File size: 19,189 Bytes
1884ed2 98b2db6 1884ed2 98b2db6 1884ed2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import copy
import json
import os
import re
from collections import Counter
from pprint import pprint
from shutil import copy2, rmtree
from zipfile import ZIP_DEFLATED, ZipFile
from tqdm import tqdm
ontology = {
"domains": {
"景点": {
"description": "查找景点",
"slots": {
"名称": {
"description": "景点名称",
"is_categorical": False,
"possible_values": []
},
"门票": {
"description": "景点门票价格",
"is_categorical": False,
"possible_values": []
},
"游玩时间": {
"description": "景点游玩时间",
"is_categorical": False,
"possible_values": []
},
"评分": {
"description": "景点评分",
"is_categorical": False,
"possible_values": []
},
"地址": {
"description": "景点地址",
"is_categorical": False,
"possible_values": []
},
"电话": {
"description": "景点电话",
"is_categorical": False,
"possible_values": []
},
"周边景点": {
"description": "景点周边景点",
"is_categorical": False,
"possible_values": []
},
"周边餐馆": {
"description": "景点周边餐馆",
"is_categorical": False,
"possible_values": []
},
"周边酒店": {
"description": "景点周边酒店",
"is_categorical": False,
"possible_values": []
}
}
},
"餐馆": {
"description": "查找餐馆",
"slots": {
"名称": {
"description": "餐馆名称",
"is_categorical": False,
"possible_values": []
},
"推荐菜": {
"description": "餐馆推荐菜",
"is_categorical": False,
"possible_values": []
},
"人均消费": {
"description": "餐馆人均消费",
"is_categorical": False,
"possible_values": []
},
"评分": {
"description": "餐馆评分",
"is_categorical": False,
"possible_values": []
},
"地址": {
"description": "餐馆地址",
"is_categorical": False,
"possible_values": []
},
"电话": {
"description": "餐馆电话",
"is_categorical": False,
"possible_values": []
},
"营业时间": {
"description": "餐馆营业时间",
"is_categorical": False,
"possible_values": []
},
"周边景点": {
"description": "餐馆周边景点",
"is_categorical": False,
"possible_values": []
},
"周边餐馆": {
"description": "餐馆周边餐馆",
"is_categorical": False,
"possible_values": []
},
"周边酒店": {
"description": "餐馆周边酒店",
"is_categorical": False,
"possible_values": []
}
}
},
"酒店": {
"description": "查找酒店",
"slots": {
"名称": {
"description": "酒店名称",
"is_categorical": False,
"possible_values": []
},
"酒店类型": {
"description": "酒店类型",
"is_categorical": True,
"possible_values": [
'高档型', '豪华型', '经济型', '舒适型'
]
},
"酒店设施": {
"description": "酒店设施",
"is_categorical": False,
"possible_values": []
},
"价格": {
"description": "酒店价格",
"is_categorical": False,
"possible_values": []
},
"评分": {
"description": "酒店评分",
"is_categorical": False,
"possible_values": []
},
"地址": {
"description": "酒店地址",
"is_categorical": False,
"possible_values": []
},
"电话": {
"description": "酒店电话",
"is_categorical": False,
"possible_values": []
},
"周边景点": {
"description": "酒店周边景点",
"is_categorical": False,
"possible_values": []
},
"周边餐馆": {
"description": "酒店周边餐馆",
"is_categorical": False,
"possible_values": []
},
"周边酒店": {
"description": "酒店周边酒店",
"is_categorical": False,
"possible_values": []
}
}
},
"地铁": {
"description": "乘坐地铁从某地到某地",
"slots": {
"出发地": {
"description": "地铁出发地",
"is_categorical": False,
"possible_values": []
},
"目的地": {
"description": "地铁目的地",
"is_categorical": False,
"possible_values": []
},
"出发地附近地铁站": {
"description": "出发地附近地铁站",
"is_categorical": False,
"possible_values": []
},
"目的地附近地铁站": {
"description": "目的地附近地铁站",
"is_categorical": False,
"possible_values": []
}
}
},
"出租": {
"description": "乘坐出租车从某地到某地",
"slots": {
"出发地": {
"description": "出租出发地",
