File size: 15,097 Bytes
3bdb76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from dreamcoder.task import Task, EvaluationTimeout
import gc
from dreamcoder.utilities import *
from collections import Counter
import math

from dreamcoder.domains.regex.groundtruthRegexes import gt_dict

gt_dict = {"Data column no. "+str(num): r_str for num, r_str in gt_dict.items()}

class AllOrNothingLikelihoodModel:
    def __init__(self, timeout=None):
        self.timeout = timeout

    def score(self, program, task):
        logLikelihood = task.logLikelihood(program, self.timeout)
        return valid(logLikelihood), logLikelihood


class EuclideanLikelihoodModel:
    """Likelihood is based on Euclidean distance between features"""

    def __init__(self, featureExtractor, successCutoff=0.9):
        self.extract = featureExtractor
        self.successCutoff = successCutoff

    def score(self, program, task):
        taskFeat = self.extract.featuresOfTask(task)
        progFeat = self.extract.featuresOfProgram(program, task.request)
        assert len(taskFeat) == len(progFeat)
        distance = sum((x1 - x2)**2 for x1, x2 in zip(taskFeat, progFeat))
        logLikelihood = float(-distance)  # FIXME: this is really naive
        return exp(logLikelihood) > self.successCutoff, logLikelihood

def longest_common_substr(arr):
    #array of examples 

# Python 3 program to find the stem
# of given list of words
# function to find the stem (longest
# common substring) from the string array
    # Determine size of the array
    n = len(arr)

    # Take first word from array
    # as reference
    s = arr[0]
    l = len(s)
    res = ""
    for i in range(l) :
        for j in range( i + 1, l + 1) :
            # generating all possible substrings
            # of our reference string arr[0] i.e s
            stem = s[i:j]
            k = 1
            for k in range(1, n):

                # Check if the generated stem is
                # common to to all words
                if stem not in arr[k]:
                    break

                # If current substring is present in
                # all strings and its length is greater
                # than current result
            if (k + 1 == n and len(res) < len(stem)): res = stem
    return res 

def add_string_constants(tasks):
    for task in tasks:
        task.str_const = longest_common_substr([example[1] for example in task.examples])
    return tasks

def get_gt_ll(name, examples):
    #gets groundtruth from dict
    import pregex as pre
    r_str = gt_dict[name]
    preg = pre.create(r_str)

    if type(examples[0]) == list:
        examples = [ "".join(example) for example in examples]

    s = sum( preg.match(example) for example in examples)
    if s == float("-inf"):
        print("bad for ", name)
        print('preg:', preg)
        print('preg sample:', [preg.sample() for i in range(3)])
        print("exs", examples)
        #assert False 
    return s


def add_cutoff_values(tasks, ll_cutoff):
    from dreamcoder.domains.regex.makeRegexTasks import makeNewTasks
    if ll_cutoff is None or ll_cutoff == "None":
        for task in tasks:
            task.ll_cutoff = None
        return tasks
    if ll_cutoff == "gt":
        from dreamcoder.domains.regex.makeRegexTasks import regexHeldOutExamples
        for task in tasks:
            task.ll_cutoff = None
            task.gt = get_gt_ll(task.name, [example[1] for example in task.examples])
            task.gt_test = get_gt_ll(task.name,
                                     [example[1] for example in regexHeldOutExamples(task) ])
        return tasks
    elif ll_cutoff == "plus":
        for task in tasks:
            task.ll_cutoff = regex_plus_bound([example[1] for example in task.examples])
        return tasks
    elif ll_cutoff == "bigram":
        eprint("WARNING: using entire corpus to make bigram model")
        #this means i do it twice, which is eh whatever
        model = make_corpus_bigram(show_tasks(makeNewTasks()))
        for task in tasks:
            task.ll_cutoff = bigram_corpus_score([example[1] for example in task.examples], model)
        return tasks
    elif ll_cutoff =="unigram":
        eprint("WARNING: using entire corpus to make unigram model")
        #this means i do it twice, which is eh whatever
        model = make_corpus_unigram(show_tasks(makeNewTasks()))
        for task in tasks:
            task.ll_cutoff = unigram_corpus_score([example[1] for example in task.examples], model)
        return tasks
    elif ll_cutoff =="mix":
        eprint("WARNING: using entire corpus to make bigram model")
        eprint("WARNING: using entire corpus to make unigram model")
        #this means i do it twice, which is eh whatever
        unigram = make_corpus_unigram(show_tasks(makeNewTasks()))
        bigram = make_corpus_bigram(show_tasks(makeNewTasks()))
        for task in tasks:
            uniscore = unigram_corpus_score([example[1] for example in task.examples], unigram)
            biscore = bigram_corpus_score([example[1] for example in task.examples], bigram)
            task.ll_cutoff = math.log(0.75*math.exp(biscore) + 0.25*math.exp(uniscore))
        return tasks
    else:
        eprint("not implemented")
        eprint("cutoff val:")
        eprint(ll_cutoff)
        assert False

