kvret / preprocess.py
zhuqi's picture
Upload preprocess.py
bdc90b2
raw
history blame
9.97 kB
from turtle import st
from zipfile import ZipFile, ZIP_DEFLATED
from shutil import rmtree
import json
import os
from tqdm import tqdm
from collections import Counter
from pprint import pprint
import re
import requests
from dateutil import parser as date_parser
from string import punctuation
from copy import deepcopy
def value_in_utt(value, utt):
"""return character level (start, end) if value in utt"""
value = value.strip(punctuation).lower()
utt = utt
p = '(^|[\s,\.:\?!-])(?P<v>{})([\s,\.:\?!-\']|$)'.format(re.escape(value))
p = re.compile(p, re.I)
m = re.search(p, utt)
if m:
# very few value appears more than once, take the first span
return True, m.span('v')
else:
try:
# solve date representation, e.g. '3 pm' vs '3pm'
date_parser.parse(value)
if (value.endswith('pm') or value.endswith('am')) and ''.join(value.split(' ')) in ''.join(utt.split(' ')):
return True, None
except:
if value in utt:
# value appears, but may be in the plural, -ing, -ly, etc.
return True, None
return False, None
def preprocess():
data_file = "kvret_dataset_public.zip"
if not os.path.exists(data_file):
response = requests.get("http://nlp.stanford.edu/projects/kvret/kvret_dataset_public.zip")
open(data_file, "wb").write(response.content)
archive = ZipFile(data_file)
new_data_dir = 'data'
os.makedirs(new_data_dir, exist_ok=True)
dataset = 'kvret'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split:[] for split in splits}
ontology = {'domains': {},
'intents': {
'inform': {'description': ''},
'request': {'description': ''}
},
'state': {},
'dialogue_acts': {
"categorical": {},
"non-categorical": {},
"binary": {}
}}
domain2slot = {
'schedule': ['event', 'time', 'date', 'party', 'room', 'agenda'],
'weather': ['location', 'weekly_time', 'temperature', 'weather_attribute'],
'navigate': ['poi', 'traffic_info', 'poi_type', 'address', 'distance']
}
slot2domain = {slot: domain for domain in domain2slot for slot in domain2slot[domain]}
db = []
with archive.open(f'kvret_entities.json') as f:
entities = json.load(f)
for slot, values in entities.items():
domain = slot2domain[slot]
ontology['domains'].setdefault(domain, {'description': '', 'slots': {}})
if slot == 'poi':
for s in ['poi', 'address', 'poi_type']:
ontology['domains'][domain]['slots'][s] = {'description': '', 'is_categorical': False, 'possible_values': []}
for item in values:
poi, address, poi_type = item['poi'], item['address'], item['type']
db.append({'poi': poi, 'address': address, 'poi_type': poi_type})
for s in ['poi', 'address', 'poi_type']:
ontology['domains'][domain]['slots'][s]['possible_values'].append(db[-1][s])
continue
elif slot == 'weekly_time':
slot = 'date'
elif slot == 'temperature':
values = [f"{x}F" for x in values]
elif slot == 'distance':
values = [f"{x} miles" for x in values]
ontology['domains'][domain]['slots'][slot] = {'description': '', 'is_categorical': False, 'possible_values': values}
for domain in ontology['domains']:
for slot in ontology['domains'][domain]['slots']:
ontology['domains'][domain]['slots'][slot]['possible_values'] = sorted(list(set(ontology['domains'][domain]['slots'][slot]['possible_values'])))
for data_split in splits:
filename = data_split if data_split != 'validation' else 'dev'
with archive.open(f'kvret_{filename}_public.json') as f:
data = json.load(f)
for item in tqdm(data):
if len(item['dialogue']) == 0:
continue
scenario = item['scenario']
domain = scenario['task']['intent']
slots = scenario['kb']['column_names']
db_results = {domain: []}
if scenario['kb']['items']:
for entry in scenario['kb']['items']:
db_results[domain].append({s: entry[s] for s in slots})
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
dialogue = {
'dataset': dataset,
'data_split': data_split,
'dialogue_id': dialogue_id,
'original_id': f'{data_split}-{len(dialogues_by_split[data_split])}',
'domains': [domain],
'turns': []
}
init_state = {domain: {}}
for turn in item['dialogue']:
speaker = 'user' if turn['turn'] == 'driver' else 'system'
utt = turn['data']['utterance'].strip()
if len(dialogue['turns']) > 0 and speaker == dialogue['turns'][-1]['speaker']:
# repeat, skip
if utt == dialogue['turns'][-1]['utterance']:
continue
else:
dialogue['turns'].pop(-1)
dialogue['turns'].append({
'speaker': speaker,
'utterance': utt,
'utt_idx': len(dialogue['turns']),
'dialogue_acts': {
'binary': [],
'categorical': [],
'non-categorical': [],
},
})
if speaker == 'user':
dialogue['turns'][-1]['state'] = deepcopy(init_state)
else:
user_da = {'binary': [], 'categorical': [], 'non-categorical': []}
user_utt = dialogue['turns'][-2]['utterance']
for slot, value in turn['data']['slots'].items():
value = value.strip()
is_appear, span = value_in_utt(value, user_utt)
if is_appear:
if span:
start, end = span
user_da['non-categorical'].append({
'intent': 'inform', 'domain': domain, 'slot': slot, 'value': user_utt[start:end],
'start': start, 'end': end
})
else:
user_da['non-categorical'].append({
'intent': 'inform', 'domain': domain, 'slot': slot, 'value': value,
})
init_state[domain][slot] = value
ontology['state'].setdefault(domain, {})
ontology['state'][domain].setdefault(slot, '')
dialogue['turns'][-2]['state'] = deepcopy(init_state)
for slot, present in turn['data']['requested'].items():
if slot not in turn['data']['slots'] and present:
user_da['binary'].append({'intent': 'request', 'domain': domain, 'slot': slot})
dialogue['turns'][-2]['dialogue_acts'] = user_da
dialogue['turns'][-1]['db_results'] = db_results
for da_type in user_da:
das = user_da[da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])]['user'] = True
assert all([s in ontology['domains'][domain]['slots'] for s in turn['data']['requested']]), print(turn['data']['requested'], ontology['domains'][domain]['slots'].keys())
assert all([s in ontology['domains'][domain]['slots'] for s in turn['data']['slots']]), print(turn['data']['slots'], ontology['domains'][domain]['slots'].keys())
dialogues_by_split[data_split].append(dialogue)
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(db, open(f'{new_data_dir}/db.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(new_data_dir)
return dialogues, ontology
if __name__ == '__main__':
preprocess()