"is_categorical": False,
"possible_values": []
},
"目的地": {
"description": "出租目的地",
"is_categorical": False,
"possible_values": []
},
"车型": {
"description": "出租车车型",
"is_categorical": True,
"possible_values": [
"#CX"
]
},
"车牌": {
"description": "出租车车牌",
"is_categorical": True,
"possible_values": [
"#CP"
]
}
}
},
"General": {
"description": "通用领域",
"slots": {}
}
},
"intents": {
"Inform": {
"description": "告知相关属性"
},
"Request": {
"description": "询问相关属性"
},
"Recommend": {
"description": "推荐搜索结果"
},
"Select": {
"description": "在附近搜索"
},
"NoOffer": {
"description": "未找到符合用户要求的结果"
},
"bye": {
"description": "再见"
},
"thank": {
"description": "感谢"
},
"welcome": {
"description": "不客气"
},
"greet": {
"description": "打招呼"
},
},
"state": {
"景点": {
"名称": "",
"门票": "",
"游玩时间": "",
"评分": "",
"周边景点": "",
"周边餐馆": "",
"周边酒店": "",
},
"餐馆": {
"名称": "",
"推荐菜": "",
"人均消费": "",
"评分": "",
"周边景点": "",
"周边餐馆": "",
"周边酒店": "",
},
"酒店": {
"名称": "",
"酒店类型": "",
"酒店设施": "",
"价格": "",
"评分": "",
"周边景点": "",
"周边餐馆": "",
"周边酒店": "",
},
"地铁": {
"出发地": "",
"目的地": "",
},
"出租": {
"出发地": "",
"目的地": "",
}
},
"dialogue_acts": {
"categorical": {},
"non-categorical": {},
"binary": {}
}
}
cnt_domain_slot = Counter()
def convert_da(da_list, utt):
'''
convert dialogue acts to required format
:param da_dict: list of (intent, domain, slot, value)
:param utt: user or system utt
'''
global ontology, cnt_domain_slot
converted_da = {
'categorical': [],
'non-categorical': [],
'binary': []
}
for intent, domain, slot, value in da_list:
# if intent in ['Inform', 'Recommend']:
if intent == 'NoOffer':
assert slot == 'none' and value == 'none'
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': ''
})
elif intent == 'General':
# intent=General, domain=thank/bye/greet/welcome
assert slot == 'none' and value == 'none'
converted_da['binary'].append({
'intent': domain,
'domain': intent,
'slot': ''
})
elif intent == 'Request':
assert value == '' and slot != 'none'
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': slot
})
elif '酒店设施' in slot:
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': f"{slot}-{value}"
})
elif intent == 'Select':
assert slot == '源领域'
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': f"{slot}-{value}"
})
elif slot in ['酒店类型', '车型', '车牌']:
assert intent in ['Inform', 'Recommend']
assert slot != 'none' and value != 'none'
converted_da['categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': value
})
else:
assert intent in ['Inform', 'Recommend']
assert slot != 'none' and value != 'none'
matches = utt.count(value)
if matches == 1:
start = utt.index(value)
end = start + len(value)
converted_da['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': value,
'start': start,
'end': end
})
cnt_domain_slot['have span'] += 1
else:
# can not find span
converted_da['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': value
})
cnt_domain_slot['no span'] += 1
# cnt_domain_slot.setdefault(f'{domain}-{slot}', set())
# cnt_domain_slot[f'{domain}-{slot}'].add(value)
return converted_da
def transform_user_state(user_state):
goal = []
for subgoal in user_state:
gid, domain, slot, value, mentioned = subgoal
if len(value) != 0:
t = 'inform'
else:
t = 'request'
if len(goal) < gid:
goal.append({domain: {'inform': {}, 'request': {}}})
goal[gid-1][domain][t][slot] = [value, 'mentioned' if mentioned else 'not mentioned']
return goal
def preprocess():
original_data_dir = '../../crosswoz'
