File size: 58,375 Bytes
3bdb76c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
from collections import defaultdict
from dreamcoder.frontier import *
from dreamcoder.program import *
from dreamcoder.type import *
from dreamcoder.utilities import *
import time
class GrammarFailure(Exception):
pass
class SketchEnumerationFailure(Exception):
pass
class NoCandidates(Exception):
pass
class Grammar(object):
def __init__(self, logVariable, productions, continuationType=None):
self.logVariable = logVariable
self.productions = productions
self.continuationType = continuationType
self.expression2likelihood = dict((p, l) for l, _, p in productions)
self.expression2likelihood[Index(0)] = self.logVariable
def randomWeights(self, r):
"""returns a new grammar with random weights drawn from r. calls `r` w/ old weight"""
return Grammar(logVariable=r(self.logVariable),
productions=[(r(l),t,p)
for l,t,p in self.productions ],
continuationType=self.continuationType)
def strip_primitive_values(self):
return Grammar(logVariable=self.logVariable,
productions=[(l,t,strip_primitive_values(p))
for l,t,p in self.productions ],
continuationType=self.continuationType)
def unstrip_primitive_values(self):
return Grammar(logVariable=self.logVariable,
productions=[(l,t,unstrip_primitive_values(p))
for l,t,p in self.productions ],
continuationType=self.continuationType)
def __setstate__(self, state):
"""
Legacy support for loading grammar objects without the imperative type filled in
"""
assert 'logVariable' in state
assert 'productions' in state
if 'continuationType' in state:
continuationType = state['continuationType']
else:
if any( 'turtle' in str(t) for l,t,p in state['productions'] ):
continuationType = baseType("turtle")
elif any( 'tower' in str(t) for l,t,p in state['productions'] ):
continuationType = baseType("tower")
else:
continuationType = None
self.__init__(state['logVariable'], state['productions'], continuationType=continuationType)
@staticmethod
def fromProductions(productions, logVariable=0.0, continuationType=None):
"""Make a grammar from primitives and their relative logpriors."""
return Grammar(logVariable, [(l, p.infer(), p)
for l, p in productions],
continuationType=continuationType)
@staticmethod
def uniform(primitives, continuationType=None):
return Grammar(0.0, [(0.0, p.infer(), p) for p in primitives], continuationType=continuationType)
def __len__(self): return len(self.productions)
def __str__(self):
def productionKey(xxx_todo_changeme):
(l, t, p) = xxx_todo_changeme
return not isinstance(p, Primitive), l is not None and -l
if self.continuationType is not None:
lines = ["continuation : %s"%self.continuationType]
else:
lines = []
lines += ["%f\tt0\t$_" % self.logVariable]
for l, t, p in sorted(self.productions, key=productionKey):
if l is not None:
l = "%f\t%s\t%s" % (l, t, p)
else:
l = "-Inf\t%s\t%s" % (t, p)
if not t.isArrow() and isinstance(p, Invented):
try:
l += "\teval = %s" % (p.evaluate([]))
except BaseException:
pass
lines.append(l)
return "\n".join(lines)
def json(self):
j = {"logVariable": self.logVariable,
"productions": [{"expression": str(p), "logProbability": l}
for l, _, p in self.productions]}
if self.continuationType is not None:
j["continuationType"] = self.continuationType.json()
return j
def _immutable_code(self): return self.logVariable, tuple(self.productions)
def __eq__(self, o): return self._immutable_code() == o._immutable_code()
def __ne__(self, o): return not (self == o)
def __hash__(self): return hash(self._immutable_code())
@property
def primitives(self):
return [p for _, _, p in self.productions]
def removeProductions(self, ps):
return Grammar(
self.logVariable, [
(l, t, p) for (
l, t, p) in self.productions if p not in ps],
continuationType=self.continuationType)
