Datasets:
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IndicXNLI
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
Dataset Card for "IndicParaphrase"
Table of Contents
- Dataset Card for "IndicParaphrase"
Dataset Description
- Homepage: https://github.com/divyanshuaggarwal/IndicXNLI
- Paper: IndicXNLI: Evaluating Multilingual Inference for Indian Languages
- Point of Contact: Divyanshu Aggarwal
Dataset Summary
. INDICXNLI is similar to existing XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI data for eleven major Indic languages that includes Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’), Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’), Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi (‘hi’), and Bengali (‘bn’).
Supported Tasks and Leaderboards
Tasks: Natural Language Inference
Leaderboards: Currently there is no Leaderboard for this dataset.
Languages
Assamese (as)
Bengali (bn)
Gujarati (gu)
Kannada (kn)
Hindi (hi)
Malayalam (ml)
Marathi (mr)
Oriya (or)
Punjabi (pa)
Tamil (ta)
Telugu (te)
Dataset Structure
Data Instances
One example from the hi
dataset is given below in JSON format.
{'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
'label': 1 (neutral) }
Data Fields
premise (string)
: Premise Sentencehypothesis (string)
: Hypothesis Sentencelabel (integer)
: Integer label0
if hypothesisentails
the premise,2
if hypothesisnegates
the premise and1
otherwise.
Data Splits
Below is the dataset split given for hi
dataset.
DatasetDict({
train: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 392702
})
test: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 5010
})
validation: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 2490
})
})
The dataset split remains same across all languages.
Dataset usage
Code snippet for using the dataset using datasets library.
from datasets import load_dataset
dataset = load_dataset("Divyanshu/indicxnli")
Dataset Creation
Machine translation of XNLI english dataset to 11 listed Indic Languages.
Curation Rationale
[More information needed]
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Human Verification Process
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Dataset Curators
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan
Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Copyright of the dataset contents belongs to the original copyright holders.
Citation Information
If you use any of the datasets, models or code modules, please cite the following paper:
@misc{https://doi.org/10.48550/arxiv.2204.08776,
doi = {10.48550/ARXIV.2204.08776},
url = {https://arxiv.org/abs/2204.08776},
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}