio loading function to DataFrame df['audio'] = df['path'].apply(lambda x: load_audio(x)) train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) # Adjust test_size as needed # Convert DataFrames to Hugging Face Datasets train_dataset = Dataset.from_pandas(train_df) test_dataset = Dataset.from_pandas(test_df) # Cast the 'audio' column to the 'audio' type train_dataset = train_dataset.cast_column('audio', Audio()) test_dataset = test_dataset.cast_column('audio', Audio()) # Create a DatasetDict to simulate train/test/validation splits if needed dataset_dict = DatasetDict({ 'train': train_dataset, 'test': test_dataset # If you have separate splits, add them here (e.g., 'train', 'test', 'validation') }) # Save the dataset (optional) for future use dataset_dict.save_to_disk('data2/digital_green_data') # Print a sample from the dataset print(dataset_dict['train'][0]) print(dataset_dict['test'][0])