Update coqa.py
Browse files
coqa.py
CHANGED
@@ -1,22 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
-
CoQA: A Conversational Question Answering Challenge
|
3 |
-
https://arxiv.org/pdf/1808.07042.pdf
|
4 |
|
5 |
-
CoQA is a large-scale dataset for building Conversational Question Answering
|
6 |
-
systems. The goal of the CoQA challenge is to measure the ability of machines to
|
7 |
-
understand a text passage and answer a series of interconnected questions that
|
8 |
-
appear in a conversation.
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
import
|
13 |
-
import transformers.data.metrics.squad_metrics as squad_metrics
|
14 |
-
import lm_eval.datasets.coqa.coqa
|
15 |
-
from lm_eval.base import Task, rf, mean
|
16 |
-
from itertools import zip_longest
|
17 |
|
18 |
|
19 |
-
_CITATION = """
|
20 |
@misc{reddy2018coqa,
|
21 |
title={CoQA: A Conversational Question Answering Challenge},
|
22 |
author={Siva Reddy and Danqi Chen and Christopher D. Manning},
|
@@ -27,152 +35,211 @@ _CITATION = """
|
|
27 |
}
|
28 |
"""
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
VERSION = 1
|
33 |
-
DATASET_PATH = inspect.getfile(lm_eval.datasets.coqa.coqa)
|
34 |
-
DATASET_NAME = None
|
35 |
-
|
36 |
-
def has_training_docs(self):
|
37 |
-
return True
|
38 |
-
|
39 |
-
def has_validation_docs(self):
|
40 |
-
return True
|
41 |
-
|
42 |
-
def has_test_docs(self):
|
43 |
-
return False
|
44 |
-
|
45 |
-
def training_docs(self):
|
46 |
-
return self.dataset["train"]
|
47 |
-
|
48 |
-
def validation_docs(self):
|
49 |
-
return self.dataset["validation"]
|
50 |
-
|
51 |
-
def test_docs(self):
|
52 |
-
pass
|
53 |
-
|
54 |
-
def doc_to_text(self, doc):
|
55 |
-
# Given a passage p, the conversation history {q1, a1, . . . qi−1, ai−1}
|
56 |
-
# and a question qi, the task is to predict the answer ai
|
57 |
-
doc_text = doc["story"] + "\n\n"
|
58 |
-
for (q, a) in zip_longest(
|
59 |
-
doc["questions"]["input_text"], doc["answers"]["input_text"][:-1]
|
60 |
-
): # omit target answer ai
|
61 |
-
question = f"Q: {q}\n\n"
|
62 |
-
answer = f"A: {a}\n\n" if a is not None else "A:"
|
63 |
-
doc_text += question + answer
|
64 |
-
return doc_text
|
65 |
-
|
66 |
-
def should_decontaminate(self):
|
67 |
-
return True
|
68 |
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
answer_forturn = doc["answers"]["input_text"][turn_id - 1]
|
77 |
-
answers.append(answer_forturn)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
@classmethod
|
90 |
-
def get_answer_choice(self, raw_text):
|
91 |
-
# Function maps answers to CoQA answer categories
|
92 |
-
# ~ 1/5 of the CoQA answers are Yes/No
|
93 |
-
# ~ 2/3 of the CoQA answers are span-based
|
94 |
-
# (answers overlap with the passage ignoring punctuation and case mismatch)
|
95 |
-
if raw_text == "unknown":
|
96 |
-
return "0"
|
97 |
-
if squad_metrics.normalize_answer(raw_text) == "yes":
|
98 |
-
return "1"
|
99 |
-
if squad_metrics.normalize_answer(raw_text) == "no":
|
100 |
-
return "2"
|
101 |
-
return "3" # Not a yes/no question
|
102 |
-
|
103 |
-
@staticmethod
|
104 |
-
def compute_scores(gold_list, pred):
|
105 |
-
# tests for exact match and on the normalised answer (compute_exact)
|
106 |
-
# test for overlap (compute_f1)
|
107 |
-
f1_sum = 0.0
|
108 |
-
em_sum = 0.0
|
109 |
-
if len(gold_list) > 1:
|
110 |
-
for i in range(len(gold_list)):
|
111 |
-
gold_answers = gold_list[0:i] + gold_list[i + 1 :]
|
112 |
-
# predictions compared against (n) golds and take maximum
|
113 |
-
em_sum += max(
|
114 |
-
squad_metrics.compute_exact(a, pred) for a in gold_answers
|
115 |
-
)
|
116 |
-
f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers)
|
117 |
-
else:
|
118 |
-
em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list)
|
119 |
-
f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list)
|
120 |
-
|
121 |
-
return {
|
122 |
-
"em": em_sum / max(1, len(gold_list)),
|
123 |
-
"f1": f1_sum / max(1, len(gold_list)),
|
124 |
}
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
def construct_requests(self, doc, ctx):
|
134 |
-
"""Uses RequestFactory to construct Requests and returns an iterable of
|
135 |
-
Requests which will be sent to the LM.