def buildCandidates(self, request, context, environment,
# Should the log probabilities be normalized?
normalize=True,
# Should be returned a table mapping primitives to
# their candidate entry?
returnTable=False,
# Should we return probabilities vs log probabilities?
returnProbabilities=False,
# Must be a leaf (have no arguments)?
mustBeLeaf=False):
"""Primitives that are candidates for being used given a requested type
If returnTable is false (default): returns [((log)likelihood, tp, primitive, context)]
if returntable is true: returns {primitive: ((log)likelihood, tp, context)}"""
if returnProbabilities:
assert normalize
candidates = []
variableCandidates = []
for l, t, p in self.productions:
try:
newContext, t = t.instantiate(context)
newContext = newContext.unify(t.returns(), request)
t = t.apply(newContext)
if mustBeLeaf and t.isArrow():
continue
candidates.append((l, t, p, newContext))
except UnificationFailure:
continue
for j, t in enumerate(environment):
try:
newContext = context.unify(t.returns(), request)
t = t.apply(newContext)
if mustBeLeaf and t.isArrow():
continue
variableCandidates.append((t, Index(j), newContext))
except UnificationFailure:
continue
if self.continuationType == request:
terminalIndices = [v.i for t,v,k in variableCandidates if not t.isArrow()]
if terminalIndices:
smallestIndex = Index(min(terminalIndices))
variableCandidates = [(t,v,k) for t,v,k in variableCandidates
if t.isArrow() or v == smallestIndex]
candidates += [(self.logVariable - log(len(variableCandidates)), t, p, k)
for t, p, k in variableCandidates]
if candidates == []:
raise NoCandidates()
#eprint("candidates inside buildCandidates before norm:")
#eprint(candidates)
if normalize:
z = lse([l for l, t, p, k in candidates])
if returnProbabilities:
candidates = [(exp(l - z), t, p, k)
for l, t, p, k in candidates]
else:
candidates = [(l - z, t, p, k) for l, t, p, k in candidates]
#eprint("candidates inside buildCandidates after norm:")
#eprint(candidates)
if returnTable:
return {p: (l, t, k) for l, t, p, k in candidates}
else:
return candidates
def sample(self, request, maximumDepth=6, maxAttempts=None):
attempts = 0
while True:
try:
_, e = self._sample(
request, Context.EMPTY, [], maximumDepth=maximumDepth)
return e
except NoCandidates:
if maxAttempts is not None:
attempts += 1
if attempts > maxAttempts:
return None
continue
def _sample(self, request, context, environment, maximumDepth):
if request.isArrow():
context, expression = self._sample(
request.arguments[1], context, [
request.arguments[0]] + environment, maximumDepth)
return context, Abstraction(expression)
candidates = self.buildCandidates(request, context, environment,
normalize=True,
returnProbabilities=True,
# Force it to terminate in a
# leaf; a primitive with no
# function arguments
mustBeLeaf=maximumDepth <= 1)
#eprint("candidates:")
#eprint(candidates)
newType, chosenPrimitive, context = sampleDistribution(candidates)
# Sample the arguments
xs = newType.functionArguments()
returnValue = chosenPrimitive
for x in xs:
x = x.apply(context)
context, x = self._sample(x, context, environment, maximumDepth - 1)
returnValue = Application(returnValue, x)
return context, returnValue
def likelihoodSummary(self, context, environment, request, expression, silent=False):
if request.isArrow():
if not isinstance(expression, Abstraction):
if not silent:
eprint("Request is an arrow but I got", expression)
return context, None
return self.likelihoodSummary(context,
[request.arguments[0]] + environment,
request.arguments[1],
expression.body,
silent=silent)
# Build the candidates
candidates = self.buildCandidates(request, context, environment,
normalize=False,
returnTable=True)
# A list of everything that would have been possible to use here
possibles = [p for p in candidates.keys() if not p.isIndex]
numberOfVariables = sum(p.isIndex for p in candidates.keys())
if numberOfVariables > 0:
possibles += [Index(0)]
f, xs = expression.applicationParse()
if f not in candidates:
if self.continuationType is not None and f.isIndex:
ls = LikelihoodSummary()
ls.constant = NEGATIVEINFINITY
return ls
if not silent:
eprint(f, "Not in candidates")
eprint("Candidates is", candidates)
#eprint("grammar:", grammar.productions)
eprint("request is", request)
eprint("xs", xs)
eprint("environment", environment)
assert False
return context, None
thisSummary = LikelihoodSummary()
thisSummary.record(f, possibles,
constant= -math.log(numberOfVariables) if f.isIndex else 0)
_, tp, context = candidates[f]
argumentTypes = tp.functionArguments()
if len(xs) != len(argumentTypes):
eprint("PANIC: not enough arguments for the type")
eprint("request", request)
eprint("tp", tp)
eprint("expression", expression)
eprint("xs", xs)
eprint("argumentTypes", argumentTypes)
# This should absolutely never occur
raise GrammarFailure((context, environment, request, expression))
for argumentType, argument in zip(argumentTypes, xs):
argumentType = argumentType.apply(context)
context, newSummary = self.likelihoodSummary(
context, environment, argumentType, argument, silent=silent)
if newSummary is None:
return context, None
thisSummary.join(newSummary)
return context, thisSummary
def bestFirstEnumeration(self, request):
from heapq import heappush, heappop
pq = []
def choices(parentCost, xs):
for c, x in xs:
heappush(pq, (parentCost + c, x))
def g(parentCost, request, _=None,
context=None, environment=[],
k=None):
"""
k is a continuation.
k: Expects to be called with MDL, context, expression.
