Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
1M - 10M
ArXiv:
License:
annotations_creators: | |
- machine-generated | |
language_creators: | |
- machine-generated | |
language: | |
- as | |
- bn | |
- gu | |
- hi | |
- kn | |
- ml | |
- mr | |
- or | |
- pa | |
- ta | |
- te | |
license: | |
- cc0-1.0 | |
multilinguality: | |
- multilingual | |
pretty_name: IndicXNLI | |
size_categories: | |
- 1M<n<10M | |
source_datasets: | |
- original | |
task_categories: | |
- text-classification | |
task_ids: | |
- natural-language-inference | |
# Dataset Card for "IndicParaphrase" | |
## Table of Contents | |
- [Dataset Card for "IndicParaphrase"](#dataset-card-for-indicparaphrase) | |
- [Table of Contents](#table-of-contents) | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset usage](#dataset-usage) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) | |
- [Who are the source language producers?](#who-are-the-source-language-producers) | |
- [Human Verification Process](#human-verification-process) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** <https://github.com/divyanshuaggarwal/IndicXNLI> | |
- **Paper:** [IndicXNLI: Evaluating Multilingual Inference for Indian Languages](https://arxiv.org/abs/2204.08776) | |
- **Point of Contact:** [Divyanshu Aggarwal](mailto:[email protected]) | |
### Dataset Summary | |
. INDICXNLI is similar to existing | |
XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI | |
data for eleven major Indic languages that includes | |
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’), | |
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’), | |
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi | |
(‘hi’), and Bengali (‘bn’). | |
### Supported Tasks and Leaderboards | |
**Tasks:** Natural Language Inference | |
**Leaderboards:** Currently there is no Leaderboard for this dataset. | |
### Languages | |
- `Assamese (as)` | |
- `Bengali (bn)` | |
- `Gujarati (gu)` | |
- `Kannada (kn)` | |
- `Hindi (hi)` | |
- `Malayalam (ml)` | |
- `Marathi (mr)` | |
- `Oriya (or)` | |
- `Punjabi (pa)` | |
- `Tamil (ta)` | |
- `Telugu (te)` | |
## Dataset Structure | |
### Data Instances | |
One example from the `hi` dataset is given below in JSON format. | |
```python | |
{'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।', | |
'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।', | |
'label': 1 (neutral) } | |
``` | |
### Data Fields | |
- `premise (string)`: Premise Sentence | |
- `hypothesis (string)`: Hypothesis Sentence | |
- `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise. | |
### Data Splits | |
Below is the dataset split given for `hi` dataset. | |
```python | |
DatasetDict({ | |
train: Dataset({ | |
features: ['premise', 'hypothesis', 'label'], | |
num_rows: 392702 | |
}) | |
test: Dataset({ | |
features: ['premise', 'hypothesis', 'label'], | |
num_rows: 5010 | |
}) | |
validation: Dataset({ | |
features: ['premise', 'hypothesis', 'label'], | |
num_rows: 2490 | |
}) | |
}) | |
``` | |
The dataset split remains same across all languages. | |
## Dataset usage | |
Code snippet for using the dataset using datasets library. | |
```python | |
from datasets import load_dataset | |
dataset = load_dataset("Divyanshu/indicxnli") | |
``` | |
## Dataset Creation | |
Machine translation of XNLI english dataset to 11 listed Indic Languages. | |
### Curation Rationale | |
[More information needed] | |
### Source Data | |
[XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/) | |
#### Initial Data Collection and Normalization | |
[Detailed in the paper](https://arxiv.org/abs/2204.08776) | |
#### Who are the source language producers? | |
[Detailed in the paper](https://arxiv.org/abs/2204.08776) | |
#### Human Verification Process | |
[Detailed in the paper](https://arxiv.org/abs/2204.08776) | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[Detailed in the paper](https://arxiv.org/abs/2204.08776) | |
### Discussion of Biases | |
[Detailed in the paper](https://arxiv.org/abs/2204.08776) | |
### Other Known Limitations | |
[Detailed in the paper](https://arxiv.org/abs/2204.08776) | |
### Dataset Curators | |
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan | |
### Licensing Information | |
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders. | |
### Citation Information | |
If you use any of the datasets, models or code modules, please cite the following paper: | |
``` | |
@misc{https://doi.org/10.48550/arxiv.2204.08776, | |
doi = {10.48550/ARXIV.2204.08776}, | |
url = {https://arxiv.org/abs/2204.08776}, | |
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop}, | |
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, | |
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, | |
publisher = {arXiv}, | |
year = {2022}, | |
copyright = {Creative Commons Attribution 4.0 International} | |
} | |
``` | |
### Contributions | |