def show_tasks(dataset):
    task_list = []
    for task in dataset:
        task_list.append([example[1] for example in task.examples])
    return task_list

def regex_plus_bound(X):
    from pregex import pregex
    c = Counter(X)
    regexes = [
        pregex.create(".+"),
        pregex.create("\d+"),
        pregex.create("\w+"),
        pregex.create("\s+"),
        pregex.create("\\u+"),
        pregex.create("\l+")]
    regex_scores = []
    for r in regexes:
        regex_scores.append(sum(c[x] * r.match(x) for x in c)/float(sum([len(x) for x in X])) )
    return max(regex_scores)


def make_corpus_unigram(C):
    str_list = [example + '\n' for task in C for example in task]
    c = Counter(char for example in str_list for char in example )
    n = sum(c.values())

    logp = {x:math.log(c[x]/n) for x in c}
    return logp

def unigram_corpus_score(X, logp):
    task_ll = 0
    for x in X:
        x = x + '\n'
        task_ll += sum( logp.get(c, float('-inf')) for c in x)/len(x)

    ll = task_ll/len(X)
    return ll

def unigram_task_score(X):
    """
    Given a list of strings, X, calculate the maximum log-likelihood per character for a unigram model over characters (including STOP symbol)
    """
    c = Counter(x for s in X for x in s)
    c.update("end" for s in X)
    n = sum(c.values())
    logp = {x:math.log(c[x]/n) for x in c}
    return sum(c[x]*logp[x] for x in c)/n

def make_corpus_bigram(C):
    #using newline as "end"
    #C is a list of tasks

    #make one big list of strings
    str_list = [example + '\n' for task in C for example in task]

    #make list of 
    head_count = Counter(element[0] for element in str_list)
    head_n = sum(head_count.values())
    head_logp = {x:math.log(head_count[x]/head_n) for x in head_count}

    body_count = Counter(element[i:i+2] for element in str_list for i in range(len(element)-1))
    body_bigram_n = sum(body_count.values())
    #body_count/body_bigram_n gives the joint of a bigram
    body_character_n = Counter(char for element in str_list for char in element)
    body_unigram_n = sum(body_character_n.values())

    body_logp = {x:math.log(body_count[x] / body_bigram_n / body_character_n[x[0]] * body_unigram_n) for x in body_count}

    return {**head_logp, **body_logp}

def bigram_corpus_score(X, logp):
    #assume you have a logp dict
    task_ll = 0
    for x in X:
        bigram_list = [x[0]] + [x[i:i+2] for i in range(len(x)-1)] + [x[-1] + '\n']
        bigram_list = [ ''.join(b) if isinstance(b,list) else b
                        for b in bigram_list ]

        string_ll = sum(logp.get(bigram, float('-inf')) for bigram in bigram_list) #/(len(x) + 1)

        task_ll += string_ll

    ll = task_ll #/len(X)
    return ll


class ProbabilisticLikelihoodModel:

    def __init__(self, timeout):
        self.timeout = timeout
        # i need timeout

    def score(self, program, task):
        # need a try, catch here for problems, and for timeouts
        # can copy task.py for the timeout structure
        try:
            def timeoutCallBack(_1, _2): raise EvaluationTimeout()
            signal.signal(signal.SIGVTALRM, timeoutCallBack)
            signal.setitimer(signal.ITIMER_VIRTUAL, self.timeout)
            try:
                string_pregex = program.evaluate([])
                # if 'left_paren' in program.show(False):
                #eprint("string_pregex:", string_pregex)
                #eprint("string_pregex:", string_pregex)
                preg = string_pregex  # pregex.create(string_pregex)
            except IndexError:
                # free variable
                return False, NEGATIVEINFINITY
            except Exception as e:
                eprint("Exception during evaluation:", e)
                if "Attempt to evaluate fragment variable" in e:
                    eprint("program (bc fragment error)", program)
                return False, NEGATIVEINFINITY

        #tries and catches

        # include prior somehow
        # right now, just summing up log likelihoods. IDK if this is correct.
        # also not using prior at all.

