Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-coreference-resolution
Languages:
English
Size:
n<1K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The Winograd Schema Challenge Dataset""" | |
import xml.etree.ElementTree as ET | |
import datasets | |
_DESCRIPTION = """\ | |
A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is | |
resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its | |
resolution. The schema takes its name from a well-known example by Terry Winograd: | |
> The city councilmen refused the demonstrators a permit because they [feared/advocated] violence. | |
If the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they'' | |
presumably refers to the demonstrators. | |
""" | |
_CITATION = """\ | |
@inproceedings{levesque2012winograd, | |
title={The winograd schema challenge}, | |
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora}, | |
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning}, | |
year={2012}, | |
organization={Citeseer} | |
} | |
""" | |
_HOMPAGE = "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html" | |
_DOWNLOAD_URL = "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.xml" | |
class WinogradWSCConfig(datasets.BuilderConfig): | |
"""BuilderConfig for WinogradWSC.""" | |
def __init__(self, *args, language=None, inds=None, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.inds = set(inds) if inds is not None else None | |
def is_in_range(self, id): | |
"""Takes an index and tells you if it belongs to the configuration's subset""" | |
return id in self.inds if self.inds is not None else True | |
class WinogradWSC(datasets.GeneratorBasedBuilder): | |
"""The Winograd Schema Challenge Dataset""" | |
BUILDER_CONFIG_CLASS = WinogradWSCConfig | |
BUILDER_CONFIGS = [ | |
WinogradWSCConfig( | |
name="wsc285", | |
description="Full set of winograd examples", | |
), | |
WinogradWSCConfig( | |
name="wsc273", | |
description="A commonly-used subset of examples. Identical to 'wsc285' but without the last 12 examples.", | |
inds=list(range(273)), | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"pronoun": datasets.Value("string"), | |
"pronoun_loc": datasets.Value("int32"), | |
"quote": datasets.Value("string"), | |
"quote_loc": datasets.Value("int32"), | |
"options": datasets.Sequence(datasets.Value("string")), | |
"label": datasets.ClassLabel(num_classes=2), | |
"source": datasets.Value("string"), | |
} | |
), | |
homepage=_HOMPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
path = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path}), | |
] | |
def _cleanup_whitespace(self, text): | |
return " ".join(text.split()) | |
def _generate_examples(self, filepath): | |
tree = ET.parse(filepath) | |
for id, schema in enumerate(tree.getroot()): | |
if not self.config.is_in_range(id): | |
continue | |
text_root = schema.find("text") | |
quote_root = schema.find("quote") | |
text_left = self._cleanup_whitespace(text_root.findtext("txt1", "")) | |
text_right = self._cleanup_whitespace(text_root.findtext("txt2", "")) | |
quote_left = self._cleanup_whitespace(quote_root.findtext("quote1", "")) | |
quote_right = self._cleanup_whitespace(quote_root.findtext("quote2", "")) | |
pronoun = self._cleanup_whitespace(text_root.findtext("pron")) | |
features = {} | |
features["text"] = " ".join([text_left, pronoun, text_right]).strip() | |
features["quote"] = " ".join([quote_left, pronoun, quote_right]).strip() | |
features["pronoun"] = pronoun | |
features["options"] = [ | |
self._cleanup_whitespace(option.text) for option in schema.find("answers").findall("answer") | |
] | |
answer_txt = self._cleanup_whitespace(schema.findtext("correctAnswer")) | |
features["label"] = int("B" in answer_txt) # convert " A. " or " B " strings to a 0/1 index | |
features["pronoun_loc"] = len(text_left) + 1 if len(text_left) > 0 else 0 | |
features["quote_loc"] = features["pronoun_loc"] - (len(quote_left) + 1 if len(quote_left) > 0 else 0) | |
features["source"] = self._cleanup_whitespace(schema.findtext("source")) | |
yield id, features | |