Upload preprocess.py
Browse files- preprocess.py +156 -0
preprocess.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from zipfile import ZipFile, ZIP_DEFLATED
|
2 |
+
from shutil import rmtree
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
from collections import Counter
|
7 |
+
from pprint import pprint
|
8 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
9 |
+
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
10 |
+
import re
|
11 |
+
|
12 |
+
topic_map = {
|
13 |
+
1: "Ordinary Life",
|
14 |
+
2: "School Life",
|
15 |
+
3: "Culture & Education",
|
16 |
+
4: "Attitude & Emotion",
|
17 |
+
5: "Relationship",
|
18 |
+
6: "Tourism",
|
19 |
+
7: "Health",
|
20 |
+
8: "Work",
|
21 |
+
9: "Politics",
|
22 |
+
10: "Finance"
|
23 |
+
}
|
24 |
+
|
25 |
+
act_map = {
|
26 |
+
1: "inform",
|
27 |
+
2: "question",
|
28 |
+
3: "directive",
|
29 |
+
4: "commissive"
|
30 |
+
}
|
31 |
+
|
32 |
+
emotion_map = {
|
33 |
+
0: "no emotion",
|
34 |
+
1: "anger",
|
35 |
+
2: "disgust",
|
36 |
+
3: "fear",
|
37 |
+
4: "happiness",
|
38 |
+
5: "sadness",
|
39 |
+
6: "surprise"
|
40 |
+
}
|
41 |
+
|
42 |
+
def preprocess():
|
43 |
+
original_data_dir = 'ijcnlp_dailydialog'
|
44 |
+
new_data_dir = 'data'
|
45 |
+
|
46 |
+
if not os.path.exists(original_data_dir):
|
47 |
+
original_data_zip = 'ijcnlp_dailydialog.zip'
|
48 |
+
if not os.path.exists(original_data_zip):
|
49 |
+
raise FileNotFoundError(f'cannot find original data {original_data_zip} in dailydialog/, should manually download ijcnlp_dailydialog.zip from http://yanran.li/files/ijcnlp_dailydialog.zip')
|
50 |
+
else:
|
51 |
+
archive = ZipFile(original_data_zip)
|
52 |
+
archive.extractall()
|
53 |
+
|
54 |
+
os.makedirs(new_data_dir, exist_ok=True)
|
55 |
+
|
56 |
+
dataset = 'dailydialog'
|
57 |
+
splits = ['train', 'validation', 'test']
|
58 |
+
dialogues_by_split = {split:[] for split in splits}
|
59 |
+
dial2topics = {}
|
60 |
+
with open(os.path.join(original_data_dir, 'dialogues_text.txt')) as dialog_file, \
|
61 |
+
open(os.path.join(original_data_dir, 'dialogues_topic.txt')) as topic_file:
|
62 |
+
for dialog, topic in zip(dialog_file, topic_file):
|
63 |
+
topic = int(topic.strip())
|
64 |
+
dialog = dialog.replace(' __eou__ ', ' ')
|
65 |
+
if dialog in dial2topics:
|
66 |
+
dial2topics[dialog].append(topic)
|
67 |
+
else:
|
68 |
+
dial2topics[dialog] = [topic]
|
69 |
+
|
70 |
+
global topic_map, act_map, emotion_map
|
71 |
+
|
72 |
+
ontology = {'domains': {x:{'description': '', 'slots': {}} for x in topic_map.values()},
|
73 |
+
'intents': {x:{'description': ''} for x in act_map.values()},
|
74 |
+
'state': {},
|
75 |
+
'dialogue_acts': {
|
76 |
+
"categorical": [],
|
77 |
+
"non-categorical": [],
|
78 |
+
"binary": {}
|
79 |
+
}}
|
80 |
+
|
81 |
+
detokenizer = TreebankWordDetokenizer()
|
82 |
+
|
83 |
+
for data_split in splits:
|
84 |
+
archive = ZipFile(os.path.join(original_data_dir, f'{data_split}.zip'))
|
85 |
+
with archive.open(f'{data_split}/dialogues_{data_split}.txt') as dialog_file, \
|
86 |
+
