Datasets:
Tasks:
Text Retrieval
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
Chinese
Size:
1M - 10M
License:
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
|
5 |
+
multilinguality:
|
6 |
+
- multilingual
|
7 |
+
|
8 |
+
size_categories: []
|
9 |
+
source_datasets: []
|
10 |
+
tags: []
|
11 |
+
|
12 |
+
task_categories:
|
13 |
+
- text-retrieval
|
14 |
+
|
15 |
+
license:
|
16 |
+
- apache-2.0
|
17 |
+
|
18 |
+
task_ids:
|
19 |
+
- document-retrieval
|
20 |
+
---
|
21 |
+
|
22 |
+
# Wikipedia (zh) embedded with cohere.ai `multilingual-22-12` encoder
|
23 |
+
|
24 |
+
We encoded [Wikipedia (zh)](https://zh.wikipedia.org) using the [cohere.ai](https://txt.cohere.ai/multilingual/) `multilingual-22-12` embedding model.
|
25 |
+
|
26 |
+
To get an overview how this dataset was created and pre-processed, have a look at [Cohere/wikipedia-22-12](https://huggingface.co/datasets/Cohere/wikipedia-22-12).
|
27 |
+
|
28 |
+
|
29 |
+
## Embeddings
|
30 |
+
We compute for `title+" "+text` the embeddings using our `multilingual-22-12` embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at [cohere.ai multilingual embedding model](https://txt.cohere.ai/multilingual/).
|
31 |
+
|
32 |
+
## Further languages
|
33 |
+
We provide embeddings of Wikipedia in many different languages:
|
34 |
+
[ar](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ar-embeddings), [de](https://huggingface.co/datasets/Cohere/wikipedia-22-12-de-embeddings), [en](https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings), [es](https://huggingface.co/datasets/Cohere/wikipedia-22-12-es-embeddings), [fr](https://huggingface.co/datasets/Cohere/wikipedia-22-12-fr-embeddings), [hi](https://huggingface.co/datasets/Cohere/wikipedia-22-12-hi-embeddings), [it](https://huggingface.co/datasets/Cohere/wikipedia-22-12-it-embeddings), [ja](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ja-embeddings), [ko](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ko-embeddings), [simple english](https://huggingface.co/datasets/Cohere/wikipedia-22-12-simple-embeddings), [zh](https://huggingface.co/datasets/Cohere/wikipedia-22-12-zh-embeddings),
|
35 |
+
|
36 |
+
You can find the Wikipedia datasets without embeddings at [Cohere/wikipedia-22-12](https://huggingface.co/datasets/Cohere/wikipedia-22-12).
|
37 |
+
|
38 |
+
|
39 |
+
## Loading the dataset
|
40 |
+
You can either load the dataset like this:
|
41 |
+
```python
|
42 |
+
from datasets import load_dataset
|
43 |
+
docs = load_dataset(f"Cohere/wikipedia-22-12-zh-embeddings", split="train")
|
44 |
+
```
|
45 |
+
|
46 |
+
Or you can also stream it without downloading it before:
|
47 |
+
```python
|
48 |
+
from datasets import load_dataset
|
49 |
+
docs = load_dataset(f"Cohere/wikipedia-22-12-zh-embeddings", split="train", streaming=True)
|
50 |
+
|
51 |
+
for doc in docs:
|
52 |
+
docid = doc['id']
|
53 |
+
title = doc['title']
|
54 |
+
text = doc['text']
|
55 |
+
emb = doc['emb']
|
56 |
+
```
|
57 |
+
|
58 |
+
## Search
|
59 |
+
A full search example:
|
60 |
+
```python
|
61 |
+
#Run: pip install cohere datasets
|
62 |
+
from datasets import load_dataset
|
63 |
+
import torch
|
64 |
+
import cohere
|
65 |
+
|
66 |
+
co = cohere.Client(f"<<COHERE_API_KEY>>") # Add your cohere API key from www.cohere.com
|
67 |
+
|
68 |
+
#Load at max 1000 documents + embeddings
|
69 |
+
max_docs = 1000
|
70 |
+
docs_stream = load_dataset(f"Cohere/wikipedia-22-12-zh-embeddings", split="train", streaming=True)
|
71 |
+
|
72 |
+
docs = []
|
73 |
+
doc_embeddings = []
|
74 |
+
|
75 |
+
for doc in docs_stream:
|
76 |
+
docs.append(doc)
|
77 |
+
doc_embeddings.append(doc['emb'])
|
78 |
+
if len(docs) >= max_docs:
|
79 |
+
break
|
80 |
+
|
81 |
+
doc_embeddings = torch.tensor(doc_embeddings)
|
82 |
+
|
83 |
+
query = 'Who founded Youtube'
|
84 |
+
response = co.embed(texts=[query], model='multilingual-22-12')
|
85 |
+
query_embedding = response.embeddings
|
86 |
+
query_embedding = torch.tensor(query_embedding)
|
87 |
+
|
88 |
+
# Compute dot score between query embedding and document embeddings
|
89 |
+
dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))
|
90 |
+
top_k = torch.topk(dot_scores, k=3)
|
91 |
+
|
92 |
+
# Print results
|
93 |
+
print("Query:", query)
|
94 |
+
for doc_id in top_k.indices[0].tolist():
|
95 |
+
print(docs[doc_id]['title'])
|
96 |
+
print(docs[doc_id]['text'], "\n")
|
97 |
+
```
|
98 |
+
|
99 |
+
|
100 |
+
## Performance
|
101 |
+
You can find performance on the MIRACL dataset (a semantic search evaluation dataset) here: [miracl-en-queries-22-12#performance](https://huggingface.co/datasets/Cohere/miracl-en-queries-22-12#performance)
|