            cum_ll = 0

            example_list = [example[1] for example in task.examples]
            c_example_list = Counter(example_list)

            for c_example in c_example_list:
                #might want a try, except around the following line:

                try:
                    #eprint("about to match", program)
                    #print("preg:", preg)
                    ll = preg.match(c_example)
                    #eprint("completed match", ll, program)
                except ValueError as e:
                    eprint("ValueError:", e)
                    ll = float('-inf')
                
                #eprint("pregex:", string_pregex)
                #eprint("example[1]", example[1])

                if ll == float('-inf'):
                    return False, NEGATIVEINFINITY
                else:
                    #ll_per_char = ll/float(len(example[1]))
                    #cum_ll_per_char += ll_per_char

                    cum_ll += c_example_list[c_example] * ll
            
            #normalized_cum_ll_per_char = cum_ll_per_char/float(len(task.examples))
            #avg_char_num = sum([len(example[1]) for example in task.examples])/float(len(task.examples))
            
            #cutoff_ll = regex_plus_bound(example_list)   

            normalized_cum_ll = cum_ll/ float(sum([len(example) for example in example_list]))



            #TODO: change the way normalized_cum_ll is calculated 
            #TODO: refactor to pass in bigram_model, and others
            #TODO: refactor to do 95% certainty thing josh wants
            success = normalized_cum_ll > task.ll_cutoff



            #eprint("cutoff_ll:", cutoff_ll, ", norm_cum_ll:", normalized_cum_ll)	

            return success, normalized_cum_ll

        except EvaluationTimeout:
            eprint("Timed out while evaluating", program)
            return False, NEGATIVEINFINITY
        finally:
            signal.signal(signal.SIGVTALRM, lambda *_: None)
            signal.setitimer(signal.ITIMER_VIRTUAL, 0)


try:
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
    from torch.autograd import Variable

    class FeatureDiscriminatorLikelihoodModel(nn.Module):
        def __init__(self, tasks, featureExtractor,
                     successCutoff=0.6, H=8, trainingSuccessRatio=0.5):
            super(FeatureDiscriminatorLikelihoodModel, self).__init__()
            self.extract = featureExtractor
            self.successCutoff = successCutoff
            self.trainingSuccessRatio = trainingSuccessRatio

            self.W = nn.Linear(featureExtractor.outputDimensionality, H)
            self.output = nn.Linear(H, 1)

            # training on initialization
            self.train(tasks)

        def forward(self, examples):
            """
            Examples is a list of feature sets corresponding to a particular example.
            Output in [0,1] whether all examples correspond to the same program
            """
            assert all(
                len(x) == self.extract.outputDimensionality for x in examples)
            examples = [F.tanh(self.W(ex)) for ex in examples]
            maxed, _ = torch.max(torch.stack(examples), dim=0)
            return F.sigmoid(self.output(maxed))

        def train(self, tasks, steps=400):
            # list of list of features for each example in each task
            optimizer = torch.optim.Adam(self.parameters())
            with timing("Trained discriminator"):
                losses = []
                for i in range(steps):
                    self.zero_grad()
                    if random.random() <= self.trainingSuccessRatio:
                        # success
                        t = random.choice(tasks)
                        features = [self.extract.featuresOfTask(
                            Task(t.name, t.request, [ex], t.features))
                            for ex in t.examples]
                        loss = (self(features) - 1.0)**2
                    else:
                        # fail
                        t1, t2 = random.sample(tasks, 2)
                        features1 = [self.extract.featuresOfTask(
                            Task(t1.name, t1.request, [ex], t1.features))
                            for ex in t1.examples[:len(t1.examples) / 2]]
                        features2 = [self.extract.featuresOfTask(
                            Task(t2.name, t2.request, [ex], t2.features))
                            for ex in t2.examples[len(t2.examples) / 2:]]
                        features = features1 + features2
                        loss = self(features)**2

                    loss.backward()
                    optimizer.step()
                    losses.append(loss.data[0])
                    if not i % 50:
                        eprint(
                            "Discriminator Epoch",
                            i,
                            "Loss",
                            sum(losses) /
                            len(losses))
                        gc.collect()

        def score(self, program, task):
            taskFeatures = self.extract.featuresOfTask(task)
            progFeatures = self.extract.featuresOfProgram(
                program, task.request)
            likelihood = self([taskFeatures] + [progFeatures])
            likelihood = float(likelihood)
            return likelihood > self.successCutoff, log(likelihood)
except ImportError:
    pass


if __name__=="__main__":

    arr = ['MAM.OSBS.2014.06', 'MAM.OSBS.2013.07', 'MAM.OSBS.2013.09', 'MAM.OSBS.2014.05', 'MAM.OSBS.2014.11']
    stems = longest_common_substr(arr)
    print(stems)