DewiBrynJones commited on
Commit
a911412
1 Parent(s): f98cdfe

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -37
README.md CHANGED
@@ -7,49 +7,16 @@ size_categories:
7
  - 10K<n<100K
8
  pretty_name: Banc Trawsgrifiadau Bangor
9
  tags:
10
- - speech recognition
11
  - verbatim transcriptions
 
12
  - speech to translated text
13
- configs:
14
- - config_name: default
15
- data_files:
16
- - split: train
17
- path: data/train-*
18
- - split: validation
19
- path: data/validation-*
20
- - split: test
21
- path: data/test-*
22
- dataset_info:
23
- features:
24
- - name: sentence
25
- dtype: string
26
- - name: transcript
27
- dtype: string
28
- - name: normalized
29
- dtype: string
30
- - name: audio
31
- dtype:
32
- audio:
33
- sampling_rate: 16000
34
- splits:
35
- - name: train
36
- num_bytes: 852987862.144
37
- num_examples: 37291
38
- - name: validation
39
- num_bytes: 86209017.336
40
- num_examples: 3901
41
- - name: test
42
- num_bytes: 88802718.072
43
- num_examples: 3901
44
- download_size: 1009094981
45
- dataset_size: 1027999597.552
46
  ---
47
 
48
  [See below for English](#bangor-transcription-bank)
49
 
50
  # Banc Trawsgrifiadau Bangor
51
 
52
- Dyma fanc o 45 awr o segmentau o leferydd naturiol dros hanner cant o gyfranwyr ar ffurf ffeiliau mp3, ynghyd â thrawsgrifiadau 'verbatim' cyfatebol o’r lleferydd ar ffurf ffeil .tsv. Mae'r mwyafrif o'r lleferydd yn leferydd digymell, naturiol. Dosbarthwn y deunydd hwn o dan drwydded agored CC0.
53
 
54
  ## Pwrpas
55
  Pwrpas y trawsgrifiadau hyn yw gweithredu fel data hyfforddi ar gyfer modelau adnabod lleferydd, gan gynnwys [ein modelau wav2vec](https://github.com/techiaith/docker-wav2vec2-cy). Ar gyfer y diben hwnnw, mae gofyn am drawsgrifiadau mwy verbatim o'r hyn a ddywedwyd na'r hyn a welir mewn trawsgrifiadau traddodiadol ac mewn isdeitlau, felly datblygwyd confensiwn arbennig ar gyfer y gwaith trawsgrifio ([gweler isod](#confensiynau_trawsgrifio)). Gydag ein modelau wav2vec, caiff cydran ychwnaegol, sef 'model iaith' ei defnyddio ar ôl y model adnabod lleferydd i safoni mwy ar allbwn y model iaith i fod yn debycach i drawsgrifiadau traddodiadol ac isdeitlau.
@@ -240,7 +207,7 @@ Diolchwn i'r cyfrannwyr am eu caniatâd i ddefnyddio'u lleferydd. Rydym hefyd yn
240
 
241
  # Bangor Transcription Bank
242
 
243
- This resource is a bank of 45 hours of segments of natural speech from over 50 contributors in mp3 file format, together with corresponding 'verbatim' transcripts of the speech in .tsv file format. The majority of the speech is spontaneous, natural speech. We distribute this material under a CC0 open license.
244
 
245
  ## Purpose
246
  The purpose of these transcripts is to act as training data for speech recognition models, including [our wav2vec models](https://github.com/techiaith/docker-wav2vec2-cy). For that purpose, transcriptions are more verbatim than what is seen in traditional transcriptions and than what is required for subtitling purposes, thus a bespoke set of conventions has been developed for the transcription work ([see below](#transcription_conventions) ). Our wav2vec models use an auxiliary component, namely a 'language model', to further standardize the speech recognition model’s output in order that it be more similar to traditional transcriptions and subtitles.
@@ -419,4 +386,3 @@ In order to respect the contributors, by downloading this data you agree not to
419
 
420
  ## Acknowledgements
421
  We thank the contributors for their permission to use their speech. We are also grateful to the Welsh Government for funding this work as part of the Text, Speech and Translation Technology project for the Welsh Language.
422
-
 
7
  - 10K<n<100K
8
  pretty_name: Banc Trawsgrifiadau Bangor
9
  tags:
 
10
  - verbatim transcriptions
11
+ - speech recognition
12
  - speech to translated text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  [See below for English](#bangor-transcription-bank)
16
 
17
  # Banc Trawsgrifiadau Bangor
18
 
19
+ Dyma fanc o 40 awr a 46 eiliad o segmentau o leferydd naturiol dros hanner cant o gyfranwyr ar ffurf ffeiliau mp3, ynghyd â thrawsgrifiadau 'verbatim' cyfatebol o’r lleferydd ar ffurf ffeil .tsv. Mae'r mwyafrif o'r lleferydd yn leferydd digymell, naturiol. Dosbarthwn y deunydd hwn o dan drwydded agored CC0.
20
 
21
  ## Pwrpas
22
  Pwrpas y trawsgrifiadau hyn yw gweithredu fel data hyfforddi ar gyfer modelau adnabod lleferydd, gan gynnwys [ein modelau wav2vec](https://github.com/techiaith/docker-wav2vec2-cy). Ar gyfer y diben hwnnw, mae gofyn am drawsgrifiadau mwy verbatim o'r hyn a ddywedwyd na'r hyn a welir mewn trawsgrifiadau traddodiadol ac mewn isdeitlau, felly datblygwyd confensiwn arbennig ar gyfer y gwaith trawsgrifio ([gweler isod](#confensiynau_trawsgrifio)). Gydag ein modelau wav2vec, caiff cydran ychwnaegol, sef 'model iaith' ei defnyddio ar ôl y model adnabod lleferydd i safoni mwy ar allbwn y model iaith i fod yn debycach i drawsgrifiadau traddodiadol ac isdeitlau.
 
207
 
208
  # Bangor Transcription Bank
209
 
210
+ This resource is a bank of 40 hours and 46 seconds of segments of natural speech from over 50 contributors in mp3 file format, together with corresponding 'verbatim' transcripts of the speech in .tsv file format. The majority of the speech is spontaneous, natural speech. We distribute this material under a CC0 open license.
211
 
212
  ## Purpose
213
  The purpose of these transcripts is to act as training data for speech recognition models, including [our wav2vec models](https://github.com/techiaith/docker-wav2vec2-cy). For that purpose, transcriptions are more verbatim than what is seen in traditional transcriptions and than what is required for subtitling purposes, thus a bespoke set of conventions has been developed for the transcription work ([see below](#transcription_conventions) ). Our wav2vec models use an auxiliary component, namely a 'language model', to further standardize the speech recognition model’s output in order that it be more similar to traditional transcriptions and subtitles.
 
386
 
387
  ## Acknowledgements
388
  We thank the contributors for their permission to use their speech. We are also grateful to the Welsh Government for funding this work as part of the Text, Speech and Translation Technology project for the Welsh Language.