|
136 |
-
|
137 |
-
:param doc:
|
138 |
-
The document as returned from training_docs, validation_docs, or test_docs.
|
139 |
-
:param ctx: str
|
140 |
-
The context string, generated by fewshot_context. This includes the natural
|
141 |
-
language description, as well as the few shot examples, and the question
|
142 |
-
part of the document for `doc`.
|
143 |
-
"""
|
144 |
-
cont_request = rf.greedy_until(ctx, {"until": ["\nQ:"]})
|
145 |
-
return cont_request
|
146 |
-
|
147 |
-
def process_results(self, doc, results):
|
148 |
-
"""Take a single document and the LM results and evaluates, returning a
|
149 |
-
dict where keys are the names of submetrics and values are the values of
|
150 |
-
the metric for that one document
|
151 |
-
|
152 |
-
:param doc:
|
153 |
-
The document as returned from training_docs, validation_docs, or test_docs.
|
154 |
-
:param results:
|
155 |
-
The results of the requests created in construct_requests.
|
156 |
-
"""
|
157 |
-
turn_id = len(doc["questions"]["input_text"])
|
158 |
-
gold_list = self.get_answers(doc, turn_id)
|
159 |
-
pred = results[0].strip().split("\n")[0]
|
160 |
-
|
161 |
-
scores = self.compute_scores(gold_list, pred)
|
162 |
-
|
163 |
-
return {
|
164 |
-
"f1": scores["f1"],
|
165 |
-
"em": scores["em"],
|
166 |
}
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
"
|
171 |
-
"
|
|
|
|
|
|
|
172 |
}
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""CoQA dataset.
|
15 |
+
|
16 |
+
This `CoQA` adds the "additional_answers" feature that's missing in the original
|
17 |
+
datasets version:
|
18 |
+
https://github.com/huggingface/datasets/blob/master/datasets/coqa/coqa.py
|
19 |
"""
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
import json
|
23 |
+
|
24 |
+
import datasets
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
+
_CITATION = """\
|
28 |
@misc{reddy2018coqa,
|
29 |
title={CoQA: A Conversational Question Answering Challenge},
|
30 |
author={Siva Reddy and Danqi Chen and Christopher D. Manning},
|
|
|
35 |
}
|
36 |
"""
|
37 |
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
CoQA is a large-scale dataset for building Conversational Question Answering
|
40 |
+
systems. The goal of the CoQA challenge is to measure the ability of machines to
|
41 |
+
understand a text passage and answer a series of interconnected questions that
|
42 |
+
appear in a conversation.
