phucdev commited on
Commit
bce87b6
1 Parent(s): 1473009

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +194 -0
README.md CHANGED
@@ -150,4 +150,198 @@ configs:
150
  path: re/validation-*
151
  - split: test
152
  path: re/test-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  path: re/validation-*
151
  - split: test
152
  path: re/test-*
153
+ license: cc-by-4.0
154
+ task_categories:
155
+ - text-classification
156
+ - token-classification
157
+ language:
158
+ - de
159
+ tags:
160
+ - finance
161
+ - relation-extraction
162
+ - event-extraction
163
+ - traffic
164
+ - industry
165
+ pretty_name: SmartData Corpus
166
+ size_categories:
167
+ - 1K<n<10K
168
  ---
169
+ # Dataset Card for SmartData Corpus
170
+
171
+ ## Dataset Description
172
+
173
+ - **Repository:** [https://github.com/dfki-nlp/smartdata-corpus](https://github.com/dfki-nlp/smartdata-corpus)
174
+ - **Paper:** [A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events](https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9427/)
175
+
176
+ ### Dataset Summary
177
+
178
+ SmartData Corpus is a German-language dataset which is human-annotated with entity types and a set of 15 traffic- and
179
+ industry-related n-ary relations and events, such as accidents, traffic jams, acquisitions, and strikes.
180
+ The corpus consists of newswire texts, Twitter messages, and traffic reports from radio stations, police and
181
+ railway companies.
182
+
183
+ This version of the dataset loader provides configurations for:
184
+
185
+ - Named Entity Recognition (`ner`): NER tags use the `BIO` tagging scheme
186
+ - Relation Extraction (`re`): n-ary Relation Extraction
187
+ - Event Extraction (`ee`): formatted similar to https://github.com/nlpcl-lab/ace2005-preprocessing?tab=readme-ov-file#format
188
+
189
+ For more details see https://github.com/dfki-nlp/smartdata-corpus and https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9427/.
190
+
191
+ ### Supported Tasks and Leaderboards
192
+
193
+ - **Tasks:** Named Entity Recognition, n-ary Relation Extraction, Event Extraction
194
+ - **Leaderboards:**
195
+
196
+ ### Languages
197
+
198
+ German
199
+
200
+ ## Dataset Structure
201
+
202
+ ### Data Instances
203
+
204
+ #### ner
205
+ An example of 'train' looks as follows.
206
+
207
+ ```json
208
+ {
209
+ "id": "671734738147758080",
210
+ "tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
211
+ "ner_tags": ["B-LOCATION_STREET", "O", "B-LOCATION", "I-LOCATION", "O", "B-LOCATION", "I-LOCATION", "O", "O", "O", "O", "O", "O", "B-TRIGGER", "O", "O", "O", "B-DATE", "O", "B-LOCATION_STREET"]
212
+ }
213
+ ```
214
+
215
+ #### re
216
+ An example of 'train' looks as follows.
217
+
218
+ ```json
219
+ {
220
+ "id": "671734738147758080_0",
221
+ "tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
222
+ "entities": [[0, 1], [2, 4], [5, 7], [13, 14], [17, 18], [19, 20]],
223
+ "entity_roles": ["location", "start_loc", "end_loc", "trigger", "end_date", "no_arg"],
224
+ "entity_types": ["LOCATION_STREET", "LOCATION", "LOCATION", "TRIGGER", "DATE", "LOCATION_STREET"],
225
+ "event_type": "Obstruction",
226
+ "entity_ids": ["c/ac611f0a-d610-4ab2-9ddf-00132d9374b5", "c/3e01d530-58c4-4f47-9ab3-082a58e8299b", "c/cb6975e8-4409-4bdf-a491-de398b3c3263", "c/684a0ccd-06ff-4a8f-a90f-bdef169077dc", "c/166acddb-0f4d-48eb-98f6-a8b490f2e578", "c/ca3befa0-92da-4ff9-b34d-ec351854cdda"]
227
+ }
228
+ ```
229
+
230
+ #### ee
231
+
232
+ An example of 'train' looks as follows.
