Datasets:
Tasks:
Summarization
Modalities:
Text
Sub-tasks:
news-articles-summarization
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 5,794 Bytes
269f614 06b8c32 269f614 06b8c32 269f614 06b8c32 269f614 06b8c32 269f614 06b8c32 269f614 06b8c32 269f614 06b8c32 269f614 06b8c32 f217e92 269f614 06b8c32 f217e92 269f614 06b8c32 f217e92 269f614 06b8c32 f217e92 269f614 f217e92 269f614 06b8c32 f217e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""XSum dataset."""
import json
import os
import datasets
_CITATION = """
@article{Narayan2018DontGM,
title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization},
author={Shashi Narayan and Shay B. Cohen and Mirella Lapata},
journal={ArXiv},
year={2018},
volume={abs/1808.08745}
}
"""
_DESCRIPTION = """
Extreme Summarization (XSum) Dataset.
There are three features:
- document: Input news article.
- summary: One sentence summary of the article.
- id: BBC ID of the article.
"""
# From https://github.com/EdinburghNLP/XSum/issues/12
_URL_DATA = "http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz"
_URL_SPLITS = (
"https://raw.githubusercontent.com/EdinburghNLP/XSum/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json"
)
_DOCUMENT = "document"
_SUMMARY = "summary"
_ID = "id"
_REMOVE_LINES = set(
[
"Share this with\n",
"Email\n",
"Facebook\n",
"Messenger\n",
"Twitter\n",
"Pinterest\n",
"WhatsApp\n",
"Linkedin\n",
"LinkedIn\n",
"Copy this link\n",
"These are external links and will open in a new window\n",
]
)
class Xsum(datasets.GeneratorBasedBuilder):
"""Extreme Summarization (XSum) Dataset."""
# Version 1.2.0 expands coverage, includes ids, and removes web contents.
VERSION = datasets.Version("1.2.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_DOCUMENT: datasets.Value("string"),
_SUMMARY: datasets.Value("string"),
_ID: datasets.Value("string"),
}
),
supervised_keys=(_DOCUMENT, _SUMMARY),
homepage="https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
files_to_download = {"data": _URL_DATA, "splits": _URL_SPLITS}
downloaded_files = dl_manager.download(files_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split_path": downloaded_files["splits"],
"split_name": "train",
"data_dir": "bbc-summary-data",
"files": dl_manager.iter_archive(downloaded_files["data"]),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split_path": downloaded_files["splits"],
"split_name": "validation",
"data_dir": "bbc-summary-data",
"files": dl_manager.iter_archive(downloaded_files["data"]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split_path": downloaded_files["splits"],
"split_name": "test",
"data_dir": "bbc-summary-data",
"files": dl_manager.iter_archive(downloaded_files["data"]),
},
),
]
def _generate_examples(self, split_path, split_name, data_dir, files):
"""Yields examples."""
with open(split_path, "r", encoding="utf-8") as f:
split_ids = json.load(f)
split_ids = {k: set(v) for k, v in split_ids.items()}
for path, f in files:
if not split_ids[split_name]:
break
elif path.startswith(data_dir) and path.endswith(".summary"):
i = os.path.basename(path).split(".")[0]
if i in split_ids[split_name]:
split_ids[split_name].remove(i)
text = "".join(
[
line.decode("utf-8")
for line in f.readlines()
if line.decode("utf-8") not in _REMOVE_LINES and line.strip()
]
)
# Each file follows below format:
# [SN]URL[SN]
# http://somelink
#
# [SN]TITLE[SN]
# some intro
#
# [SN]FIRST-SENTENCE[SN]
# some intro
#
# [SN]RESTBODY[SN]
# text line.
# another text line.
# "another text line."
# According to the following issue, FIRST-SENTENCE
# is the reference summary and TITLE is unused:
# https://github.com/EdinburghNLP/XSum/issues/22
segs = text.split("[SN]")
yield i, {_DOCUMENT: segs[8].strip(), _SUMMARY: segs[6].strip(), _ID: i}
|