|
43 |
+
"""
|
44 |
|
45 |
+
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# TODO: Add the licence for the dataset here if you can find it
|
48 |
+
_LICENSE = ""
|
49 |
|
50 |
+
_URLS = {
|
51 |
+
"train": "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json",
|
52 |
+
"validation": "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json",
|
53 |
+
}
|
|
|
|
|
54 |
|
55 |
+
# `additional_answers` are not available in the train set so we fill them with
|
56 |
+
# empty dicts of the same form.
|
57 |
+
_EMPTY_ADDITIONAL_ANSWER = {
|
58 |
+
"0": [
|
59 |
+
{
|
60 |
+
"span_start": -1,
|
61 |
+
"span_end": -1,
|
62 |
+
"span_text": "",
|
63 |
+
"input_text": "",
|
64 |
+
"turn_id": -1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
}
|
66 |
+
],
|
67 |
+
"1": [
|
68 |
+
{
|
69 |
+
"span_start": -1,
|
70 |
+
"span_end": -1,
|
71 |
+
"span_text": "",
|
72 |
+
"input_text": "",
|
73 |
+
"turn_id": -1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
}
|
75 |
+
],
|
76 |
+
"2": [
|
77 |
+
{
|
78 |
+
"span_start": -1,
|
79 |
+
"span_end": -1,
|
80 |
+
"span_text": "",
|
81 |
+
"input_text": "",
|
82 |
+
"turn_id": -1,
|
83 |
}
|
84 |
+
],
|
85 |
+
}
|
86 |
|
87 |
+
|
88 |
+
class Coqa(datasets.GeneratorBasedBuilder):
|
89 |
+
"""CoQA is a large-scale dataset for building Conversational Question Answering systems."""
|
90 |
+
|
91 |
+
VERSION = datasets.Version("0.0.1")
|
92 |
+
|
93 |
+
BUILDER_CONFIGS = [
|
94 |
+
datasets.BuilderConfig(
|
95 |
+
name="coqa", version=VERSION, description="The CoQA dataset."
|
96 |
+
),
|
97 |
+
]
|
98 |
+
|
99 |
+
def _info(self):
|
100 |
+
features = datasets.Features(
|
101 |
+
{
|
102 |
+
"id": datasets.Value("string"),
|
103 |
+
"source": datasets.Value("string"),
|
104 |
+
"story": datasets.Value("string"),
|
105 |
+
"questions": datasets.features.Sequence(
|
106 |
+
{
|
107 |
+
"input_text": datasets.Value("string"),
|
108 |
+
"turn_id": datasets.Value("int32"),
|
109 |
+
}
|
110 |
+
),
|
111 |
+
"answers": datasets.features.Sequence(
|
112 |
+
{
|
113 |
+
"span_start": datasets.Value("int32"),
|
114 |
+
"span_end": datasets.Value("int32"),
|
115 |
+
"span_text": datasets.Value("string"),
|
116 |
+
"input_text": datasets.Value("string"),
|
117 |
+
"turn_id": datasets.Value("int32"),
|
118 |
+
}
|
119 |
+
),
|
120 |
+
"additional_answers": {
|
121 |
+
"0": datasets.features.Sequence(
|
122 |
+
{
|
123 |
+
"span_start": datasets.Value("int32"),
|
124 |
+
"span_end": datasets.Value("int32"),
|
125 |
+
"span_text": datasets.Value("string"),
|
126 |
+
"input_text": datasets.Value("string"),
|
127 |
+
"turn_id": datasets.Value("int32"),
|
128 |
+
}
|
129 |
+
),
|
130 |
+
"1": datasets.features.Sequence(
|
131 |
+
{
|
132 |
+
"span_start": datasets.Value("int32"),
|
133 |
+
"span_end": datasets.Value("int32"),
|
134 |
+
"span_text": datasets.Value("string"),
|
135 |
+
"input_text": datasets.Value("string"),
|
136 |
+
"turn_id": datasets.Value("int32"),
|
137 |
+
}
|
138 |
+
),
|
139 |
+
"2": datasets.features.Sequence(
|
140 |
+
{
|
141 |
+
"span_start": datasets.Value("int32"),
|
142 |
+
"span_end": datasets.Value("int32"),
|
143 |
+
"span_text": datasets.Value("string"),
|