"""
assert k is not None
if context is None:
context = Context.EMPTY
if request.isArrow():
g(parentCost,
request.arguments[1],
context=context,
environment=[request.arguments[0]] + environment,
k=lambda MDL,
newContext,
p: k(MDL,
newContext,
Abstraction(p)))
else:
candidates = self.buildCandidates(request,
context,
environment,
normalize=True,
returnProbabilities=False,
returnTable=True)
choices(parentCost,
[(-f_ll_tp_newContext[1][0],
lambda: ga(parentCost - f_ll_tp_newContext[1][0],
f_ll_tp_newContext[0],
f_ll_tp_newContext[1][1].functionArguments(),
context=f_ll_tp_newContext[1][2],
environment=environment,
k=k)) for f_ll_tp_newContext in iter(candidates.items())])
def ga(costSoFar, f, argumentTypes, _=None,
context=None, environment=None,
k=None):
if argumentTypes == []:
k(costSoFar, context, f)
else:
t1 = argumentTypes[0].apply(context)
g(costSoFar, t1, context=context, environment=environment,
k=lambda newCost, newContext, argument:
ga(newCost, Application(f, argument), argumentTypes[1:],
context=newContext, environment=environment,
k=k))
def receiveResult(MDL, _, expression):
heappush(pq, (MDL, expression))
g(0., request, context=Context.EMPTY, environment=[], k=receiveResult)
frontier = []
while len(frontier) < 10**3:
MDL, action = heappop(pq)
if isinstance(action, Program):
expression = action
frontier.append(expression)
#eprint("Enumerated program",expression,-MDL,self.closedLogLikelihood(request, expression))
else:
action()
def closedLikelihoodSummary(self, request, expression, silent=False):
try:
context, summary = self.likelihoodSummary(Context.EMPTY, [], request, expression, silent=silent)
except GrammarFailure as e:
failureExport = 'failures/grammarFailure%s.pickle' % (
time.time() + getPID())
eprint("PANIC: Grammar failure, exporting to ", failureExport)
with open(failureExport, 'wb') as handle:
pickle.dump((e, self, request, expression), handle)
assert False
return summary
def logLikelihood(self, request, expression):
summary = self.closedLikelihoodSummary(request, expression)
if summary is None:
eprint(
"FATAL: program [ %s ] does not have a likelihood summary." %
expression, "r = ", request, "\n", self)
assert False
return summary.logLikelihood(self)
def rescoreFrontier(self, frontier):
return Frontier([FrontierEntry(e.program,
logPrior=self.logLikelihood(frontier.task.request, e.program),
logLikelihood=e.logLikelihood)
for e in frontier],
frontier.task)
def productionUses(self, frontiers):
"""Returns the expected number of times that each production was used. {production: expectedUses}"""
frontiers = [self.rescoreFrontier(f).normalize()
for f in frontiers if not f.empty]
uses = {p: 0. for p in self.primitives}
for f in frontiers:
for e in f:
summary = self.closedLikelihoodSummary(f.task.request,
e.program)
for p, u in summary.uses:
uses[p] += u * math.exp(e.logPosterior)
return uses
def insideOutside(self, frontiers, pseudoCounts, iterations=1):
# Replace programs with (likelihood summary, uses)
frontiers = [ Frontier([ FrontierEntry((summary, summary.toUses()),
logPrior=summary.logLikelihood(self),
logLikelihood=e.logLikelihood)
for e in f
for summary in [self.closedLikelihoodSummary(f.task.request, e.program)] ],
task=f.task)
for f in frontiers ]
g = self
for i in range(iterations):
u = Uses()
for f in frontiers:
f = f.normalize()
for e in f:
_, eu = e.program
u += math.exp(e.logPosterior) * eu
lv = math.log(u.actualVariables + pseudoCounts) - \
math.log(u.possibleVariables + pseudoCounts)
g = Grammar(lv,
[ (math.log(u.actualUses.get(p,0.) + pseudoCounts) - \
math.log(u.possibleUses.get(p,0.) + pseudoCounts),
t,p)
for _,t,p in g.productions ],
continuationType=self.continuationType)
if i < iterations - 1:
frontiers = [Frontier([ FrontierEntry((summary, uses),
logPrior=summary.logLikelihood(g),
logLikelihood=e.logLikelihood)
for e in f
for (summary, uses) in [e.program] ],
task=f.task)
for f in frontiers ]
return g
def frontierMDL(self, frontier):
return max( e.logLikelihood + self.logLikelihood(frontier.task.request, e.program)
for e in frontier )
def enumeration(self,context,environment,request,upperBound,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all programs whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0 or maximumDepth == 1:
return
if request.isArrow():
v = request.arguments[0]
for l, newContext, b in self.enumeration(context, [v] + environment,
request.arguments[1],
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
candidates = self.buildCandidates(request, context, environment,
normalize=True)
for l, t, p, newContext in candidates:
mdl = -l
if not (mdl < upperBound):
continue
xs = t.functionArguments()
for aL, aK, application in\
self.enumerateApplication(newContext, environment, p, xs,
upperBound=upperBound + l,
lowerBound=lowerBound + l,
maximumDepth=maximumDepth - 1):
yield aL + l, aK, application
def enumerateApplication(self, context, environment,
function, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20,
originalFunction=None,
argumentIndex=0):
if upperBound < 0. or maximumDepth == 1:
return
if originalFunction is None:
originalFunction = function
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
for argL, newContext, arg in self.enumeration(context, environment, argRequest,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
if violatesSymmetry(originalFunction, arg, argumentIndex):
continue
newFunction = Application(function, arg)
for resultL, resultK, result in self.enumerateApplication(newContext, environment, newFunction,
laterRequests,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth,
originalFunction=originalFunction,
argumentIndex=argumentIndex + 1):
yield resultL + argL, resultK, result
def sketchEnumeration(self,context,environment,request,sk,upperBound,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all sketch instantiations whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0. or maximumDepth == 1:
return
if sk.isHole:
yield from self.enumeration(context, environment, request, upperBound,
maximumDepth=maximumDepth,
lowerBound=lowerBound)
elif request.isArrow():
assert sk.isAbstraction
v = request.arguments[0]
for l, newContext, b in self.sketchEnumeration(context, [v] + environment,
request.arguments[1],
sk.body,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
f, xs = sk.applicationParse()
if f.isIndex:
ft = environment[f.i].apply(context)
elif f.isInvented or f.isPrimitive:
context, ft = f.tp.instantiate(context)
elif f.isAbstraction:
assert False, "sketch is not in beta longform"
elif f.isHole:
assert False, "hole as function not yet supported"
elif f.isApplication:
assert False, "should never happen - bug in applicationParse"
else: assert False
try: context = context.unify(ft.returns(), request)
except UnificationFailure:
print("Exception: sketch is ill-typed")
return #so that we can continue evaluating
# raise SketchEnumerationFailure() #"sketch is ill-typed"
ft = ft.apply(context)
argumentRequests = ft.functionArguments()
assert len(argumentRequests) == len(xs)
yield from self.sketchApplication(context, environment,
f, xs, argumentRequests,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth - 1)
def sketchApplication(self, context, environment,
function, arguments, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20):
if upperBound < 0. or maximumDepth == 1:
return
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
firstSketch = arguments[0]
laterSketches = arguments[1:]
for argL, newContext, arg in self.sketchEnumeration(context, environment, argRequest,
firstSketch,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
newFunction = Application(function, arg)
for resultL, resultK, result in self.sketchApplication(newContext, environment, newFunction,
laterSketches, laterRequests,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth):
yield resultL + argL, resultK, result
def sketchLogLikelihood(self, request, full, sk, context=Context.EMPTY, environment=[]):
"""
calculates mdl of full program 'full' from sketch 'sk'
"""
if sk.isHole:
_, summary = self.likelihoodSummary(context, environment, request, full)
if summary is None:
eprint(
"FATAL: program [ %s ] does not have a likelihood summary." %
full, "r = ", request, "\n", self)
assert False
return summary.logLikelihood(self), context
elif request.isArrow():
assert sk.isAbstraction and full.isAbstraction
#assert sk.f == full.f #is this right? or do i need to recurse?
v = request.arguments[0]
return self.sketchLogLikelihood(request.arguments[1], full.body, sk.body, context=context, environment=[v] + environment)
else:
sk_f, sk_xs = sk.applicationParse()
full_f, full_xs = full.applicationParse()
if sk_f.isIndex:
assert sk_f == full_f, "sketch and full program don't match on an index"
ft = environment[sk_f.i].apply(context)
elif sk_f.isInvented or sk_f.isPrimitive:
assert sk_f == full_f, "sketch and full program don't match on a primitive"
context, ft = sk_f.tp.instantiate(context)
elif sk_f.isAbstraction:
assert False, "sketch is not in beta longform"
elif sk_f.isHole:
assert False, "hole as function not yet supported"
elif sk_f.isApplication:
assert False, "should never happen - bug in applicationParse"
else: assert False
try: context = context.unify(ft.returns(), request)
except UnificationFailure: assert False, "sketch is ill-typed"
ft = ft.apply(context)
argumentRequests = ft.functionArguments()
assert len(argumentRequests) == len(sk_xs) == len(full_xs) #this might not be true if holes??
return self.sketchllApplication(context, environment,
sk_f, sk_xs, full_f, full_xs, argumentRequests)
def sketchllApplication(self, context, environment,
sk_function, sk_arguments, full_function, full_arguments, argumentRequests):
if argumentRequests == []:
return torch.tensor([0.]).cuda(), context #does this make sense?
