Datasets:
Update sd-nlp-non-tokenized.py
Browse filesAdded disease and filtered data
- sd-nlp-non-tokenized.py +13 -3
sd-nlp-non-tokenized.py
CHANGED
@@ -42,6 +42,8 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
42 |
"I-ORGANISM",
|
43 |
"B-EXP_ASSAY",
|
44 |
"I-EXP_ASSAY",
|
|
|
|
|
45 |
]
|
46 |
_SEMANTIC_GENEPROD_ROLES_LABEL_NAMES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
|
47 |
_SEMANTIC_SMALL_MOL_ROLES_LABEL_NAMES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
|
@@ -68,8 +70,8 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
68 |
VERSION = datasets.Version("1.0.0")
|
69 |
|
70 |
_URLS = {
|
71 |
-
"NER": f"{_BASE_URL}
|
72 |
-
"PANELIZATION": f"{_BASE_URL}
|
73 |
}
|
74 |
BUILDER_CONFIGS = [
|
75 |
datasets.BuilderConfig(name="NER", version=VERSION, description="Dataset for entity recognition"),
|
@@ -95,6 +97,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
95 |
names=self._NER_LABEL_NAMES)
|
96 |
),
|
97 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
98 |
}
|
99 |
)
|
100 |
elif self.config.name == "GENEPROD_ROLES":
|
@@ -108,6 +111,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
108 |
)
|
109 |
),
|
110 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
111 |
}
|
112 |
)
|
113 |
elif self.config.name == "SMALL_MOL_ROLES":
|
@@ -121,6 +125,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
121 |
)
|
122 |
),
|
123 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
124 |
}
|
125 |
)
|
126 |
elif self.config.name == "BORING":
|
@@ -131,6 +136,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
131 |
feature=datasets.ClassLabel(num_classes=len(self._BORING_LABEL_NAMES),
|
132 |
names=self._BORING_LABEL_NAMES)
|
133 |
),
|
|
|
134 |
}
|
135 |
)
|
136 |
elif self.config.name == "PANELIZATION":
|
@@ -142,6 +148,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
142 |
names=self._PANEL_START_NAMES)
|
143 |
),
|
144 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
145 |
}
|
146 |
)
|
147 |
|
@@ -203,7 +210,8 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
203 |
yield id_, {
|
204 |
"words": data["words"],
|
205 |
"labels": labels,
|
206 |
-
"tag_mask": tag_mask
|
|
|
207 |
}
|
208 |
elif self.config.name == "GENEPROD_ROLES":
|
209 |
labels = data["label_ids"]["geneprod_roles"]
|
@@ -213,6 +221,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
213 |
"words": data["words"],
|
214 |
"labels": labels,
|
215 |
"tag_mask": tag_mask,
|
|
|
216 |
}
|
217 |
elif self.config.name == "SMALL_MOL_ROLES":
|
218 |
labels = data["label_ids"]["small_mol_roles"]
|
@@ -222,6 +231,7 @@ class SourceDataNLP(datasets.GeneratorBasedBuilder):
|
|
222 |
"words": data["words"],
|
223 |
"labels": labels,
|
224 |
"tag_mask": tag_mask,
|
|
|
225 |
}
|
226 |
elif self.config.name == "BORING":
|
227 |
yield id_, {"words": data["words"],
|
|
|
42 |
"I-ORGANISM",
|
43 |
"B-EXP_ASSAY",
|
44 |
"I-EXP_ASSAY",
|
45 |
+
"B-DISEASE",
|
46 |
+
"I-DISEASE",
|
47 |
]
|
48 |
_SEMANTIC_GENEPROD_ROLES_LABEL_NAMES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
|
49 |
_SEMANTIC_SMALL_MOL_ROLES_LABEL_NAMES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
|
|
|
70 |
VERSION = datasets.Version("1.0.0")
|
71 |
|
72 |
_URLS = {
|
73 |
+
"NER": f"{_BASE_URL}sd_panels_filtered.zip",
|
74 |
+
"PANELIZATION": f"{_BASE_URL}sd_panelization_filtered.zip",
|
75 |
}
|
76 |
BUILDER_CONFIGS = [
|
77 |
datasets.BuilderConfig(name="NER", version=VERSION, description="Dataset for entity recognition"),
|
|
|
97 |
names=self._NER_LABEL_NAMES)
|
98 |
),
|
99 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
100 |
+
"panel_id": datasets.Sequence(feature=datasets.Value("string")),
|
101 |
}
|
102 |
)
|
103 |
elif self.config.name == "GENEPROD_ROLES":
|
|
|
111 |
)
|
112 |
),
|
113 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
114 |
+
"panel_id": datasets.Sequence(feature=datasets.Value("string")),
|
115 |
}
|
116 |
)
|
117 |
elif self.config.name == "SMALL_MOL_ROLES":
|
|
|
125 |
)
|
126 |
),
|
127 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
128 |
+
"panel_id": datasets.Sequence(feature=datasets.Value("string")),
|
129 |
}
|
130 |
)
|
131 |
elif self.config.name == "BORING":
|
|
|
136 |
feature=datasets.ClassLabel(num_classes=len(self._BORING_LABEL_NAMES),
|
137 |
names=self._BORING_LABEL_NAMES)
|
138 |
),
|
139 |
+
"panel_id": datasets.Sequence(feature=datasets.Value("string")),
|
140 |
}
|
141 |
)
|
142 |
elif self.config.name == "PANELIZATION":
|
|
|
148 |
names=self._PANEL_START_NAMES)
|
149 |
),
|
150 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
151 |
+
"panel_id": datasets.Sequence(feature=datasets.Value("string")),
|
152 |
}
|
153 |
)
|
154 |
|
|
|
210 |
yield id_, {
|
211 |
"words": data["words"],
|
212 |
"labels": labels,
|
213 |
+
"tag_mask": tag_mask,
|
214 |
+
"panel_id": data["panel_id"]
|
215 |
}
|
216 |
elif self.config.name == "GENEPROD_ROLES":
|
217 |
labels = data["label_ids"]["geneprod_roles"]
|
|
|
221 |
"words": data["words"],
|
222 |
"labels": labels,
|
223 |
"tag_mask": tag_mask,
|
224 |
+
"panel_id": data["panel_id"]
|
225 |
}
|
226 |
elif self.config.name == "SMALL_MOL_ROLES":
|
227 |
labels = data["label_ids"]["small_mol_roles"]
|
|
|
231 |
"words": data["words"],
|
232 |
"labels": labels,
|
233 |
"tag_mask": tag_mask,
|
234 |
+
"panel_id": data["panel_id"]
|
235 |
}
|
236 |
elif self.config.name == "BORING":
|
237 |
yield id_, {"words": data["words"],
|