new_data_dir = 'data'
os.makedirs(new_data_dir, exist_ok=True)
for filename in os.listdir(os.path.join(original_data_dir,'database')):
copy2(f'{original_data_dir}/database/{filename}', new_data_dir)
global ontology
dataset = 'crosswoz'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split: [] for split in splits}
for split in ['train', 'val', 'test']:
data = json.load(ZipFile(os.path.join(original_data_dir, f'{split}.json.zip'), 'r').open(f'{split}.json'))
if split == 'val':
split = 'validation'
for ori_dialog_id, ori_dialog in data.items():
dialogue_id = f'{dataset}-{split}-{len(dialogues_by_split[split])}'
# get user goal and involved domains
goal = {'inform': {}, 'request': {}}
goal["description"] = '\n'.join(ori_dialog["task description"])
cur_domains = [x[1] for i, x in enumerate(ori_dialog['goal']) if i == 0 or ori_dialog['goal'][i-1][1] != x[1]]
dialogue = {
'dataset': dataset,
'data_split': split,
'dialogue_id': dialogue_id,
'original_id': ori_dialog_id,
'domains': cur_domains,
'goal': goal,
'user_state_init': transform_user_state(ori_dialog['goal']),
'type': ori_dialog['type'],
'turns': [],
'user_state_final': transform_user_state(ori_dialog['final_goal'])
}
for turn_id, turn in enumerate(ori_dialog['messages']):
# skip error turns
if ori_dialog_id == '2660' and turn_id in [8,9]:
continue
elif ori_dialog_id == '7467' and turn_id in [14,15]:
continue
elif ori_dialog_id == '11726' and turn_id in [4,5]:
continue
elif ori_dialog_id == '10550' and turn_id == 6:
dialogue['user_state_final'] = dialogue['turns'][-2]['user_state']
break
elif ori_dialog_id == '11724' and turn_id == 8:
dialogue['user_state_final'] = dialogue['turns'][-2]['user_state']
break
speaker = 'user' if turn['role'] == 'usr' else 'system'
utt = turn['content']
das = turn['dialog_act']
dialogue_acts = convert_da(das, utt)
dialogue['turns'].append({
'speaker': speaker,
'utterance': utt,
'utt_idx': len(dialogue['turns']),
'dialogue_acts': dialogue_acts,
})
# add to dialogue_acts dictionary in the ontology
for da_type in dialogue_acts:
das = dialogue_acts[da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
if speaker == 'user':
dialogue['turns'][-1]['user_state'] = transform_user_state(turn['user_state'])
else:
# add state to last user turn
belief_state = turn['sys_state_init']
for domain in belief_state:
belief_state[domain].pop('selectedResults')
dialogue['turns'][-2]['state'] = belief_state
db_query = turn['sys_state']
db_results = {}
for domain in list(db_query.keys()):
db_res = db_query[domain].pop('selectedResults')
if len(db_res) > 0:
db_results[domain] = [{'名称': x} for x in db_res]
else:
db_query.pop(domain)
dialogue['turns'][-1]['db_query'] = db_query
dialogue['turns'][-1]['db_results'] = db_results
dialogues_by_split[split].append(dialogue)
pprint(cnt_domain_slot.most_common())
dialogues = []
for split in splits:
dialogues += dialogues_by_split[split]
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str(
{'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent': da[0],
'domain': da[1], 'slot': da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(new_data_dir)
return dialogues, ontology
def fix_entity_booked_info(entity_booked_dict, booked):
for domain in entity_booked_dict:
if not entity_booked_dict[domain] and booked[domain]:
entity_booked_dict[domain] = True
booked[domain] = []
return entity_booked_dict, booked
if __name__ == '__main__':
preprocess() |