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
sk_firstSketch = sk_arguments[0]
full_firstSketch = full_arguments[0]
sk_laterSketches = sk_arguments[1:]
full_laterSketches = full_arguments[1:]
argL, newContext = self.sketchLogLikelihood(argRequest, full_firstSketch, sk_firstSketch, context=context, environment=environment)
#finish this...
sk_newFunction = Application(sk_function, sk_firstSketch) # is this redundant? maybe
full_newFunction = Application(full_function, full_firstSketch)
resultL, context = self.sketchllApplication(newContext, environment, sk_newFunction, sk_laterSketches,
full_newFunction, full_laterSketches, laterRequests)
return resultL + argL, context
def enumerateNearby(self, request, expr, distance=3.0):
"""Enumerate programs with local mutations in subtrees with small description length"""
if distance <= 0:
yield expr
else:
def mutations(tp, loss):
for l, _, expr in self.enumeration(
Context.EMPTY, [], tp, distance - loss):
yield expr, l
yield from Mutator(self, mutations).execute(expr, request)
def enumerateHoles(self, request, expr, k=3, return_obj=Hole):
"""Enumerate programs with a single hole within mdl distance"""
#TODO: make it possible to enumerate sketches with multiple holes
def mutations(tp, loss, is_left_application=False):
"""
to allow applications lhs to become a hole,
remove the condition below and ignore all the is_left_application kwds
"""
if not is_left_application:
yield return_obj(), 0
top_k = []
for expr, l in Mutator(self, mutations).execute(expr, request):
if len(top_k) > 0:
i, v = min(enumerate(top_k), key=lambda x:x[1][1])
if l > v[1]:
if len(top_k) >= k:
top_k[i] = (expr, l)
else:
top_k.append((expr, l))
elif len(top_k) < k:
top_k.append((expr, l))
else:
top_k.append((expr, l))
return sorted(top_k, key=lambda x:-x[1])
def untorch(self):
return Grammar(self.logVariable.data.tolist()[0],
[ (l.data.tolist()[0], t, p)
for l, t, p in self.productions],
continuationType=self.continuationType)
class LikelihoodSummary(object):
'''Summarizes the terms that will be used in a likelihood calculation'''
def __init__(self):
self.uses = {}
self.normalizers = {}
self.constant = 0.
def __str__(self):
return """LikelihoodSummary(constant = %f,
uses = {%s},
normalizers = {%s})""" % (self.constant,
", ".join(
"%s: %d" % (k,
v) for k,
v in self.uses.items()),
", ".join(
"%s: %d" % (k,
v) for k,
v in self.normalizers.items()))
def record(self, actual, possibles, constant=0.):
# Variables are all normalized to be $0
if isinstance(actual, Index):
actual = Index(0)
# Make it something that we can hash
possibles = frozenset(sorted(possibles, key=hash))
self.constant += constant
self.uses[actual] = self.uses.get(actual, 0) + 1
self.normalizers[possibles] = self.normalizers.get(possibles, 0) + 1
def join(self, other):
self.constant += other.constant
for k, v in other.uses.items():
self.uses[k] = self.uses.get(k, 0) + v
for k, v in other.normalizers.items():
self.normalizers[k] = self.normalizers.get(k, 0) + v
def logLikelihood(self, grammar):
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items()) - \
sum(count * lse([grammar.expression2likelihood[p] for p in ps])
for ps, count in self.normalizers.items())
def logLikelihood_overlyGeneral(self, grammar):
"""Calculates log likelihood of this summary, given that the summary might refer to productions that don't occur in the grammar"""
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items()) - \
sum(count * lse([grammar.expression2likelihood.get(p,NEGATIVEINFINITY) for p in ps])
for ps, count in self.normalizers.items())
def numerator(self, grammar):
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items())
def denominator(self, grammar):
return \
sum(count * lse([grammar.expression2likelihood[p] for p in ps])
for ps, count in self.normalizers.items())
def toUses(self):
from collections import Counter
possibleVariables = sum( count if Index(0) in ps else 0
for ps, count in self.normalizers.items() )
actualVariables = self.uses.get(Index(0), 0.)
actualUses = {k: v
for k, v in self.uses.items()
if not k.isIndex }
possibleUses = dict(Counter(p
for ps, count in self.normalizers.items()
for p_ in ps
if not p_.isIndex
for p in [p_]*count ))
return Uses(possibleVariables, actualVariables,
possibleUses, actualUses)
class Uses(object):
'''Tracks uses of different grammar productions'''
def __init__(self, possibleVariables=0., actualVariables=0.,
possibleUses={}, actualUses={}):
self.actualVariables = actualVariables
self.possibleVariables = possibleVariables
self.possibleUses = possibleUses
self.actualUses = actualUses
def __str__(self):
return "Uses(actualVariables = %f, possibleVariables = %f, actualUses = %s, possibleUses = %s)" %\
(self.actualVariables, self.possibleVariables, self.actualUses, self.possibleUses)
def __repr__(self): return str(self)
def __mul__(self, a):
return Uses(a * self.possibleVariables,
a * self.actualVariables,
{p: a * u for p, u in self.possibleUses.items()},
{p: a * u for p, u in self.actualUses.items()})
def __imul__(self, a):
self.possibleVariables *= a
self.actualVariables *= a
for p in self.possibleUses:
self.possibleUses[p] *= a
for p in self.actualUses:
self.actualUses[p] *= a
return self
def __rmul__(self, a):
return self * a
def __radd__(self, o):
if o == 0:
return self
return self + o
def __add__(self, o):
if o == 0:
return self
def merge(x, y):
z = x.copy()
for k, v in y.items():
z[k] = v + x.get(k, 0.)
