from zipfile import ZipFile, ZIP_DEFLATED from shutil import rmtree import json import os from tqdm import tqdm from collections import Counter from pprint import pprint from nltk.tokenize import sent_tokenize, word_tokenize from nltk.tokenize.treebank import TreebankWordDetokenizer import re topic_map = { 1: "Ordinary Life", 2: "School Life", 3: "Culture & Education", 4: "Attitude & Emotion", 5: "Relationship", 6: "Tourism", 7: "Health", 8: "Work", 9: "Politics", 10: "Finance" } act_map = { 1: "inform", 2: "question", 3: "directive", 4: "commissive" } emotion_map = { 0: "no emotion", 1: "anger", 2: "disgust", 3: "fear", 4: "happiness", 5: "sadness", 6: "surprise" } def preprocess(): original_data_dir = 'ijcnlp_dailydialog' new_data_dir = 'data' if not os.path.exists(original_data_dir): original_data_zip = 'ijcnlp_dailydialog.zip' if not os.path.exists(original_data_zip): raise FileNotFoundError(f'cannot find original data {original_data_zip} in dailydialog/, should manually download ijcnlp_dailydialog.zip from http://yanran.li/files/ijcnlp_dailydialog.zip') else: archive = ZipFile(original_data_zip) archive.extractall() os.makedirs(new_data_dir, exist_ok=True) dataset = 'dailydialog' splits = ['train', 'validation', 'test'] dialogues_by_split = {split:[] for split in splits} dial2topics = {} with open(os.path.join(original_data_dir, 'dialogues_text.txt')) as dialog_file, \ open(os.path.join(original_data_dir, 'dialogues_topic.txt')) as topic_file: for dialog, topic in zip(dialog_file, topic_file): topic = int(topic.strip()) dialog = dialog.replace(' __eou__ ', ' ') if dialog in dial2topics: dial2topics[dialog].append(topic) else: dial2topics[dialog] = [topic] global topic_map, act_map, emotion_map ontology = {'domains': {x:{'description': '', 'slots': {}} for x in topic_map.values()}, 'intents': {x:{'description': ''} for x in act_map.values()}, 'state': {}, 'dialogue_acts': { "categorical": [], "non-categorical": [], "binary": {} }} detokenizer = TreebankWordDetokenizer() for data_split in splits: archive = ZipFile(os.path.join(original_data_dir, f'{data_split}.zip')) with archive.open(f'{data_split}/dialogues_{data_split}.txt') as dialog_file, \ archive.open(f'{data_split}/dialogues_act_{data_split}.txt') as act_file, \ archive.open(f'{data_split}/dialogues_emotion_{data_split}.txt') as emotion_file: for dialog_line, act_line, emotion_line in tqdm(zip(dialog_file, act_file, emotion_file)): if not dialog_line.strip(): break utts = dialog_line.decode().split("__eou__")[:-1] acts = act_line.decode().split(" ")[:-1] emotions = emotion_line.decode().split(" ")[:-1] assert (len(utts) == len(acts) == len(emotions)), "Different turns btw dialogue & emotion & action" topics = dial2topics[dialog_line.decode().replace(' __eou__ ', ' ')] topic = Counter(topics).most_common(1)[0][0] domain = topic_map[topic] dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}' dialogue = { 'dataset': dataset, 'data_split': data_split, 'dialogue_id': dialogue_id, 'original_id': f'{data_split}-{len(dialogues_by_split[data_split])}', 'domains': [domain], 'turns': [] } for utt, act, emotion in zip(utts, acts, emotions): speaker = 'user' if len(dialogue['turns']) % 2 == 0 else 'system' intent = act_map[int(act)] emotion = emotion_map[int(emotion)] # re-tokenize utt = ' '.join([detokenizer.detokenize(word_tokenize(s)) for s in sent_tokenize(utt)]) # replace with common apostrophe utt = utt.replace(' ’ ', "'") # add space after full-stop utt = re.sub('\.(?!com)(\w)', lambda x: '. '+x.group(1), utt) dialogue['turns'].append({ 'speaker': speaker, 'utterance': utt.strip(), 'utt_idx': len(dialogue['turns']), 'dialogue_acts': { 'binary': [{ 'intent': intent, 'domain': '', 'slot': '' }], 'categorical': [], 'non-categorical': [], }, 'emotion': emotion, }) ontology["dialogue_acts"]['binary'].setdefault((intent, '', ''), {}) ontology["dialogue_acts"]['binary'][(intent, '', '')][speaker] = True dialogues_by_split[data_split].append(dialogue) ontology["dialogue_acts"]['binary'] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"]['binary'].items()]) dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test'] json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf: for filename in os.listdir(new_data_dir): zf.write(f'{new_data_dir}/{filename}') rmtree(original_data_dir) rmtree(new_data_dir) return dialogues, ontology if __name__ == '__main__': preprocess()