Datasets:
Commit
•
f3b4732
1
Parent(s):
c84b0dc
upload dataset_infos.json (#2)
Browse files- upload dataset_infos.json (bce880a426e31bb3f1175827b69ad851db1dec4d)
Co-authored-by: Andrea Piergentili <[email protected]>
- dataset_infos.json +17 -0
dataset_infos.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name" : "GeNTE",
|
3 |
+
"description": "GeNTE (Gender-Neutral Translation Evaluation) is a natural, bilingual corpus designed to benchmark the ability of machine translation systems to generate gender-neutral translations.",
|
4 |
+
"citation": "@inproceedings{piergentili-etal-2023-hi, title = \"Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the {G}e{NTE} Corpus\", author = \"Piergentili, Andrea and Savoldi, Beatrice and Fucci, Dennis and Negri, Matteo and Bentivogli, Luisa\", editor = \"Bouamor, Houda and Pino, Juan and Bali, Kalika\", booktitle = \"Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing\", month = dec, year = \"2023\", address = \"Singapore\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/2023.emnlp-main.873\", doi = \"10.18653/v1/2023.emnlp-main.873\", pages = \"14124--14140\"}",
|
5 |
+
"homepage": " https://mt.fbk.eu/gente/",
|
6 |
+
"license": "cc-by-4.0",
|
7 |
+
"task_ids": ["translation", "text-generation"],
|
8 |
+
"splits": {
|
9 |
+
"test": {
|
10 |
+
"num_examples": 1500
|
11 |
+
},
|
12 |
+
"common": {
|
13 |
+
"num_examples": 200
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"version": "1.0"
|
17 |
+
}
|