return z
return Uses(self.possibleVariables + o.possibleVariables,
self.actualVariables + o.actualVariables,
merge(self.possibleUses, o.possibleUses),
merge(self.actualUses, o.actualUses))
def __iadd__(self, o):
self.possibleVariables += o.possibleVariables
self.actualVariables += o.actualVariables
for k, v in o.possibleUses.items():
self.possibleUses[k] = self.possibleUses.get(k, 0.) + v
for k, v in o.actualUses.items():
self.actualUses[k] = self.actualUses.get(k, 0.) + v
return self
@staticmethod
def join(z, *weightedUses):
"""Consumes weightedUses"""
if not weightedUses:
Uses.empty
if len(weightedUses) == 1:
return weightedUses[0][1]
for w, u in weightedUses:
u *= exp(w - z)
total = Uses()
total.possibleVariables = sum(
u.possibleVariables for _, u in weightedUses)
total.actualVariables = sum(u.actualVariables for _, u in weightedUses)
total.possibleUses = defaultdict(float)
total.actualUses = defaultdict(float)
for _, u in weightedUses:
for k, v in u.possibleUses.items():
total.possibleUses[k] += v
for k, v in u.actualUses.items():
total.actualUses[k] += v
return total
Uses.empty = Uses()
class ContextualGrammar:
def __init__(self, noParent, variableParent, library):
self.noParent, self.variableParent, self.library = noParent, variableParent, library
self.productions = [(None,t,p) for _,t,p in self.noParent.productions ]
self.primitives = [p for _,_2,p in self.productions ]
self.continuationType = noParent.continuationType
assert variableParent.continuationType == self.continuationType
assert set(noParent.primitives) == set(variableParent.primitives)
assert set(variableParent.primitives) == set(library.keys())
for e,gs in library.items():
assert len(gs) == len(e.infer().functionArguments())
for g in gs:
assert set(g.primitives) == set(library.keys())
assert g.continuationType == self.continuationType
def untorch(self):
return ContextualGrammar(self.noParent.untorch(), self.variableParent.untorch(),
{e: [g.untorch() for g in gs ]
for e,gs in self.library.items() })
def randomWeights(self, r):
"""returns a new grammar with random weights drawn from r. calls `r` w/ old weight"""
return ContextualGrammar(self.noParent.randomWeights(r),
self.variableParent.randomWeights(r),
{e: [g.randomWeights(r) for g in gs]
for e,gs in self.library.items() })
def __str__(self):
lines = ["No parent:",str(self.noParent),"",
"Variable parent:",str(self.variableParent),"",
""]
for e,gs in self.library.items():
for j,g in enumerate(gs):
lines.extend(["Parent %s, argument index %s"%(e,j),
str(g),
""])
return "\n".join(lines)
def json(self):
return {"noParent": self.noParent.json(),
"variableParent": self.variableParent.json(),
"productions": [{"program": str(e),
"arguments": [gp.json() for gp in gs ]}
for e,gs in self.library.items() ]}
@staticmethod
def fromGrammar(g):
return ContextualGrammar(g, g,
{e: [g]*len(e.infer().functionArguments())
for e in g.primitives })
class LS: # likelihood summary
def __init__(self, owner):
self.noParent = LikelihoodSummary()
self.variableParent = LikelihoodSummary()
self.library = {e: [LikelihoodSummary() for _ in gs] for e,gs in owner.library.items() }
def record(self, parent, parentIndex, actual, possibles, constant):
if parent is None: ls = self.noParent
elif parent.isIndex: ls = self.variableParent
else: ls = self.library[parent][parentIndex]
ls.record(actual, possibles, constant=constant)
def join(self, other):
self.noParent.join(other.noParent)
self.variableParent.join(other.variableParent)
for e,gs in self.library.items():
for g1,g2 in zip(gs, other.library[e]):
g1.join(g2)
def logLikelihood(self, owner):
return self.noParent.logLikelihood(owner.noParent) + \
self.variableParent.logLikelihood(owner.variableParent) + \
sum(r.logLikelihood(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def numerator(self, owner):
return self.noParent.numerator(owner.noParent) + \
self.variableParent.numerator(owner.variableParent) + \
sum(r.numerator(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def denominator(self, owner):
return self.noParent.denominator(owner.noParent) + \
self.variableParent.denominator(owner.variableParent) + \