233
+
234
+ ```json
235
+ {
236
+ "id": "671734738147758080",
237
+ "text": "A1 Zwischen AS Munsbach und AS Flaxweiler Bauarbeiten, rechter Fahrstreifen gesperrt, Verkehrsbehinderung, Dauer: 02.12.2015... #ACL_A1\n",
238
+ "entity_mentions": [
239
+ {"id": "c/ac611f0a-d610-4ab2-9ddf-00132d9374b5", "text": "A1", "start": 0, "end": 1, "char_start": 0, "char_end": 2, "type": "LOCATION_STREET"},
240
+ {"id": "c/3e01d530-58c4-4f47-9ab3-082a58e8299b", "text": "AS Munsbach", "start": 2, "end": 4, "char_start": 12, "char_end": 23, "type": "LOCATION"},
241
+ {"id": "c/cb6975e8-4409-4bdf-a491-de398b3c3263", "text": "AS Flaxweiler", "start": 5, "end": 7, "char_start": 28, "char_end": 41, "type": "LOCATION"},
242
+ {"id": "c/684a0ccd-06ff-4a8f-a90f-bdef169077dc", "text": "Verkehrsbehinderung", "start": 13, "end": 14, "char_start": 86, "char_end": 105, "type": "TRIGGER"},
243
+ {"id": "c/166acddb-0f4d-48eb-98f6-a8b490f2e578", "text": "02.12.2015", "start": 17, "end": 18, "char_start": 114, "char_end": 124, "type": "DATE"},
244
+ {"id": "c/ca3befa0-92da-4ff9-b34d-ec351854cdda", "text": "#ACL_A1", "start": 19, "end": 20, "char_start": 128, "char_end": 135, "type": "LOCATION_STREET"}
245
+ ],
246
+ "event_mentions": [
247
+ {
248
+ "id": "r/802a82c2-c214-4429-b9f1-bf56e46674ee",
249
+ "trigger": {
250
+ "text": "Verkehrsbehinderung", "start": 13, "end": 14, "char_start": 86, "char_end": 105
251
+ },
252
+ "arguments": [
253
+ {"text": "02.12.2015", "start": 17, "end": 18, "char_start": 114, "char_end": 124, "role": "end_date", "type": "date"},
254
+ {"text": "AS Flaxweiler", "start": 5, "end": 7, "char_start": 28, "char_end": 41, "role": "end_loc", "type": "location"},
255
+ {"text": "AS Munsbach", "start": 2, "end": 4, "char_start": 12, "char_end": 23, "role": "start_loc", "type": "location"},
256
+ {"text": "A1", "start": 0, "end": 1, "char_start": 0, "char_end": 2, "role": "location", "type": "location-street"}
257
+ ],
258
+ "event_type": "Obstruction"
259
+ }
260
+ ],
261
+ "tokens": ["A1", "Zwischen", "AS", "Munsbach", "und", "AS", "Flaxweiler", "Bauarbeiten", ",", "rechter", "Fahrstreifen", "gesperrt", ",", "Verkehrsbehinderung", ",", "Dauer", ":", "02.12.2015", "...", "#ACL_A1"],
262
+ "pos_tags": ["CARD", "APPR", "NE", "NE", "KON", "NE", "NE", "NN", "$,", "ADJA", "NN", "VVPP", "$,", "NN", "$,", "NN", "$.", "CARD", "$[", "CARD"],
263
+ "lemma": ["a1", "zwischen", "as", "munsbach", "und", "as", "flaxweiler", "bauarbeiten", ",", "rechter", "fahrstreifen", "gesperrt", ",", "verkehrsbehinderung", ",", "dauer", ":", "02.12.2015", "...", "#acl_a1"],
264
+ "ner_tags": ["B-LOCATION_STREET", "O", "B-LOCATION", "I-LOCATION", "O", "B-LOCATION", "I-LOCATION", "O", "O", "O", "O", "O", "O", "B-TRIGGER", "O", "O", "O", "B-DATE", "O", "B-LOCATION_STREET"]
265
+ }
266
+ ```
267
+
268
+
269
+ ### Data Fields
270
+
271
+ #### ner
272
+
273
+ - `id`: example identifier, a `string` feature.
