File size: 9,972 Bytes
bdc90b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from turtle import st
from zipfile import ZipFile, ZIP_DEFLATED
from shutil import rmtree
import json
import os
from tqdm import tqdm
from collections import Counter
from pprint import pprint
import re
import requests
from dateutil import parser as date_parser
from string import punctuation
from copy import deepcopy
def value_in_utt(value, utt):
"""return character level (start, end) if value in utt"""
value = value.strip(punctuation).lower()
utt = utt
p = '(^|[\s,\.:\?!-])(?P<v>{})([\s,\.:\?!-\']|$)'.format(re.escape(value))
p = re.compile(p, re.I)
m = re.search(p, utt)
if m:
# very few value appears more than once, take the first span
return True, m.span('v')
else:
try:
# solve date representation, e.g. '3 pm' vs '3pm'
date_parser.parse(value)
if (value.endswith('pm') or value.endswith('am')) and ''.join(value.split(' ')) in ''.join(utt.split(' ')):
return True, None
except:
if value in utt:
# value appears, but may be in the plural, -ing, -ly, etc.
return True, None
return False, None
def preprocess():
data_file = "kvret_dataset_public.zip"
if not os.path.exists(data_file):
response = requests.get("http://nlp.stanford.edu/projects/kvret/kvret_dataset_public.zip")
open(data_file, "wb").write(response.content)
archive = ZipFile(data_file)
new_data_dir = 'data'
os.makedirs(new_data_dir, exist_ok=True)
dataset = 'kvret'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split:[] for split in splits}
ontology = {'domains': {},
'intents': {
'inform': {'description': ''},
'request': {'description': ''}
},
'state': {},
'dialogue_acts': {
"categorical": {},
"non-categorical": {},
"binary": {}
}}
domain2slot = {
'schedule': ['event', 'time', 'date', 'party', 'room', 'agenda'],
'weather': ['location', 'weekly_time', 'temperature', 'weather_attribute'],
'navigate': ['poi', 'traffic_info', 'poi_type', 'address', 'distance']
}
slot2domain = {slot: domain for domain in domain2slot for slot in domain2slot[domain]}
db = []
with archive.open(f'kvret_entities.json') as f:
entities = json.load(f)
for slot, values in entities.items():
domain = slot2domain[slot]
ontology['domains'].setdefault(domain, {'description': '', 'slots': {}})
if slot == 'poi':
for s in ['poi', 'address', 'poi_type']:
ontology['domains'][domain]['slots'][s] = {'description': '', 'is_categorical': False, 'possible_values': []}
for item in values:
poi, address, poi_type = item['poi'], item['address'], item['type']
db.append({'poi': poi, 'address': address, 'poi_type': poi_type})
for s in ['poi', 'address', 'poi_type']:
ontology['domains'][domain]['slots'][s]['possible_values'].append(db[-1][s])
continue
elif slot == 'weekly_time':
slot = 'date'
elif slot == 'temperature':
values = [f"{x}F" for x in values]
elif slot == 'distance':
values = [f"{x} miles" for x in values]
ontology['domains'][domain]['slots'][slot] = {'description': '', 'is_categorical': False, 'possible_values': values}
for domain in ontology['domains']:
for slot in ontology['domains'][domain]['slots']:
ontology['domains'][domain]['slots'][slot]['possible_values'] = sorted(list(set(ontology['domains'][domain]['slots'][slot]['possible_values'])))
for data_split in splits:
filename = data_split if data_split != 'validation' else 'dev'
with archive.open(f'kvret_{filename}_public.json') as f:
data = json.load(f)
for item in tqdm(data):
if len(item['dialogue']) == 0:
continue
scenario = item['scenario']
domain = scenario['task']['intent']
slots = scenario['kb']['column_names']
db_results = {domain: []}
if scenario['kb']['items']:
for entry in scenario['kb']['items']:
db_results[domain].append({s: entry[s] for s in slots})
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
dialogue = {
'dataset': dataset,
'data_split': data_split,
'dialogue_id': dialogue_id,
'original_id': f'{data_split}-{len(dialogues_by_split[data_split])}',
'domains': [domain],
'turns': []
}
init_state = {domain: {}}
for turn in item['dialogue']:
speaker = 'user' if turn['turn'] == 'driver' else 'system'
utt = turn['data']['utterance'].strip()
if len(dialogue['turns']) > 0 and speaker == dialogue['turns'][-1]['speaker']:
# repeat, skip
if utt == dialogue['turns'][-1]['utterance']:
continue
else:
dialogue['turns'].pop(-1)
dialogue['turns'].append({
'speaker': speaker,
'utterance': utt,
'utt_idx': len(dialogue['turns']),
'dialogue_acts': {
'binary': [],
'categorical': [],
'non-categorical': [],
},
})
if speaker == 'user':
dialogue['turns'][-1]['state'] = deepcopy(init_state)
else:
user_da = {'binary': [], 'categorical': [], 'non-categorical': []}
user_utt = dialogue['turns'][-2]['utterance']
for slot, value in turn['data']['slots'].items():
value = value.strip()
is_appear, span = value_in_utt(value, user_utt)
if is_appear:
if span:
start, end = span
user_da['non-categorical'].append({
'intent': 'inform', 'domain': domain, 'slot': slot, 'value': user_utt[start:end],
'start': start, 'end': end
})
else:
user_da['non-categorical'].append({
'intent': 'inform', 'domain': domain, 'slot': slot, 'value': value,
})
init_state[domain][slot] = value
ontology['state'].setdefault(domain, {})
ontology['state'][domain].setdefault(slot, '')
dialogue['turns'][-2]['state'] = deepcopy(init_state)
for slot, present in turn['data']['requested'].items():
if slot not in turn['data']['slots'] and present:
user_da['binary'].append({'intent': 'request', 'domain': domain, 'slot': slot})
dialogue['turns'][-2]['dialogue_acts'] = user_da
dialogue['turns'][-1]['db_results'] = db_results
for da_type in user_da:
das = user_da[da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])]['user'] = True
assert all([s in ontology['domains'][domain]['slots'] for s in turn['data']['requested']]), print(turn['data']['requested'], ontology['domains'][domain]['slots'].keys())
assert all([s in ontology['domains'][domain]['slots'] for s in turn['data']['slots']]), print(turn['data']['slots'], ontology['domains'][domain]['slots'].keys())
dialogues_by_split[data_split].append(dialogue)
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(db, open(f'{new_data_dir}/db.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(new_data_dir)
return dialogues, ontology
if __name__ == '__main__':
preprocess()
|