sum(r.denominator(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def likelihoodSummary(self, parent, parentIndex, context, environment, request, expression):
if request.isArrow():
assert expression.isAbstraction
return self.likelihoodSummary(parent, parentIndex,
context,
[request.arguments[0]] + environment,
request.arguments[1],
expression.body)
if parent is None: g = self.noParent
elif parent.isIndex: g = self.variableParent
else: g = self.library[parent][parentIndex]
candidates = g.buildCandidates(request, context, environment,
normalize=False, returnTable=True)
# A list of everything that would have been possible to use here
possibles = [p for p in candidates.keys() if not p.isIndex]
numberOfVariables = sum(p.isIndex for p in candidates.keys())
if numberOfVariables > 0:
possibles += [Index(0)]
f, xs = expression.applicationParse()
assert f in candidates
thisSummary = self.LS(self)
thisSummary.record(parent, parentIndex,
f, possibles,
constant= -math.log(numberOfVariables) if f.isIndex else 0)
_, tp, context = candidates[f]
argumentTypes = tp.functionArguments()
assert len(xs) == len(argumentTypes)
for i, (argumentType, argument) in enumerate(zip(argumentTypes, xs)):
argumentType = argumentType.apply(context)
context, newSummary = self.likelihoodSummary(f, i,
context, environment, argumentType, argument)
thisSummary.join(newSummary)
return context, thisSummary
def closedLikelihoodSummary(self, request, expression):
return self.likelihoodSummary(None,None,
Context.EMPTY,[],
request, expression)[1]
def logLikelihood(self, request, expression):
return self.closedLikelihoodSummary(request, expression).logLikelihood(self)
def sample(self, request, maximumDepth=8, maxAttempts=None):
attempts = 0
while True:
try:
_, e = self._sample(None, None, Context.EMPTY, [], request, maximumDepth)
return e
except NoCandidates:
if maxAttempts is not None:
attempts += 1
if attempts > maxAttempts: return None
continue
def _sample(self, parent, parentIndex, context, environment, request, maximumDepth):
if request.isArrow():
context, body = self._sample(parent, parentIndex, context,
[request.arguments[0]] + environment,
request.arguments[1],
maximumDepth)
return context, Abstraction(body)
if parent is None: g = self.noParent
elif parent.isIndex: g = self.variableParent
else: g = self.library[parent][parentIndex]
candidates = g.buildCandidates(request, context, environment,
normalize=True, returnProbabilities=True,
mustBeLeaf=(maximumDepth <= 1))
newType, chosenPrimitive, context = sampleDistribution(candidates)
xs = newType.functionArguments()
returnValue = chosenPrimitive
for j,x in enumerate(xs):
x = x.apply(context)
context, x = self._sample(chosenPrimitive, j, context, environment, x, maximumDepth - 1)
returnValue = Application(returnValue, x)
return context, returnValue
def expectedUsesMonteCarlo(self, request, debug=None):
import numpy as np
n = 0
u = [0.]*len(self.primitives)
primitives = list(sorted(self.primitives, key=str))
noInventions = all( not p.isInvented for p in primitives )
primitive2index = {primitive: i
for i, primitive in enumerate(primitives)
if primitive.isInvented or noInventions }
eprint(primitive2index)
ns = 10000
with timing(f"calculated expected uses using Monte Carlo simulation w/ {ns} samples"):
for _ in range(ns):
p = self.sample(request, maxAttempts=0)
if p is None: continue
n += 1
if debug and n < 10:
eprint(debug, p)
for _, child in p.walk():
if child not in primitive2index: continue
u[primitive2index[child]] += 1.0
u = np.array(u)/n
if debug:
eprint(f"Got {n} samples. Feature vector:\n{u}")
eprint(f"Likely used primitives: {[p for p,i in primitive2index.items() if u[i] > 0.5]}")
eprint(f"Likely used primitive indices: {[i for p,i in primitive2index.items() if u[i] > 0.5]}")
return u
def featureVector(self, _=None, requests=None, onlyInventions=True, normalize=True):
"""
Returns the probabilities licensed by the type system.
This is like the grammar productions, but with irrelevant junk removed.
Its intended use case is for clustering; it should be strictly better than the raw transition matrix.
