from zipfile import ZipFile, ZIP_DEFLATED import json import os import copy import zipfile from tqdm import tqdm import re from collections import Counter from shutil import rmtree from convlab.util.file_util import read_zipped_json, write_zipped_json from pprint import pprint import random descriptions = { "uber_lyft": { "uber_lyft": "order a car for a ride inside a city", "location.from": "pickup location", "location.to": "destination of the ride", "type.ride": "type of ride", "num.people": "number of people", "price.estimate": "estimated cost of the ride", "duration.estimate": "estimated duration of the ride", "time.pickup": "time of pickup", "time.dropoff": "time of dropoff", }, "movie_ticket": { "movie_ticket": "book movie tickets for a film", "name.movie": "name of the movie", "name.theater": "name of the theater", "num.tickets": "number of tickets", "time.start": "start time of the movie", "location.theater": "location of the theater", "price.ticket": "price of the ticket", "type.screening": "type of the screening", "time.end": "end time of the movie", "time.duration": "duration of the movie", }, "restaurant_reservation": { "restaurant_reservation": "searching for a restaurant and make reservation", "name.restaurant": "name of the restaurant", "name.reservation": "name of the person who make the reservation", "num.guests": "number of guests", "time.reservation": "time of the reservation", "type.seating": "type of the seating", "location.restaurant": "location of the restaurant", }, "coffee_ordering": { "coffee_ordering": "order a coffee drink from either Starbucks or Peets for pick up", "location.store": "location of the coffee store", "name.drink": "name of the drink", "size.drink": "size of the drink", "num.drink": "number of drinks", "type.milk": "type of the milk", "preference": "user preference of the drink", }, "pizza_ordering": { "pizza_ordering": "order a pizza", "name.store": "name of the pizza store", "name.pizza": "name of the pizza", "size.pizza": "size of the pizza", "type.topping": "type of the topping", "type.crust": "type of the crust", "preference": "user preference of the pizza", "location.store": "location of the pizza store", }, "auto_repair": { "auto_repair": "set up an auto repair appointment with a repair shop", "name.store": "name of the repair store", "name.customer": "name of the customer", "date.appt": "date of the appointment", "time.appt": "time of the appointment", "reason.appt": "reason of the appointment", "name.vehicle": "name of the vehicle", "year.vehicle": "year of the vehicle", "location.store": "location of the repair store", } } def normalize_domain_name(domain): if domain == 'auto': return 'auto_repair' elif domain == 'pizza': return 'pizza_ordering' elif domain == 'coffee': return 'coffee_ordering' elif domain == 'uber': return 'uber_lyft' elif domain == 'restaurant': return 'restaurant_reservation' elif domain == 'movie': return 'movie_ticket' assert 0 def format_turns(ori_turns): # delete invalid turns and merge continuous turns new_turns = [] previous_speaker = None utt_idx = 0 for i, turn in enumerate(ori_turns): speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user' turn['speaker'] = speaker if turn['text'] == '(deleted)': continue if not previous_speaker: # first turn assert speaker != previous_speaker if speaker != previous_speaker: # switch speaker previous_speaker = speaker new_turns.append(copy.deepcopy(turn)) utt_idx += 1 else: # continuous speaking of the same speaker last_turn = new_turns[-1] # skip repeated turn if turn['text'] in ori_turns[i-1]['text']: continue # merge continuous turns index_shift = len(last_turn['text']) + 1 last_turn['text'] += ' '+turn['text'] if 'segments' in turn: last_turn.setdefault('segments', []) for segment in turn['segments']: segment['start_index'] += index_shift segment['end_index'] += index_shift last_turn['segments'] += turn['segments'] return new_turns def preprocess(): original_data_dir = 'Taskmaster-master' new_data_dir = 'data' if not os.path.exists(original_data_dir): original_data_zip = 'master.zip' if not os.path.exists(original_data_zip): raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm1/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip') else: archive = ZipFile(original_data_zip) archive.extractall() os.makedirs(new_data_dir, exist_ok=True) ontology = {'domains': {}, 'intents': { 'inform': {'description': 'inform the value of a slot or general information.'