144 |
+
"input_text": datasets.Value("string"),
|
145 |
+
"turn_id": datasets.Value("int32"),
|
146 |
+
}
|
147 |
+
),
|
148 |
+
},
|
149 |
+
}
|
150 |
+
)
|
151 |
+
return datasets.DatasetInfo(
|
152 |
+
description=_DESCRIPTION,
|
153 |
+
features=features,
|
154 |
+
homepage=_HOMEPAGE,
|
155 |
+
license=_LICENSE,
|
156 |
+
citation=_CITATION,
|
157 |
+
)
|
158 |
+
|
159 |
+
def _split_generators(self, dl_manager):
|
160 |
+
urls = {"train": _URLS["train"], "validation": _URLS["validation"]}
|
161 |
+
data_dirs = dl_manager.download_and_extract(urls)
|
162 |
+
return [
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TRAIN,
|
165 |
+
# These kwargs will be passed to _generate_examples
|
166 |
+
gen_kwargs={
|
167 |
+
"filepath": data_dirs["train"],
|
168 |
+
"split": datasets.Split.TRAIN,
|
169 |
+
},
|
170 |
+
),
|
171 |
+
datasets.SplitGenerator(
|
172 |
+
name=datasets.Split.VALIDATION,
|
173 |
+
# These kwargs will be passed to _generate_examples
|
174 |
+
gen_kwargs={
|
175 |
+
"filepath": data_dirs["validation"],
|
176 |
+
"split": datasets.Split.VALIDATION,
|
177 |
+
},
|
178 |
+
),
|
179 |
+
]
|
180 |
+
|
181 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
182 |
+
def _generate_examples(self, filepath, split):
|
183 |
+
with open(filepath, encoding="utf-8") as f:
|
184 |
+
data = json.load(f)
|
185 |
+
for row in data["data"]:
|
186 |
+
id = row["id"]
|
187 |
+
source = row["source"]
|
188 |
+
story = row["story"]
|
189 |
+
questions = [
|
190 |
+
{"input_text": q["input_text"], "turn_id": q["turn_id"]}
|
191 |
+
for q in row["questions"]
|
192 |
+
]
|
193 |
+
answers = [
|
194 |
+
{
|
195 |
+
"span_start": a["span_start"],
|
196 |
+
"span_end": a["span_end"],
|
197 |
+
"span_text": a["span_text"],
|
198 |
+
"input_text": a["input_text"],
|
199 |
+
"turn_id": a["turn_id"],
|
200 |
+
}
|
201 |
+
for a in row["answers"]
|
202 |
+
]
|
203 |
+
if split == datasets.Split.TRAIN:
|
204 |
+
additional_answers = _EMPTY_ADDITIONAL_ANSWER
|
205 |
+
else:
|
206 |
+
additional_answers = {
|
207 |
+
"0": [
|
208 |
+
{
|
209 |
+
"span_start": a0["span_start"],
|
210 |
+
"span_end": a0["span_end"],
|
211 |
+
"span_text": a0["span_text"],
|
212 |
+
"input_text": a0["input_text"],
|
213 |
+
"turn_id": a0["turn_id"],
|
214 |
+
}
|
215 |
+
for a0 in row["additional_answers"]["0"]
|
216 |
+
],
|
217 |
+
"1": [
|
218 |
+
{
|
219 |
+
"span_start": a1["span_start"],
|
220 |
+
"span_end": a1["span_end"],
|
221 |
+
"span_text": a1["span_text"],
|
222 |
+
"input_text": a1["input_text"],
|
223 |
+
"turn_id": a1["turn_id"],
|
224 |
+
}
|
225 |
+
for a1 in row["additional_answers"]["1"]
|
226 |
+
],
|
227 |
+
"2": [
|
228 |
+
{
|
229 |
+
"span_start": a2["span_start"],
|
230 |
+
"span_end": a2["span_end"],
|
231 |
+
"span_text": a2["span_text"],
|
232 |
+
"input_text": a2["input_text"],
|
233 |
+
"turn_id": a2["turn_id"],
|
234 |
+
}
|
235 |
+
for a2 in row["additional_answers"]["2"]
|
236 |
+
],
|
237 |
+
}
|
238 |
+
yield row["id"], {
|
239 |
+
"id": id,
|
240 |
+
"story": story,
|
241 |
+
"source": source,
|
242 |
+
"questions": questions,
|
243 |
+
"answers": answers,
|
244 |
+
"additional_answers": additional_answers,
|
245 |
+
}
|