EdwardHayashi-2023 commited on
Commit
b281cf4
1 Parent(s): 05d2efb

Upload dataset statisitic

Browse files
Files changed (2) hide show
  1. ASVP_ESD.py +1 -1
  2. README.md +100 -5
ASVP_ESD.py CHANGED
@@ -41,7 +41,7 @@ id2labels = {
41
  2: "neutral,calm",
42
  3: "happy,laugh,gaggle",
43
  4: "sad,cry",
44
- 5:"angry,grunt,frustration",
45
  6: "fearful,scream,panic",
46
  7: "disgust,dislike,contempt",
47
  8: "surprised,gasp,amazed",
 
41
  2: "neutral,calm",
42
  3: "happy,laugh,gaggle",
43
  4: "sad,cry",
44
+ 5: "angry,grunt,frustration",
45
  6: "fearful,scream,panic",
46
  7: "disgust,dislike,contempt",
47
  8: "surprised,gasp,amazed",
README.md CHANGED
@@ -7,9 +7,7 @@ license: cc-by-4.0
7
  ## ABOUT
8
 
9
  The Audio, Speech, and Vision Processing Lab - Emotional Sound Database (ASVP - ESD)
10
- was created .
11
-
12
- ## CREATION OF THE DATABASE
13
 
14
  ## CHOSEN EMOTIONS
15
 
@@ -30,12 +28,109 @@ was created .
30
 
31
  ## ORGANISING THE DATABASE
32
 
 
33
 
 
 
 
 
 
 
 
 
34
 
35
- ## References
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- 1. Dejoli Tientcheu Touko Landry, Qianhua He, Haikang Yan and Yanxiong Li. (2020). ASVP-ESD:A dataset and its benchmark for emotion recognition using both speech and non-speech utterances. Global Scientific Journals, 8(6), 1793-1798.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
 
 
 
 
 
 
 
 
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
7
  ## ABOUT
8
 
9
  The Audio, Speech, and Vision Processing Lab - Emotional Sound Database (ASVP - ESD)
10
+ was created by School of Electronic and Information Engineering, South China University of Technology.
 
 
11
 
12
  ## CHOSEN EMOTIONS
13
 
 
28
 
29
  ## ORGANISING THE DATABASE
30
 
31
+ ### Speech Statistic
32
 
33
+ | -------------------------- |:-------------------------------------------------:|
34
+ | Num. of Clips | 2,150 |
35
+ | Total Duration | 13347.835 seconds = 222.464 minutes = 3.708 hours |
36
+ | Max Dur | 32.235 seconds |
37
+ | Min Dur | 0.287 seconds |
38
+ | Mean Dur | 6.208 seconds |
39
+ | Std. Dur | 3.839 seconds |
40
+ | Num. of Clips > 30 seconds | 1 |
41
 
42
+ | Emotion | Num. of Clips |
43
+ | ------------------------------- |:-------------:|
44
+ | 01: boredom, sigh | 81 |
45
+ | 02: neutral, calm | 657 |
46
+ | 03: happy, laugh, gaggle | 154 |
47
+ | 04: sad, cry | 268 |
48
+ | 05: angry, grunt, frustration | 385 |
49
+ | 06: fearful, scream, panic | 63 |
50
+ | 07: disgust, dislike, contempt | 90 |
51
+ | 08: surprised, hasp, amazed | 144 |
52
+ | 09: excited | 136 |
53
+ | 10: pleasure | 15 |
54
+ | 11: pain, groan | 25 |
55
+ | 12: disappointmrnt, disapproval | 132 |
56
+ | 13: breath | 0 |
57
 
58
+ | Emotion Intensity | Num. of Clips |
59
+ | ----------------- |:-------------:|
60
+ | 01: normal | 1,783 |
61
+ | 02: high | 367 |
62
+
63
+ | Gender | Num. of Clips |
64
+ | ----------- |:-------------:|
65
+ | 01: male | 1,224 |
66
+ | 02: female | 926 |
67
+
68
+ | Age Range | Num. of Clips |
69
+ | ---------- |:-------------:|
70
+ | 01: >65 | 65 |
71
+ | 02: 20~65 | 1,914 |
72
+ | 03: 3<20 | 80 |
73
+ | 04: <3 | 91 |
74
+
75
+ | Language | Num. of Clips |
76
+ | ------------- |:-------------:|
77
+ | 01: Mandarin | 937 |
78
+ | 02: English | 621 |
79
+ | 03: French | 175 |
80
+ | 04: Others | 417 |
81
+
82
+ ### Non-Speech Statistic
83
 
84
+ | -------------------------- |:-------------------------------------------------:|
85
+ | Num. of Clips | 5,484 |
86
+ | Total Duration | 14438.117 seconds = 240.635 minutes = 4.011 hours |
87
+ | Max Dur | 25.810 seconds |
88
+ | Min Dur | 0.141 seconds |
89
+ | Mean Dur | 2.633 seconds |
90
+ | Std. Dur | 2.720 seconds |
91
+ | Num. of Clips > 30 seconds | 0 |
92
 
93
+ | Emotion | Num. of Clips |
94
+ | ------------------------------- |:-------------:|
95
+ | 01: boredom, sigh | 392 |
96
+ | 02: neutral, calm | 253 |
97
+ | 03: happy, laugh, gaggle | 878 |
98
+ | 04: sad, cry | 383 |
99
+ | 05: angry, grunt, frustration | 339 |
100
+ | 06: fearful, scream, panic | 799 |
101
+ | 07: disgust, dislike, contempt | 473 |
102
+ | 08: surprised, hasp, amazed | 808 |
103
+ | 09: excited | 109 |
104
+ | 10: pleasure | 273 |
105
+ | 11: pain, groan | 706 |
106
+ | 12: disappointmrnt, disapproval | 70 |
107
+ | 13: breath | 1 |
108
 
109
+ | Emotion Intensity | Num. of Clips |
110
+ | ----------------- |:-------------:|
111
+ | 01: normal | 4,693 |
112
+ | 02: high | 791 |
113
+
114
+ | Gender | Num. of Clips |
115
+ | ----------- |:-------------:|
116
+ | 01: male | 2,919 |
117
+ | 02: female | 2,565 |
118
+
119
+ | Age Range | Num. of Clips |
120
+ | ---------- |:-------------:|
121
+ | 01: >65 | 73 |
122
+ | 02: 20~65 | 5,224 |
123
+ | 03: 3<20 | 100 |
124
+ | 04: <3 | 87 |
125
+
126
+ | Language | Num. of Clips |
127
+ | ------------- |:-------------:|
128
+ | 01: Mandarin | 512 |
129
+ | 02: English | 3,258 |
130
+ | 03: French | 109 |
131
+ | 04: Others | 1,605 |
132
+
133
+ ## References
134
+
135
+ 1. Dejoli Tientcheu Touko Landry, Qianhua He, Haikang Yan and Yanxiong Li. (2020). ASVP-ESD:A dataset and its benchmark for emotion recognition using both speech and non-speech utterances. Global Scientific Journals, 8(6), 1793-1798.
136