archive.open(f'{data_split}/dialogues_act_{data_split}.txt') as act_file, \
|
87 |
+
archive.open(f'{data_split}/dialogues_emotion_{data_split}.txt') as emotion_file:
|
88 |
+
for dialog_line, act_line, emotion_line in tqdm(zip(dialog_file, act_file, emotion_file)):
|
89 |
+
if not dialog_line.strip():
|
90 |
+
break
|
91 |
+
utts = dialog_line.decode().split("__eou__")[:-1]
|
92 |
+
acts = act_line.decode().split(" ")[:-1]
|
93 |
+
emotions = emotion_line.decode().split(" ")[:-1]
|
94 |
+
assert (len(utts) == len(acts) == len(emotions)), "Different turns btw dialogue & emotion & action"
|
95 |
+
|
96 |
+
topics = dial2topics[dialog_line.decode().replace(' __eou__ ', ' ')]
|
97 |
+
topic = Counter(topics).most_common(1)[0][0]
|
98 |
+
domain = topic_map[topic]
|
99 |
+
|
100 |
+
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
|
101 |
+
dialogue = {
|
102 |
+
'dataset': dataset,
|
103 |
+
'data_split': data_split,
|
104 |
+
'dialogue_id': dialogue_id,
|
105 |
+
'original_id': f'{data_split}-{len(dialogues_by_split[data_split])}',
|
106 |
+
'domains': [domain],
|
107 |
+
'turns': []
|
108 |
+
}
|
109 |
+
|
110 |
+
for utt, act, emotion in zip(utts, acts, emotions):
|
111 |
+
speaker = 'user' if len(dialogue['turns']) % 2 == 0 else 'system'
|
112 |
+
intent = act_map[int(act)]
|
113 |
+
emotion = emotion_map[int(emotion)]
|
114 |
+
# re-tokenize
|
115 |
+
utt = ' '.join([detokenizer.detokenize(word_tokenize(s)) for s in sent_tokenize(utt)])
|
116 |
+
# replace with common apostrophe
|
117 |
+
utt = utt.replace(' ’ ', "'")
|
118 |
+
# add space after full-stop
|
119 |
+
utt = re.sub('\.(?!com)(\w)', lambda x: '. '+x.group(1), utt)
|
120 |
+
|
121 |
+
dialogue['turns'].append({
|
122 |
+
'speaker': speaker,
|
123 |
+
'utterance': utt.strip(),
|
124 |
+
'utt_idx': len(dialogue['turns']),
|
125 |
+
'dialogue_acts': {
|
126 |
+
'binary': [{
|
127 |
+
'intent': intent,
|
128 |
+
'domain': '',
|
129 |
+
'slot': ''
|
130 |
+
}],
|
131 |
+
'categorical': [],
|
132 |
+
'non-categorical': [],
|
133 |
+
},
|
134 |
+
'emotion': emotion,
|
135 |
+
})
|
136 |
+
|
137 |
+
ontology["dialogue_acts"]['binary'].setdefault((intent, '', ''), {})
|
138 |
+
ontology["dialogue_acts"]['binary'][(intent, '', '')][speaker] = True
|
139 |
+
|
140 |
+
dialogues_by_split[data_split].append(dialogue)
|
141 |
+
|
142 |
+
ontology["dialogue_acts"]['binary'] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"]['binary'].items()])
|
143 |
+
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
|
144 |
+
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
145 |
+
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
146 |
+
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
147 |
+
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
|
148 |
+
for filename in os.listdir(new_data_dir):
|
149 |
+
zf.write(f'{new_data_dir}/{filename}')
|
150 |
+
rmtree(original_data_dir)
|
151 |
+
rmtree(new_data_dir)
|
152 |
+
return dialogues, ontology
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == '__main__':
|
156 |
+
preprocess()
|