"""
if requests is None:
if self.continuationType: requests = {self.continuationType}
elif any( 'REAL' == str(p) for p in self.primitives ): requests = set()
elif any( 'STRING' == str(p) for p in self.primitives ): requests = {tlist(tcharacter)}
else: requests = set()
requests = {r.returns() for r in requests}
features = []
logWeights = []
for l,t,p in sorted(self.noParent.productions,
key=lambda z: str(z[2])):
if onlyInventions and not p.isInvented: continue
if any( canUnify(r, t.returns()) for r in requests ) or len(requests) == 0:
logWeights.append(l)
features.append(logWeights)
for parent in sorted(self.primitives, key=str):
if onlyInventions and not parent.isInvented: continue
if parent not in self.library: continue
argumentTypes = parent.infer().functionArguments()
for j,g in enumerate(self.library[parent]):
argumentType = argumentTypes[j]
logWeights = []
for l,t,p in sorted(g.productions,
key=lambda z: str(z[2])):
if onlyInventions and not p.isInvented: continue
if canUnify(argumentType.returns(), t.returns()):
logWeights.append(l)
features.append(logWeights)
if normalize:
features = [ [math.exp(w - z) for w in lw ]
for lw in features
if lw
for z in [lse(lw)] ]
import numpy as np
return np.array([f
for lw in features
for f in lw])
def enumeration(self,context,environment,request,upperBound,
parent=None, parentIndex=None,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all programs whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0 or maximumDepth == 1:
return
if request.isArrow():
v = request.arguments[0]
for l, newContext, b in self.enumeration(context, [v] + environment,
request.arguments[1],
parent=parent, parentIndex=parentIndex,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
if parent is None: g = self.noParent
elif parent.isIndex: g = self.variableParent
else: g = self.library[parent][parentIndex]
candidates = g.buildCandidates(request, context, environment,
normalize=True)
for l, t, p, newContext in candidates:
mdl = -l
if not (mdl < upperBound):
continue
xs = t.functionArguments()
for aL, aK, application in\
self.enumerateApplication(newContext, environment, p, xs,
parent=p,
upperBound=upperBound + l,
lowerBound=lowerBound + l,
maximumDepth=maximumDepth - 1):
yield aL + l, aK, application
def enumerateApplication(self, context, environment,
function, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20,
parent=None,
originalFunction=None,
argumentIndex=0):
assert parent is not None
if upperBound < 0. or maximumDepth == 1:
return
if originalFunction is None:
originalFunction = function
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
for argL, newContext, arg in self.enumeration(context, environment, argRequest,
parent=parent, parentIndex=argumentIndex,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
if violatesSymmetry(originalFunction, arg, argumentIndex):
continue
newFunction = Application(function, arg)
for resultL, resultK, result in self.enumerateApplication(newContext, environment, newFunction,
laterRequests,
parent=parent,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth,
originalFunction=originalFunction,
argumentIndex=argumentIndex + 1):
yield resultL + argL, resultK, result
def violatesSymmetry(f, x, argumentIndex):
if not f.isPrimitive:
return False
while x.isApplication:
x = x.f
if not x.isPrimitive:
return False
f = f.name
x = x.name
if f == "car":
return x == "cons" or x == "empty"
if f == "cdr":
return x == "cons" or x == "empty"
if f == "+":
return x == "0" or (argumentIndex == 1 and x == "+")
if f == "-":
return argumentIndex == 1 and x == "0"
if f == "empty?":
return x == "cons" or x == "empty"
if f == "zero?":
return x == "0" or x == "1"
if f == "index" or f == "map" or f == "zip":
return x == "empty"
if f == "range":
return x == "0"
if f == "fold":
return argumentIndex == 1 and x == "empty"
return False
def batchLikelihood(jobs):
"""Takes as input a set of (program, request, grammar) and returns a dictionary mapping each of these to its likelihood under the grammar"""
superGrammar = Grammar.uniform(list({p for _1,_2,g in jobs for p in g.primitives}),
continuationType=list(jobs)[0][-1].continuationType)
programsAndRequests = {(program, request)
for program, request, grammar in jobs}
with timing(f"Calculated {len(programsAndRequests)} likelihood summaries"):
summary = {(program, request): superGrammar.closedLikelihoodSummary(request, program)
for program, request in programsAndRequests}
with timing(f"Calculated log likelihoods from summaries"):
response = {}
for program, request, grammar in jobs:
fast = summary[(program, request)].logLikelihood_overlyGeneral(grammar)
if False: # debugging
slow = grammar.logLikelihood(request, program)
print(program)
eprint(grammar.closedLikelihoodSummary(request, program))
eprint(superGrammar.closedLikelihoodSummary(request, program))
print()
assert abs(fast - slow) < 0.0001
response[(program, request, grammar)] = fast
return response
if __name__ == "__main__":
from dreamcoder.domains.arithmetic.arithmeticPrimitives import *
g = ContextualGrammar.fromGrammar(Grammar.uniform([k0,k1,addition, subtraction]))
g = g.randomWeights(lambda *a: random.random())
#p = Program.parse("(lambda (+ 1 $0))")
request = arrow(tint,tint)
for ll,_,p in g.enumeration(Context.EMPTY,[],request,
12.):
ll_ = g.logLikelihood(request,p)
print(ll,p,ll_)
d = abs(ll - ll_)
assert d < 0.0001
|