274
+ - `tokens`: list of tokens, a `list` of `string` features.
275
+ - `ner_tags`: list of NER tags, a `list` of `string` features.
276
+
277
+ #### re
278
+
279
+ - `id`: example identifier, a `string` feature.
280
+ - `text`: example text, a `string` feature.
281
+ - `tokens`: list of tokens, a `list` of `string` features.
282
+ - `entities`: a list of token spans, a `list` of `int64` features.
283
+ - `entity_roles`: a `list` of entity roles, a list of `string` features.
284
+ - `event_type`: the event type, a `string` feature.
285
+ - `entity_ids`: list of entity ids, a `list` of `string` features.
286
+
287
+ #### ee
288
+
289
+ - `id`: example identifier, a `string` feature.
290
+ - `text`: example text, a `string` feature.
291
+ - `entity_mentions`: a `list` of `struct` features.
292
+ - `text`: a `string` feature.
293
+ - `start`: token offset start, a `int64` feature.
294
+ - `end`: token offset end, a `int64` feature.
295
+ - `char_start`: character offset start, a `int64` feature.
296
+ - `char_end`: character offset end, a `int64` feature.
297
+ - `type`: entity type, a `string` feature.
298
+ - `id`: entity id, a `string` feature.
299
+ - `event_mentions`: a list of `struct` features.
300
+ - `id`: event identifier, a `string` feature.
301
+ - `trigger`: a `struct` feature.
302
+ - `text`: a `string` feature.
303
+ - `start`: token offset start, a `int64` feature.
304
+ - `end`: token offset end, a `int64` feature.
305
+ - `char_start`: character offset start, a `int64` feature.
306
+ - `char_end`: character offset end, a `int64` feature.
307
+ - `arguments`: a list of `struct` features.
308
+ - `text`: a `string` feature.
309
+ - `start`: token offset start, a `int64` feature.
310
+ - `end`: token offset end, a `int64` feature.
311
+ - `char_start`: character offset start, a `int64` feature.
312
+ - `char_end`: character offset end, a `int64` feature.
313
+ - `role`: role of the argument, a `string` feature.
314
+ - `type`: entity type of the argument, a `string` feature.
315
+ - `event_type`: a classification label, a `string` feature.
316
+ - `tokens`: list of tokens, a `list` of `string` features.
317
+ - `pos_tags`: list of part-of-speech tags, a `list` of `string` features.
318
+ - `lemma`: list of lemmatized tokens, a `list` of `string` features.
319
+ - `ner_tags`: a `list` of NER tags, a list of `string` features.
320
+
321
+ ### Licensing Information
322
+
323
+ [CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/)
324
+
325
+ ### Citation Information
326
+
327
+ **BibTeX:**
328
+ ```
329
+ @InProceedings{SCHIERSCH18.85,
330
+ author = {Martin Schiersch and Veselina Mironova and Maximilian Schmitt and Philippe Thomas and Aleksandra Gabryszak and Leonhard Hennig},
331
+ title = "{A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events}",
332
+ booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
333
+ year = {2018},
334
+ month = {May 7-12, 2018},
335
+ address = {Miyazaki, Japan},
336
+ editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
337
+ publisher = {European Language Resources Association (ELRA)},
338
+ isbn = {979-10-95546-00-9},
339
+ language = {english}
340
+ }
341
+ ```
342
+
343
+ **APA:**
344
+ - Schiersch, M., Mironova, V., Schmitt, M., Thomas, P., Gabryszak, A., & Hennig, L. (2018). A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events. In N. Calzolari (Conference chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga (Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (pp. Unknown). Miyazaki, Japan: European Language Resources Association (ELRA). ISBN: 979-10-95546-00-9.
345
+
346
+
347
+ ### Contributions