}, 'accept': {'description': 'accept the value of a slot or a transaction'}, 'reject': {'description': 'reject the value of a slot or a transaction'} }, 'state': {}, 'dialogue_acts': { "categorical": {}, "non-categorical": {}, "binary": {} }} global descriptions ori_ontology = {} for _, item in json.load(open(os.path.join(original_data_dir, "TM-1-2019/ontology.json"))).items(): ori_ontology[item["id"]] = item for domain, item in ori_ontology.items(): ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}} ontology['state'][domain] = {} for slot in item['required']+item['optional']: ontology['domains'][domain]['slots'][slot] = { 'description': descriptions[domain][slot], 'is_categorical': False, 'possible_values': [], } ontology['state'][domain][slot] = '' dataset = 'tm1' splits = ['train', 'validation', 'test'] dialogues_by_split = {split:[] for split in splits} dialog_files = ["TM-1-2019/self-dialogs.json", "TM-1-2019/woz-dialogs.json"] for file_idx, filename in enumerate(dialog_files): data = json.load(open(os.path.join(original_data_dir, filename))) if file_idx == 0: # original split for self dialogs dial_id2split = {} for data_split in ['train', 'dev', 'test']: with open(os.path.join(original_data_dir, f"TM-1-2019/train-dev-test/{data_split}.csv")) as f: for line in f: dial_id = line.split(',')[0] dial_id2split[dial_id] = data_split if data_split != 'dev' else 'validation' else: # random split for woz dialogs 8:1:1 random.seed(42) dial_ids = [d['conversation_id'] for d in data] random.shuffle(dial_ids) dial_id2split = {} for dial_id in dial_ids[:int(0.8*len(dial_ids))]: dial_id2split[dial_id] = 'train' for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]: dial_id2split[dial_id] = 'validation' for dial_id in dial_ids[int(0.9*len(dial_ids)):]: dial_id2split[dial_id] = 'test' for d in tqdm(data, desc='processing taskmaster-{}'.format(filename)): # delete empty dialogs and invalid dialogs if len(d['utterances']) == 0: continue if len(set([t['speaker'] for t in d['utterances']])) == 1: continue data_split = dial_id2split[d["conversation_id"]] dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}' cur_domains = [normalize_domain_name(d["instruction_id"].split('-', 1)[0])] assert len(cur_domains) == 1 and cur_domains[0] in ontology['domains'] domain = cur_domains[0] dialogue = { 'dataset': dataset, 'data_split': data_split, 'dialogue_id': dialogue_id, 'original_id': d["conversation_id"], 'domains': cur_domains, 'turns': [] } turns = format_turns(d['utterances']) prev_state = {} prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain])) for utt_idx, uttr in enumerate(turns): speaker = uttr['speaker'] turn = { 'speaker': speaker, 'utterance': uttr['text'], 'utt_idx': utt_idx, 'dialogue_acts': { 'binary': [], 'categorical': [], 'non-categorical': [], }, } in_span = [0] * len(turn['utterance']) if 'segments' in uttr: # sort the span according to the length segments = sorted(uttr['segments'], key=lambda x: len(x['text'])) for segment in segments: # Each conversation was annotated by two workers. # only keep the first annotation for the span item = segment['annotations'][0] intent = 'inform' # default intent slot = item['name'].split('.', 1)[-1] if slot.endswith('.accept') or slot.endswith('.reject'): # intent=accept/reject intent = slot[-6:] slot = slot[:-7] if slot not in ontology['domains'][domain]['slots']: # no slot, only general reference to a transaction, binary dialog act turn['dialogue_acts']['binary'].append({ 'intent': intent, 'domain': domain, 'slot': '', }) else: assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text'] # skip overlapped spans, keep the shortest one if sum(in_span[segment['start_index']: segment['end_index']]) > 0: continue else: in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index']) turn['dialogue_acts']['non-categorical'].append({ 'intent': intent, 'domain': domain, 'slot': slot, 'value': segment['text'], 'start': segment['start_index'], 'end': segment['end_index'] }) turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start']) bdas = set() for da in turn['dialogue_acts']['binary']: da_tuple = (da['intent'], da['domain'], da['slot'],) bdas.add(da_tuple) turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)] # add to dialogue_acts dictionary in the ontology for da_type in turn['dialogue_acts']: das = turn['dialogue_acts'][da_type] for da in das: ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {}) ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True for da in turn['dialogue_acts']['non-categorical']: slot, value = da['slot'], da['value'] assert slot in prev_state[domain] # not add reject slot-value into state if da['intent'] != 'reject': prev_state[domain][slot] = value if speaker == 'user': turn['state'] = copy.deepcopy(prev_state) dialogue['turns'].append(turn) dialogues_by_split[data_split].append(dialogue) for da_type in ontology['dialogue_acts']: ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()]) dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test'] json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf: for filename in os.listdir(new_data_dir): zf.write(f'{new_data_dir}/{filename}') rmtree(original_data_dir) rmtree(new_data_dir) return dialogues, ontology if __name__ == '__main__': preprocess()