Datasets:
Tasks:
Summarization
Modalities:
Text
Sub-tasks:
news-articles-summarization
Languages:
English
Size:
100K - 1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""XSum dataset.""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import os | |
import datasets | |
_CITATION = """ | |
@article{Narayan2018DontGM, | |
title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization}, | |
author={Shashi Narayan and Shay B. Cohen and Mirella Lapata}, | |
journal={ArXiv}, | |
year={2018}, | |
volume={abs/1808.08745} | |
} | |
""" | |
_DESCRIPTION = """ | |
Extreme Summarization (XSum) Dataset. | |
There are three features: | |
- document: Input news article. | |
- summary: One sentence summary of the article. | |
- id: BBC ID of the article. | |
""" | |
# From https://github.com/EdinburghNLP/XSum/issues/12 | |
_URL_DATA = "http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz" | |
_URL_SPLITS = ( | |
"https://raw.githubusercontent.com/EdinburghNLP/XSum/master/XSum-Dataset/XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json" | |
) | |
_DOCUMENT = "document" | |
_SUMMARY = "summary" | |
_ID = "id" | |
_REMOVE_LINES = set( | |
[ | |
"Share this with\n", | |
"Email\n", | |
"Facebook\n", | |
"Messenger\n", | |
"Twitter\n", | |
"Pinterest\n", | |
"WhatsApp\n", | |
"Linkedin\n", | |
"LinkedIn\n", | |
"Copy this link\n", | |
"These are external links and will open in a new window\n", | |
] | |
) | |
class Xsum(datasets.GeneratorBasedBuilder): | |
"""Extreme Summarization (XSum) Dataset.""" | |
# Version 1.2.0 expands coverage, includes ids, and removes web contents. | |
VERSION = datasets.Version("1.2.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
_DOCUMENT: datasets.Value("string"), | |
_SUMMARY: datasets.Value("string"), | |
_ID: datasets.Value("string"), | |
} | |
), | |
supervised_keys=(_DOCUMENT, _SUMMARY), | |
homepage="https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
files_to_download = {"data": _URL_DATA, "splits": _URL_SPLITS} | |
downloaded_files = dl_manager.download_and_extract(files_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"split_path": downloaded_files["splits"], | |
"split_name": "train", | |
"data_dir": os.path.join(downloaded_files["data"], "bbc-summary-data"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"split_path": downloaded_files["splits"], | |
"split_name": "validation", | |
"data_dir": os.path.join(downloaded_files["data"], "bbc-summary-data"), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"split_path": downloaded_files["splits"], | |
"split_name": "test", | |
"data_dir": os.path.join(downloaded_files["data"], "bbc-summary-data"), | |
}, | |
), | |
] | |
def _generate_examples(self, split_path, split_name, data_dir): | |
"""Yields examples.""" | |
with open(split_path, "r", encoding="utf-8") as f: | |
split_ids = json.load(f) | |
for i in split_ids[split_name]: | |
with open(os.path.join(data_dir, i + ".summary"), "r", encoding="utf-8") as f: | |
text = "".join([line for line in f.readlines() if line not in _REMOVE_LINES and line.strip()]) | |
# Each file follows below format: | |
# [SN]URL[SN] | |
# http://somelink | |
# | |
# [SN]TITLE[SN] | |
# some intro | |
# | |
# [SN]FIRST-SENTENCE[SN] | |
# some intro | |
# | |
# [SN]RESTBODY[SN] | |
# text line. | |
# another text line. | |
# "another text line." | |
# According to the following issue, FIRST-SENTENCE | |
# is the reference summary and TITLE is unused: | |
# https://github.com/EdinburghNLP/XSum/issues/22 | |
segs = text.split("[SN]") | |
yield i, {_DOCUMENT: segs[8].strip(), _SUMMARY: segs[6].strip(), _ID: i} | |